20 Commits

Author SHA1 Message Date
01de4ce2cf first soap ideals 2023-06-29 23:57:29 +02:00
75b9136a1d fixed soe function declaration 2023-06-29 23:45:03 +02:00
484de3f7d9 Added State of Energy LUT 2023-06-29 23:35:08 +02:00
6c0bbb83f6 My own algo Branch with Blackjack and Hookers 2023-06-29 23:17:41 +02:00
c4543e7e01 Implementation of SoC Prediction
untested. Maybe revert to Jaspers Version
2023-06-21 13:13:38 +02:00
78fe61e231 Discharge if SDC is open and TS_Activate is sent
If we never leave TS_INACTIVE, the ABX keeps sending TS_Activate, and we
activate the TS as soon as the SDC is closed.
2023-06-13 20:49:43 +02:00
6d6c1c1f15 Only leave TS_INACTIVE if SDC is closed 2023-06-05 18:45:41 +02:00
cf018f9e4a Full battery 2023-06-05 18:17:16 +02:00
25d6ab2667 Shunt timeout 2023-05-31 00:46:49 +02:00
bf11004c64 Receive individual slave status messages 2023-05-14 19:52:24 +02:00
c54f3a65e3 Fix slave error source 2023-05-03 17:13:10 +02:00
ce4d7253eb Send AMS error messages 2023-04-30 00:57:42 +02:00
48ae56fbdf Set AMS Error pin 2023-04-30 00:04:00 +02:00
6810790349 Don't wait after reaching 95% 2023-04-29 23:45:59 +02:00
c43b6a3b6e Broadcast SDC state 2023-04-29 23:44:45 +02:00
29b411e4af Make SDC state globally available 2023-04-26 13:18:54 +02:00
6c27b83377 Motors turning 2023-04-24 19:20:21 +02:00
f5e26aad24 Run main loop every 50ms 2023-04-15 22:47:16 +02:00
f09665ad28 Decouple slave IDs from slaves array indices 2023-04-15 22:23:41 +02:00
e86a0f90fb Open AIRs in error handlers 2023-04-15 22:13:33 +02:00
16 changed files with 290 additions and 59 deletions

1
.gitignore vendored
View File

@ -3,3 +3,4 @@
/.cache/
.clangd
TouchGFX/build
.gitmodules

2
.gitmodules vendored
View File

@ -1,3 +1,3 @@
[submodule "Core/Lib/can-halal"]
path = Core/Lib/can-halal
url = ssh://git@git.fasttube.de:313/FaSTTUBe/can-halal.git
url = https://git.fasttube.de/FaSTTUBe/can-halal.git

View File

@ -5,10 +5,13 @@
#include "stm32f3xx_hal_can.h"
#include "stm32f3xx_hal_def.h"
#include "ts_state_machine.h"
#define CAN_ID_SLAVE_PANIC 0x009
#define CAN_ID_AMS_STATUS 0x00A
#define CAN_ID_AMS_IN 0x00B
#define CAN_ID_SLAVE_STATUS 0x014
#define CAN_ID_AMS_ERROR 0x00C
#define CAN_ID_SLAVE_STATUS_BASE 0x080
#define CAN_ID_SLAVE_LOG 0x4F4
#define CAN_ID_SHUNT_BASE 0x520
#define CAN_ID_SHUNT_CURRENT 0x521
@ -22,6 +25,7 @@
void can_init(CAN_HandleTypeDef *handle);
HAL_StatusTypeDef can_send_status();
HAL_StatusTypeDef can_send_error(TSErrorKind kind, uint8_t arg);
void ftcan_msg_received_cb(uint16_t id, size_t datalen, const uint8_t *data);

View File

@ -41,7 +41,7 @@ extern "C" {
/* Exported constants --------------------------------------------------------*/
/* USER CODE BEGIN EC */
extern int sdc_closed;
/* USER CODE END EC */
/* Exported macro ------------------------------------------------------------*/

