Initial commit

This commit is contained in:
jazzpi
2022-07-03 17:24:42 +02:00
commit b49ac54166
112 changed files with 130091 additions and 0 deletions

View File

@ -0,0 +1,231 @@
/*
* AIR_State_Maschine.c
*
* Created on: Jun 15, 2022
* Author: max
*/
#include "AIR_State_Maschine.h"
ADC_HandleTypeDef* air_current_adc = {0};
ADC_HandleTypeDef* sdc_voltage_adc = {0};
DMA_HandleTypeDef* air_current_dma = {0};
DMA_HandleTypeDef* sdc_voltage_dma = {0};
uint8_t air_adc_complete = 0;
uint8_t sdc_adc_complete = 0;
AIRStateHandler init_AIR_State_Maschine(ADC_HandleTypeDef* relay_adc,
ADC_HandleTypeDef* sc_adc,
DMA_HandleTypeDef* relay_dma,
DMA_HandleTypeDef* sc_dma) {
air_current_adc = relay_adc;
sdc_voltage_adc = sc_adc;
air_current_dma = relay_dma;
sdc_voltage_dma = sc_dma;
AIRStateHandler airstate = {0};
airstate.targetTSState = TS_INACTIVE;
airstate.currentTSState = TS_INACTIVE;
airstate.ShutdownCircuitVoltage = 0;
airstate.RelaisSupplyVoltage = 0;
airstate.AIRNegativeCurrent = 0;
airstate.AIRPositiveCurrent = 0;
airstate.AIRPrechargeCurrent = 0;
airstate.BatteryVoltageBatterySide = 0;
airstate.BatteryVoltageVehicleSide = 0;
return airstate;
}
void Update_AIR_Info(AIRStateHandler* airstate) {
uint16_t relay_adc_buffer[4] = {0};
uint16_t sdc_adc_buffer[1] = {0};
/*//HAL_ADC_Start_DMA(air_current_adc, (uint32_t*)relay_adc_buffer, 4);
//HAL_ADC_Start_DMA(sdc_voltage_adc, (uint32_t*)sdc_adc_buffer, 1);
HAL_ADC_Start(sdc_voltage_adc);
HAL_StatusTypeDef status = HAL_ADC_PollForConversion(sdc_voltage_adc, 10);
uint32_t adcval1 = HAL_ADC_GetValue(sdc_voltage_adc);
HAL_ADC_Stop(sdc_voltage_adc);
HAL_ADC_Start(air_current_adc);
status = HAL_ADC_PollForConversion(air_current_adc, 10);
uint32_t adcval2 = HAL_ADC_GetValue(air_current_adc);
HAL_ADC_Start(air_current_adc);
status = HAL_ADC_PollForConversion(air_current_adc, 10);
uint32_t adcval3 = HAL_ADC_GetValue(air_current_adc);
HAL_ADC_Start(air_current_adc);
status = HAL_ADC_PollForConversion(air_current_adc, 10);
uint32_t adcval4 = HAL_ADC_GetValue(air_current_adc);
HAL_ADC_Start(air_current_adc);
status = HAL_ADC_PollForConversion(air_current_adc, 10);
uint32_t adcval5 = HAL_ADC_GetValue(air_current_adc);
HAL_ADC_Stop(air_current_adc);*/
uint32_t startmils = HAL_GetTick() + ADC_READ_TIMEOUT;
{
airstate->RelaisSupplyVoltage = 3000;
airstate->AIRPositiveCurrent = 0;
airstate->AIRNegativeCurrent = 0;
airstate->AIRPrechargeCurrent = 0;
airstate->ShutdownCircuitVoltage = 3000;
}
}
uint8_t Update_AIR_State(AIRStateHandler* airstate) {
Update_AIR_Info(airstate);
//--------------------------------------------------State Transition
// Rules----------------------------------------------------------
/*if(airstate->currentTSState == airstate->targetTSState) //Target TS
State is Equal to actual TS State
{
return airstate->currentTSState;
}*/
if (airstate->currentTSState == TS_ERROR) // No Escape from TS Error State
{
return TS_ERROR;
}
else if ((airstate->currentTSState == TS_INACTIVE) &&
(airstate->targetTSState ==
TS_ACTIVE)) // Transition from Inactive to Active via Precharge
{
if ((airstate->RelaisSupplyVoltage) > SDC_LOWER_THRESHOLD) {
airstate->currentTSState = TS_PRECHARGE;
}
}
// TODO: Is it correct that we also go from precharge to discharge?
else if ((airstate->currentTSState == TS_ACTIVE ||
airstate->currentTSState == TS_PRECHARGE) &&
(airstate->targetTSState ==
TS_INACTIVE)) // Transition from Active to Inactive via Discharge
{
airstate->currentTSState = TS_DISCHARGE;
}
else if (airstate->targetTSState ==
TS_ERROR) // Error State is Entered if Target State is Error State
{
airstate->currentTSState = TS_ERROR;
}
else if (airstate->currentTSState ==
TS_PRECHARGE) // Change from Precharge to Active at 95% TS Voltage at
// Vehicle Side
{
if ((airstate->BatteryVoltageVehicleSide >
LOWER_VEHICLE_SIDE_VOLTAGE_LIMIT)) {
if (airstate->BatteryVoltageVehicleSide >
(airstate->BatteryVoltageBatterySide * 0.90)) {
airstate->currentTSState = TS_ACTIVE;
}
}
}
else if (airstate->currentTSState ==
TS_DISCHARGE) // Change from Discharge to Inactive at 95% TS Voltage
// at Vehicle Side
{
airstate->currentTSState = TS_INACTIVE;
}
//_-----------------------------------------------AIR
// Positions--------------------------------------------------------
if (airstate->currentTSState == TS_PRECHARGE) {
AIR_Precharge_Position();
}
if (airstate->currentTSState == TS_DISCHARGE) {
AIR_Discharge_Position();
}
if (airstate->currentTSState == TS_ACTIVE) {
AIR_Active_Position();
}
if (airstate->currentTSState == TS_INACTIVE) {
AIR_Inactive_Position();
}
if (airstate->currentTSState == TS_ERROR) {
AIR_Error_Position();
}
return airstate->currentTSState;
}
void Activate_TS(AIRStateHandler* airstate) {
airstate->targetTSState = TS_ACTIVE;
}
void Deactivate_TS(AIRStateHandler* airstate) {
airstate->targetTSState = TS_INACTIVE;
}
void AIR_Precharge_Position() {
HAL_GPIO_WritePin(PreCharge_Control_GPIO_Port, PreCharge_Control_Pin,
GPIO_PIN_SET);
HAL_GPIO_WritePin(AIR_negative_Control_GPIO_Port, AIR_negative_Control_Pin,
GPIO_PIN_SET);
HAL_GPIO_WritePin(AIR_Positive_Control_GPIO_Port, AIR_Positive_Control_Pin,
GPIO_PIN_RESET);
}
void AIR_Inactive_Position() {
HAL_GPIO_WritePin(PreCharge_Control_GPIO_Port, PreCharge_Control_Pin,
GPIO_PIN_RESET);
HAL_GPIO_WritePin(AIR_negative_Control_GPIO_Port, AIR_negative_Control_Pin,
GPIO_PIN_RESET);
HAL_GPIO_WritePin(AIR_Positive_Control_GPIO_Port, AIR_Positive_Control_Pin,
GPIO_PIN_RESET);
}
void AIR_Discharge_Position() {
HAL_GPIO_WritePin(PreCharge_Control_GPIO_Port, PreCharge_Control_Pin,
GPIO_PIN_SET);
HAL_GPIO_WritePin(AIR_negative_Control_GPIO_Port, AIR_negative_Control_Pin,
GPIO_PIN_SET);
HAL_GPIO_WritePin(AIR_Positive_Control_GPIO_Port, AIR_Positive_Control_Pin,
GPIO_PIN_RESET);
}
void AIR_Active_Position() // TODO Deactivate Precharge after a while to
// decrease current Consumption
{
HAL_GPIO_WritePin(PreCharge_Control_GPIO_Port, PreCharge_Control_Pin,
GPIO_PIN_SET);
HAL_GPIO_WritePin(AIR_negative_Control_GPIO_Port, AIR_negative_Control_Pin,
GPIO_PIN_SET);
HAL_GPIO_WritePin(AIR_Positive_Control_GPIO_Port, AIR_Positive_Control_Pin,
GPIO_PIN_SET);
}
void AIR_Error_Position() {
HAL_GPIO_WritePin(PreCharge_Control_GPIO_Port, PreCharge_Control_Pin,
GPIO_PIN_RESET);
HAL_GPIO_WritePin(AIR_negative_Control_GPIO_Port, AIR_negative_Control_Pin,
GPIO_PIN_RESET);
HAL_GPIO_WritePin(AIR_Positive_Control_GPIO_Port, AIR_Positive_Control_Pin,
GPIO_PIN_RESET);
}
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc) {
if (hadc == air_current_adc) {
air_adc_complete = 1;
HAL_ADC_Stop_DMA(air_current_adc);
}
if (hadc == sdc_voltage_adc) {
sdc_adc_complete = 1;
HAL_ADC_Stop_DMA(sdc_voltage_adc);
}
}

