steering-wheel/Drivers/STM32H7xx_HAL_Driver/Inc/stm32h7xx_ll_tim.h

5210 lines
233 KiB
C

/**
******************************************************************************
* @file stm32h7xx_ll_tim.h
* @author MCD Application Team
* @brief Header file of TIM LL module.
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32H7xx_LL_TIM_H
#define __STM32H7xx_LL_TIM_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32h7xx.h"
/** @addtogroup STM32H7xx_LL_Driver
* @{
*/
#if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM4) || defined (TIM5) || defined (TIM6) || defined (TIM7) || defined (TIM8) || defined (TIM12) || defined (TIM13) || defined (TIM14) || defined (TIM15) || defined (TIM16) || defined (TIM17) || defined (TIM23) || defined (TIM24)
/** @defgroup TIM_LL TIM
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/** @defgroup TIM_LL_Private_Variables TIM Private Variables
* @{
*/
static const uint8_t OFFSET_TAB_CCMRx[] =
{
0x00U, /* 0: TIMx_CH1 */
0x00U, /* 1: TIMx_CH1N */
0x00U, /* 2: TIMx_CH2 */
0x00U, /* 3: TIMx_CH2N */
0x04U, /* 4: TIMx_CH3 */
0x04U, /* 5: TIMx_CH3N */
0x04U, /* 6: TIMx_CH4 */
0x3CU, /* 7: TIMx_CH5 */
0x3CU /* 8: TIMx_CH6 */
};
static const uint8_t SHIFT_TAB_OCxx[] =
{
0U, /* 0: OC1M, OC1FE, OC1PE */
0U, /* 1: - NA */
8U, /* 2: OC2M, OC2FE, OC2PE */
0U, /* 3: - NA */
0U, /* 4: OC3M, OC3FE, OC3PE */
0U, /* 5: - NA */
8U, /* 6: OC4M, OC4FE, OC4PE */
0U, /* 7: OC5M, OC5FE, OC5PE */
8U /* 8: OC6M, OC6FE, OC6PE */
};
static const uint8_t SHIFT_TAB_ICxx[] =
{
0U, /* 0: CC1S, IC1PSC, IC1F */
0U, /* 1: - NA */
8U, /* 2: CC2S, IC2PSC, IC2F */
0U, /* 3: - NA */
0U, /* 4: CC3S, IC3PSC, IC3F */
0U, /* 5: - NA */
8U, /* 6: CC4S, IC4PSC, IC4F */
0U, /* 7: - NA */
0U /* 8: - NA */
};
static const uint8_t SHIFT_TAB_CCxP[] =
{
0U, /* 0: CC1P */
2U, /* 1: CC1NP */
4U, /* 2: CC2P */
6U, /* 3: CC2NP */
8U, /* 4: CC3P */
10U, /* 5: CC3NP */
12U, /* 6: CC4P */
16U, /* 7: CC5P */
20U /* 8: CC6P */
};
static const uint8_t SHIFT_TAB_OISx[] =
{
0U, /* 0: OIS1 */
1U, /* 1: OIS1N */
2U, /* 2: OIS2 */
3U, /* 3: OIS2N */
4U, /* 4: OIS3 */
5U, /* 5: OIS3N */
6U, /* 6: OIS4 */
8U, /* 7: OIS5 */
10U /* 8: OIS6 */
};
/**
* @}
*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup TIM_LL_Private_Constants TIM Private Constants
* @{
*/
#if defined(TIM_BREAK_INPUT_SUPPORT)
/* Defines used for the bit position in the register and perform offsets */
#define TIM_POSITION_BRK_SOURCE (POSITION_VAL(Source) & 0x1FUL)
/* Generic bit definitions for TIMx_AF1 register */
#define TIMx_AF1_BKINP TIM1_AF1_BKINP /*!< BRK BKIN input polarity */
#define TIMx_AF1_ETRSEL TIM1_AF1_ETRSEL /*!< TIMx ETR source selection */
#endif /* TIM_BREAK_INPUT_SUPPORT */
/* Mask used to set the TDG[x:0] of the DTG bits of the TIMx_BDTR register */
#define DT_DELAY_1 ((uint8_t)0x7F)
#define DT_DELAY_2 ((uint8_t)0x3F)
#define DT_DELAY_3 ((uint8_t)0x1F)
#define DT_DELAY_4 ((uint8_t)0x1F)
/* Mask used to set the DTG[7:5] bits of the DTG bits of the TIMx_BDTR register */
#define DT_RANGE_1 ((uint8_t)0x00)
#define DT_RANGE_2 ((uint8_t)0x80)
#define DT_RANGE_3 ((uint8_t)0xC0)
#define DT_RANGE_4 ((uint8_t)0xE0)
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup TIM_LL_Private_Macros TIM Private Macros
* @{
*/
/** @brief Convert channel id into channel index.
* @param __CHANNEL__ This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH1N
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH2N
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH3N
* @arg @ref LL_TIM_CHANNEL_CH4
* @arg @ref LL_TIM_CHANNEL_CH5
* @arg @ref LL_TIM_CHANNEL_CH6
* @retval none
*/
#define TIM_GET_CHANNEL_INDEX( __CHANNEL__) \
(((__CHANNEL__) == LL_TIM_CHANNEL_CH1) ? 0U :\
((__CHANNEL__) == LL_TIM_CHANNEL_CH1N) ? 1U :\
((__CHANNEL__) == LL_TIM_CHANNEL_CH2) ? 2U :\
((__CHANNEL__) == LL_TIM_CHANNEL_CH2N) ? 3U :\
((__CHANNEL__) == LL_TIM_CHANNEL_CH3) ? 4U :\
((__CHANNEL__) == LL_TIM_CHANNEL_CH3N) ? 5U :\
((__CHANNEL__) == LL_TIM_CHANNEL_CH4) ? 6U :\
((__CHANNEL__) == LL_TIM_CHANNEL_CH5) ? 7U : 8U)
/** @brief Calculate the deadtime sampling period(in ps).
* @param __TIMCLK__ timer input clock frequency (in Hz).
* @param __CKD__ This parameter can be one of the following values:
* @arg @ref LL_TIM_CLOCKDIVISION_DIV1
* @arg @ref LL_TIM_CLOCKDIVISION_DIV2
* @arg @ref LL_TIM_CLOCKDIVISION_DIV4
* @retval none
*/
#define TIM_CALC_DTS(__TIMCLK__, __CKD__) \
(((__CKD__) == LL_TIM_CLOCKDIVISION_DIV1) ? ((uint64_t)1000000000000U/(__TIMCLK__)) : \
((__CKD__) == LL_TIM_CLOCKDIVISION_DIV2) ? ((uint64_t)1000000000000U/((__TIMCLK__) >> 1U)) : \
((uint64_t)1000000000000U/((__TIMCLK__) >> 2U)))
/**
* @}
*/
/* Exported types ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup TIM_LL_ES_INIT TIM Exported Init structure
* @{
*/
/**
* @brief TIM Time Base configuration structure definition.
*/
typedef struct
{
uint16_t Prescaler; /*!< Specifies the prescaler value used to divide the TIM clock.
This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
This feature can be modified afterwards using unitary function
@ref LL_TIM_SetPrescaler().*/
uint32_t CounterMode; /*!< Specifies the counter mode.
This parameter can be a value of @ref TIM_LL_EC_COUNTERMODE.
This feature can be modified afterwards using unitary function
@ref LL_TIM_SetCounterMode().*/
uint32_t Autoreload; /*!< Specifies the auto reload value to be loaded into the active
Auto-Reload Register at the next update event.
This parameter must be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
Some timer instances may support 32 bits counters. In that case this parameter must
be a number between 0x0000 and 0xFFFFFFFF.
This feature can be modified afterwards using unitary function
@ref LL_TIM_SetAutoReload().*/
uint32_t ClockDivision; /*!< Specifies the clock division.
This parameter can be a value of @ref TIM_LL_EC_CLOCKDIVISION.
This feature can be modified afterwards using unitary function
@ref LL_TIM_SetClockDivision().*/
uint32_t RepetitionCounter; /*!< Specifies the repetition counter value. Each time the RCR downcounter
reaches zero, an update event is generated and counting restarts
from the RCR value (N).
This means in PWM mode that (N+1) corresponds to:
- the number of PWM periods in edge-aligned mode
- the number of half PWM period in center-aligned mode
GP timers: this parameter must be a number between Min_Data = 0x00 and
Max_Data = 0xFF.
Advanced timers: this parameter must be a number between Min_Data = 0x0000 and
Max_Data = 0xFFFF.
This feature can be modified afterwards using unitary function
@ref LL_TIM_SetRepetitionCounter().*/
} LL_TIM_InitTypeDef;
/**
* @brief TIM Output Compare configuration structure definition.
*/
typedef struct
{
uint32_t OCMode; /*!< Specifies the output mode.
This parameter can be a value of @ref TIM_LL_EC_OCMODE.
This feature can be modified afterwards using unitary function
@ref LL_TIM_OC_SetMode().*/
uint32_t OCState; /*!< Specifies the TIM Output Compare state.
This parameter can be a value of @ref TIM_LL_EC_OCSTATE.
This feature can be modified afterwards using unitary functions
@ref LL_TIM_CC_EnableChannel() or @ref LL_TIM_CC_DisableChannel().*/
uint32_t OCNState; /*!< Specifies the TIM complementary Output Compare state.
This parameter can be a value of @ref TIM_LL_EC_OCSTATE.
This feature can be modified afterwards using unitary functions
@ref LL_TIM_CC_EnableChannel() or @ref LL_TIM_CC_DisableChannel().*/
uint32_t CompareValue; /*!< Specifies the Compare value to be loaded into the Capture Compare Register.
This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
This feature can be modified afterwards using unitary function
LL_TIM_OC_SetCompareCHx (x=1..6).*/
uint32_t OCPolarity; /*!< Specifies the output polarity.
This parameter can be a value of @ref TIM_LL_EC_OCPOLARITY.
This feature can be modified afterwards using unitary function
@ref LL_TIM_OC_SetPolarity().*/
uint32_t OCNPolarity; /*!< Specifies the complementary output polarity.
This parameter can be a value of @ref TIM_LL_EC_OCPOLARITY.
This feature can be modified afterwards using unitary function
@ref LL_TIM_OC_SetPolarity().*/
uint32_t OCIdleState; /*!< Specifies the TIM Output Compare pin state during Idle state.
This parameter can be a value of @ref TIM_LL_EC_OCIDLESTATE.
This feature can be modified afterwards using unitary function
@ref LL_TIM_OC_SetIdleState().*/
uint32_t OCNIdleState; /*!< Specifies the TIM Output Compare pin state during Idle state.
This parameter can be a value of @ref TIM_LL_EC_OCIDLESTATE.
This feature can be modified afterwards using unitary function
@ref LL_TIM_OC_SetIdleState().*/
} LL_TIM_OC_InitTypeDef;
/**
* @brief TIM Input Capture configuration structure definition.
*/
typedef struct
{
uint32_t ICPolarity; /*!< Specifies the active edge of the input signal.
This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
This feature can be modified afterwards using unitary function
@ref LL_TIM_IC_SetPolarity().*/
uint32_t ICActiveInput; /*!< Specifies the input.
This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
This feature can be modified afterwards using unitary function
@ref LL_TIM_IC_SetActiveInput().*/
uint32_t ICPrescaler; /*!< Specifies the Input Capture Prescaler.
This parameter can be a value of @ref TIM_LL_EC_ICPSC.
This feature can be modified afterwards using unitary function
@ref LL_TIM_IC_SetPrescaler().*/
uint32_t ICFilter; /*!< Specifies the input capture filter.