View File

@ -5,12 +5,14 @@
#include "stm32f3xx_hal.h"
#define THRESH_OVERCURRENT 300000 // mA
#define SHUNT_TIMEOUT 300 // ms
#define SHUNT_THRESH_OVERCURRENT 300000 // mA
#define SHUNT_THRESH_OVERTEMP 1000 // 1/10 °C
typedef struct {
int32_t current;
int32_t voltage1;
int32_t voltage2;
int32_t voltage_bat;
int32_t voltage_veh;
int32_t voltage3;
int32_t busbartemp;
int32_t power;
@ -26,4 +28,6 @@ void shunt_check();
void shunt_handle_can_msg(uint16_t id, const uint8_t *data);
int32_t shunt_getcurrent();
#endif // INC_SHUNT_MONITORING_H

View File

@ -49,5 +49,6 @@ void slaves_check();
void slaves_handle_panic(const uint8_t *data);
void slaves_handle_status(const uint8_t *data);
void slaves_handle_log(const uint8_t *data);
uint16_t slaves_get_minimum_voltage();
#endif // INC_SLAVE_MONITORING_H

View File

@ -5,7 +5,14 @@
extern uint8_t current_soc;
#define N_MODELPARAMETERS 11
#define BATTERYCAPACITYAs (20000.0*3600) //TODO Check if value is correct Cap in Ah * 3600 (Convert to As)
#define SOAP_MINIMUM_VOLTAGE 2.5
void soc_init();
void soc_update();
void soc_update(int32_t shunt_current);
float soe_update();
void soap_update();
#endif // INC_SOC_ESTIMATION_H

View File

@ -8,7 +8,8 @@
// Minimum vehicle side voltage to exit precharge
#define MIN_VEHICLE_SIDE_VOLTAGE 150000 // mV
// Time to wait after reaching 95% of battery voltage before exiting precharge
#define PRECHARGE_95_DURATION 500 // ms
// Set this to 1000 in scruti to demonstrate the voltage on the multimeter
#define PRECHARGE_95_DURATION 0 // ms
// Time to wait for discharge
#define DISCHARGE_DURATION 5000 // ms
// Time to wait after there is no more error condition before exiting TS_ERROR
@ -28,6 +29,14 @@ typedef enum {
TS_CHARGING
} TSState;
typedef enum {
TS_ERRORKIND_NONE = 0x00,
TS_ERRORKIND_SLAVE_TIMEOUT = 0x01,
TS_ERRORKIND_SLAVE_PANIC = 0x02,
TS_ERRORKIND_SHUNT_TIMEOUT = 0x03,
TS_ERRORKIND_SHUNT_OVERCURRENT = 0x04,
TS_ERRORKIND_SHUNT_OVERTEMP = 0x05
} TSErrorKind;
#define TS_ERROR_SOURCE_SHUNT (1 << 0)
#define TS_ERROR_SOURCE_SLAVES (1 << 1)

View File

@ -15,31 +15,38 @@ void can_init(CAN_HandleTypeDef *handle) {
ftcan_add_filter(CAN_ID_SHUNT_BASE, 0xFF0);
ftcan_add_filter(CAN_ID_AMS_IN, 0xFFF);
ftcan_add_filter(CAN_ID_SLAVE_PANIC, 0xFFF);
ftcan_add_filter(CAN_ID_SLAVE_STATUS, 0xFFF);
ftcan_add_filter(CAN_ID_SLAVE_STATUS_BASE, 0xFF0);
ftcan_add_filter(CAN_ID_SLAVE_LOG, 0xFFF);
}
HAL_StatusTypeDef can_send_status() {
uint8_t data[6];
data[0] = ts_state.current_state;
data[0] = ts_state.current_state | (sdc_closed << 7);
data[1] = current_soc;
ftcan_marshal_unsigned(&data[2], min_voltage, 2);
ftcan_marshal_signed(&data[4], max_temp, 2);
return ftcan_transmit(CAN_ID_AMS_STATUS, data, sizeof(data));
}
HAL_StatusTypeDef can_send_error(TSErrorKind kind, uint8_t arg) {
uint8_t data[2];
data[0] = kind;
data[1] = arg;
return ftcan_transmit(CAN_ID_AMS_ERROR, data, sizeof(data));
}
void ftcan_msg_received_cb(uint16_t id, size_t datalen, const uint8_t *data) {
if ((id & 0xFF0) == CAN_ID_SHUNT_BASE) {
shunt_handle_can_msg(id, data);
return;
} else if ((id & 0xFF0) == CAN_ID_SLAVE_STATUS_BASE) {
slaves_handle_status(data);
return;
}
switch (id) {
case CAN_ID_SLAVE_PANIC:
slaves_handle_panic(data);
break;
case CAN_ID_SLAVE_STATUS:
slaves_handle_status(data);
break;
case CAN_ID_SLAVE_LOG:
slaves_handle_log(data);
break;