View File

@ -0,0 +1,212 @@
/*
* CAN_Communication.c
*
* Created on: Apr 26, 2022
* Author: max
*/
#include "CAN_Communication.h"
#include "Error_Check.h"
#include "stm32g4xx_hal_fdcan.h"
const uint16_t slave_CAN_id_to_slave_index[7] = {
0, 1, 2, 3, 255, 5, 4}; // TODO: Make this pretty pls
canFrame framebuffer[CANFRAMEBUFFERSIZE] = {0};
uint8_t framebufferwritepointer;
uint8_t framebufferreadpointer;
void CAN_Init(FDCAN_HandleTypeDef* hcan) {
HAL_FDCAN_Stop(hcan);
framebufferreadpointer = 0;
framebufferwritepointer = 0;
FDCAN_FilterTypeDef fdfilter = {0};
fdfilter.FilterConfig = FDCAN_FILTER_TO_RXFIFO0;
fdfilter.FilterID1 = 0x000; // Range start
fdfilter.FilterID2 = 0x000; // Range stop
fdfilter.FilterIndex = 0;
fdfilter.FilterType = FDCAN_FILTER_MASK;
fdfilter.IdType = FDCAN_STANDARD_ID;
HAL_FDCAN_ConfigFilter(hcan, &fdfilter);
HAL_StatusTypeDef status = HAL_FDCAN_Start(hcan);
status =
HAL_FDCAN_ActivateNotification(hcan, FDCAN_IT_RX_FIFO0_NEW_MESSAGE, 0);
}
uint8_t CAN_Receive(FDCAN_HandleTypeDef* hcan) {
while (framebufferreadpointer != framebufferwritepointer) {
framebufferreadpointer++;
if (framebufferreadpointer >= CANFRAMEBUFFERSIZE) {
framebufferreadpointer = 0;
}
canFrame rxFrame = framebuffer[framebufferreadpointer];
if ((rxFrame.FrameID & SLAVE_STATUS_BASE_ADDRESS) ==
SLAVE_STATUS_BASE_ADDRESS) {
uint16_t msg = rxFrame.FrameID - SLAVE_STATUS_BASE_ADDRESS;
uint8_t slaveID = (msg & 0x0F0) >> 4;
slaveID = slave_CAN_id_to_slave_index[slaveID];
uint8_t messageID = msg & 0x00F;
updateSlaveInfo(slaveID, messageID, rxFrame);
}
/* if(rxFrame.FrameID == SLAVE_EMERGENCY_ADDRESS)
{
AMSErrorHandle errorframe = {0};
errorframe.errorcode = SlavesErrorFrameError;
errorframe.errorarg[0] = rxFrame.data[0];
errorframe.errorarg[1] = rxFrame.data[1];
errorframe.errorarg[2] = rxFrame.data[2];
errorframe.errorarg[3] = rxFrame.data[3];
errorframe.errorarg[4] = rxFrame.data[4];
errorframe.errorarg[5] = rxFrame.data[5];
errorframe.errorarg[6] = rxFrame.data[6];
errorframe.errorarg[7] = rxFrame.data[7];
AMS_Error_Handler(errorframe);
}*/
}
return 0;
}
uint8_t CAN_Transmit(FDCAN_HandleTypeDef* hcan, uint16_t frameid,
uint8_t* buffer, uint8_t datalen) {
FDCAN_TxHeaderTypeDef txheader = {0};
txheader.Identifier = frameid;
txheader.IdType = FDCAN_STANDARD_ID;
txheader.TxFrameType = FDCAN_FRAME_CLASSIC;
txheader.DataLength = ((uint32_t)datalen) << 16;
txheader.ErrorStateIndicator = FDCAN_ESI_ACTIVE;
txheader.BitRateSwitch = FDCAN_BRS_OFF;
txheader.FDFormat = FDCAN_CLASSIC_CAN;
txheader.TxEventFifoControl = FDCAN_NO_TX_EVENTS;
txheader.MessageMarker = 0;
HAL_FDCAN_AddMessageToTxFifoQ(hcan, &txheader, buffer);
return 0;
}
void HAL_FDCAN_ErrorCallback(FDCAN_HandleTypeDef* hcan) {}
void HAL_FDCAN_RxFifo0Callback(FDCAN_HandleTypeDef* handle,
uint32_t interrupt_flags) {
FDCAN_RxHeaderTypeDef rxFrameHeader;
uint8_t data[8];
framebufferwritepointer++;
if (framebufferwritepointer >= CANFRAMEBUFFERSIZE) {
framebufferwritepointer = 0;
}
if (!(interrupt_flags & FDCAN_IT_RX_FIFO0_NEW_MESSAGE)) {
return;
}
if (HAL_FDCAN_GetRxMessage(handle, FDCAN_RX_FIFO0, &rxFrameHeader, data) !=
HAL_OK) {
framebuffer[framebufferwritepointer].error = 1;
} else {
framebuffer[framebufferwritepointer].error = 0;
}
if (rxFrameHeader.IdType != FDCAN_STANDARD_ID) {
return;
}
framebuffer[framebufferwritepointer].FrameID =
(int16_t)rxFrameHeader.Identifier;
framebuffer[framebufferwritepointer].length =
(uint8_t)rxFrameHeader.DataLength >> 16;
for (int i = 0; i < (rxFrameHeader.DataLength >> 16); i++) {
framebuffer[framebufferwritepointer].data[i] = data[i];
}
framebuffer[framebufferwritepointer].timestamp = HAL_GetTick();
}
void updateSlaveInfo(uint8_t slaveID, uint8_t MessageID, canFrame rxFrame) {
if (slaveID < NUMBEROFSLAVES) {
switch (MessageID) {
case 0x00:
slaves[slaveID].cellVoltages[0] = rxFrame.data[0] | rxFrame.data[1] << 8;
slaves[slaveID].cellVoltages[1] = rxFrame.data[2] | rxFrame.data[3] << 8;
slaves[slaveID].cellVoltages[2] = rxFrame.data[4] | rxFrame.data[5] << 8;
slaves[slaveID].cellVoltages[3] = rxFrame.data[6] | rxFrame.data[7] << 8;
break;
case 0x01:
slaves[slaveID].cellVoltages[4] = rxFrame.data[0] | rxFrame.data[1] << 8;
slaves[slaveID].cellVoltages[5] = rxFrame.data[2] | rxFrame.data[3] << 8;
slaves[slaveID].cellVoltages[6] = rxFrame.data[4] | rxFrame.data[5] << 8;
slaves[slaveID].cellVoltages[7] = rxFrame.data[6] | rxFrame.data[7] << 8;
break;
case 0x02:
slaves[slaveID].cellVoltages[8] = rxFrame.data[0] | rxFrame.data[1] << 8;
slaves[slaveID].cellVoltages[9] = rxFrame.data[2] | rxFrame.data[3] << 8;
break;
case 0x03:
slaves[slaveID].cellTemps[0] = rxFrame.data[0] | rxFrame.data[1] << 8;
slaves[slaveID].cellTemps[1] = rxFrame.data[2] | rxFrame.data[3] << 8;
slaves[slaveID].cellTemps[2] = rxFrame.data[4] | rxFrame.data[5] << 8;
slaves[slaveID].cellTemps[3] = rxFrame.data[6] | rxFrame.data[7] << 8;
break;
case 0x04:
slaves[slaveID].cellTemps[4] = rxFrame.data[0] | rxFrame.data[1] << 8;
slaves[slaveID].cellTemps[5] = rxFrame.data[2] | rxFrame.data[3] << 8;
slaves[slaveID].cellTemps[6] = rxFrame.data[4] | rxFrame.data[5] << 8;
slaves[slaveID].cellTemps[7] = rxFrame.data[6] | rxFrame.data[7] << 8;
break;
case 0x05:
slaves[slaveID].cellTemps[8] = rxFrame.data[0] | rxFrame.data[1] << 8;
slaves[slaveID].cellTemps[9] = rxFrame.data[2] | rxFrame.data[3] << 8;
slaves[slaveID].cellTemps[10] = rxFrame.data[4] | rxFrame.data[5] << 8;
slaves[slaveID].cellTemps[11] = rxFrame.data[6] | rxFrame.data[7] << 8;
break;
case 0x06:
slaves[slaveID].cellTemps[12] = rxFrame.data[0] | rxFrame.data[1] << 8;
slaves[slaveID].cellTemps[13] = rxFrame.data[2] | rxFrame.data[3] << 8;
slaves[slaveID].cellTemps[14] = rxFrame.data[4] | rxFrame.data[5] << 8;
slaves[slaveID].cellTemps[15] = rxFrame.data[6] | rxFrame.data[7] << 8;
break;
case 0x07:
slaves[slaveID].cellTemps[16] = rxFrame.data[0] | rxFrame.data[1] << 8;
slaves[slaveID].cellTemps[17] = rxFrame.data[2] | rxFrame.data[3] << 8;
slaves[slaveID].cellTemps[18] = rxFrame.data[4] | rxFrame.data[5] << 8;
slaves[slaveID].cellTemps[19] = rxFrame.data[6] | rxFrame.data[7] << 8;
break;
case 0x08:
slaves[slaveID].cellTemps[20] = rxFrame.data[0] | rxFrame.data[1] << 8;
slaves[slaveID].cellTemps[21] = rxFrame.data[2] | rxFrame.data[3] << 8;
slaves[slaveID].cellTemps[22] = rxFrame.data[4] | rxFrame.data[5] << 8;
slaves[slaveID].cellTemps[23] = rxFrame.data[6] | rxFrame.data[7] << 8;
break;
case 0x09:
slaves[slaveID].cellTemps[24] = rxFrame.data[0] | rxFrame.data[1] << 8;
slaves[slaveID].cellTemps[25] = rxFrame.data[2] | rxFrame.data[3] << 8;
slaves[slaveID].cellTemps[26] = rxFrame.data[4] | rxFrame.data[5] << 8;
slaves[slaveID].cellTemps[27] = rxFrame.data[6] | rxFrame.data[7] << 8;
break;
case 0x0A:
slaves[slaveID].cellTemps[28] = rxFrame.data[0] | rxFrame.data[1] << 8;
slaves[slaveID].cellTemps[29] = rxFrame.data[2] | rxFrame.data[3] << 8;
slaves[slaveID].cellTemps[30] = rxFrame.data[4] | rxFrame.data[5] << 8;
slaves[slaveID].cellTemps[31] = rxFrame.data[6] | rxFrame.data[7] << 8;
break;
}
slaves[slaveID].timestamp = rxFrame.timestamp;
}
}

32
Core/Src/Error_Check.c Normal file
View File

@ -0,0 +1,32 @@
/*
* Error_Check.c
*
* Created on: Jun 16, 2022
* Author: max
*/
#include "Error_Check.h"
ErrorFlags CheckErrorFlags() {
ErrorFlags errors = {0};
errors.IMD_ERROR = !HAL_GPIO_ReadPin(IMD_Error_GPIO_Port, IMD_Error_Pin);
errors.IMD_ERROR_LED =
HAL_GPIO_ReadPin(IMD_Error_LED_GPIO_Port, IMD_Error_LED_Pin);
errors.AMS_ERROR_LED =
HAL_GPIO_ReadPin(AMS_ERROR_GPIO_Port, AMS_Error_LED_Pin);
errors.TS_no_voltage_error =
HAL_GPIO_ReadPin(Volt_Error_CPU_GPIO_Port, Volt_Error_CPU_Pin);
errors.positive_AIR_or_PC_error = HAL_GPIO_ReadPin(
Positive_Side_Error_CPU_GPIO_Port, Positive_Side_Error_CPU_Pin);
errors.negative_AIR_error =
HAL_GPIO_ReadPin(Neg_Side_Error_CPU_GPIO_Port, Neg_Side_Error_CPU_Pin);
errors.HV_inactive =
HAL_GPIO_ReadPin(HV_Inactive_CPU_GPIO_Port, HV_Inactive_CPU_Pin);
errors.negative_AIR_open =
HAL_GPIO_ReadPin(Neg_AIR_Open_CPU_GPIO_Port, Neg_AIR_Open_CPU_Pin);
errors.positive_AIR_and_PC_open =
HAL_GPIO_ReadPin(High_Side_Open_CPU_GPIO_Port, High_Side_Open_CPU_Pin);
return errors;
}