This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
This feature can be modified afterwards using unitary function
@ref LL_TIM_IC_SetFilter().*/
} LL_TIM_IC_InitTypeDef;
/**
* @brief TIM Encoder interface configuration structure definition.
*/
typedef struct
{
uint32_t EncoderMode; /*!< Specifies the encoder resolution (x2 or x4).
This parameter can be a value of @ref TIM_LL_EC_ENCODERMODE.
This feature can be modified afterwards using unitary function
@ref LL_TIM_SetEncoderMode().*/
uint32_t IC1Polarity; /*!< Specifies the active edge of TI1 input.
This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
This feature can be modified afterwards using unitary function
@ref LL_TIM_IC_SetPolarity().*/
uint32_t IC1ActiveInput; /*!< Specifies the TI1 input source
This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
This feature can be modified afterwards using unitary function
@ref LL_TIM_IC_SetActiveInput().*/
uint32_t IC1Prescaler; /*!< Specifies the TI1 input prescaler value.
This parameter can be a value of @ref TIM_LL_EC_ICPSC.
This feature can be modified afterwards using unitary function
@ref LL_TIM_IC_SetPrescaler().*/
uint32_t IC1Filter; /*!< Specifies the TI1 input filter.
This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
This feature can be modified afterwards using unitary function
@ref LL_TIM_IC_SetFilter().*/
uint32_t IC2Polarity; /*!< Specifies the active edge of TI2 input.
This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
This feature can be modified afterwards using unitary function
@ref LL_TIM_IC_SetPolarity().*/
uint32_t IC2ActiveInput; /*!< Specifies the TI2 input source
This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
This feature can be modified afterwards using unitary function
@ref LL_TIM_IC_SetActiveInput().*/
uint32_t IC2Prescaler; /*!< Specifies the TI2 input prescaler value.
This parameter can be a value of @ref TIM_LL_EC_ICPSC.
This feature can be modified afterwards using unitary function
@ref LL_TIM_IC_SetPrescaler().*/
uint32_t IC2Filter; /*!< Specifies the TI2 input filter.
This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
This feature can be modified afterwards using unitary function
@ref LL_TIM_IC_SetFilter().*/
} LL_TIM_ENCODER_InitTypeDef;
/**
* @brief TIM Hall sensor interface configuration structure definition.
*/
typedef struct
{
uint32_t IC1Polarity; /*!< Specifies the active edge of TI1 input.
This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
This feature can be modified afterwards using unitary function
@ref LL_TIM_IC_SetPolarity().*/
uint32_t IC1Prescaler; /*!< Specifies the TI1 input prescaler value.
Prescaler must be set to get a maximum counter period longer than the
time interval between 2 consecutive changes on the Hall inputs.
This parameter can be a value of @ref TIM_LL_EC_ICPSC.
This feature can be modified afterwards using unitary function
@ref LL_TIM_IC_SetPrescaler().*/
uint32_t IC1Filter; /*!< Specifies the TI1 input filter.
This parameter can be a value of
@ref TIM_LL_EC_IC_FILTER.
This feature can be modified afterwards using unitary function
@ref LL_TIM_IC_SetFilter().*/
uint32_t CommutationDelay; /*!< Specifies the compare value to be loaded into the Capture Compare Register.
A positive pulse (TRGO event) is generated with a programmable delay every time
a change occurs on the Hall inputs.
This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF.
This feature can be modified afterwards using unitary function
@ref LL_TIM_OC_SetCompareCH2().*/
} LL_TIM_HALLSENSOR_InitTypeDef;
/**
* @brief BDTR (Break and Dead Time) structure definition
*/
typedef struct
{
uint32_t OSSRState; /*!< Specifies the Off-State selection used in Run mode.
This parameter can be a value of @ref TIM_LL_EC_OSSR
This feature can be modified afterwards using unitary function
@ref LL_TIM_SetOffStates()
@note This bit-field cannot be modified as long as LOCK level 2 has been
programmed. */
uint32_t OSSIState; /*!< Specifies the Off-State used in Idle state.
This parameter can be a value of @ref TIM_LL_EC_OSSI
This feature can be modified afterwards using unitary function
@ref LL_TIM_SetOffStates()
@note This bit-field cannot be modified as long as LOCK level 2 has been
programmed. */
uint32_t LockLevel; /*!< Specifies the LOCK level parameters.
This parameter can be a value of @ref TIM_LL_EC_LOCKLEVEL
@note The LOCK bits can be written only once after the reset. Once the TIMx_BDTR
register has been written, their content is frozen until the next reset.*/
uint8_t DeadTime; /*!< Specifies the delay time between the switching-off and the
switching-on of the outputs.
This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF.
This feature can be modified afterwards using unitary function
@ref LL_TIM_OC_SetDeadTime()
@note This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been
programmed. */
uint16_t BreakState; /*!< Specifies whether the TIM Break input is enabled or not.
This parameter can be a value of @ref TIM_LL_EC_BREAK_ENABLE
This feature can be modified afterwards using unitary functions
@ref LL_TIM_EnableBRK() or @ref LL_TIM_DisableBRK()
@note This bit-field can not be modified as long as LOCK level 1 has been
programmed. */
uint32_t BreakPolarity; /*!< Specifies the TIM Break Input pin polarity.
This parameter can be a value of @ref TIM_LL_EC_BREAK_POLARITY
This feature can be modified afterwards using unitary function
@ref LL_TIM_ConfigBRK()
@note This bit-field can not be modified as long as LOCK level 1 has been
programmed. */
uint32_t BreakFilter; /*!< Specifies the TIM Break Filter.
This parameter can be a value of @ref TIM_LL_EC_BREAK_FILTER
This feature can be modified afterwards using unitary function
@ref LL_TIM_ConfigBRK()
@note This bit-field can not be modified as long as LOCK level 1 has been
programmed. */
#if defined(TIM_BDTR_BKBID)
uint32_t BreakAFMode; /*!< Specifies the alternate function mode of the break input.
This parameter can be a value of @ref TIM_LL_EC_BREAK_AFMODE
This feature can be modified afterwards using unitary functions
@ref LL_TIM_ConfigBRK()
@note Bidirectional break input is only supported by advanced timers instances.
@note This bit-field can not be modified as long as LOCK level 1 has been
programmed. */
#endif /*TIM_BDTR_BKBID */
uint32_t Break2State; /*!< Specifies whether the TIM Break2 input is enabled or not.
This parameter can be a value of @ref TIM_LL_EC_BREAK2_ENABLE
This feature can be modified afterwards using unitary functions
@ref LL_TIM_EnableBRK2() or @ref LL_TIM_DisableBRK2()
@note This bit-field can not be modified as long as LOCK level 1 has been
programmed. */
uint32_t Break2Polarity; /*!< Specifies the TIM Break2 Input pin polarity.
This parameter can be a value of @ref TIM_LL_EC_BREAK2_POLARITY
This feature can be modified afterwards using unitary function
@ref LL_TIM_ConfigBRK2()
@note This bit-field can not be modified as long as LOCK level 1 has been
programmed. */
uint32_t Break2Filter; /*!< Specifies the TIM Break2 Filter.
This parameter can be a value of @ref TIM_LL_EC_BREAK2_FILTER
This feature can be modified afterwards using unitary function
@ref LL_TIM_ConfigBRK2()
@note This bit-field can not be modified as long as LOCK level 1 has been
programmed. */
#if defined(TIM_BDTR_BKBID)
uint32_t Break2AFMode; /*!< Specifies the alternate function mode of the break2 input.
This parameter can be a value of @ref TIM_LL_EC_BREAK2_AFMODE
This feature can be modified afterwards using unitary functions
@ref LL_TIM_ConfigBRK2()
@note Bidirectional break input is only supported by advanced timers instances.
@note This bit-field can not be modified as long as LOCK level 1 has been
programmed. */
#endif /*TIM_BDTR_BKBID */
uint32_t AutomaticOutput; /*!< Specifies whether the TIM Automatic Output feature is enabled or not.
This parameter can be a value of @ref TIM_LL_EC_AUTOMATICOUTPUT_ENABLE
This feature can be modified afterwards using unitary functions
@ref LL_TIM_EnableAutomaticOutput() or @ref LL_TIM_DisableAutomaticOutput()
@note This bit-field can not be modified as long as LOCK level 1 has been
programmed. */
} LL_TIM_BDTR_InitTypeDef;
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/* Exported constants --------------------------------------------------------*/
/** @defgroup TIM_LL_Exported_Constants TIM Exported Constants
* @{
*/
/** @defgroup TIM_LL_EC_GET_FLAG Get Flags Defines
* @brief Flags defines which can be used with LL_TIM_ReadReg function.
* @{
*/
#define LL_TIM_SR_UIF TIM_SR_UIF /*!< Update interrupt flag */
#define LL_TIM_SR_CC1IF TIM_SR_CC1IF /*!< Capture/compare 1 interrupt flag */
#define LL_TIM_SR_CC2IF TIM_SR_CC2IF /*!< Capture/compare 2 interrupt flag */
#define LL_TIM_SR_CC3IF TIM_SR_CC3IF /*!< Capture/compare 3 interrupt flag */
#define LL_TIM_SR_CC4IF TIM_SR_CC4IF /*!< Capture/compare 4 interrupt flag */
#define LL_TIM_SR_CC5IF TIM_SR_CC5IF /*!< Capture/compare 5 interrupt flag */
#define LL_TIM_SR_CC6IF TIM_SR_CC6IF /*!< Capture/compare 6 interrupt flag */
#define LL_TIM_SR_COMIF TIM_SR_COMIF /*!< COM interrupt flag */
#define LL_TIM_SR_TIF TIM_SR_TIF /*!< Trigger interrupt flag */
#define LL_TIM_SR_BIF TIM_SR_BIF /*!< Break interrupt flag */
#define LL_TIM_SR_B2IF TIM_SR_B2IF /*!< Second break interrupt flag */
#define LL_TIM_SR_CC1OF TIM_SR_CC1OF /*!< Capture/Compare 1 overcapture flag */
#define LL_TIM_SR_CC2OF TIM_SR_CC2OF /*!< Capture/Compare 2 overcapture flag */
#define LL_TIM_SR_CC3OF TIM_SR_CC3OF /*!< Capture/Compare 3 overcapture flag */
#define LL_TIM_SR_CC4OF TIM_SR_CC4OF /*!< Capture/Compare 4 overcapture flag */
#define LL_TIM_SR_SBIF TIM_SR_SBIF /*!< System Break interrupt flag */
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup TIM_LL_EC_BREAK_ENABLE Break Enable
* @{
*/
#define LL_TIM_BREAK_DISABLE 0x00000000U /*!< Break function disabled */
#define LL_TIM_BREAK_ENABLE TIM_BDTR_BKE /*!< Break function enabled */
/**
* @}
*/
/** @defgroup TIM_LL_EC_BREAK2_ENABLE Break2 Enable
* @{
*/
#define LL_TIM_BREAK2_DISABLE 0x00000000U /*!< Break2 function disabled */
#define LL_TIM_BREAK2_ENABLE TIM_BDTR_BK2E /*!< Break2 function enabled */
/**
* @}
*/
/** @defgroup TIM_LL_EC_AUTOMATICOUTPUT_ENABLE Automatic output enable
* @{
*/
#define LL_TIM_AUTOMATICOUTPUT_DISABLE 0x00000000U /*!< MOE can be set only by software */
#define LL_TIM_AUTOMATICOUTPUT_ENABLE TIM_BDTR_AOE /*!< MOE can be set by software or automatically at the next update event */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/** @defgroup TIM_LL_EC_IT IT Defines
* @brief IT defines which can be used with LL_TIM_ReadReg and LL_TIM_WriteReg functions.