View File

@ -50,12 +50,13 @@
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc2;
CAN_HandleTypeDef hcan;
UART_HandleTypeDef huart1;
/* USER CODE BEGIN PV */
int sdc_closed = 0;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
@ -70,7 +71,19 @@ static void MX_USART1_UART_Init(void);
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
#define MAIN_LOOP_PERIOD 50
static void loop_delay() {
static uint32_t last_loop = 0;
uint32_t dt = HAL_GetTick() - last_loop;
if (dt < MAIN_LOOP_PERIOD) {
HAL_Delay(MAIN_LOOP_PERIOD - dt);
HAL_GPIO_WritePin(STATUS2_GPIO_Port, STATUS2_Pin, GPIO_PIN_RESET);
} else {
HAL_GPIO_WritePin(STATUS2_GPIO_Port, STATUS2_Pin, GPIO_PIN_SET);
}
last_loop = HAL_GetTick();
}
/* USER CODE END 0 */
/**
@ -79,7 +92,7 @@ static void MX_USART1_UART_Init(void);
*/
int main(void) {
/* USER CODE BEGIN 1 */
uint8_t soc_init_complete = 0;
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
@ -109,7 +122,6 @@ int main(void) {
slaves_init();
shunt_init();
ts_sm_init();
soc_init();
HAL_GPIO_WritePin(AMS_NERROR_GPIO_Port, AMS_NERROR_Pin, GPIO_PIN_SET);
/* USER CODE END 2 */
@ -120,14 +132,23 @@ int main(void) {
/* USER CODE BEGIN 3 */
HAL_GPIO_TogglePin(STATUS1_GPIO_Port, STATUS1_Pin);
sdc_closed = HAL_GPIO_ReadPin(SDC_VOLTAGE_GPIO_Port, SDC_VOLTAGE_Pin) ==
GPIO_PIN_SET;
slaves_check();
shunt_check();
ts_sm_update();
soc_update();
if(soc_init_complete){
soc_update(shunt_getcurrent());
}
else
{
soc_init();
soc_init_complete = 1;
}
can_send_status();
loop_delay();
HAL_Delay(10);
}
/* USER CODE END 3 */
}
@ -376,6 +397,9 @@ void Error_Handler(void) {
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1) {
ts_sm_set_relay_position(RELAY_NEG, 0);
ts_sm_set_relay_position(RELAY_POS, 0);
ts_sm_set_relay_position(RELAY_PRECHARGE, 0);
}
/* USER CODE END Error_Handler_Debug */
}