View File

@ -0,0 +1,391 @@
/*
* SPI_Slave_Communication.c
*
* Created on: Jun 16, 2022
* Author: max
*/
#include "SPI_Slave_Communication.h"
#include "stm32g4xx_hal.h"
#include "stm32g4xx_hal_crc.h"
#include "stm32g4xx_hal_def.h"
#include "stm32g4xx_hal_spi.h"
#include "stm32g4xx_hal_spi_ex.h"
#include <stdint.h>
#define SPI_BUFFER_SIZE 1024
#define DUMMYBYTES 2
#define SPI_TIMEOUT 10
SPI_HandleTypeDef* spibus;
extern ErrorFlags errorflags;
uint8_t spirxbuf[SPI_BUFFER_SIZE];
uint8_t spitxbuf[SPI_BUFFER_SIZE];
static volatile int spi_transfer_complete;
uint8_t command;
AIRStateHandler* spi_airstates;
AMSErrorHandle* spierrorinfo;
void set_SPI_errorInfo(AMSErrorHandle* errorinfo) {
spierrorinfo = errorinfo;
spierrorinfo->errorcode = 0;
spierrorinfo->errorarg[0] = 0;
spierrorinfo->errorarg[1] = 0;
spierrorinfo->errorarg[2] = 0;
spierrorinfo->errorarg[3] = 0;
spierrorinfo->errorarg[4] = 0;
spierrorinfo->errorarg[5] = 0;
spierrorinfo->errorarg[6] = 0;
spierrorinfo->errorarg[7] = 0;
}
void spi_communication_init(SPI_HandleTypeDef* spi,
AIRStateHandler* airstatemaschine) {
spibus = spi;
spi_airstates = airstatemaschine;
command = 0xFF;
HAL_SPI_DeInit(spi);
// HAL_SPI_Receive_IT(spibus, &command, 1);
}
// void setShuntdata() {
// uint8_t status = receiveData(12);
// if (status == HAL_OK) {
// spi_airstates->BatteryVoltageBatterySide =
// spirxbuf[0] << 24 | spirxbuf[1] << 16 | spirxbuf[2] << 8 |
// spirxbuf[3];
// spi_airstates->BatteryVoltageVehicleSide =
// spirxbuf[4] << 24 | spirxbuf[5] << 16 | spirxbuf[6] << 8 |
// spirxbuf[7];
// uint32_t current = spirxbuf[8] << 24 | spirxbuf[9] << 16 |
// spirxbuf[10] << 8 | spirxbuf[11];
// }
// }
// void setTSState() {
// uint8_t status = receiveData(1);
// if (status == HAL_OK) {
// spi_airstates->targetTSState = spirxbuf[0];
// }
// }
// void getTSState() {
// spitxbuf[0] = spi_airstates->currentTSState;
// spitxbuf[1] = (uint8_t)(spi_airstates->targetTSState);
// spitxbuf[2] = (uint8_t)(spi_airstates->RelaisSupplyVoltage >> 8) & 0xFF;
// spitxbuf[3] = (uint8_t)(spi_airstates->RelaisSupplyVoltage & 0xFF);
// spitxbuf[4] = (uint8_t)((spi_airstates->ShutdownCircuitVoltage >> 8) &
// 0xFF); spitxbuf[5] = (uint8_t)(spi_airstates->ShutdownCircuitVoltage &
// 0xFF); spitxbuf[6] = (uint8_t)((spi_airstates->AIRNegativeCurrent >> 8) &
// 0xFF); spitxbuf[7] = (uint8_t)(spi_airstates->AIRNegativeCurrent & 0xFF);
// spitxbuf[8] = (uint8_t)((spi_airstates->AIRPositiveCurrent >> 8) & 0xFF);
// spitxbuf[9] = (uint8_t)((spi_airstates->AIRPositiveCurrent) & 0xFF);
// spitxbuf[10] = (uint8_t)((spi_airstates->AIRPrechargeCurrent >> 8) & 0xFF);
// spitxbuf[11] = (uint8_t)((spi_airstates->AIRPrechargeCurrent) & 0xFF);
// spitxbuf[12] =
// (uint8_t)((spi_airstates->BatteryVoltageBatterySide >> 24) & 0xFF);
// spitxbuf[13] =
// (uint8_t)((spi_airstates->BatteryVoltageBatterySide >> 16) & 0xFF);
// spitxbuf[14] =
// (uint8_t)((spi_airstates->BatteryVoltageBatterySide >> 8) & 0xFF);
// spitxbuf[15] =
// (uint8_t)((spi_airstates->BatteryVoltageBatterySide >> 0) & 0xFF);
// spitxbuf[16] =
// (uint8_t)((spi_airstates->BatteryVoltageVehicleSide >> 24) & 0xFF);
// spitxbuf[17] =
// (uint8_t)((spi_airstates->BatteryVoltageVehicleSide >> 16) & 0xFF);
// spitxbuf[18] =
// (uint8_t)((spi_airstates->BatteryVoltageVehicleSide >> 8) & 0xFF);
// spitxbuf[19] =
// (uint8_t)((spi_airstates->BatteryVoltageVehicleSide >> 0) & 0xFF);
// transmitData(20);
// }
// void getError() {
// spitxbuf[0] = spierrorinfo->errorcode;
// spitxbuf[1] = spierrorinfo->errorarg[0];
// spitxbuf[2] = spierrorinfo->errorarg[1];
// spitxbuf[3] = spierrorinfo->errorarg[2];
// spitxbuf[4] = spierrorinfo->errorarg[3];
// spitxbuf[5] = spierrorinfo->errorarg[4];
// spitxbuf[6] = spierrorinfo->errorarg[5];
// spitxbuf[7] = spierrorinfo->errorarg[6];
// spitxbuf[8] = spierrorinfo->errorarg[7];
// spitxbuf[9] = (errorflags.AMS_ERROR_LED << 7) |
// (errorflags.IMD_ERROR_LED << 6) | (errorflags.IMD_ERROR << 5)
// | (errorflags.HV_inactive << 4) |
// (errorflags.TS_no_voltage_error << 3) |
// (errorflags.negative_AIR_error << 2) |
// (errorflags.positive_AIR_or_PC_error << 1) |
// (errorflags.positive_AIR_and_PC_open);
// spitxbuf[10] = (errorflags.negative_AIR_open);
// spitxbuf[11] = calculateChecksum(spitxbuf, 10);
// transmitData(12);
// }
// void togglestatusLED() {
// HAL_GPIO_TogglePin(Status_LED_GPIO_Port, Status_LED_Pin);
// }
// void getMeasurements() {
// for (int n = 0; n < NUMBEROFSLAVES; n++) {
// spitxbuf[n * 89] = slaves[n].slaveID;
// spitxbuf[n * 89 + 1] = (uint8_t)((slaves[n].timestamp >> 24) & 0xFF);
// spitxbuf[n * 89 + 2] = (uint8_t)((slaves[n].timestamp >> 16) & 0xFF);
// spitxbuf[n * 89 + 3] = (uint8_t)((slaves[n].timestamp >> 8) & 0xFF);
// spitxbuf[n * 89 + 4] = (uint8_t)((slaves[n].timestamp >> 0) & 0xFF);
// for (int i = 0; i < NUMBEROFCELLS; i++) {
// spitxbuf[n * 89 + 5 + 2 * i] =
// (uint8_t)((slaves[n].cellVoltages[i] >> 8) & 0xFF);
// spitxbuf[n * 89 + 6 + 2 * i] =
// (uint8_t)((slaves[n].cellVoltages[i]) & 0xFF);
// }
// for (int i = 0; i < NUMBEROFTEMPS; i++) {
// spitxbuf[n * 89 + 25 + 2 * i] =
// (uint8_t)((slaves[n].cellTemps[i] >> 8) & 0xFF);
// spitxbuf[n * 89 + 26 + 2 * i] =
// (uint8_t)((slaves[n].cellTemps[i]) & 0xFF);
// }
// }
// transmitData(NUMBEROFSLAVES * 89);
// }
// uint8_t receiveData(uint16_t length) {
// if (length > 1024)
// return 0xFF;
// HAL_GPIO_WritePin(Inter_STM_IRQ_GPIO_Port, Inter_STM_IRQ_Pin,
// GPIO_PIN_SET); HAL_StatusTypeDef status =
// HAL_SPI_Receive(spibus, spirxbuf, length, SPI_TIMEOUT);
// HAL_GPIO_WritePin(Inter_STM_IRQ_GPIO_Port, Inter_STM_IRQ_Pin,
// GPIO_PIN_RESET); return (uint8_t)status;
// }
// uint8_t transmitData(uint16_t length) {
// if (length > 1024)
// return 0xFF;
// HAL_GPIO_WritePin(Inter_STM_IRQ_GPIO_Port, Inter_STM_IRQ_Pin,
// GPIO_PIN_SET); HAL_StatusTypeDef status =
// HAL_SPI_Transmit(spibus, spitxbuf, length, SPI_TIMEOUT);
// HAL_GPIO_WritePin(Inter_STM_IRQ_GPIO_Port, Inter_STM_IRQ_Pin,
// GPIO_PIN_RESET); return (uint8_t)status;
// }
void checkSPI() {
/*
if(commandreceived)
{
commandreceived = 0;
switch(command)
{
case SET_SHUNTDATA:
setShuntdata();
break;
case SET_TSSTATE:
setTSState();
break;
case GET_TSSTATE:
getTSState();
break;
case GET_ERROR:
getError();
break;
case TOGGLE_STATUS_LED:
togglestatusLED();
break;
case GET_MEASUREMENTS:
getMeasurements();
break;
default:
break;
}
HAL_SPI_Receive_IT(spibus, &command, 1);
}
else
{
if(spibus->State == HAL_SPI_STATE_READY)
{
HAL_SPI_Receive_IT(spibus, &command, 1);
}
}
*/
InterSTMFrame();
}
// uint8_t checkXor(uint8_t *buf, uint8_t len) {
// uint8_t checksum = 0xFF;
// for (int i = 0; i < len; i++) {
// checksum ^= buf[i];
// }
// if (checksum == buf[len]) {
// return 0;
// } else {
// return 1;
// }
// }
uint8_t calculateChecksum(uint8_t* buf, uint8_t len) {
uint8_t checksum = 0xFF;
for (int i = 0; i < len; i++) {
checksum ^= buf[i];
}
return checksum;
}
void InterSTMFrame() {
HAL_GPIO_TogglePin(Status_LED_GPIO_Port, Status_LED_Pin);
if (HAL_GPIO_ReadPin(Inter_STM_CS_GPIO_Port, Inter_STM_CS_Pin) ==
GPIO_PIN_RESET) {
return;
}
for (int n = 0; n < NUMBEROFSLAVES; n++) {
spitxbuf[n * 89] = slaves[n].slaveID;
spitxbuf[n * 89 + 1] = (uint8_t)((slaves[n].timestamp >> 24) & 0xFF);
spitxbuf[n * 89 + 2] = (uint8_t)((slaves[n].timestamp >> 16) & 0xFF);
spitxbuf[n * 89 + 3] = (uint8_t)((slaves[n].timestamp >> 8) & 0xFF);
spitxbuf[n * 89 + 4] = (uint8_t)((slaves[n].timestamp >> 0) & 0xFF);
for (int i = 0; i < NUMBEROFCELLS; i++) {
spitxbuf[n * 89 + 5 + 2 * i] =
(uint8_t)((slaves[n].cellVoltages[i] >> 8) & 0xFF);
spitxbuf[n * 89 + 6 + 2 * i] =
(uint8_t)((slaves[n].cellVoltages[i]) & 0xFF);
}
for (int i = 0; i < NUMBEROFTEMPS; i++) {
spitxbuf[n * 89 + 25 + 2 * i] =
(uint8_t)((slaves[n].cellTemps[i] >> 8) & 0xFF);
spitxbuf[n * 89 + 26 + 2 * i] =
(uint8_t)((slaves[n].cellTemps[i]) & 0xFF);
}
}
uint16_t errorcodebaseaddress = NUMBEROFSLAVES * 89 + 1;
spitxbuf[errorcodebaseaddress + 0] = spierrorinfo->errorcode;
spitxbuf[errorcodebaseaddress + 1] = spierrorinfo->errorarg[0];
spitxbuf[errorcodebaseaddress + 2] = spierrorinfo->errorarg[1];
spitxbuf[errorcodebaseaddress + 3] = spierrorinfo->errorarg[2];
spitxbuf[errorcodebaseaddress + 4] = spierrorinfo->errorarg[3];
spitxbuf[errorcodebaseaddress + 5] = spierrorinfo->errorarg[4];
spitxbuf[errorcodebaseaddress + 6] = spierrorinfo->errorarg[5];
spitxbuf[errorcodebaseaddress + 7] = spierrorinfo->errorarg[6];
spitxbuf[errorcodebaseaddress + 8] = spierrorinfo->errorarg[7];
spitxbuf[errorcodebaseaddress + 9] =
(errorflags.AMS_ERROR_LED << 7) | (errorflags.IMD_ERROR_LED << 6) |
(errorflags.IMD_ERROR << 5) | (errorflags.HV_inactive << 4) |
(errorflags.TS_no_voltage_error << 3) |
(errorflags.negative_AIR_error << 2) |
(errorflags.positive_AIR_or_PC_error << 1) |
(errorflags.positive_AIR_and_PC_open);
spitxbuf[errorcodebaseaddress + 10] = (errorflags.negative_AIR_open);
spitxbuf[errorcodebaseaddress + 11] = calculateChecksum(spitxbuf, 10);
uint16_t tsstatebaseaddress = errorcodebaseaddress + 12;
spitxbuf[tsstatebaseaddress + 0] = spi_airstates->currentTSState;
spitxbuf[tsstatebaseaddress + 1] = (uint8_t)(spi_airstates->targetTSState);
spitxbuf[tsstatebaseaddress + 2] =
(uint8_t)(spi_airstates->RelaisSupplyVoltage >> 8) & 0xFF;
spitxbuf[tsstatebaseaddress + 3] =
(uint8_t)(spi_airstates->RelaisSupplyVoltage & 0xFF);
spitxbuf[tsstatebaseaddress + 4] =
(uint8_t)((spi_airstates->ShutdownCircuitVoltage >> 8) & 0xFF);
spitxbuf[tsstatebaseaddress + 5] =
(uint8_t)(spi_airstates->ShutdownCircuitVoltage & 0xFF);
spitxbuf[tsstatebaseaddress + 6] =
(uint8_t)((spi_airstates->AIRNegativeCurrent >> 8) & 0xFF);
spitxbuf[tsstatebaseaddress + 7] =
(uint8_t)(spi_airstates->AIRNegativeCurrent & 0xFF);
spitxbuf[tsstatebaseaddress + 8] =
(uint8_t)((spi_airstates->AIRPositiveCurrent >> 8) & 0xFF);
spitxbuf[tsstatebaseaddress + 9] =
(uint8_t)((spi_airstates->AIRPositiveCurrent) & 0xFF);
spitxbuf[tsstatebaseaddress + 10] =
(uint8_t)((spi_airstates->AIRPrechargeCurrent >> 8) & 0xFF);
spitxbuf[tsstatebaseaddress + 11] =
(uint8_t)((spi_airstates->AIRPrechargeCurrent) & 0xFF);
spitxbuf[tsstatebaseaddress + 12] =
(uint8_t)((spi_airstates->BatteryVoltageBatterySide >> 24) & 0xFF);
spitxbuf[tsstatebaseaddress + 13] =
(uint8_t)((spi_airstates->BatteryVoltageBatterySide >> 16) & 0xFF);
spitxbuf[tsstatebaseaddress + 14] =
(uint8_t)((spi_airstates->BatteryVoltageBatterySide >> 8) & 0xFF);
spitxbuf[tsstatebaseaddress + 15] =
(uint8_t)((spi_airstates->BatteryVoltageBatterySide >> 0) & 0xFF);
spitxbuf[tsstatebaseaddress + 16] =
(uint8_t)((spi_airstates->BatteryVoltageVehicleSide >> 24) & 0xFF);
spitxbuf[tsstatebaseaddress + 17] =
(uint8_t)((spi_airstates->BatteryVoltageVehicleSide >> 16) & 0xFF);
spitxbuf[tsstatebaseaddress + 18] =
(uint8_t)((spi_airstates->BatteryVoltageVehicleSide >> 8) & 0xFF);
spitxbuf[tsstatebaseaddress + 19] =
(uint8_t)((spi_airstates->BatteryVoltageVehicleSide >> 0) & 0xFF);
uint32_t spitimeoutcounter = HAL_GetTick();
HAL_SPI_DeInit(spibus);
HAL_SPI_Init(spibus);
HAL_SPIEx_FlushRxFifo(spibus);
spi_transfer_complete = 0;
HAL_SPI_Receive_IT(spibus, spirxbuf, 13);
HAL_GPIO_WritePin(Inter_STM_IRQ_GPIO_Port, Inter_STM_IRQ_Pin, GPIO_PIN_SET);
uint32_t timeout = HAL_GetTick() + 500;
while (!spi_transfer_complete && HAL_GetTick() < timeout) {
}
HAL_GPIO_WritePin(Inter_STM_IRQ_GPIO_Port, Inter_STM_IRQ_Pin, GPIO_PIN_RESET);
if (!spi_transfer_complete) {
HAL_SPI_Abort(spibus);
return;
}
spi_airstates->BatteryVoltageBatterySide =
spirxbuf[0] << 24 | spirxbuf[1] << 16 | spirxbuf[2] << 8 | spirxbuf[3];
spi_airstates->BatteryVoltageVehicleSide =
spirxbuf[4] << 24 | spirxbuf[5] << 16 | spirxbuf[6] << 8 | spirxbuf[7];
uint32_t current =
spirxbuf[8] << 24 | spirxbuf[9] << 16 | spirxbuf[10] << 8 | spirxbuf[11];
spi_airstates->targetTSState = spirxbuf[12];
}
void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef* hspi) {
HAL_SPI_Transmit_IT(spibus, spitxbuf, NUMBEROFSLAVES * 89 + 33);
}
void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef* hspi) {
spi_transfer_complete = 1;
}
// void HAL_SPI_ErrorCallback(SPI_HandleTypeDef *hspi) {
// __HAL_SPI_CLEAR_OVRFLAG(hspi);
// // HAL_SPI_Receive_IT(spibus, &command, 1);
// HAL_SPIEx_FlushRxFifo(hspi);
// }