* @{
*/
#define LL_TIM_DIER_UIE TIM_DIER_UIE /*!< Update interrupt enable */
#define LL_TIM_DIER_CC1IE TIM_DIER_CC1IE /*!< Capture/compare 1 interrupt enable */
#define LL_TIM_DIER_CC2IE TIM_DIER_CC2IE /*!< Capture/compare 2 interrupt enable */
#define LL_TIM_DIER_CC3IE TIM_DIER_CC3IE /*!< Capture/compare 3 interrupt enable */
#define LL_TIM_DIER_CC4IE TIM_DIER_CC4IE /*!< Capture/compare 4 interrupt enable */
#define LL_TIM_DIER_COMIE TIM_DIER_COMIE /*!< COM interrupt enable */
#define LL_TIM_DIER_TIE TIM_DIER_TIE /*!< Trigger interrupt enable */
#define LL_TIM_DIER_BIE TIM_DIER_BIE /*!< Break interrupt enable */
/**
* @}
*/
/** @defgroup TIM_LL_EC_UPDATESOURCE Update Source
* @{
*/
#define LL_TIM_UPDATESOURCE_REGULAR 0x00000000U /*!< Counter overflow/underflow, Setting the UG bit or Update generation through the slave mode controller generates an update request */
#define LL_TIM_UPDATESOURCE_COUNTER TIM_CR1_URS /*!< Only counter overflow/underflow generates an update request */
/**
* @}
*/
/** @defgroup TIM_LL_EC_ONEPULSEMODE One Pulse Mode
* @{
*/
#define LL_TIM_ONEPULSEMODE_SINGLE TIM_CR1_OPM /*!< Counter stops counting at the next update event */
#define LL_TIM_ONEPULSEMODE_REPETITIVE 0x00000000U /*!< Counter is not stopped at update event */
/**
* @}
*/
/** @defgroup TIM_LL_EC_COUNTERMODE Counter Mode
* @{
*/
#define LL_TIM_COUNTERMODE_UP 0x00000000U /*!<Counter used as upcounter */
#define LL_TIM_COUNTERMODE_DOWN TIM_CR1_DIR /*!< Counter used as downcounter */
#define LL_TIM_COUNTERMODE_CENTER_DOWN TIM_CR1_CMS_0 /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels are set only when the counter is counting down. */
#define LL_TIM_COUNTERMODE_CENTER_UP TIM_CR1_CMS_1 /*!<The counter counts up and down alternatively. Output compare interrupt flags of output channels are set only when the counter is counting up */
#define LL_TIM_COUNTERMODE_CENTER_UP_DOWN TIM_CR1_CMS /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels are set only when the counter is counting up or down. */
/**
* @}
*/
/** @defgroup TIM_LL_EC_CLOCKDIVISION Clock Division
* @{
*/
#define LL_TIM_CLOCKDIVISION_DIV1 0x00000000U /*!< tDTS=tCK_INT */
#define LL_TIM_CLOCKDIVISION_DIV2 TIM_CR1_CKD_0 /*!< tDTS=2*tCK_INT */
#define LL_TIM_CLOCKDIVISION_DIV4 TIM_CR1_CKD_1 /*!< tDTS=4*tCK_INT */
/**
* @}
*/
/** @defgroup TIM_LL_EC_COUNTERDIRECTION Counter Direction
* @{
*/
#define LL_TIM_COUNTERDIRECTION_UP 0x00000000U /*!< Timer counter counts up */
#define LL_TIM_COUNTERDIRECTION_DOWN TIM_CR1_DIR /*!< Timer counter counts down */
/**
* @}
*/
/** @defgroup TIM_LL_EC_CCUPDATESOURCE Capture Compare Update Source
* @{
*/
#define LL_TIM_CCUPDATESOURCE_COMG_ONLY 0x00000000U /*!< Capture/compare control bits are updated by setting the COMG bit only */
#define LL_TIM_CCUPDATESOURCE_COMG_AND_TRGI TIM_CR2_CCUS /*!< Capture/compare control bits are updated by setting the COMG bit or when a rising edge occurs on trigger input (TRGI) */
/**
* @}
*/
/** @defgroup TIM_LL_EC_CCDMAREQUEST Capture Compare DMA Request
* @{
*/
#define LL_TIM_CCDMAREQUEST_CC 0x00000000U /*!< CCx DMA request sent when CCx event occurs */
#define LL_TIM_CCDMAREQUEST_UPDATE TIM_CR2_CCDS /*!< CCx DMA requests sent when update event occurs */
/**
* @}
*/
/** @defgroup TIM_LL_EC_LOCKLEVEL Lock Level
* @{
*/
#define LL_TIM_LOCKLEVEL_OFF 0x00000000U /*!< LOCK OFF - No bit is write protected */
#define LL_TIM_LOCKLEVEL_1 TIM_BDTR_LOCK_0 /*!< LOCK Level 1 */
#define LL_TIM_LOCKLEVEL_2 TIM_BDTR_LOCK_1 /*!< LOCK Level 2 */
#define LL_TIM_LOCKLEVEL_3 TIM_BDTR_LOCK /*!< LOCK Level 3 */
/**
* @}
*/
/** @defgroup TIM_LL_EC_CHANNEL Channel
* @{
*/
#define LL_TIM_CHANNEL_CH1 TIM_CCER_CC1E /*!< Timer input/output channel 1 */
#define LL_TIM_CHANNEL_CH1N TIM_CCER_CC1NE /*!< Timer complementary output channel 1 */
#define LL_TIM_CHANNEL_CH2 TIM_CCER_CC2E /*!< Timer input/output channel 2 */
#define LL_TIM_CHANNEL_CH2N TIM_CCER_CC2NE /*!< Timer complementary output channel 2 */
#define LL_TIM_CHANNEL_CH3 TIM_CCER_CC3E /*!< Timer input/output channel 3 */
#define LL_TIM_CHANNEL_CH3N TIM_CCER_CC3NE /*!< Timer complementary output channel 3 */
#define LL_TIM_CHANNEL_CH4 TIM_CCER_CC4E /*!< Timer input/output channel 4 */
#define LL_TIM_CHANNEL_CH5 TIM_CCER_CC5E /*!< Timer output channel 5 */
#define LL_TIM_CHANNEL_CH6 TIM_CCER_CC6E /*!< Timer output channel 6 */
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup TIM_LL_EC_OCSTATE Output Configuration State
* @{
*/
#define LL_TIM_OCSTATE_DISABLE 0x00000000U /*!< OCx is not active */
#define LL_TIM_OCSTATE_ENABLE TIM_CCER_CC1E /*!< OCx signal is output on the corresponding output pin */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/** @defgroup TIM_LL_EC_OCMODE Output Configuration Mode
* @{
*/
#define LL_TIM_OCMODE_FROZEN 0x00000000U /*!<The comparison between the output compare register TIMx_CCRy and the counter TIMx_CNT has no effect on the output channel level */
#define LL_TIM_OCMODE_ACTIVE TIM_CCMR1_OC1M_0 /*!<OCyREF is forced high on compare match*/
#define LL_TIM_OCMODE_INACTIVE TIM_CCMR1_OC1M_1 /*!<OCyREF is forced low on compare match*/
#define LL_TIM_OCMODE_TOGGLE (TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0) /*!<OCyREF toggles on compare match*/
#define LL_TIM_OCMODE_FORCED_INACTIVE TIM_CCMR1_OC1M_2 /*!<OCyREF is forced low*/
#define LL_TIM_OCMODE_FORCED_ACTIVE (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_0) /*!<OCyREF is forced high*/
#define LL_TIM_OCMODE_PWM1 (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1) /*!<In upcounting, channel y is active as long as TIMx_CNT<TIMx_CCRy else inactive. In downcounting, channel y is inactive as long as TIMx_CNT>TIMx_CCRy else active.*/
#define LL_TIM_OCMODE_PWM2 (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0) /*!<In upcounting, channel y is inactive as long as TIMx_CNT<TIMx_CCRy else active. In downcounting, channel y is active as long as TIMx_CNT>TIMx_CCRy else inactive*/
#define LL_TIM_OCMODE_RETRIG_OPM1 TIM_CCMR1_OC1M_3 /*!<Retrigerrable OPM mode 1*/
#define LL_TIM_OCMODE_RETRIG_OPM2 (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_0) /*!<Retrigerrable OPM mode 2*/
#define LL_TIM_OCMODE_COMBINED_PWM1 (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_2) /*!<Combined PWM mode 1*/
#define LL_TIM_OCMODE_COMBINED_PWM2 (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_0 | TIM_CCMR1_OC1M_2) /*!<Combined PWM mode 2*/
#define LL_TIM_OCMODE_ASSYMETRIC_PWM1 (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_2) /*!<Asymmetric PWM mode 1*/
#define LL_TIM_OCMODE_ASSYMETRIC_PWM2 (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M) /*!<Asymmetric PWM mode 2*/
/**
* @}
*/
/** @defgroup TIM_LL_EC_OCPOLARITY Output Configuration Polarity
* @{
*/
#define LL_TIM_OCPOLARITY_HIGH 0x00000000U /*!< OCxactive high*/
#define LL_TIM_OCPOLARITY_LOW TIM_CCER_CC1P /*!< OCxactive low*/
/**
* @}
*/
/** @defgroup TIM_LL_EC_OCIDLESTATE Output Configuration Idle State
* @{
*/
#define LL_TIM_OCIDLESTATE_LOW 0x00000000U /*!<OCx=0 (after a dead-time if OC is implemented) when MOE=0*/
#define LL_TIM_OCIDLESTATE_HIGH TIM_CR2_OIS1 /*!<OCx=1 (after a dead-time if OC is implemented) when MOE=0*/
/**
* @}
*/
/** @defgroup TIM_LL_EC_GROUPCH5 GROUPCH5
* @{
*/
#define LL_TIM_GROUPCH5_NONE 0x00000000U /*!< No effect of OC5REF on OC1REFC, OC2REFC and OC3REFC */
#define LL_TIM_GROUPCH5_OC1REFC TIM_CCR5_GC5C1 /*!< OC1REFC is the logical AND of OC1REFC and OC5REF */
#define LL_TIM_GROUPCH5_OC2REFC TIM_CCR5_GC5C2 /*!< OC2REFC is the logical AND of OC2REFC and OC5REF */
#define LL_TIM_GROUPCH5_OC3REFC TIM_CCR5_GC5C3 /*!< OC3REFC is the logical AND of OC3REFC and OC5REF */
/**
* @}
*/
/** @defgroup TIM_LL_EC_ACTIVEINPUT Active Input Selection
* @{
*/
#define LL_TIM_ACTIVEINPUT_DIRECTTI (TIM_CCMR1_CC1S_0 << 16U) /*!< ICx is mapped on TIx */
#define LL_TIM_ACTIVEINPUT_INDIRECTTI (TIM_CCMR1_CC1S_1 << 16U) /*!< ICx is mapped on TIy */
#define LL_TIM_ACTIVEINPUT_TRC (TIM_CCMR1_CC1S << 16U) /*!< ICx is mapped on TRC */
/**
* @}
*/
/** @defgroup TIM_LL_EC_ICPSC Input Configuration Prescaler
* @{
*/
#define LL_TIM_ICPSC_DIV1 0x00000000U /*!< No prescaler, capture is done each time an edge is detected on the capture input */
#define LL_TIM_ICPSC_DIV2 (TIM_CCMR1_IC1PSC_0 << 16U) /*!< Capture is done once every 2 events */