View File

@ -12,8 +12,8 @@ ShuntData shunt_data;
void shunt_init() {
shunt_data.current = 0;
shunt_data.voltage1 = 0;
shunt_data.voltage2 = 0;
shunt_data.voltage_veh = 0;
shunt_data.voltage_bat = 0;
shunt_data.voltage3 = 0;
shunt_data.busbartemp = 0;
shunt_data.power = 0;
@ -23,11 +23,23 @@ void shunt_init() {
}
void shunt_check() {
int is_error = shunt_data.current >= THRESH_OVERCURRENT;
int is_error = 0;
if (HAL_GetTick() - shunt_data.last_message > SHUNT_TIMEOUT) {
is_error = 1;
can_send_error(TS_ERRORKIND_SHUNT_TIMEOUT, 0);
} else if (shunt_data.current >= SHUNT_THRESH_OVERCURRENT) {
is_error = 1;
can_send_error(TS_ERRORKIND_SHUNT_OVERTEMP, 0);
} else if (shunt_data.busbartemp >= SHUNT_THRESH_OVERTEMP) {
is_error = 1;
can_send_error(TS_ERRORKIND_SHUNT_OVERTEMP, 0);
}
ts_sm_set_error_source(TS_ERROR_SOURCE_SHUNT, is_error);
}
void shunt_handle_can_msg(uint16_t id, const uint8_t *data) {
shunt_data.last_message = HAL_GetTick();
// All result messages contain a big-endian 6-byte integer
uint64_t result = ftcan_unmarshal_unsigned(&data, 6);
@ -36,10 +48,10 @@ void shunt_handle_can_msg(uint16_t id, const uint8_t *data) {
shunt_data.current = result;
break;
case CAN_ID_SHUNT_VOLTAGE1:
shunt_data.voltage1 = result;
shunt_data.voltage_bat = result;
break;
case CAN_ID_SHUNT_VOLTAGE2:
shunt_data.voltage2 = result;
shunt_data.voltage_veh = result;
break;
case CAN_ID_SHUNT_VOLTAGE3:
shunt_data.voltage3 = result;
@ -58,3 +70,8 @@ void shunt_handle_can_msg(uint16_t id, const uint8_t *data) {
break;
}
}
int32_t shunt_getcurrent()
{
return shunt_data.current;
}