View File

@ -0,0 +1,57 @@
/*
* Slave_Monitoring.c
*
* Created on: Jun 15, 2022
* Author: max
*/
#include "Slave_Monitoring.h"
SlaveHandler slaves[NUMBEROFSLAVES];
void initSlaves() {
HAL_GPIO_WritePin(Slaves_Enable_GPIO_Port, Slaves_Enable_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(BOOT0_FF_DATA_GPIO_Port, BOOT0_FF_DATA_Pin, GPIO_PIN_RESET);
for (int i = 0; i < NUMBEROFSLAVES + 5; i++) {
HAL_GPIO_WritePin(BOOT0_FF_CLK_GPIO_Port, BOOT0_FF_CLK_Pin, GPIO_PIN_SET);
HAL_Delay(1);
HAL_GPIO_WritePin(BOOT0_FF_CLK_GPIO_Port, BOOT0_FF_CLK_Pin, GPIO_PIN_RESET);
HAL_Delay(1);
}
HAL_Delay(5);
HAL_GPIO_WritePin(Slaves_Enable_GPIO_Port, Slaves_Enable_Pin, GPIO_PIN_SET);
for (int n = 0; n < NUMBEROFSLAVES; n++) {
for (int i = 0; i < NUMBEROFTEMPS; i++)
slaves[n].cellTemps[i] = 30000;
for (int j = 0; j < NUMBEROFCELLS; j++)
slaves[n].cellVoltages[j] = 25000;
slaves[n].error = 0;
slaves[n].timeout = 0;
slaves[n].timestamp = HAL_GetTick();
slaves[n].slaveID = n;
}
}
uint8_t checkSlaveTimeout() {
if (HAL_GetTick() < 10000) {
return 0;
}
for (int n = 0; n < NUMBEROFSLAVES; n++) {
if (((int)(HAL_GetTick() - slaves[n].timestamp)) > SLAVETIMEOUT) {
slaves[n].timeout = 1;
AMSErrorHandle timeouterror;
timeouterror.errorcode = SlavesTimeoutError;
AMS_Error_Handler(timeouterror);
return 1;
}
}
return 0;
}