#define LL_TIM_ICPSC_DIV4 (TIM_CCMR1_IC1PSC_1 << 16U) /*!< Capture is done once every 4 events */
#define LL_TIM_ICPSC_DIV8 (TIM_CCMR1_IC1PSC << 16U) /*!< Capture is done once every 8 events */
/**
* @}
*/
/** @defgroup TIM_LL_EC_IC_FILTER Input Configuration Filter
* @{
*/
#define LL_TIM_IC_FILTER_FDIV1 0x00000000U /*!< No filter, sampling is done at fDTS */
#define LL_TIM_IC_FILTER_FDIV1_N2 (TIM_CCMR1_IC1F_0 << 16U) /*!< fSAMPLING=fCK_INT, N=2 */
#define LL_TIM_IC_FILTER_FDIV1_N4 (TIM_CCMR1_IC1F_1 << 16U) /*!< fSAMPLING=fCK_INT, N=4 */
#define LL_TIM_IC_FILTER_FDIV1_N8 ((TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fCK_INT, N=8 */
#define LL_TIM_IC_FILTER_FDIV2_N6 (TIM_CCMR1_IC1F_2 << 16U) /*!< fSAMPLING=fDTS/2, N=6 */
#define LL_TIM_IC_FILTER_FDIV2_N8 ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fDTS/2, N=8 */
#define LL_TIM_IC_FILTER_FDIV4_N6 ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U) /*!< fSAMPLING=fDTS/4, N=6 */
#define LL_TIM_IC_FILTER_FDIV4_N8 ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fDTS/4, N=8 */
#define LL_TIM_IC_FILTER_FDIV8_N6 (TIM_CCMR1_IC1F_3 << 16U) /*!< fSAMPLING=fDTS/8, N=6 */
#define LL_TIM_IC_FILTER_FDIV8_N8 ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fDTS/8, N=8 */
#define LL_TIM_IC_FILTER_FDIV16_N5 ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1) << 16U) /*!< fSAMPLING=fDTS/16, N=5 */
#define LL_TIM_IC_FILTER_FDIV16_N6 ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fDTS/16, N=6 */
#define LL_TIM_IC_FILTER_FDIV16_N8 ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2) << 16U) /*!< fSAMPLING=fDTS/16, N=8 */
#define LL_TIM_IC_FILTER_FDIV32_N5 ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fDTS/32, N=5 */
#define LL_TIM_IC_FILTER_FDIV32_N6 ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U) /*!< fSAMPLING=fDTS/32, N=6 */
#define LL_TIM_IC_FILTER_FDIV32_N8 (TIM_CCMR1_IC1F << 16U) /*!< fSAMPLING=fDTS/32, N=8 */
/**
* @}
*/
/** @defgroup TIM_LL_EC_IC_POLARITY Input Configuration Polarity
* @{
*/
#define LL_TIM_IC_POLARITY_RISING 0x00000000U /*!< The circuit is sensitive to TIxFP1 rising edge, TIxFP1 is not inverted */
#define LL_TIM_IC_POLARITY_FALLING TIM_CCER_CC1P /*!< The circuit is sensitive to TIxFP1 falling edge, TIxFP1 is inverted */
#define LL_TIM_IC_POLARITY_BOTHEDGE (TIM_CCER_CC1P | TIM_CCER_CC1NP) /*!< The circuit is sensitive to both TIxFP1 rising and falling edges, TIxFP1 is not inverted */
/**
* @}
*/
/** @defgroup TIM_LL_EC_CLOCKSOURCE Clock Source
* @{
*/
#define LL_TIM_CLOCKSOURCE_INTERNAL 0x00000000U /*!< The timer is clocked by the internal clock provided from the RCC */
#define LL_TIM_CLOCKSOURCE_EXT_MODE1 (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0) /*!< Counter counts at each rising or falling edge on a selected input*/
#define LL_TIM_CLOCKSOURCE_EXT_MODE2 TIM_SMCR_ECE /*!< Counter counts at each rising or falling edge on the external trigger input ETR */
/**
* @}
*/
/** @defgroup TIM_LL_EC_ENCODERMODE Encoder Mode
* @{
*/
#define LL_TIM_ENCODERMODE_X2_TI1 TIM_SMCR_SMS_0 /*!< Quadrature encoder mode 1, x2 mode - Counter counts up/down on TI1FP1 edge depending on TI2FP2 level */
#define LL_TIM_ENCODERMODE_X2_TI2 TIM_SMCR_SMS_1 /*!< Quadrature encoder mode 2, x2 mode - Counter counts up/down on TI2FP2 edge depending on TI1FP1 level */
#define LL_TIM_ENCODERMODE_X4_TI12 (TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0) /*!< Quadrature encoder mode 3, x4 mode - Counter counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input */
/**
* @}
*/
/** @defgroup TIM_LL_EC_TRGO Trigger Output
* @{
*/
#define LL_TIM_TRGO_RESET 0x00000000U /*!< UG bit from the TIMx_EGR register is used as trigger output */
#define LL_TIM_TRGO_ENABLE TIM_CR2_MMS_0 /*!< Counter Enable signal (CNT_EN) is used as trigger output */
#define LL_TIM_TRGO_UPDATE TIM_CR2_MMS_1 /*!< Update event is used as trigger output */
#define LL_TIM_TRGO_CC1IF (TIM_CR2_MMS_1 | TIM_CR2_MMS_0) /*!< CC1 capture or a compare match is used as trigger output */
#define LL_TIM_TRGO_OC1REF TIM_CR2_MMS_2 /*!< OC1REF signal is used as trigger output */
#define LL_TIM_TRGO_OC2REF (TIM_CR2_MMS_2 | TIM_CR2_MMS_0) /*!< OC2REF signal is used as trigger output */
#define LL_TIM_TRGO_OC3REF (TIM_CR2_MMS_2 | TIM_CR2_MMS_1) /*!< OC3REF signal is used as trigger output */
#define LL_TIM_TRGO_OC4REF (TIM_CR2_MMS_2 | TIM_CR2_MMS_1 | TIM_CR2_MMS_0) /*!< OC4REF signal is used as trigger output */
/**
* @}
*/
/** @defgroup TIM_LL_EC_TRGO2 Trigger Output 2
* @{
*/
#define LL_TIM_TRGO2_RESET 0x00000000U /*!< UG bit from the TIMx_EGR register is used as trigger output 2 */
#define LL_TIM_TRGO2_ENABLE TIM_CR2_MMS2_0 /*!< Counter Enable signal (CNT_EN) is used as trigger output 2 */
#define LL_TIM_TRGO2_UPDATE TIM_CR2_MMS2_1 /*!< Update event is used as trigger output 2 */
#define LL_TIM_TRGO2_CC1F (TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0) /*!< CC1 capture or a compare match is used as trigger output 2 */
#define LL_TIM_TRGO2_OC1 TIM_CR2_MMS2_2 /*!< OC1REF signal is used as trigger output 2 */
#define LL_TIM_TRGO2_OC2 (TIM_CR2_MMS2_2 | TIM_CR2_MMS2_0) /*!< OC2REF signal is used as trigger output 2 */
#define LL_TIM_TRGO2_OC3 (TIM_CR2_MMS2_2 | TIM_CR2_MMS2_1) /*!< OC3REF signal is used as trigger output 2 */
#define LL_TIM_TRGO2_OC4 (TIM_CR2_MMS2_2 | TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0) /*!< OC4REF signal is used as trigger output 2 */
#define LL_TIM_TRGO2_OC5 TIM_CR2_MMS2_3 /*!< OC5REF signal is used as trigger output 2 */
#define LL_TIM_TRGO2_OC6 (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_0) /*!< OC6REF signal is used as trigger output 2 */
#define LL_TIM_TRGO2_OC4_RISINGFALLING (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_1) /*!< OC4REF rising or falling edges are used as trigger output 2 */
#define LL_TIM_TRGO2_OC6_RISINGFALLING (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0) /*!< OC6REF rising or falling edges are used as trigger output 2 */
#define LL_TIM_TRGO2_OC4_RISING_OC6_RISING (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2) /*!< OC4REF or OC6REF rising edges are used as trigger output 2 */
#define LL_TIM_TRGO2_OC4_RISING_OC6_FALLING (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2 | TIM_CR2_MMS2_0) /*!< OC4REF rising or OC6REF falling edges are used as trigger output 2 */
#define LL_TIM_TRGO2_OC5_RISING_OC6_RISING (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2 |TIM_CR2_MMS2_1) /*!< OC5REF or OC6REF rising edges are used as trigger output 2 */
#define LL_TIM_TRGO2_OC5_RISING_OC6_FALLING (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2 | TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0) /*!< OC5REF rising or OC6REF falling edges are used as trigger output 2 */
/**
* @}
*/
/** @defgroup TIM_LL_EC_SLAVEMODE Slave Mode
* @{
*/
#define LL_TIM_SLAVEMODE_DISABLED 0x00000000U /*!< Slave mode disabled */
#define LL_TIM_SLAVEMODE_RESET TIM_SMCR_SMS_2 /*!< Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter */
#define LL_TIM_SLAVEMODE_GATED (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_0) /*!< Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high */
#define LL_TIM_SLAVEMODE_TRIGGER (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1) /*!< Trigger Mode - The counter starts at a rising edge of the trigger TRGI */
#define LL_TIM_SLAVEMODE_COMBINED_RESETTRIGGER TIM_SMCR_SMS_3 /*!< Combined reset + trigger mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter, generates an update of the registers and starts the counter */
/**
* @}
*/
/** @defgroup TIM_LL_EC_TS Trigger Selection
* @{
*/
#define LL_TIM_TS_ITR0 0x00000000U /*!< Internal Trigger 0 (ITR0) is used as trigger input */
#define LL_TIM_TS_ITR1 TIM_SMCR_TS_0 /*!< Internal Trigger 1 (ITR1) is used as trigger input */
#define LL_TIM_TS_ITR2 TIM_SMCR_TS_1 /*!< Internal Trigger 2 (ITR2) is used as trigger input */
#define LL_TIM_TS_ITR3 (TIM_SMCR_TS_0 | TIM_SMCR_TS_1) /*!< Internal Trigger 3 (ITR3) is used as trigger input */
#define LL_TIM_TS_ITR4 (TIM_SMCR_TS_3) /*!< Internal Trigger 4 (ITR4) is used as trigger input */
#define LL_TIM_TS_ITR5 (TIM_SMCR_TS_0 | TIM_SMCR_TS_3) /*!< Internal Trigger 5 (ITR5) is used as trigger input */