View File

@ -1,5 +1,6 @@
#include "slave_monitoring.h"
#include "can.h"
#include "main.h"
#include "ts_state_machine.h"
@ -15,9 +16,29 @@ SlaveHandle slaves[N_SLAVES];
uint16_t min_voltage;
int16_t max_temp;
static uint8_t slave_id_to_index[128] = {0xFF};
static size_t get_slave_index(uint8_t slave_id) {
// Slave IDs are 7-bit, so we can use a 128-element array to map them to
// indices. 0xFF is used to mark unseen slave IDs, since the highest index we
// could need is N_SLAVES - 1 (i.e. 5).
static size_t next_slave_index = 0;
if (slave_id_to_index[slave_id] == 0xFF) {
if (next_slave_index >= N_SLAVES) {
// We've seen more than N_SLAVES slave IDs, this shouldn't happen.
Error_Handler();
}
slave_id_to_index[slave_id] = next_slave_index;
slaves[next_slave_index].id = slave_id;
next_slave_index++;
}
return slave_id_to_index[slave_id];
}
void slaves_init() {
memset(slave_id_to_index, 0xFF, sizeof(slave_id_to_index));
for (int i = 0; i < N_SLAVES; i++) {
slaves[i].id = i;
slaves[i].id = 0xFF;
slaves[i].error.kind = SLAVE_ERR_NONE;
slaves[i].last_message = 0;
slaves[i].min_voltage = 0;
@ -40,14 +61,18 @@ void slaves_check() {
uint16_t min_voltage_new = 0xFFFF;
int16_t max_temp_new = 0xFFFF;
for (int i = 0; i < N_SLAVES; i++) {
// Update timeout errors
if (now - slaves[i].last_message >= SLAVE_TIMEOUT) {
// Don't overwrite a different error kind
if (slaves[i].error.kind == SLAVE_ERR_NONE) {
slaves[i].error.kind = SLAVE_ERR_TIMEOUT;
can_send_error(TS_ERRORKIND_SLAVE_TIMEOUT, slaves[i].id);
}
} else if (slaves[i].error.kind == SLAVE_ERR_TIMEOUT) {
slaves[i].error.kind = SLAVE_ERR_NONE;
}
// Determine min/max
if (slaves[i].min_voltage < min_voltage_new) {
min_voltage_new = slaves[i].min_voltage;
}
@ -62,50 +87,63 @@ void slaves_check() {
min_voltage = min_voltage_new;
max_temp = max_temp_new;
if (any_slave_error) {
ts_sm_set_error_source(TS_ERROR_SOURCE_SLAVES, 1);
}
ts_sm_set_error_source(TS_ERROR_SOURCE_SLAVES, any_slave_error);
}
void slaves_handle_panic(const uint8_t *data) {
uint8_t slave_id = ftcan_unmarshal_unsigned(&data, 1);
uint8_t idx = get_slave_index(slave_id);
uint8_t error_kind = ftcan_unmarshal_unsigned(&data, 1);
switch (error_kind) {
case SLAVE_PANIC_OT:
slaves[slave_id].error.kind = SLAVE_ERR_OT;
slaves[idx].error.kind = SLAVE_ERR_OT;
break;
case SLAVE_PANIC_UT:
slaves[slave_id].error.kind = SLAVE_ERR_UT;
slaves[idx].error.kind = SLAVE_ERR_UT;
break;
case SLAVE_PANIC_OV:
slaves[slave_id].error.kind = SLAVE_ERR_OV;
slaves[idx].error.kind = SLAVE_ERR_OV;
break;
case SLAVE_PANIC_UV:
slaves[slave_id].error.kind = SLAVE_ERR_UV;
slaves[idx].error.kind = SLAVE_ERR_UV;
break;
}
slaves[slave_id].error.data = ftcan_unmarshal_unsigned(&data, 4);
slaves[slave_id].last_message = HAL_GetTick();
slaves[idx].error.data = ftcan_unmarshal_unsigned(&data, 4);
slaves[idx].last_message = HAL_GetTick();
ts_sm_set_error_source(TS_ERROR_SOURCE_SLAVES, 1);
can_send_error(TS_ERRORKIND_SLAVE_PANIC, slave_id);
}
void slaves_handle_status(const uint8_t *data) {
uint8_t slave_id = data[0] & 0x7F;
uint8_t idx = get_slave_index(slave_id);
int error = data[0] & 0x80;
if (error) {
if (slaves[slave_id].error.kind == SLAVE_ERR_NONE) {
slaves[slave_id].error.kind = SLAVE_ERR_UNKNOWN;
if (slaves[idx].error.kind == SLAVE_ERR_NONE) {
slaves[idx].error.kind = SLAVE_ERR_UNKNOWN;
}
} else {
slaves[slave_id].error.kind = SLAVE_ERR_NONE;
slaves[idx].error.kind = SLAVE_ERR_NONE;
}
slaves[slave_id].soc = data[1];
slaves[idx].soc = data[1];
const uint8_t *ptr = &data[2];
slaves[slave_id].min_voltage = ftcan_unmarshal_unsigned(&ptr, 2);
slaves[slave_id].max_voltage = ftcan_unmarshal_unsigned(&ptr, 2);
slaves[slave_id].max_temp = ftcan_unmarshal_unsigned(&ptr, 2);
slaves[slave_id].last_message = HAL_GetTick();
slaves[idx].min_voltage = ftcan_unmarshal_unsigned(&ptr, 2);
slaves[idx].max_voltage = ftcan_unmarshal_unsigned(&ptr, 2);
slaves[idx].max_temp = ftcan_unmarshal_unsigned(&ptr, 2);
slaves[idx].last_message = HAL_GetTick();
}
void slaves_handle_log(const uint8_t *data) {
// TODO
}
uint16_t slaves_get_minimum_voltage()
{
uint16_t minvoltage = 50000;
for(uint8_t idx = 0; idx < N_SLAVES;idx++){
if(slaves->min_voltage < minvoltage){
min_voltage = slaves->min_voltage;
}
}
return minvoltage;
}