588
Core/Src/main.c Normal file
View File

@ -0,0 +1,588 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2022 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "AIR_State_Maschine.h"
#include "AMS_Errorcodes.h"
#include "CAN_Communication.h"
#include "Error_Check.h"
#include "SPI_Slave_Communication.h"
#include "Slave_Monitoring.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
ADC_HandleTypeDef hadc2;
DMA_HandleTypeDef hdma_adc1;
DMA_HandleTypeDef hdma_adc2;
CRC_HandleTypeDef hcrc;
FDCAN_HandleTypeDef hfdcan1;
SPI_HandleTypeDef hspi1;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC1_Init(void);
static void MX_ADC2_Init(void);
static void MX_FDCAN1_Init(void);
static void MX_SPI1_Init(void);
static void MX_CRC_Init(void);
/* USER CODE BEGIN PFP */
void setAMSError(void);
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
AIRStateHandler airstates;
ErrorFlags errorflags;
AMSErrorHandle defaulterrorhandle = {0};
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void) {
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick.
*/
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_ADC1_Init();
MX_ADC2_Init();
MX_FDCAN1_Init();
MX_SPI1_Init();
MX_CRC_Init();
/* USER CODE BEGIN 2 */
airstates = init_AIR_State_Maschine(&hadc1, &hadc2, &hdma_adc1, &hdma_adc2);
initSlaves();
set_SPI_errorInfo(&defaulterrorhandle);
spi_communication_init(&hspi1, &airstates);
CAN_Init(&hfdcan1);
HAL_GPIO_WritePin(Status_LED_GPIO_Port, Status_LED_Pin, GPIO_PIN_SET);
// setAMSError();
uint32_t lastCycle = HAL_GetTick();
uint32_t cycleTime = HAL_GetTick();
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1) {
cycleTime = HAL_GetTick() - lastCycle;
lastCycle = HAL_GetTick();
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
CAN_Receive(&hfdcan1); // Run CAN Event Loop
errorflags = CheckErrorFlags(); // Check for Errors
Update_AIR_Info(&airstates);
checkSlaveTimeout(); // check for Slave Timeout
Update_AIR_State(&airstates); // Update AIR State Maschine
checkSPI(); // Handles SPI Communication*
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void) {
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV1;
RCC_OscInitStruct.PLL.PLLN = 8;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV8;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK |
RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) {
Error_Handler();
}
}
/**
* @brief ADC1 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC1_Init(void) {
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_MultiModeTypeDef multimode = {0};
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Common config
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV64;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.GainCompensation = 0;
hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
hadc1.Init.LowPowerAutoWait = DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.NbrOfConversion = 4;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.DMAContinuousRequests = DISABLE;
hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED;
hadc1.Init.OversamplingMode = DISABLE;
if (HAL_ADC_Init(&hadc1) != HAL_OK) {
Error_Handler();
}
/** Configure the ADC multi-mode
*/
multimode.Mode = ADC_MODE_INDEPENDENT;
if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK) {
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_1;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLES_5;
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.Offset = 0;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) {
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_2;
sConfig.Rank = ADC_REGULAR_RANK_2;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) {
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_3;
sConfig.Rank = ADC_REGULAR_RANK_3;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) {
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_4;
sConfig.Rank = ADC_REGULAR_RANK_4;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* @brief ADC2 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC2_Init(void) {
/* USER CODE BEGIN ADC2_Init 0 */
/* USER CODE END ADC2_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC2_Init 1 */
/* USER CODE END ADC2_Init 1 */
/** Common config
*/
hadc2.Instance = ADC2;
hadc2.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV64;
hadc2.Init.Resolution = ADC_RESOLUTION_12B;
hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc2.Init.GainCompensation = 0;
hadc2.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc2.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
hadc2.Init.LowPowerAutoWait = DISABLE;
hadc2.Init.ContinuousConvMode = DISABLE;
hadc2.Init.NbrOfConversion = 1;
hadc2.Init.DiscontinuousConvMode = DISABLE;
hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc2.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc2.Init.DMAContinuousRequests = DISABLE;
hadc2.Init.Overrun = ADC_OVR_DATA_PRESERVED;
hadc2.Init.OversamplingMode = DISABLE;
if (HAL_ADC_Init(&hadc2) != HAL_OK) {
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_17;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLES_5;
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.Offset = 0;
if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN ADC2_Init 2 */
/* USER CODE END ADC2_Init 2 */
}
/**
* @brief CRC Initialization Function
* @param None
* @retval None
*/
static void MX_CRC_Init(void) {
/* USER CODE BEGIN CRC_Init 0 */
/* USER CODE END CRC_Init 0 */
/* USER CODE BEGIN CRC_Init 1 */
/* USER CODE END CRC_Init 1 */
hcrc.Instance = CRC;
hcrc.Init.DefaultPolynomialUse = DEFAULT_POLYNOMIAL_ENABLE;
hcrc.Init.DefaultInitValueUse = DEFAULT_INIT_VALUE_ENABLE;
hcrc.Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_NONE;
hcrc.Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_DISABLE;
hcrc.InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES;
if (HAL_CRC_Init(&hcrc) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN CRC_Init 2 */
/* USER CODE END CRC_Init 2 */
}
/**
* @brief FDCAN1 Initialization Function
* @param None
* @retval None
*/
static void MX_FDCAN1_Init(void) {
/* USER CODE BEGIN FDCAN1_Init 0 */
/* USER CODE END FDCAN1_Init 0 */
/* USER CODE BEGIN FDCAN1_Init 1 */
/* USER CODE END FDCAN1_Init 1 */
hfdcan1.Instance = FDCAN1;
hfdcan1.Init.ClockDivider = FDCAN_CLOCK_DIV1;
hfdcan1.Init.FrameFormat = FDCAN_FRAME_CLASSIC;
hfdcan1.Init.Mode = FDCAN_MODE_NORMAL;
hfdcan1.Init.AutoRetransmission = DISABLE;
hfdcan1.Init.TransmitPause = DISABLE;
hfdcan1.Init.ProtocolException = DISABLE;
hfdcan1.Init.NominalPrescaler = 2;
hfdcan1.Init.NominalSyncJumpWidth = 4;
hfdcan1.Init.NominalTimeSeg1 = 13;
hfdcan1.Init.NominalTimeSeg2 = 2;
hfdcan1.Init.DataPrescaler = 2;
hfdcan1.Init.DataSyncJumpWidth = 4;
hfdcan1.Init.DataTimeSeg1 = 13;
hfdcan1.Init.DataTimeSeg2 = 2;
hfdcan1.Init.StdFiltersNbr = 0;
hfdcan1.Init.ExtFiltersNbr = 0;
hfdcan1.Init.TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION;
if (HAL_FDCAN_Init(&hfdcan1) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN FDCAN1_Init 2 */
/* USER CODE END FDCAN1_Init 2 */
}
/**
* @brief SPI1 Initialization Function
* @param None
* @retval None
*/
static void MX_SPI1_Init(void) {
/* USER CODE BEGIN SPI1_Init 0 */
/* USER CODE END SPI1_Init 0 */
/* USER CODE BEGIN SPI1_Init 1 */
/* USER CODE END SPI1_Init 1 */
/* SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_SLAVE;
hspi1.Init.Direction = SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 7;
hspi1.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE;
hspi1.Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
if (HAL_SPI_Init(&hspi1) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN SPI1_Init 2 */
/* USER CODE END SPI1_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void) {
/* DMA controller clock enable */
__HAL_RCC_DMAMUX1_CLK_ENABLE();
__HAL_RCC_DMA1_CLK_ENABLE();
__HAL_RCC_DMA2_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Channel2_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel2_IRQn, 4, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel2_IRQn);
/* DMA2_Channel1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA2_Channel1_IRQn, 4, 0);
HAL_NVIC_EnableIRQ(DMA2_Channel1_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void) {
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOC,
Slaves_Enable_Pin | BOOT0_FF_CLK_Pin | BOOT0_FF_DATA_Pin,
GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, Inter_STM_IRQ_Pin | Status_LED_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB,
PreCharge_Control_Pin | AIR_Positive_Control_Pin |
AIR_negative_Control_Pin,
GPIO_PIN_RESET);
/*Configure GPIO pins : Slaves_Enable_Pin BOOT0_FF_CLK_Pin BOOT0_FF_DATA_Pin
*/
GPIO_InitStruct.Pin =
Slaves_Enable_Pin | BOOT0_FF_CLK_Pin | BOOT0_FF_DATA_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pins : AMS_ERROR_Pin IMD_Error_Pin AMS_Error_LED_Pin
Volt_Error_CPU_Pin Positive_Side_Error_CPU_Pin Neg_Side_Error_CPU_Pin
HV_Inactive_CPU_Pin Neg_AIR_Open_CPU_Pin High_Side_Open_CPU_Pin
IMD_Error_LED_Pin */
GPIO_InitStruct.Pin = AMS_ERROR_Pin | IMD_Error_Pin | AMS_Error_LED_Pin |
Volt_Error_CPU_Pin | Positive_Side_Error_CPU_Pin |
Neg_Side_Error_CPU_Pin | HV_Inactive_CPU_Pin |
Neg_AIR_Open_CPU_Pin | High_Side_Open_CPU_Pin |
IMD_Error_LED_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : Inter_STM_CS_Pin */
GPIO_InitStruct.Pin = Inter_STM_CS_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(Inter_STM_CS_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : Inter_STM_IRQ_Pin Status_LED_Pin */
GPIO_InitStruct.Pin = Inter_STM_IRQ_Pin | Status_LED_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : PreCharge_Control_Pin AIR_Positive_Control_Pin
* AIR_negative_Control_Pin */
GPIO_InitStruct.Pin = PreCharge_Control_Pin | AIR_Positive_Control_Pin |
AIR_negative_Control_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
void AMS_Error_Handler(AMSErrorHandle errorinfo) {
while (1) {
set_SPI_errorInfo(&errorinfo);
errorinfo.errorarg[7] = 1;
setAMSError();
airstates.targetTSState = TS_ERROR;
Update_AIR_State(&airstates);
CAN_Receive(&hfdcan1);
errorflags = CheckErrorFlags();
checkSPI();
}
}
int errors = 0;
void setAMSError() {
errors++;
GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = AMS_ERROR_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(AMS_ERROR_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(AMS_ERROR_GPIO_Port, AMS_ERROR_Pin, GPIO_PIN_RESET);
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void) {
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1) {
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line) {
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line
number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file,
line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