#define LL_TIM_TS_ITR6 (TIM_SMCR_TS_1 | TIM_SMCR_TS_3) /*!< Internal Trigger 6 (ITR6) is used as trigger input */
#define LL_TIM_TS_ITR7 (TIM_SMCR_TS_0 | TIM_SMCR_TS_1 | TIM_SMCR_TS_3) /*!< Internal Trigger 7 (ITR7) is used as trigger input */
#define LL_TIM_TS_ITR8 (TIM_SMCR_TS_2 | TIM_SMCR_TS_3) /*!< Internal Trigger 8 (ITR8) is used as trigger input */
#define LL_TIM_TS_ITR9 (TIM_SMCR_TS_0 | TIM_SMCR_TS_2 | TIM_SMCR_TS_3) /*!< Internal Trigger 9 (ITR9) is used as trigger input */
#define LL_TIM_TS_ITR10 (TIM_SMCR_TS_1 | TIM_SMCR_TS_2 | TIM_SMCR_TS_3) /*!< Internal Trigger 10 (ITR10) is used as trigger input */
#define LL_TIM_TS_ITR11 (TIM_SMCR_TS_0 | TIM_SMCR_TS_1 | TIM_SMCR_TS_2 | TIM_SMCR_TS_3) /*!< Internal Trigger 11 (ITR11) is used as trigger input */
#define LL_TIM_TS_ITR12 (TIM_SMCR_TS_4) /*!< Internal Trigger 12 (ITR12) is used as trigger input */
#define LL_TIM_TS_ITR13 (TIM_SMCR_TS_0 | TIM_SMCR_TS_4) /*!< Internal Trigger 13 (ITR13) is used as trigger input */
#define LL_TIM_TS_TI1F_ED TIM_SMCR_TS_2 /*!< TI1 Edge Detector (TI1F_ED) is used as trigger input */
#define LL_TIM_TS_TI1FP1 (TIM_SMCR_TS_2 | TIM_SMCR_TS_0) /*!< Filtered Timer Input 1 (TI1FP1) is used as trigger input */
#define LL_TIM_TS_TI2FP2 (TIM_SMCR_TS_2 | TIM_SMCR_TS_1) /*!< Filtered Timer Input 2 (TI12P2) is used as trigger input */
#define LL_TIM_TS_ETRF (TIM_SMCR_TS_2 | TIM_SMCR_TS_1 | TIM_SMCR_TS_0) /*!< Filtered external Trigger (ETRF) is used as trigger input */
/**
* @}
*/
/** @defgroup TIM_LL_EC_ETR_POLARITY External Trigger Polarity
* @{
*/
#define LL_TIM_ETR_POLARITY_NONINVERTED 0x00000000U /*!< ETR is non-inverted, active at high level or rising edge */
#define LL_TIM_ETR_POLARITY_INVERTED TIM_SMCR_ETP /*!< ETR is inverted, active at low level or falling edge */
/**
* @}
*/
/** @defgroup TIM_LL_EC_ETR_PRESCALER External Trigger Prescaler
* @{
*/
#define LL_TIM_ETR_PRESCALER_DIV1 0x00000000U /*!< ETR prescaler OFF */
#define LL_TIM_ETR_PRESCALER_DIV2 TIM_SMCR_ETPS_0 /*!< ETR frequency is divided by 2 */
#define LL_TIM_ETR_PRESCALER_DIV4 TIM_SMCR_ETPS_1 /*!< ETR frequency is divided by 4 */
#define LL_TIM_ETR_PRESCALER_DIV8 TIM_SMCR_ETPS /*!< ETR frequency is divided by 8 */
/**
* @}
*/
/** @defgroup TIM_LL_EC_ETR_FILTER External Trigger Filter
* @{
*/
#define LL_TIM_ETR_FILTER_FDIV1 0x00000000U /*!< No filter, sampling is done at fDTS */
#define LL_TIM_ETR_FILTER_FDIV1_N2 TIM_SMCR_ETF_0 /*!< fSAMPLING=fCK_INT, N=2 */
#define LL_TIM_ETR_FILTER_FDIV1_N4 TIM_SMCR_ETF_1 /*!< fSAMPLING=fCK_INT, N=4 */
#define LL_TIM_ETR_FILTER_FDIV1_N8 (TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fCK_INT, N=8 */
#define LL_TIM_ETR_FILTER_FDIV2_N6 TIM_SMCR_ETF_2 /*!< fSAMPLING=fDTS/2, N=6 */
#define LL_TIM_ETR_FILTER_FDIV2_N8 (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/2, N=8 */
#define LL_TIM_ETR_FILTER_FDIV4_N6 (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1) /*!< fSAMPLING=fDTS/4, N=6 */
#define LL_TIM_ETR_FILTER_FDIV4_N8 (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/4, N=8 */
#define LL_TIM_ETR_FILTER_FDIV8_N6 TIM_SMCR_ETF_3 /*!< fSAMPLING=fDTS/8, N=8 */
#define LL_TIM_ETR_FILTER_FDIV8_N8 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/16, N=5 */
#define LL_TIM_ETR_FILTER_FDIV16_N5 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1) /*!< fSAMPLING=fDTS/16, N=6 */
#define LL_TIM_ETR_FILTER_FDIV16_N6 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/16, N=8 */
#define LL_TIM_ETR_FILTER_FDIV16_N8 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2) /*!< fSAMPLING=fDTS/16, N=5 */
#define LL_TIM_ETR_FILTER_FDIV32_N5 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/32, N=5 */
#define LL_TIM_ETR_FILTER_FDIV32_N6 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1) /*!< fSAMPLING=fDTS/32, N=6 */
#define LL_TIM_ETR_FILTER_FDIV32_N8 TIM_SMCR_ETF /*!< fSAMPLING=fDTS/32, N=8 */
/**
* @}
*/
#define LL_TIM_TIM1_ETRSOURCE_GPIO 0x00000000U /*!< TIM1_ETR is connected to GPIO */
#define LL_TIM_TIM1_ETRSOURCE_COMP1 TIM1_AF1_ETRSEL_0 /*!< TIM1_ETR is connected to COMP1 OUT */
#define LL_TIM_TIM1_ETRSOURCE_COMP2 TIM1_AF1_ETRSEL_1 /*!< TIM1_ETR is connected to COMP2 OUT */
#define LL_TIM_TIM1_ETRSOURCE_ADC1_AWD1 (TIM1_AF1_ETRSEL_1 | TIM1_AF1_ETRSEL_0) /*!< TIM1_ETR is connected to ADC1 AWD1 */
#define LL_TIM_TIM1_ETRSOURCE_ADC1_AWD2 (TIM1_AF1_ETRSEL_2) /*!< TIM1_ETR is connected to ADC1 AWD2 */
#define LL_TIM_TIM1_ETRSOURCE_ADC1_AWD3 (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_0) /*!< TIM1_ETR is connected to ADC1 AWD3 */
#define LL_TIM_TIM1_ETRSOURCE_ADC3_AWD1 (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1) /*!< TIM1_ETR is connected to ADC3 AWD1 */
#define LL_TIM_TIM1_ETRSOURCE_ADC3_AWD2 (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1 | TIM1_AF1_ETRSEL_0) /*!< TIM1_ETR is connected to ADC3 AWD2 */
#define LL_TIM_TIM1_ETRSOURCE_ADC3_AWD3 TIM1_AF1_ETRSEL_3 /*!< TIM1_ETR is connected to ADC3 AWD3 */
#define LL_TIM_TIM8_ETRSOURCE_GPIO 0x00000000U /*!< TIM8_ETR is connected to GPIO */
#define LL_TIM_TIM8_ETRSOURCE_COMP1 TIM8_AF1_ETRSEL_0 /*!< TIM8_ETR is connected to COMP1 OUT */
#define LL_TIM_TIM8_ETRSOURCE_COMP2 TIM8_AF1_ETRSEL_1 /*!< TIM8_ETR is connected to COMP2 OUT */
#define LL_TIM_TIM8_ETRSOURCE_ADC2_AWD1 (TIM8_AF1_ETRSEL_1 | TIM8_AF1_ETRSEL_0) /*!< TIM8_ETR is connected to ADC2 AWD1 */
#define LL_TIM_TIM8_ETRSOURCE_ADC2_AWD2 (TIM8_AF1_ETRSEL_2) /*!< TIM8_ETR is connected to ADC2 AWD2 */
#define LL_TIM_TIM8_ETRSOURCE_ADC2_AWD3 (TIM8_AF1_ETRSEL_2 | TIM8_AF1_ETRSEL_0) /*!< TIM8_ETR is connected to ADC2 AWD3 */
#define LL_TIM_TIM8_ETRSOURCE_ADC3_AWD1 (TIM8_AF1_ETRSEL_2 | TIM8_AF1_ETRSEL_1) /*!< TIM8_ETR is connected to ADC3 AWD1 */
#define LL_TIM_TIM8_ETRSOURCE_ADC3_AWD2 (TIM8_AF1_ETRSEL_2 | TIM8_AF1_ETRSEL_1 | TIM8_AF1_ETRSEL_0) /*!< TIM8_ETR is connected to ADC3 AWD2 */
#define LL_TIM_TIM8_ETRSOURCE_ADC3_AWD3 TIM8_AF1_ETRSEL_3 /*!< TIM8_ETR is connected to ADC3 AWD3 */
#define LL_TIM_TIM2_ETRSOURCE_GPIO 0x00000000U /*!< TIM2_ETR is connected to GPIO */
#define LL_TIM_TIM2_ETRSOURCE_COMP1 (TIM2_AF1_ETRSEL_0) /*!< TIM2_ETR is connected to COMP1 OUT */
#define LL_TIM_TIM2_ETRSOURCE_COMP2 (TIM2_AF1_ETRSEL_1) /*!< TIM2_ETR is connected to COMP2 OUT */
#define LL_TIM_TIM2_ETRSOURCE_RCC_LSE (TIM2_AF1_ETRSEL_1 | TIM8_AF1_ETRSEL_0) /*!< TIM2_ETR is connected to RCC LSE */
#define LL_TIM_TIM2_ETRSOURCE_SAI1_FSA TIM2_AF1_ETRSEL_2 /*!< TIM2_ETR is connected to SAI1 FS_A */
#define LL_TIM_TIM2_ETRSOURCE_SAI1_FSB (TIM2_AF1_ETRSEL_2 | TIM8_AF1_ETRSEL_0) /*!< TIM2_ETR is connected to SAI1 FS_B */
#define LL_TIM_TIM3_ETRSOURCE_GPIO 0x00000000U /*!< TIM3_ETR is connected to GPIO */
#define LL_TIM_TIM3_ETRSOURCE_COMP1 TIM3_AF1_ETRSEL_0 /*!< TIM3_ETR is connected to COMP1 OUT */
#define LL_TIM_TIM5_ETRSOURCE_GPIO 0x00000000U /*!< TIM5_ETR is connected to GPIO */
#define LL_TIM_TIM5_ETRSOURCE_SAI2_FSA TIM5_AF1_ETRSEL_0 /*!< TIM5_ETR is connected to SAI2 FS_A */
#define LL_TIM_TIM5_ETRSOURCE_SAI2_FSB TIM5_AF1_ETRSEL_1 /*!< TIM5_ETR is connected to SAI2 FS_B */
#define LL_TIM_TIM5_ETRSOURCE_SAI4_FSA TIM5_AF1_ETRSEL_0 /*!< TIM5_ETR is connected to SAI4 FS_A */
#define LL_TIM_TIM5_ETRSOURCE_SAI4_FSB TIM5_AF1_ETRSEL_1 /*!< TIM5_ETR is connected to SAI4 FS_B */
#define LL_TIM_TIM23_ETRSOURCE_GPIO 0x00000000U /*!< TIM23_ETR is connected to GPIO */
#define LL_TIM_TIM23_ETRSOURCE_COMP1 (TIM2_AF1_ETRSEL_0) /*!< TIM23_ETR is connected to COMP1 OUT */
#define LL_TIM_TIM23_ETRSOURCE_COMP2 (TIM2_AF1_ETRSEL_1) /*!< TIM23_ETR is connected to COMP2 OUT */
#define LL_TIM_TIM24_ETRSOURCE_GPIO 0x00000000U /*!< TIM24_ETR is connected to GPIO */
#define LL_TIM_TIM24_ETRSOURCE_SAI4_FSA TIM5_AF1_ETRSEL_0 /*!< TIM24_ETR is connected to SAI4 FS_A */
#define LL_TIM_TIM24_ETRSOURCE_SAI4_FSB TIM5_AF1_ETRSEL_1 /*!< TIM24_ETR is connected to SAI4 FS_B */
#define LL_TIM_TIM24_ETRSOURCE_SAI1_FSA (TIM2_AF1_ETRSEL_1 | TIM8_AF1_ETRSEL_0) /*!< TIM24_ETR is connected to SAI1 FS_A */
#define LL_TIM_TIM24_ETRSOURCE_SAI1_FSB TIM2_AF1_ETRSEL_2 /*!< TIM24_ETR is connected to SAI1 FS_B */
/** @defgroup TIM_LL_EC_BREAK_POLARITY break polarity
* @{
*/
#define LL_TIM_BREAK_POLARITY_LOW 0x00000000U /*!< Break input BRK is active low */
#define LL_TIM_BREAK_POLARITY_HIGH TIM_BDTR_BKP /*!< Break input BRK is active high */