View File

@ -1,14 +1,118 @@
#include "soc_estimation.h"
#include <stdint.h>
#include "slave_monitoring.h"
#include "stm32f3xx_hal.h"
//------------------------------------Battery RC and OCV-SoC Parameters-----------------------------------------
//@Note Parameters were obtained by EIS Measurements at the start of the season
//If the errror with this values is to large, consider retesting some cells
const float SOC[N_MODELPARAMETERS]={0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1};
const float R0[N_MODELPARAMETERS]={0.0089,0.0087,0.0090,0.0087,0.0087,0.0087,0.0088,0.0088,0.0087,0.0088,0.0089};
const float R1[N_MODELPARAMETERS]={0.0164,0.0063,0.0050,0.0055,0.0051,0.0052,0.0057,0.0048,0.0059,0.0055,0.0061};
const float C1[N_MODELPARAMETERS]={2.5694,0.2649,0.2876,0.2594,0.2415,0.2360,0.2946,0.2558,0.2818,0.2605,0.2763};
const float OCV_Data[N_MODELPARAMETERS]={2.762504,3.326231,3.460875,3.57681,3.655326,3.738444,3.835977,3.925841,4.032575,4.078275,4.191449};
const float SOE_Data[N_MODELPARAMETERS]={0.0,0.079358,0.165140,0.256008,0.348836,0.445961,0.549115,0.655642,0.769677,0.875699,1.0};
//---------------------------------------------------------------------------------------------------------------
float soc_approxparameterbysoc(float,float*, uint8_t);
float soc_approxsocbyocv(float);
uint8_t current_soc;
float current_floatsoc;
float batterycapacity;
/**
* @brief This Function initializes the SoC Prediction
* @note Because SoC is initalized using the OCV-Curve of the Cell, it is necessary to obtain a valid value
* for the lowest cell voltage before calling this function
*/
void soc_init() {
current_soc = 0;
// TODO
float minvoltage = ((float)slaves_get_minimum_voltage())/1000;
current_floatsoc = soc_approxsocbyocv(minvoltage);
batterycapacity = BATTERYCAPACITYAs*current_floatsoc;
current_soc = (uint8_t)(current_floatsoc*100);
}
void soc_update() {
/**
* @brief Update Function for the State of Charge. Call this Function every time the shunt sends a new current
* @note The SoC Prediction works using a Coulomb Counter to track the SoC. Alternativly and maybe more elegant
* would be to track the SoC using the integrated current counter of the shunt.
* @param shunt_current
*/
void soc_update(int32_t shunt_current) {
// TODO
static uint32_t lasttick = 0;
if(lasttick != 0)
{
uint32_t dt = HAL_GetTick() - lasttick;
batterycapacity += batterycapacity + ((float) dt*shunt_current)/1000;
current_floatsoc = batterycapacity/BATTERYCAPACITYAs;
current_soc = (uint8_t) (current_floatsoc*100);
}
lasttick=HAL_GetTick();
}
float soe_update()
{
return soc_approxparameterbysoc(current_floatsoc, SOE_Data, N_MODELPARAMETERS);
}
void soap_update()
{
float r0 = soc_approxparameterbysoc(current_floatsoc, R0, N_MODELPARAMETERS);
float r1 = soc_approxparameterbysoc(current_floatsoc, R1, N_MODELPARAMETERS);
float ocv = soc_approxparameterbysoc(current_floatsoc, OCV_Data, N_MODELPARAMETERS);
float allowedvoltagedrop = ocv - SOAP_MINIMUM_VOLTAGE;
float rin = r0+r1;
float maxcurrent = allowedvoltagedrop/rin;
//TODO think about how to pass parameters
}
float soc_approxparameterbysoc(float soc,float* lut, uint8_t lutlen)
{
uint8_t idx = (uint8_t) (soc*(lutlen-1));
if(idx == (lutlen-1))
return lut[lutlen-1];
float linapprox = 10*(soc-(((float)idx)/((float)(lutlen-1))))*(lut[idx+1]-lut[idx]);
linapprox += lut[idx];
return linapprox;
}
float soc_approxsocbyocv(float ocv)
{
if(ocv < OCV_Data[0])
return 0;
if(ocv > OCV_Data[N_MODELPARAMETERS])
return 1;
//Iterate through OCV Lookup
uint8_t ocvindex = 0;
for(uint8_t i = 0; i < (N_MODELPARAMETERS-1);i++)
{
if((OCV_Data[i] <= ocv) && (OCV_Data[i+1] > ocv))
{
ocvindex = i;
}
}
float m = (ocv-OCV_Data[ocvindex])/(OCV_Data[ocvindex+1]-OCV_Data[ocvindex]);
float soc = (SOC[ocvindex+1] - SOC[ocvindex])*m + SOC[ocvindex];
return soc;
}