View File

@ -0,0 +1,507 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file stm32g4xx_hal_msp.c
* @brief This file provides code for the MSP Initialization
* and de-Initialization codes.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2022 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
extern DMA_HandleTypeDef hdma_adc1;
extern DMA_HandleTypeDef hdma_adc2;
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN TD */
/* USER CODE END TD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN Define */
/* USER CODE END Define */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN Macro */
/* USER CODE END Macro */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* External functions --------------------------------------------------------*/
/* USER CODE BEGIN ExternalFunctions */
/* USER CODE END ExternalFunctions */
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* Initializes the Global MSP.
*/
void HAL_MspInit(void)
{
/* USER CODE BEGIN MspInit 0 */
/* USER CODE END MspInit 0 */
__HAL_RCC_SYSCFG_CLK_ENABLE();
__HAL_RCC_PWR_CLK_ENABLE();
/* System interrupt init*/
/* MemoryManagement_IRQn interrupt configuration */
HAL_NVIC_SetPriority(MemoryManagement_IRQn, 4, 0);
/* BusFault_IRQn interrupt configuration */
HAL_NVIC_SetPriority(BusFault_IRQn, 4, 0);
/* UsageFault_IRQn interrupt configuration */
HAL_NVIC_SetPriority(UsageFault_IRQn, 4, 0);
/* SVCall_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SVCall_IRQn, 4, 0);
/* DebugMonitor_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DebugMonitor_IRQn, 4, 0);
/* PendSV_IRQn interrupt configuration */
HAL_NVIC_SetPriority(PendSV_IRQn, 4, 0);
/** Disable the internal Pull-Up in Dead Battery pins of UCPD peripheral
*/
HAL_PWREx_DisableUCPDDeadBattery();
/* USER CODE BEGIN MspInit 1 */
/* USER CODE END MspInit 1 */
}
static uint32_t HAL_RCC_ADC12_CLK_ENABLED=0;
/**
* @brief ADC MSP Initialization
* This function configures the hardware resources used in this example
* @param hadc: ADC handle pointer
* @retval None
*/
void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
if(hadc->Instance==ADC1)
{
/* USER CODE BEGIN ADC1_MspInit 0 */
/* USER CODE END ADC1_MspInit 0 */
/** Initializes the peripherals clocks
*/
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC12;
PeriphClkInit.Adc12ClockSelection = RCC_ADC12CLKSOURCE_SYSCLK;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
/* Peripheral clock enable */
HAL_RCC_ADC12_CLK_ENABLED++;
if(HAL_RCC_ADC12_CLK_ENABLED==1){
__HAL_RCC_ADC12_CLK_ENABLE();
}
__HAL_RCC_GPIOA_CLK_ENABLE();
/**ADC1 GPIO Configuration
PA0 ------> ADC1_IN1
PA1 ------> ADC1_IN2
PA2 ------> ADC1_IN3
PA3 ------> ADC1_IN4
*/
GPIO_InitStruct.Pin = Relay_Supply_Voltage_Pin|Pos_AIR_Current_Pin|Neg_AIR_Current_Pin|PreCharge_AIR_Current_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* ADC1 DMA Init */
/* ADC1 Init */
hdma_adc1.Instance = DMA1_Channel2;
hdma_adc1.Init.Request = DMA_REQUEST_ADC1;
hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_adc1.Init.MemInc = DMA_MINC_ENABLE;
hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
hdma_adc1.Init.Mode = DMA_NORMAL;
hdma_adc1.Init.Priority = DMA_PRIORITY_LOW;
if (HAL_DMA_Init(&hdma_adc1) != HAL_OK)
{
Error_Handler();
}
__HAL_LINKDMA(hadc,DMA_Handle,hdma_adc1);
/* ADC1 interrupt Init */
HAL_NVIC_SetPriority(ADC1_2_IRQn, 4, 0);
HAL_NVIC_EnableIRQ(ADC1_2_IRQn);
/* USER CODE BEGIN ADC1_MspInit 1 */
/* USER CODE END ADC1_MspInit 1 */
}
else if(hadc->Instance==ADC2)
{
/* USER CODE BEGIN ADC2_MspInit 0 */
/* USER CODE END ADC2_MspInit 0 */
/** Initializes the peripherals clocks
*/
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC12;
PeriphClkInit.Adc12ClockSelection = RCC_ADC12CLKSOURCE_SYSCLK;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
/* Peripheral clock enable */
HAL_RCC_ADC12_CLK_ENABLED++;
if(HAL_RCC_ADC12_CLK_ENABLED==1){
__HAL_RCC_ADC12_CLK_ENABLE();
}
__HAL_RCC_GPIOA_CLK_ENABLE();
/**ADC2 GPIO Configuration
PA4 ------> ADC2_IN17
*/
GPIO_InitStruct.Pin = SC_Supply_Voltage_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(SC_Supply_Voltage_GPIO_Port, &GPIO_InitStruct);
/* ADC2 DMA Init */
/* ADC2 Init */
hdma_adc2.Instance = DMA2_Channel1;
hdma_adc2.Init.Request = DMA_REQUEST_ADC2;
hdma_adc2.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_adc2.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_adc2.Init.MemInc = DMA_MINC_ENABLE;
hdma_adc2.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
hdma_adc2.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
hdma_adc2.Init.Mode = DMA_NORMAL;
hdma_adc2.Init.Priority = DMA_PRIORITY_LOW;
if (HAL_DMA_Init(&hdma_adc2) != HAL_OK)
{
Error_Handler();
}
__HAL_LINKDMA(hadc,DMA_Handle,hdma_adc2);
/* ADC2 interrupt Init */
HAL_NVIC_SetPriority(ADC1_2_IRQn, 4, 0);
HAL_NVIC_EnableIRQ(ADC1_2_IRQn);
/* USER CODE BEGIN ADC2_MspInit 1 */
/* USER CODE END ADC2_MspInit 1 */
}
}
/**
* @brief ADC MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param hadc: ADC handle pointer
* @retval None
*/
void HAL_ADC_MspDeInit(ADC_HandleTypeDef* hadc)
{
if(hadc->Instance==ADC1)
{
/* USER CODE BEGIN ADC1_MspDeInit 0 */
/* USER CODE END ADC1_MspDeInit 0 */
/* Peripheral clock disable */
HAL_RCC_ADC12_CLK_ENABLED--;
if(HAL_RCC_ADC12_CLK_ENABLED==0){
__HAL_RCC_ADC12_CLK_DISABLE();
}
/**ADC1 GPIO Configuration
PA0 ------> ADC1_IN1
PA1 ------> ADC1_IN2
PA2 ------> ADC1_IN3
PA3 ------> ADC1_IN4
*/
HAL_GPIO_DeInit(GPIOA, Relay_Supply_Voltage_Pin|Pos_AIR_Current_Pin|Neg_AIR_Current_Pin|PreCharge_AIR_Current_Pin);
/* ADC1 DMA DeInit */
HAL_DMA_DeInit(hadc->DMA_Handle);
/* ADC1 interrupt DeInit */
/* USER CODE BEGIN ADC1:ADC1_2_IRQn disable */
/**
* Uncomment the line below to disable the "ADC1_2_IRQn" interrupt
* Be aware, disabling shared interrupt may affect other IPs
*/
/* HAL_NVIC_DisableIRQ(ADC1_2_IRQn); */
/* USER CODE END ADC1:ADC1_2_IRQn disable */
/* USER CODE BEGIN ADC1_MspDeInit 1 */
/* USER CODE END ADC1_MspDeInit 1 */
}
else if(hadc->Instance==ADC2)
{
/* USER CODE BEGIN ADC2_MspDeInit 0 */
/* USER CODE END ADC2_MspDeInit 0 */
/* Peripheral clock disable */
HAL_RCC_ADC12_CLK_ENABLED--;
if(HAL_RCC_ADC12_CLK_ENABLED==0){
__HAL_RCC_ADC12_CLK_DISABLE();
}
/**ADC2 GPIO Configuration
PA4 ------> ADC2_IN17
*/
HAL_GPIO_DeInit(SC_Supply_Voltage_GPIO_Port, SC_Supply_Voltage_Pin);
/* ADC2 DMA DeInit */
HAL_DMA_DeInit(hadc->DMA_Handle);
/* ADC2 interrupt DeInit */
/* USER CODE BEGIN ADC2:ADC1_2_IRQn disable */
/**
* Uncomment the line below to disable the "ADC1_2_IRQn" interrupt
* Be aware, disabling shared interrupt may affect other IPs
*/
/* HAL_NVIC_DisableIRQ(ADC1_2_IRQn); */
/* USER CODE END ADC2:ADC1_2_IRQn disable */
/* USER CODE BEGIN ADC2_MspDeInit 1 */
/* USER CODE END ADC2_MspDeInit 1 */
}
}
/**
* @brief CRC MSP Initialization
* This function configures the hardware resources used in this example
* @param hcrc: CRC handle pointer
* @retval None
*/
void HAL_CRC_MspInit(CRC_HandleTypeDef* hcrc)
{
if(hcrc->Instance==CRC)
{
/* USER CODE BEGIN CRC_MspInit 0 */
/* USER CODE END CRC_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_CRC_CLK_ENABLE();
/* USER CODE BEGIN CRC_MspInit 1 */
/* USER CODE END CRC_MspInit 1 */
}
}
/**
* @brief CRC MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param hcrc: CRC handle pointer
* @retval None
*/
void HAL_CRC_MspDeInit(CRC_HandleTypeDef* hcrc)
{
if(hcrc->Instance==CRC)
{
/* USER CODE BEGIN CRC_MspDeInit 0 */
/* USER CODE END CRC_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_CRC_CLK_DISABLE();
/* USER CODE BEGIN CRC_MspDeInit 1 */
/* USER CODE END CRC_MspDeInit 1 */
}
}
/**
* @brief FDCAN MSP Initialization
* This function configures the hardware resources used in this example
* @param hfdcan: FDCAN handle pointer
* @retval None
*/
void HAL_FDCAN_MspInit(FDCAN_HandleTypeDef* hfdcan)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
if(hfdcan->Instance==FDCAN1)
{
/* USER CODE BEGIN FDCAN1_MspInit 0 */
/* USER CODE END FDCAN1_MspInit 0 */
/** Initializes the peripherals clocks
*/
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_FDCAN;
PeriphClkInit.FdcanClockSelection = RCC_FDCANCLKSOURCE_PLL;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
/* Peripheral clock enable */
__HAL_RCC_FDCAN_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/**FDCAN1 GPIO Configuration
PA11 ------> FDCAN1_RX
PA12 ------> FDCAN1_TX
*/
GPIO_InitStruct.Pin = GPIO_PIN_11|GPIO_PIN_12;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF9_FDCAN1;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* FDCAN1 interrupt Init */
HAL_NVIC_SetPriority(FDCAN1_IT0_IRQn, 4, 0);
HAL_NVIC_EnableIRQ(FDCAN1_IT0_IRQn);
HAL_NVIC_SetPriority(FDCAN1_IT1_IRQn, 4, 0);
HAL_NVIC_EnableIRQ(FDCAN1_IT1_IRQn);
/* USER CODE BEGIN FDCAN1_MspInit 1 */
/* USER CODE END FDCAN1_MspInit 1 */
}
}
/**
* @brief FDCAN MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param hfdcan: FDCAN handle pointer
* @retval None
*/
void HAL_FDCAN_MspDeInit(FDCAN_HandleTypeDef* hfdcan)
{
if(hfdcan->Instance==FDCAN1)
{
/* USER CODE BEGIN FDCAN1_MspDeInit 0 */
/* USER CODE END FDCAN1_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_FDCAN_CLK_DISABLE();
/**FDCAN1 GPIO Configuration
PA11 ------> FDCAN1_RX
PA12 ------> FDCAN1_TX
*/
HAL_GPIO_DeInit(GPIOA, GPIO_PIN_11|GPIO_PIN_12);
/* FDCAN1 interrupt DeInit */
HAL_NVIC_DisableIRQ(FDCAN1_IT0_IRQn);
HAL_NVIC_DisableIRQ(FDCAN1_IT1_IRQn);
/* USER CODE BEGIN FDCAN1_MspDeInit 1 */
/* USER CODE END FDCAN1_MspDeInit 1 */
}
}
/**
* @brief SPI MSP Initialization
* This function configures the hardware resources used in this example
* @param hspi: SPI handle pointer
* @retval None
*/
void HAL_SPI_MspInit(SPI_HandleTypeDef* hspi)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
if(hspi->Instance==SPI1)
{
/* USER CODE BEGIN SPI1_MspInit 0 */
/* USER CODE END SPI1_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_SPI1_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/**SPI1 GPIO Configuration
PA5 ------> SPI1_SCK
PA6 ------> SPI1_MISO
PA7 ------> SPI1_MOSI
*/
GPIO_InitStruct.Pin = GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF5_SPI1;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* SPI1 interrupt Init */
HAL_NVIC_SetPriority(SPI1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(SPI1_IRQn);
/* USER CODE BEGIN SPI1_MspInit 1 */
/* USER CODE END SPI1_MspInit 1 */
}
}
/**
* @brief SPI MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param hspi: SPI handle pointer
* @retval None
*/
void HAL_SPI_MspDeInit(SPI_HandleTypeDef* hspi)
{
if(hspi->Instance==SPI1)
{
/* USER CODE BEGIN SPI1_MspDeInit 0 */
/* USER CODE END SPI1_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_SPI1_CLK_DISABLE();
/**SPI1 GPIO Configuration
PA5 ------> SPI1_SCK
PA6 ------> SPI1_MISO
PA7 ------> SPI1_MOSI
*/
HAL_GPIO_DeInit(GPIOA, GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7);
/* SPI1 interrupt DeInit */
HAL_NVIC_DisableIRQ(SPI1_IRQn);
/* USER CODE BEGIN SPI1_MspDeInit 1 */
/* USER CODE END SPI1_MspDeInit 1 */
}
}
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */

301
Core/Src/stm32g4xx_it.c Normal file
View File

@ -0,0 +1,301 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file stm32g4xx_it.c
* @brief Interrupt Service Routines.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2022 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32g4xx_it.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "CAN_Communication.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN TD */
/* USER CODE END TD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/* External variables --------------------------------------------------------*/
extern DMA_HandleTypeDef hdma_adc1;
extern DMA_HandleTypeDef hdma_adc2;
extern ADC_HandleTypeDef hadc1;
extern ADC_HandleTypeDef hadc2;
extern FDCAN_HandleTypeDef hfdcan1;
extern SPI_HandleTypeDef hspi1;
/* USER CODE BEGIN EV */
extern uint8_t framebufferwritepointer;
extern uint8_t framebufferreadpointer;
/* USER CODE END EV */
/******************************************************************************/
/* Cortex-M4 Processor Interruption and Exception Handlers */
/******************************************************************************/
/**
* @brief This function handles Non maskable interrupt.
*/
void NMI_Handler(void)
{
/* USER CODE BEGIN NonMaskableInt_IRQn 0 */
/* USER CODE END NonMaskableInt_IRQn 0 */
/* USER CODE BEGIN NonMaskableInt_IRQn 1 */
while (1)
{
}
/* USER CODE END NonMaskableInt_IRQn 1 */
}
/**
* @brief This function handles Hard fault interrupt.
*/
void HardFault_Handler(void)
{
/* USER CODE BEGIN HardFault_IRQn 0 */
/* USER CODE END HardFault_IRQn 0 */
while (1)
{
/* USER CODE BEGIN W1_HardFault_IRQn 0 */
HAL_GPIO_WritePin(Status_LED_GPIO_Port, Status_LED_Pin, GPIO_PIN_RESET);
/* USER CODE END W1_HardFault_IRQn 0 */
}
}
/**
* @brief This function handles Memory management fault.
*/
void MemManage_Handler(void)
{
/* USER CODE BEGIN MemoryManagement_IRQn 0 */
/* USER CODE END MemoryManagement_IRQn 0 */
while (1)
{
/* USER CODE BEGIN W1_MemoryManagement_IRQn 0 */
/* USER CODE END W1_MemoryManagement_IRQn 0 */
}
}
/**
* @brief This function handles Prefetch fault, memory access fault.
*/
void BusFault_Handler(void)
{
/* USER CODE BEGIN BusFault_IRQn 0 */
/* USER CODE END BusFault_IRQn 0 */
while (1)
{
/* USER CODE BEGIN W1_BusFault_IRQn 0 */
/* USER CODE END W1_BusFault_IRQn 0 */
}
}
/**
* @brief This function handles Undefined instruction or illegal state.
*/
void UsageFault_Handler(void)
{
/* USER CODE BEGIN UsageFault_IRQn 0 */
/* USER CODE END UsageFault_IRQn 0 */
while (1)
{
/* USER CODE BEGIN W1_UsageFault_IRQn 0 */
/* USER CODE END W1_UsageFault_IRQn 0 */
}
}
/**
* @brief This function handles System service call via SWI instruction.
*/
void SVC_Handler(void)
{
/* USER CODE BEGIN SVCall_IRQn 0 */
/* USER CODE END SVCall_IRQn 0 */
/* USER CODE BEGIN SVCall_IRQn 1 */
/* USER CODE END SVCall_IRQn 1 */
}
/**
* @brief This function handles Debug monitor.
*/
void DebugMon_Handler(void)
{
/* USER CODE BEGIN DebugMonitor_IRQn 0 */
/* USER CODE END DebugMonitor_IRQn 0 */
/* USER CODE BEGIN DebugMonitor_IRQn 1 */
/* USER CODE END DebugMonitor_IRQn 1 */
}
/**
* @brief This function handles Pendable request for system service.
*/
void PendSV_Handler(void)
{
/* USER CODE BEGIN PendSV_IRQn 0 */
/* USER CODE END PendSV_IRQn 0 */
/* USER CODE BEGIN PendSV_IRQn 1 */
/* USER CODE END PendSV_IRQn 1 */
}
/**
* @brief This function handles System tick timer.
*/
void SysTick_Handler(void)
{
/* USER CODE BEGIN SysTick_IRQn 0 */
/* USER CODE END SysTick_IRQn 0 */
HAL_IncTick();
/* USER CODE BEGIN SysTick_IRQn 1 */
/* USER CODE END SysTick_IRQn 1 */
}
/******************************************************************************/
/* STM32G4xx Peripheral Interrupt Handlers */
/* Add here the Interrupt Handlers for the used peripherals. */
/* For the available peripheral interrupt handler names, */
/* please refer to the startup file (startup_stm32g4xx.s). */
/******************************************************************************/
/**
* @brief This function handles DMA1 channel2 global interrupt.
*/
void DMA1_Channel2_IRQHandler(void)
{
/* USER CODE BEGIN DMA1_Channel2_IRQn 0 */
/* USER CODE END DMA1_Channel2_IRQn 0 */
HAL_DMA_IRQHandler(&hdma_adc1);
/* USER CODE BEGIN DMA1_Channel2_IRQn 1 */
/* USER CODE END DMA1_Channel2_IRQn 1 */
}
/**
* @brief This function handles ADC1 and ADC2 global interrupt.
*/
void ADC1_2_IRQHandler(void)
{
/* USER CODE BEGIN ADC1_2_IRQn 0 */
/* USER CODE END ADC1_2_IRQn 0 */
HAL_ADC_IRQHandler(&hadc1);
HAL_ADC_IRQHandler(&hadc2);
/* USER CODE BEGIN ADC1_2_IRQn 1 */
/* USER CODE END ADC1_2_IRQn 1 */
}
/**
* @brief This function handles FDCAN1 interrupt 0.
*/
void FDCAN1_IT0_IRQHandler(void)
{
/* USER CODE BEGIN FDCAN1_IT0_IRQn 0 */
/* USER CODE END FDCAN1_IT0_IRQn 0 */
HAL_FDCAN_IRQHandler(&hfdcan1);
/* USER CODE BEGIN FDCAN1_IT0_IRQn 1 */
/* USER CODE END FDCAN1_IT0_IRQn 1 */
}
/**
* @brief This function handles FDCAN1 interrupt 1.
*/
void FDCAN1_IT1_IRQHandler(void)
{
/* USER CODE BEGIN FDCAN1_IT1_IRQn 0 */
/* USER CODE END FDCAN1_IT1_IRQn 0 */
HAL_FDCAN_IRQHandler(&hfdcan1);
/* USER CODE BEGIN FDCAN1_IT1_IRQn 1 */
/* USER CODE END FDCAN1_IT1_IRQn 1 */
}
/**
* @brief This function handles SPI1 global interrupt.
*/
void SPI1_IRQHandler(void)
{
/* USER CODE BEGIN SPI1_IRQn 0 */
/* USER CODE END SPI1_IRQn 0 */
HAL_SPI_IRQHandler(&hspi1);
/* USER CODE BEGIN SPI1_IRQn 1 */
/* USER CODE END SPI1_IRQn 1 */
}
/**
* @brief This function handles DMA2 channel1 global interrupt.
*/
void DMA2_Channel1_IRQHandler(void)
{
/* USER CODE BEGIN DMA2_Channel1_IRQn 0 */
/* USER CODE END DMA2_Channel1_IRQn 0 */
HAL_DMA_IRQHandler(&hdma_adc2);
/* USER CODE BEGIN DMA2_Channel1_IRQn 1 */
/* USER CODE END DMA2_Channel1_IRQn 1 */
}
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */

156
Core/Src/syscalls.c Normal file
View File

@ -0,0 +1,156 @@
/**
******************************************************************************
* @file syscalls.c
* @author Auto-generated by STM32CubeIDE
* @brief STM32CubeIDE Minimal System calls file
*
* For more information about which c-functions
* need which of these lowlevel functions
* please consult the Newlib libc-manual
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2020 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes */
#include <sys/stat.h>
#include <stdlib.h>
#include <errno.h>
#include <stdio.h>
#include <signal.h>
#include <time.h>
#include <sys/time.h>
#include <sys/times.h>
/* Variables */
extern int __io_putchar(int ch) __attribute__((weak));
extern int __io_getchar(void) __attribute__((weak));
char *__env[1] = { 0 };
char **environ = __env;
/* Functions */
void initialise_monitor_handles()
{
}
int _getpid(void)
{
return 1;
}
int _kill(int pid, int sig)
{
errno = EINVAL;
return -1;
}
void _exit (int status)
{
_kill(status, -1);
while (1) {} /* Make sure we hang here */
}
__attribute__((weak)) int _read(int file, char *ptr, int len)
{
int DataIdx;
for (DataIdx = 0; DataIdx < len; DataIdx++)
{
*ptr++ = __io_getchar();
}
return len;
}
__attribute__((weak)) int _write(int file, char *ptr, int len)
{
int DataIdx;
for (DataIdx = 0; DataIdx < len; DataIdx++)
{
__io_putchar(*ptr++);
}
return len;
}
int _close(int file)
{
return -1;
}
int _fstat(int file, struct stat *st)
{
st->st_mode = S_IFCHR;
return 0;
}
int _isatty(int file)
{
return 1;
}
int _lseek(int file, int ptr, int dir)
{
return 0;
}
int _open(char *path, int flags, ...)
{
/* Pretend like we always fail */
return -1;
}
int _wait(int *status)
{
errno = ECHILD;
return -1;
}
int _unlink(char *name)
{
errno = ENOENT;
return -1;
}
int _times(struct tms *buf)
{
return -1;
}
int _stat(char *file, struct stat *st)
{
st->st_mode = S_IFCHR;
return 0;
}
int _link(char *old, char *new)
{
errno = EMLINK;
return -1;
}
int _fork(void)
{
errno = EAGAIN;
return -1;
}
int _execve(char *name, char **argv, char **env)
{
errno = ENOMEM;
return -1;
}