/**
* @}
*/
/** @defgroup TIM_LL_EC_BREAK_FILTER break filter
* @{
*/
#define LL_TIM_BREAK_FILTER_FDIV1 0x00000000U /*!< No filter, BRK acts asynchronously */
#define LL_TIM_BREAK_FILTER_FDIV1_N2 0x00010000U /*!< fSAMPLING=fCK_INT, N=2 */
#define LL_TIM_BREAK_FILTER_FDIV1_N4 0x00020000U /*!< fSAMPLING=fCK_INT, N=4 */
#define LL_TIM_BREAK_FILTER_FDIV1_N8 0x00030000U /*!< fSAMPLING=fCK_INT, N=8 */
#define LL_TIM_BREAK_FILTER_FDIV2_N6 0x00040000U /*!< fSAMPLING=fDTS/2, N=6 */
#define LL_TIM_BREAK_FILTER_FDIV2_N8 0x00050000U /*!< fSAMPLING=fDTS/2, N=8 */
#define LL_TIM_BREAK_FILTER_FDIV4_N6 0x00060000U /*!< fSAMPLING=fDTS/4, N=6 */
#define LL_TIM_BREAK_FILTER_FDIV4_N8 0x00070000U /*!< fSAMPLING=fDTS/4, N=8 */
#define LL_TIM_BREAK_FILTER_FDIV8_N6 0x00080000U /*!< fSAMPLING=fDTS/8, N=6 */
#define LL_TIM_BREAK_FILTER_FDIV8_N8 0x00090000U /*!< fSAMPLING=fDTS/8, N=8 */
#define LL_TIM_BREAK_FILTER_FDIV16_N5 0x000A0000U /*!< fSAMPLING=fDTS/16, N=5 */
#define LL_TIM_BREAK_FILTER_FDIV16_N6 0x000B0000U /*!< fSAMPLING=fDTS/16, N=6 */
#define LL_TIM_BREAK_FILTER_FDIV16_N8 0x000C0000U /*!< fSAMPLING=fDTS/16, N=8 */
#define LL_TIM_BREAK_FILTER_FDIV32_N5 0x000D0000U /*!< fSAMPLING=fDTS/32, N=5 */
#define LL_TIM_BREAK_FILTER_FDIV32_N6 0x000E0000U /*!< fSAMPLING=fDTS/32, N=6 */
#define LL_TIM_BREAK_FILTER_FDIV32_N8 0x000F0000U /*!< fSAMPLING=fDTS/32, N=8 */
/**
* @}
*/
/** @defgroup TIM_LL_EC_BREAK2_POLARITY BREAK2 POLARITY
* @{
*/
#define LL_TIM_BREAK2_POLARITY_LOW 0x00000000U /*!< Break input BRK2 is active low */
#define LL_TIM_BREAK2_POLARITY_HIGH TIM_BDTR_BK2P /*!< Break input BRK2 is active high */
/**
* @}
*/
/** @defgroup TIM_LL_EC_BREAK2_FILTER BREAK2 FILTER
* @{
*/
#define LL_TIM_BREAK2_FILTER_FDIV1 0x00000000U /*!< No filter, BRK acts asynchronously */
#define LL_TIM_BREAK2_FILTER_FDIV1_N2 0x00100000U /*!< fSAMPLING=fCK_INT, N=2 */
#define LL_TIM_BREAK2_FILTER_FDIV1_N4 0x00200000U /*!< fSAMPLING=fCK_INT, N=4 */
#define LL_TIM_BREAK2_FILTER_FDIV1_N8 0x00300000U /*!< fSAMPLING=fCK_INT, N=8 */
#define LL_TIM_BREAK2_FILTER_FDIV2_N6 0x00400000U /*!< fSAMPLING=fDTS/2, N=6 */
#define LL_TIM_BREAK2_FILTER_FDIV2_N8 0x00500000U /*!< fSAMPLING=fDTS/2, N=8 */
#define LL_TIM_BREAK2_FILTER_FDIV4_N6 0x00600000U /*!< fSAMPLING=fDTS/4, N=6 */
#define LL_TIM_BREAK2_FILTER_FDIV4_N8 0x00700000U /*!< fSAMPLING=fDTS/4, N=8 */
#define LL_TIM_BREAK2_FILTER_FDIV8_N6 0x00800000U /*!< fSAMPLING=fDTS/8, N=6 */
#define LL_TIM_BREAK2_FILTER_FDIV8_N8 0x00900000U /*!< fSAMPLING=fDTS/8, N=8 */
#define LL_TIM_BREAK2_FILTER_FDIV16_N5 0x00A00000U /*!< fSAMPLING=fDTS/16, N=5 */
#define LL_TIM_BREAK2_FILTER_FDIV16_N6 0x00B00000U /*!< fSAMPLING=fDTS/16, N=6 */
#define LL_TIM_BREAK2_FILTER_FDIV16_N8 0x00C00000U /*!< fSAMPLING=fDTS/16, N=8 */
#define LL_TIM_BREAK2_FILTER_FDIV32_N5 0x00D00000U /*!< fSAMPLING=fDTS/32, N=5 */
#define LL_TIM_BREAK2_FILTER_FDIV32_N6 0x00E00000U /*!< fSAMPLING=fDTS/32, N=6 */
#define LL_TIM_BREAK2_FILTER_FDIV32_N8 0x00F00000U /*!< fSAMPLING=fDTS/32, N=8 */
/**
* @}
*/
/** @defgroup TIM_LL_EC_OSSI OSSI
* @{
*/
#define LL_TIM_OSSI_DISABLE 0x00000000U /*!< When inactive, OCx/OCxN outputs are disabled */
#define LL_TIM_OSSI_ENABLE TIM_BDTR_OSSI /*!< When inactive, OxC/OCxN outputs are first forced with their inactive level then forced to their idle level after the deadtime */
/**
* @}
*/
/** @defgroup TIM_LL_EC_OSSR OSSR
* @{
*/
#define LL_TIM_OSSR_DISABLE 0x00000000U /*!< When inactive, OCx/OCxN outputs are disabled */
#define LL_TIM_OSSR_ENABLE TIM_BDTR_OSSR /*!< When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1 or CCxNE=1 */
/**
* @}
*/
#if defined(TIM_BREAK_INPUT_SUPPORT)
/** @defgroup TIM_LL_EC_BREAK_INPUT BREAK INPUT
* @{
*/
#define LL_TIM_BREAK_INPUT_BKIN 0x00000000U /*!< TIMx_BKIN input */
#define LL_TIM_BREAK_INPUT_BKIN2 0x00000004U /*!< TIMx_BKIN2 input */
/**
* @}
*/
/** @defgroup TIM_LL_EC_BKIN_SOURCE BKIN SOURCE
* @{
*/
#define LL_TIM_BKIN_SOURCE_BKIN TIM1_AF1_BKINE /*!< BKIN input from AF controller */
#define LL_TIM_BKIN_SOURCE_BKCOMP1 TIM1_AF1_BKCMP1E /*!< internal signal: COMP1 output */
#define LL_TIM_BKIN_SOURCE_BKCOMP2 TIM1_AF1_BKCMP2E /*!< internal signal: COMP2 output */
#define LL_TIM_BKIN_SOURCE_DF1BK TIM1_AF1_BKDF1BK0E /*!< internal signal: DFSDM1 break output */
/**
* @}
*/
/** @defgroup TIM_LL_EC_BKIN_POLARITY BKIN POLARITY
* @{
*/
#define LL_TIM_BKIN_POLARITY_LOW TIM1_AF1_BKINP /*!< BRK BKIN input is active low */
#define LL_TIM_BKIN_POLARITY_HIGH 0x00000000U /*!< BRK BKIN input is active high */
/**
* @}
*/
#endif /* TIM_BREAK_INPUT_SUPPORT */
#if defined(TIM_BDTR_BKBID)
/** @defgroup TIM_LL_EC_BREAK_AFMODE BREAK AF MODE
* @{
*/
#define LL_TIM_BREAK_AFMODE_INPUT 0x00000000U /*!< Break input BRK in input mode */
#define LL_TIM_BREAK_AFMODE_BIDIRECTIONAL TIM_BDTR_BKBID /*!< Break input BRK in bidirectional mode */
/**
* @}
*/
/** @defgroup TIM_LL_EC_BREAK2_AFMODE BREAK2 AF MODE
* @{
*/
#define LL_TIM_BREAK2_AFMODE_INPUT 0x00000000U /*!< Break2 input BRK2 in input mode */
#define LL_TIM_BREAK2_AFMODE_BIDIRECTIONAL TIM_BDTR_BK2BID /*!< Break2 input BRK2 in bidirectional mode */
/**
* @}
*/
#endif /*TIM_BDTR_BKBID */
/** @defgroup TIM_LL_EC_DMABURST_BASEADDR DMA Burst Base Address
* @{
*/
#define LL_TIM_DMABURST_BASEADDR_CR1 0x00000000U /*!< TIMx_CR1 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CR2 TIM_DCR_DBA_0 /*!< TIMx_CR2 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_SMCR TIM_DCR_DBA_1 /*!< TIMx_SMCR register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_DIER (TIM_DCR_DBA_1 | TIM_DCR_DBA_0) /*!< TIMx_DIER register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_SR TIM_DCR_DBA_2 /*!< TIMx_SR register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_EGR (TIM_DCR_DBA_2 | TIM_DCR_DBA_0) /*!< TIMx_EGR register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CCMR1 (TIM_DCR_DBA_2 | TIM_DCR_DBA_1) /*!< TIMx_CCMR1 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CCMR2 (TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0) /*!< TIMx_CCMR2 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CCER TIM_DCR_DBA_3 /*!< TIMx_CCER register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CNT (TIM_DCR_DBA_3 | TIM_DCR_DBA_0) /*!< TIMx_CNT register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_PSC (TIM_DCR_DBA_3 | TIM_DCR_DBA_1) /*!< TIMx_PSC register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_ARR (TIM_DCR_DBA_3 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0) /*!< TIMx_ARR register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_RCR (TIM_DCR_DBA_3 | TIM_DCR_DBA_2) /*!< TIMx_RCR register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CCR1 (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_0) /*!< TIMx_CCR1 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CCR2 (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1) /*!< TIMx_CCR2 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CCR3 (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0) /*!< TIMx_CCR3 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CCR4 TIM_DCR_DBA_4 /*!< TIMx_CCR4 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_BDTR (TIM_DCR_DBA_4 | TIM_DCR_DBA_0) /*!< TIMx_BDTR register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CCMR3 (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_0) /*!< TIMx_CCMR3 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CCR5 (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1) /*!< TIMx_CCR5 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CCR6 (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0) /*!< TIMx_CCR6 register is the DMA base address for DMA burst */
#if defined(TIM1_AF1_BKINE)&&defined(TIM1_AF2_BKINE)
#define LL_TIM_DMABURST_BASEADDR_AF1 (TIM_DCR_DBA_4 | TIM_DCR_DBA_3) /*!< TIMx_AF1 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_AF2 (TIM_DCR_DBA_4 | TIM_DCR_DBA_3 | TIM_DCR_DBA_0) /*!< TIMx_AF2 register is the DMA base address for DMA burst */
#endif /* TIM1_AF1_BKINE && TIM1_AF2_BKINE */
#define LL_TIM_DMABURST_BASEADDR_TISEL (TIM_DCR_DBA_4 | TIM_DCR_DBA_3 | TIM_DCR_DBA_1) /*!< TIMx_TISEL register is the DMA base address for DMA burst */
/**
* @}
*/
/** @defgroup TIM_LL_EC_DMABURST_LENGTH DMA Burst Length
* @{
*/