View File

@ -74,6 +74,7 @@ void NMI_Handler(void)
/* USER CODE BEGIN NonMaskableInt_IRQn 1 */
while (1)
{
Error_Handler();
}
/* USER CODE END NonMaskableInt_IRQn 1 */
}
@ -89,6 +90,7 @@ void HardFault_Handler(void)
while (1)
{
/* USER CODE BEGIN W1_HardFault_IRQn 0 */
Error_Handler();
/* USER CODE END W1_HardFault_IRQn 0 */
}
}
@ -104,6 +106,7 @@ void MemManage_Handler(void)
while (1)
{
/* USER CODE BEGIN W1_MemoryManagement_IRQn 0 */
Error_Handler();
/* USER CODE END W1_MemoryManagement_IRQn 0 */
}
}
@ -119,6 +122,7 @@ void BusFault_Handler(void)
while (1)
{
/* USER CODE BEGIN W1_BusFault_IRQn 0 */
Error_Handler();
/* USER CODE END W1_BusFault_IRQn 0 */
}
}
@ -134,6 +138,7 @@ void UsageFault_Handler(void)
while (1)
{
/* USER CODE BEGIN W1_UsageFault_IRQn 0 */
Error_Handler();
/* USER CODE END W1_UsageFault_IRQn 0 */
}
}

View File

@ -52,18 +52,26 @@ void ts_sm_update() {
TSState ts_sm_update_inactive() {
if (ts_state.target_state == TS_ACTIVE) {
if (sdc_closed) {
precharge_95_reached_timestamp = 0;
return TS_PRECHARGE;
} else {
return TS_DISCHARGE;
}
} else if (ts_state.target_state == TS_CHARGING) {
if (sdc_closed) {
charging_check_timestamp = HAL_GetTick();
return TS_CHARGING_CHECK;
} else {
return TS_DISCHARGE;
}
}
return TS_INACTIVE;
}
TSState ts_sm_update_active() {
if (ts_state.target_state == TS_INACTIVE) {
if (ts_state.target_state == TS_INACTIVE || !sdc_closed) {
discharge_begin_timestamp = HAL_GetTick();
return TS_DISCHARGE;
}
@ -72,12 +80,12 @@ TSState ts_sm_update_active() {
}
TSState ts_sm_update_precharge() {
if (ts_state.target_state == TS_INACTIVE) {
if (ts_state.target_state == TS_INACTIVE || !sdc_closed) {
discharge_begin_timestamp = HAL_GetTick();
return TS_DISCHARGE;
}
if (shunt_data.voltage2 > MIN_VEHICLE_SIDE_VOLTAGE &&
shunt_data.voltage2 > 0.95 * shunt_data.voltage3) {
if (shunt_data.voltage_veh > MIN_VEHICLE_SIDE_VOLTAGE &&
shunt_data.voltage_veh > 0.95 * shunt_data.voltage_bat) {
uint32_t now = HAL_GetTick();
if (precharge_95_reached_timestamp == 0) {
precharge_95_reached_timestamp = now;
@ -106,20 +114,22 @@ TSState ts_sm_update_error() {
no_error_since = now;
} else if (now - no_error_since > NO_ERROR_TIME) {
no_error_since = 0;
HAL_GPIO_WritePin(AMS_NERROR_GPIO_Port, AMS_NERROR_Pin, GPIO_PIN_SET);
return TS_INACTIVE;
}
}
HAL_GPIO_WritePin(AMS_NERROR_GPIO_Port, AMS_NERROR_Pin, GPIO_PIN_RESET);
return TS_ERROR;
}
TSState ts_sm_update_charging_check() {
if (ts_state.target_state == TS_INACTIVE) {
if (ts_state.target_state == TS_INACTIVE || !sdc_closed) {
discharge_begin_timestamp = HAL_GetTick();
return TS_DISCHARGE;
}
if (shunt_data.voltage2 > shunt_data.voltage3) {
if (shunt_data.voltage_veh > shunt_data.voltage_bat) {
return TS_CHARGING;
} else if (HAL_GetTick() - charging_check_timestamp >
MAX_CHARGING_CHECK_DURATION) {
@ -130,7 +140,7 @@ TSState ts_sm_update_charging_check() {
}
TSState ts_sm_update_charging() {
if (ts_state.target_state == TS_INACTIVE) {
if (ts_state.target_state == TS_INACTIVE || !sdc_closed) {
discharge_begin_timestamp = HAL_GetTick();
return TS_DISCHARGE;
}