80
Core/Src/sysmem.c Normal file
View File

@ -0,0 +1,80 @@
/**
******************************************************************************
* @file sysmem.c
* @author Generated by STM32CubeIDE
* @brief STM32CubeIDE System Memory calls file
*
* For more information about which C functions
* need which of these lowlevel functions
* please consult the newlib libc manual
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2020 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes */
#include <errno.h>
#include <stdint.h>
/**
* Pointer to the current high watermark of the heap usage
*/
static uint8_t *__sbrk_heap_end = NULL;
/**
* @brief _sbrk() allocates memory to the newlib heap and is used by malloc
* and others from the C library
*
* @verbatim
* ############################################################################
* # .data # .bss # newlib heap # MSP stack #
* # # # # Reserved by _Min_Stack_Size #
* ############################################################################
* ^-- RAM start ^-- _end _estack, RAM end --^
* @endverbatim
*
* This implementation starts allocating at the '_end' linker symbol
* The '_Min_Stack_Size' linker symbol reserves a memory for the MSP stack
* The implementation considers '_estack' linker symbol to be RAM end
* NOTE: If the MSP stack, at any point during execution, grows larger than the
* reserved size, please increase the '_Min_Stack_Size'.
*
* @param incr Memory size
* @return Pointer to allocated memory
*/
void *_sbrk(ptrdiff_t incr)
{
extern uint8_t _end; /* Symbol defined in the linker script */
extern uint8_t _estack; /* Symbol defined in the linker script */
extern uint32_t _Min_Stack_Size; /* Symbol defined in the linker script */
const uint32_t stack_limit = (uint32_t)&_estack - (uint32_t)&_Min_Stack_Size;
const uint8_t *max_heap = (uint8_t *)stack_limit;
uint8_t *prev_heap_end;
/* Initialize heap end at first call */
if (NULL == __sbrk_heap_end)
{
__sbrk_heap_end = &_end;
}
/* Protect heap from growing into the reserved MSP stack */
if (__sbrk_heap_end + incr > max_heap)
{
errno = ENOMEM;
return (void *)-1;
}
prev_heap_end = __sbrk_heap_end;
__sbrk_heap_end += incr;
return (void *)prev_heap_end;
}

287
Core/Src/system_stm32g4xx.c Normal file
View File

@ -0,0 +1,287 @@
/**
******************************************************************************
* @file system_stm32g4xx.c
* @author MCD Application Team
* @brief CMSIS Cortex-M4 Device Peripheral Access Layer System Source File
*
* This file provides two functions and one global variable to be called from
* user application:
* - SystemInit(): This function is called at startup just after reset and
* before branch to main program. This call is made inside
* the "startup_stm32g4xx.s" file.
*
* - SystemCoreClock variable: Contains the core clock (HCLK), it can be used
* by the user application to setup the SysTick
* timer or configure other parameters.
*
* - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must
* be called whenever the core clock is changed
* during program execution.
*
* After each device reset the HSI (16 MHz) is used as system clock source.
* Then SystemInit() function is called, in "startup_stm32g4xx.s" file, to
* configure the system clock before to branch to main program.
*
* This file configures the system clock as follows:
*=============================================================================
*-----------------------------------------------------------------------------
* System Clock source | HSI
*-----------------------------------------------------------------------------
* SYSCLK(Hz) | 16000000
*-----------------------------------------------------------------------------
* HCLK(Hz) | 16000000
*-----------------------------------------------------------------------------
* AHB Prescaler | 1
*-----------------------------------------------------------------------------
* APB1 Prescaler | 1
*-----------------------------------------------------------------------------
* APB2 Prescaler | 1
*-----------------------------------------------------------------------------
* PLL_M | 1
*-----------------------------------------------------------------------------
* PLL_N | 16
*-----------------------------------------------------------------------------
* PLL_P | 7
*-----------------------------------------------------------------------------
* PLL_Q | 2
*-----------------------------------------------------------------------------
* PLL_R | 2
*-----------------------------------------------------------------------------
* Require 48MHz for RNG | Disabled
*-----------------------------------------------------------------------------
*=============================================================================
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2019 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/** @addtogroup CMSIS
* @{
*/
/** @addtogroup stm32g4xx_system
* @{
*/
/** @addtogroup STM32G4xx_System_Private_Includes
* @{
*/
#include "stm32g4xx.h"
#if !defined (HSE_VALUE)
#define HSE_VALUE 24000000U /*!< Value of the External oscillator in Hz */
#endif /* HSE_VALUE */
#if !defined (HSI_VALUE)
#define HSI_VALUE 16000000U /*!< Value of the Internal oscillator in Hz*/
#endif /* HSI_VALUE */
/**
* @}
*/
/** @addtogroup STM32G4xx_System_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @addtogroup STM32G4xx_System_Private_Defines
* @{
*/
/************************* Miscellaneous Configuration ************************/
/* Note: Following vector table addresses must be defined in line with linker
configuration. */
/*!< Uncomment the following line if you need to relocate the vector table
anywhere in Flash or Sram, else the vector table is kept at the automatic
remap of boot address selected */
/* #define USER_VECT_TAB_ADDRESS */
#if defined(USER_VECT_TAB_ADDRESS)
/*!< Uncomment the following line if you need to relocate your vector Table
in Sram else user remap will be done in Flash. */
/* #define VECT_TAB_SRAM */
#if defined(VECT_TAB_SRAM)
#define VECT_TAB_BASE_ADDRESS SRAM_BASE /*!< Vector Table base address field.
This value must be a multiple of 0x200. */
#define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field.
This value must be a multiple of 0x200. */
#else
#define VECT_TAB_BASE_ADDRESS FLASH_BASE /*!< Vector Table base address field.
This value must be a multiple of 0x200. */
#define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field.
This value must be a multiple of 0x200. */
#endif /* VECT_TAB_SRAM */
#endif /* USER_VECT_TAB_ADDRESS */
/******************************************************************************/
/**
* @}
*/
/** @addtogroup STM32G4xx_System_Private_Macros
* @{
*/
/**
* @}
*/
/** @addtogroup STM32G4xx_System_Private_Variables
* @{
*/
/* The SystemCoreClock variable is updated in three ways:
1) by calling CMSIS function SystemCoreClockUpdate()
2) by calling HAL API function HAL_RCC_GetHCLKFreq()
3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency
Note: If you use this function to configure the system clock; then there
is no need to call the 2 first functions listed above, since SystemCoreClock
variable is updated automatically.
*/
uint32_t SystemCoreClock = HSI_VALUE;
const uint8_t AHBPrescTable[16] = {0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 1U, 2U, 3U, 4U, 6U, 7U, 8U, 9U};
const uint8_t APBPrescTable[8] = {0U, 0U, 0U, 0U, 1U, 2U, 3U, 4U};
/**
* @}
*/
/** @addtogroup STM32G4xx_System_Private_FunctionPrototypes
* @{
*/
/**
* @}
*/
/** @addtogroup STM32G4xx_System_Private_Functions
* @{
*/
/**
* @brief Setup the microcontroller system.
* @param None
* @retval None
*/
void SystemInit(void)
{
/* FPU settings ------------------------------------------------------------*/
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
SCB->CPACR |= ((3UL << (10*2))|(3UL << (11*2))); /* set CP10 and CP11 Full Access */
#endif
/* Configure the Vector Table location add offset address ------------------*/
#if defined(USER_VECT_TAB_ADDRESS)
SCB->VTOR = VECT_TAB_BASE_ADDRESS | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM */
#endif /* USER_VECT_TAB_ADDRESS */
}
/**
* @brief Update SystemCoreClock variable according to Clock Register Values.
* The SystemCoreClock variable contains the core clock (HCLK), it can
* be used by the user application to setup the SysTick timer or configure
* other parameters.
*
* @note Each time the core clock (HCLK) changes, this function must be called
* to update SystemCoreClock variable value. Otherwise, any configuration
* based on this variable will be incorrect.
*
* @note - The system frequency computed by this function is not the real
* frequency in the chip. It is calculated based on the predefined
* constant and the selected clock source:
*
* - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(**)
*
* - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(***)
*
* - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(***)
* or HSI_VALUE(*) multiplied/divided by the PLL factors.
*
* (**) HSI_VALUE is a constant defined in stm32g4xx_hal.h file (default value
* 16 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
*
* (***) HSE_VALUE is a constant defined in stm32g4xx_hal.h file (default value
* 24 MHz), user has to ensure that HSE_VALUE is same as the real
* frequency of the crystal used. Otherwise, this function may
* have wrong result.
*
* - The result of this function could be not correct when using fractional
* value for HSE crystal.
*
* @param None
* @retval None
*/
void SystemCoreClockUpdate(void)
{
uint32_t tmp, pllvco, pllr, pllsource, pllm;
/* Get SYSCLK source -------------------------------------------------------*/
switch (RCC->CFGR & RCC_CFGR_SWS)
{
case 0x04: /* HSI used as system clock source */
SystemCoreClock = HSI_VALUE;
break;
case 0x08: /* HSE used as system clock source */
SystemCoreClock = HSE_VALUE;
break;
case 0x0C: /* PLL used as system clock source */
/* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN
SYSCLK = PLL_VCO / PLLR
*/
pllsource = (RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC);
pllm = ((RCC->PLLCFGR & RCC_PLLCFGR_PLLM) >> 4) + 1U ;
if (pllsource == 0x02UL) /* HSI used as PLL clock source */
{
pllvco = (HSI_VALUE / pllm);
}
else /* HSE used as PLL clock source */
{
pllvco = (HSE_VALUE / pllm);
}
pllvco = pllvco * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 8);
pllr = (((RCC->PLLCFGR & RCC_PLLCFGR_PLLR) >> 25) + 1U) * 2U;
SystemCoreClock = pllvco/pllr;
break;
default:
break;
}
/* Compute HCLK clock frequency --------------------------------------------*/
/* Get HCLK prescaler */
tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4)];
/* HCLK clock frequency */
SystemCoreClock >>= tmp;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/