#define LL_TIM_DMABURST_LENGTH_1TRANSFER 0x00000000U /*!< Transfer is done to 1 register starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_2TRANSFERS TIM_DCR_DBL_0 /*!< Transfer is done to 2 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_3TRANSFERS TIM_DCR_DBL_1 /*!< Transfer is done to 3 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_4TRANSFERS (TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 4 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_5TRANSFERS TIM_DCR_DBL_2 /*!< Transfer is done to 5 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_6TRANSFERS (TIM_DCR_DBL_2 | TIM_DCR_DBL_0) /*!< Transfer is done to 6 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_7TRANSFERS (TIM_DCR_DBL_2 | TIM_DCR_DBL_1) /*!< Transfer is done to 7 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_8TRANSFERS (TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 1 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_9TRANSFERS TIM_DCR_DBL_3 /*!< Transfer is done to 9 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_10TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_0) /*!< Transfer is done to 10 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_11TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_1) /*!< Transfer is done to 11 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_12TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 12 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_13TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_2) /*!< Transfer is done to 13 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_14TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_0) /*!< Transfer is done to 14 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_15TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1) /*!< Transfer is done to 15 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_16TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 16 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_17TRANSFERS TIM_DCR_DBL_4 /*!< Transfer is done to 17 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_18TRANSFERS (TIM_DCR_DBL_4 | TIM_DCR_DBL_0) /*!< Transfer is done to 18 registers starting from the DMA burst base address */
/**
* @}
*/
/** @defgroup TIM_LL_EC_TIM1_TI1_RMP TIM1 Timer Input Ch1 Remap
* @{
*/
#define LL_TIM_TIM1_TI1_RMP_GPIO 0x00000000U /*!< TIM1 input 1 is connected to GPIO */
#define LL_TIM_TIM1_TI1_RMP_COMP1 TIM_TISEL_TI1SEL_0 /*!< TIM1 input 1 is connected to COMP1 OUT */
/**
* @}
*/
/** @defgroup TIM_LL_EC_TIM8_TI1_RMP TIM8 Timer Input Ch1 Remap
* @{
*/
#define LL_TIM_TIM8_TI1_RMP_GPIO 0x00000000U /*!< TIM8 input 1 is connected to GPIO */
#define LL_TIM_TIM8_TI1_RMP_COMP2 TIM_TISEL_TI1SEL_0 /*!< TIM8 input 1 is connected to COMP2 OUT */
/**
* @}
*/
/** @defgroup TIM_LL_EC_TIM2_TI4_RMP TIM2 Timer Input Ch4 Remap
* @{
*/
#define LL_TIM_TIM2_TI4_RMP_GPIO 0x00000000U /*!< TIM2 input 4 is connected to GPIO */
#define LL_TIM_TIM2_TI4_RMP_COMP1 TIM_TISEL_TI4SEL_0 /*!< TIM2 input 4 is connected to COMP1 OUT */
#define LL_TIM_TIM2_TI4_RMP_COMP2 TIM_TISEL_TI4SEL_1 /*!< TIM2 input 4 is connected to COMP2 OUT */
#define LL_TIM_TIM2_TI4_RMP_COMP1_COMP2 (TIM_TISEL_TI4SEL_0 | TIM_TISEL_TI4SEL_1) /*!< TIM2 input 4 is connected to COMP2 OUT OR COMP2 OUT */
/**
* @}
*/
/** @defgroup TIM_LL_EC_TIM3_TI1_RMP TIM3 Timer Input Ch1 Remap
* @{
*/
#define LL_TIM_TIM3_TI1_RMP_GPIO 0x00000000U /*!< TIM3 input 1 is connected to GPIO */
#define LL_TIM_TIM3_TI1_RMP_COMP1 TIM_TISEL_TI1SEL_0 /*!< TIM3 input 1 is connected to COMP1 OUT */
#define LL_TIM_TIM3_TI1_RMP_COMP2 TIM_TISEL_TI1SEL_1 /*!< TIM3 input 1 is connected to COMP2 OUT */
#define LL_TIM_TIM3_TI1_RMP_COMP1_COMP2 (TIM_TISEL_TI1SEL_0 | TIM_TISEL_TI1SEL_1) /*!< TIM3 input 1 is connected to COMP1 OUT or COMP2 OUT */
/**
* @}
*/
/** @defgroup TIM_LL_EC_TIM5_TI1_RMP TIM5 Timer Input Ch1 Remap
* @{
*/
#define LL_TIM_TIM5_TI1_RMP_GPIO 0x00000000U /*!< TIM5 input 1 is connected to GPIO */
#define LL_TIM_TIM5_TI1_RMP_CAN_TMP TIM_TISEL_TI1SEL_0 /*!< TIM5 input 1 is connected to CAN TMP */
#define LL_TIM_TIM5_TI1_RMP_CAN_RTP TIM_TISEL_TI1SEL_1 /*!< TIM5 input 1 is connected to CAN RTP */
/**
* @}
*/
/** @defgroup TIM_LL_EC_TIM12_TI1_RMP TIM12 Timer Input Ch1 Remap
* @{
*/
#define LL_TIM_TIM12_TI1_RMP_GPIO 0x00000000U /*!< TIM12 input 1 is connected to GPIO */
#define LL_TIM_TIM12_TI1_RMP_SPDIF_FS TIM_TISEL_TI1SEL_0 /*!< TIM12 input 1 is connected to SPDIF FS */
/**
* @}
*/
/** @defgroup TIM_LL_EC_TIM15_TI1_RMP TIM15 Timer Input Ch1 Remap
* @{
*/
#define LL_TIM_TIM15_TI1_RMP_GPIO 0x00000000U /*!< TIM15 input 1 is connected to GPIO */
#define LL_TIM_TIM15_TI1_RMP_TIM2_CH1 TIM_TISEL_TI1SEL_0 /*!< TIM15 input 1 is connected to TIM2 CH1 */
#define LL_TIM_TIM15_TI1_RMP_TIM3_CH1 TIM_TISEL_TI1SEL_1 /*!< TIM15 input 1 is connected to TIM3 CH1 */
#define LL_TIM_TIM15_TI1_RMP_TIM4_CH1 (TIM_TISEL_TI1SEL_0 | TIM_TISEL_TI1SEL_1) /*!< TIM15 input 1 is connected to TIM4 CH1 */
#define LL_TIM_TIM15_TI1_RMP_RCC_LSE (TIM_TISEL_TI1SEL_2) /*!< TIM15 input 1 is connected to RCC LSE */
#define LL_TIM_TIM15_TI1_RMP_RCC_CSI (TIM_TISEL_TI1SEL_2 | TIM_TISEL_TI1SEL_0) /*!< TIM15 input 1 is connected to RCC CSI */
#define LL_TIM_TIM15_TI1_RMP_RCC_MCO2 (TIM_TISEL_TI1SEL_2 | TIM_TISEL_TI1SEL_1) /*!< TIM15 input 1 is connected to RCC MCO2 */
/**
* @}
*/
/** @defgroup TIM_LL_EC_TIM15_TI2_RMP TIM15 Timer Input Ch2 Remap
* @{
*/
#define LL_TIM_TIM15_TI2_RMP_GPIO 0x00000000U /*!< TIM15 input 2 is connected to GPIO */
#define LL_TIM_TIM15_TI2_RMP_TIM2_CH2 (TIM_TISEL_TI2SEL_0) /*!< TIM15 input 2 is connected to TIM2 CH2 */
#define LL_TIM_TIM15_TI2_RMP_TIM3_CH2 (TIM_TISEL_TI2SEL_1) /*!< TIM15 input 2 is connected to TIM3 CH2 */
#define LL_TIM_TIM15_TI2_RMP_TIM4_CH2 (TIM_TISEL_TI2SEL_0 | TIM_TISEL_TI2SEL_1) /*!< TIM15 input 2 is connected to TIM4 CH2 */
/**
* @}
*/
/** @defgroup TIM_LL_EC_TIM16_TI1_RMP TIM16 Timer Input Ch1 Remap
* @{
*/
#define LL_TIM_TIM16_TI1_RMP_GPIO 0x00000000U /*!< TIM16 input 1 is connected to GPIO */
#define LL_TIM_TIM16_TI1_RMP_RCC_LSI TIM_TISEL_TI1SEL_0 /*!< TIM16 input 1 is connected to RCC LSI */
#define LL_TIM_TIM16_TI1_RMP_RCC_LSE TIM_TISEL_TI1SEL_1 /*!< TIM16 input 1 is connected to RCC LSE */
#define LL_TIM_TIM16_TI1_RMP_WKUP_IT (TIM_TISEL_TI1SEL_0 | TIM_TISEL_TI1SEL_1) /*!< TIM16 input 1 is connected to WKUP_IT */
/**
* @}
*/
/** @defgroup TIM_LL_EC_TIM17_TI1_RMP TIM17 Timer Input Ch1 Remap
* @{
*/
#define LL_TIM_TIM17_TI1_RMP_GPIO 0x00000000U /*!< TIM17 input 1 is connected to GPIO */
#define LL_TIM_TIM17_TI1_RMP_SPDIF_FS TIM_TISEL_TI1SEL_0 /*!< TIM17 input 1 is connected to SPDIF FS */
#define LL_TIM_TIM17_TI1_RMP_RCC_HSE1MHZ TIM_TISEL_TI1SEL_1 /*!< TIM17 input 1 is connected to RCC HSE 1Mhz */
#define LL_TIM_TIM17_TI1_RMP_RCC_MCO1 (TIM_TISEL_TI1SEL_0 | TIM_TISEL_TI1SEL_1) /*!< TIM17 input 1 is connected to RCC MCO1 */
/**
* @}
*/
/** @defgroup TIM_LL_EC_TIM23_TI4_RMP TIM23 Timer Input Ch4 Remap
* @{
*/
#define LL_TIM_TIM23_TI4_RMP_GPIO 0x00000000U /*!< TIM23 input 4 is connected to GPIO */
#define LL_TIM_TIM23_TI4_RMP_COMP1 TIM_TISEL_TI4SEL_0 /*!< TIM23 input 4 is connected to COMP1 OUT */
#define LL_TIM_TIM23_TI4_RMP_COMP2 TIM_TISEL_TI4SEL_1 /*!< TIM23 input 4 is connected to COMP2 OUT */
#define LL_TIM_TIM23_TI4_RMP_COMP1_COMP2 (TIM_TISEL_TI4SEL_0 | TIM_TISEL_TI4SEL_1) /*!< TIM23 input 4 is connected to COMP1 OUT or COMP2 OUT */
/**
* @}
*/
/** @defgroup TIM_LL_EC_TIM24_TI1_RMP TIM24 Timer Input Ch1 Remap
* @{
*/
#define LL_TIM_TIM24_TI1_RMP_GPIO 0x00000000U /*!< TIM24 input 1 is connected to GPIO */
#define LL_TIM_TIM24_TI1_RMP_CAN_TMP TIM_TISEL_TI1SEL_0 /*!< TIM24 input 1 is connected to CAN TMP */
#define LL_TIM_TIM24_TI1_RMP_CAN_RTP TIM_TISEL_TI1SEL_1 /*!< TIM24 input 1 is connected to CAN RTP */
#define LL_TIM_TIM24_TI1_RMP_CAN_SOC (TIM_TISEL_TI4SEL_0 | TIM_TISEL_TI4SEL_1) /*!< TIM24 input 1 is connected to CAN SOC */
#if defined(TIM_BREAK_INPUT_SUPPORT)
/** Legacy definitions for compatibility purpose
@cond 0
*/
#define LL_TIM_BKIN_SOURCE_DFBK LL_TIM_BKIN_SOURCE_DF1BK
/**
@endcond
*/
#endif /* TIM_BREAK_INPUT_SUPPORT */
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup TIM_LL_Exported_Macros TIM Exported Macros
* @{
*/
/** @defgroup TIM_LL_EM_WRITE_READ Common Write and read registers Macros
* @{
*/
/**
* @brief Write a value in TIM register.