View File

@ -85,7 +85,7 @@ PREFIX = arm-none-eabi-
POSTFIX = "
# The gcc compiler bin path can be either defined in make command via GCC_PATH variable (> make GCC_PATH=xxx)
# either it can be added to the PATH environment variable.
GCC_PATH="/home/jasper/.config/Code/User/globalStorage/bmd.stm32-for-vscode/@xpack-dev-tools/arm-none-eabi-gcc/11.3.1-1.1.2/.content/bin
GCC_PATH="c:/Users/max/AppData/Roaming/Code/User/globalStorage/bmd.stm32-for-vscode/@xpack-dev-tools/arm-none-eabi-gcc/11.2.1-1.2.2/.content/bin
ifdef GCC_PATH
CXX = $(GCC_PATH)/$(PREFIX)g++$(POSTFIX)
CC = $(GCC_PATH)/$(PREFIX)gcc$(POSTFIX)
@ -241,19 +241,19 @@ $(BUILD_DIR):
# flash
#######################################
flash: $(BUILD_DIR)/$(TARGET).elf
"/home/jasper/.config/Code/User/globalStorage/bmd.stm32-for-vscode/@xpack-dev-tools/openocd/0.11.0-5.1/.content/bin/openocd" -f ./openocd.cfg -c "program $(BUILD_DIR)/$(TARGET).elf verify reset exit"
"C:/USERS/MAX/APPDATA/ROAMING/CODE/USER/GLOBALSTORAGE/BMD.STM32-FOR-VSCODE/@XPACK-DEV-TOOLS/OPENOCD/0.11.0-4.1/.CONTENT/BIN/OPENOCD.EXE" -f ./openocd.cfg -c "program $(BUILD_DIR)/$(TARGET).elf verify reset exit"
#######################################
# erase
#######################################
erase: $(BUILD_DIR)/$(TARGET).elf
"/home/jasper/.config/Code/User/globalStorage/bmd.stm32-for-vscode/@xpack-dev-tools/openocd/0.11.0-5.1/.content/bin/openocd" -f ./openocd.cfg -c "init; reset halt; stm32f3x mass_erase 0; exit"
"C:/USERS/MAX/APPDATA/ROAMING/CODE/USER/GLOBALSTORAGE/BMD.STM32-FOR-VSCODE/@XPACK-DEV-TOOLS/OPENOCD/0.11.0-4.1/.CONTENT/BIN/OPENOCD.EXE" -f ./openocd.cfg -c "init; reset halt; stm32f3x mass_erase 0; exit"
#######################################
# clean up
#######################################
clean:
-rm -fR $(BUILD_DIR)
cmd /c rd /s /q $(BUILD_DIR)
#######################################
# custom makefile rules