* @param __INSTANCE__ TIM Instance
* @param __REG__ Register to be written
* @param __VALUE__ Value to be written in the register
* @retval None
*/
#define LL_TIM_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG((__INSTANCE__)->__REG__, (__VALUE__))
/**
* @brief Read a value in TIM register.
* @param __INSTANCE__ TIM Instance
* @param __REG__ Register to be read
* @retval Register value
*/
#define LL_TIM_ReadReg(__INSTANCE__, __REG__) READ_REG((__INSTANCE__)->__REG__)
/**
* @}
*/
/**
* @brief HELPER macro retrieving the UIFCPY flag from the counter value.
* @note ex: @ref __LL_TIM_GETFLAG_UIFCPY (@ref LL_TIM_GetCounter ());
* @note Relevant only if UIF flag remapping has been enabled (UIF status bit is copied
* to TIMx_CNT register bit 31)
* @param __CNT__ Counter value
* @retval UIF status bit
*/
#define __LL_TIM_GETFLAG_UIFCPY(__CNT__) \
(READ_BIT((__CNT__), TIM_CNT_UIFCPY) >> TIM_CNT_UIFCPY_Pos)
/**
* @brief HELPER macro calculating DTG[0:7] in the TIMx_BDTR register to achieve the requested dead time duration.
* @note ex: @ref __LL_TIM_CALC_DEADTIME (80000000, @ref LL_TIM_GetClockDivision (), 120);
* @param __TIMCLK__ timer input clock frequency (in Hz)
* @param __CKD__ This parameter can be one of the following values:
* @arg @ref LL_TIM_CLOCKDIVISION_DIV1
* @arg @ref LL_TIM_CLOCKDIVISION_DIV2
* @arg @ref LL_TIM_CLOCKDIVISION_DIV4
* @param __DT__ deadtime duration (in ns)
* @retval DTG[0:7]
*/
#define __LL_TIM_CALC_DEADTIME(__TIMCLK__, __CKD__, __DT__) \
( (((uint64_t)((__DT__)*1000U)) < ((DT_DELAY_1+1U) * TIM_CALC_DTS((__TIMCLK__), (__CKD__)))) ? \
(uint8_t)(((uint64_t)((__DT__)*1000U) / TIM_CALC_DTS((__TIMCLK__), (__CKD__))) & DT_DELAY_1) : \
(((uint64_t)((__DT__)*1000U)) < ((64U + (DT_DELAY_2+1U)) * 2U * TIM_CALC_DTS((__TIMCLK__), (__CKD__)))) ? \
(uint8_t)(DT_RANGE_2 | ((uint8_t)((uint8_t)((((uint64_t)((__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__), \
(__CKD__))) >> 1U) - (uint8_t) 64) & DT_DELAY_2)) :\
(((uint64_t)((__DT__)*1000U)) < ((32U + (DT_DELAY_3+1U)) * 8U * TIM_CALC_DTS((__TIMCLK__), (__CKD__)))) ? \
(uint8_t)(DT_RANGE_3 | ((uint8_t)((uint8_t)(((((uint64_t)(__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__), \
(__CKD__))) >> 3U) - (uint8_t) 32) & DT_DELAY_3)) :\
(((uint64_t)((__DT__)*1000U)) < ((32U + (DT_DELAY_4+1U)) * 16U * TIM_CALC_DTS((__TIMCLK__), (__CKD__)))) ? \
(uint8_t)(DT_RANGE_4 | ((uint8_t)((uint8_t)(((((uint64_t)(__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__), \
(__CKD__))) >> 4U) - (uint8_t) 32) & DT_DELAY_4)) :\
0U)
/**
* @brief HELPER macro calculating the prescaler value to achieve the required counter clock frequency.
* @note ex: @ref __LL_TIM_CALC_PSC (80000000, 1000000);
* @param __TIMCLK__ timer input clock frequency (in Hz)
* @param __CNTCLK__ counter clock frequency (in Hz)
* @retval Prescaler value (between Min_Data=0 and Max_Data=65535)
*/
#define __LL_TIM_CALC_PSC(__TIMCLK__, __CNTCLK__) \
(((__TIMCLK__) >= (__CNTCLK__)) ? (uint32_t)((((__TIMCLK__) + (__CNTCLK__)/2U)/(__CNTCLK__)) - 1U) : 0U)
/**
* @brief HELPER macro calculating the auto-reload value to achieve the required output signal frequency.
* @note ex: @ref __LL_TIM_CALC_ARR (1000000, @ref LL_TIM_GetPrescaler (), 10000);
* @param __TIMCLK__ timer input clock frequency (in Hz)
* @param __PSC__ prescaler
* @param __FREQ__ output signal frequency (in Hz)
* @retval Auto-reload value (between Min_Data=0 and Max_Data=65535)
*/
#define __LL_TIM_CALC_ARR(__TIMCLK__, __PSC__, __FREQ__) \
((((__TIMCLK__)/((__PSC__) + 1U)) >= (__FREQ__)) ? (((__TIMCLK__)/((__FREQ__) * ((__PSC__) + 1U))) - 1U) : 0U)
/**
* @brief HELPER macro calculating the compare value required to achieve the required timer output compare
* active/inactive delay.
* @note ex: @ref __LL_TIM_CALC_DELAY (1000000, @ref LL_TIM_GetPrescaler (), 10);
* @param __TIMCLK__ timer input clock frequency (in Hz)
* @param __PSC__ prescaler
* @param __DELAY__ timer output compare active/inactive delay (in us)
* @retval Compare value (between Min_Data=0 and Max_Data=65535)
*/
#define __LL_TIM_CALC_DELAY(__TIMCLK__, __PSC__, __DELAY__) \
((uint32_t)(((uint64_t)(__TIMCLK__) * (uint64_t)(__DELAY__)) \
/ ((uint64_t)1000000U * (uint64_t)((__PSC__) + 1U))))
/**
* @brief HELPER macro calculating the auto-reload value to achieve the required pulse duration
* (when the timer operates in one pulse mode).
* @note ex: @ref __LL_TIM_CALC_PULSE (1000000, @ref LL_TIM_GetPrescaler (), 10, 20);
* @param __TIMCLK__ timer input clock frequency (in Hz)
* @param __PSC__ prescaler
* @param __DELAY__ timer output compare active/inactive delay (in us)
* @param __PULSE__ pulse duration (in us)
* @retval Auto-reload value (between Min_Data=0 and Max_Data=65535)
*/
#define __LL_TIM_CALC_PULSE(__TIMCLK__, __PSC__, __DELAY__, __PULSE__) \
((uint32_t)(__LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__PULSE__)) \
+ __LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__DELAY__))))
/**
* @brief HELPER macro retrieving the ratio of the input capture prescaler
* @note ex: @ref __LL_TIM_GET_ICPSC_RATIO (@ref LL_TIM_IC_GetPrescaler ());
* @param __ICPSC__ This parameter can be one of the following values:
* @arg @ref LL_TIM_ICPSC_DIV1
* @arg @ref LL_TIM_ICPSC_DIV2
* @arg @ref LL_TIM_ICPSC_DIV4
* @arg @ref LL_TIM_ICPSC_DIV8
* @retval Input capture prescaler ratio (1, 2, 4 or 8)
*/
#define __LL_TIM_GET_ICPSC_RATIO(__ICPSC__) \
((uint32_t)(0x01U << (((__ICPSC__) >> 16U) >> TIM_CCMR1_IC1PSC_Pos)))
/**
* @}
*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup TIM_LL_Exported_Functions TIM Exported Functions
* @{
*/
/** @defgroup TIM_LL_EF_Time_Base Time Base configuration
* @{
*/
/**
* @brief Enable timer counter.
* @rmtoll CR1 CEN LL_TIM_EnableCounter
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableCounter(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->CR1, TIM_CR1_CEN);
}
/**
* @brief Disable timer counter.
* @rmtoll CR1 CEN LL_TIM_DisableCounter
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableCounter(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->CR1, TIM_CR1_CEN);
}
/**
* @brief Indicates whether the timer counter is enabled.
* @rmtoll CR1 CEN LL_TIM_IsEnabledCounter
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledCounter(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->CR1, TIM_CR1_CEN) == (TIM_CR1_CEN)) ? 1UL : 0UL);
}
/**
* @brief Enable update event generation.
* @rmtoll CR1 UDIS LL_TIM_EnableUpdateEvent
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableUpdateEvent(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->CR1, TIM_CR1_UDIS);
}
/**
* @brief Disable update event generation.
* @rmtoll CR1 UDIS LL_TIM_DisableUpdateEvent
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableUpdateEvent(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->CR1, TIM_CR1_UDIS);
}
/**
* @brief Indicates whether update event generation is enabled.
* @rmtoll CR1 UDIS LL_TIM_IsEnabledUpdateEvent
* @param TIMx Timer instance
* @retval Inverted state of bit (0 or 1).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledUpdateEvent(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->CR1, TIM_CR1_UDIS) == (uint32_t)RESET) ? 1UL : 0UL);
}
/**
* @brief Set update event source
* @note Update event source set to LL_TIM_UPDATESOURCE_REGULAR: any of the following events
* generate an update interrupt or DMA request if enabled:
* - Counter overflow/underflow
* - Setting the UG bit
* - Update generation through the slave mode controller
* @note Update event source set to LL_TIM_UPDATESOURCE_COUNTER: only counter
* overflow/underflow generates an update interrupt or DMA request if enabled.
* @rmtoll CR1 URS LL_TIM_SetUpdateSource
* @param TIMx Timer instance
* @param UpdateSource This parameter can be one of the following values:
* @arg @ref LL_TIM_UPDATESOURCE_REGULAR
* @arg @ref LL_TIM_UPDATESOURCE_COUNTER
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetUpdateSource(TIM_TypeDef *TIMx, uint32_t UpdateSource)
{
MODIFY_REG(TIMx->CR1, TIM_CR1_URS, UpdateSource);
}
/**
* @brief Get actual event update source
* @rmtoll CR1 URS LL_TIM_GetUpdateSource
* @param TIMx Timer instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_TIM_UPDATESOURCE_REGULAR
* @arg @ref LL_TIM_UPDATESOURCE_COUNTER
*/
__STATIC_INLINE uint32_t LL_TIM_GetUpdateSource(const TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_URS));
}
/**
* @brief Set one pulse mode (one shot v.s. repetitive).
* @rmtoll CR1 OPM LL_TIM_SetOnePulseMode
* @param TIMx Timer instance
* @param OnePulseMode This parameter can be one of the following values:
* @arg @ref LL_TIM_ONEPULSEMODE_SINGLE
* @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetOnePulseMode(TIM_TypeDef *TIMx, uint32_t OnePulseMode)
{
MODIFY_REG(TIMx->CR1, TIM_CR1_OPM, OnePulseMode);
}
/**
* @brief Get actual one pulse mode.
* @rmtoll CR1 OPM LL_TIM_GetOnePulseMode
* @param TIMx Timer instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_TIM_ONEPULSEMODE_SINGLE
* @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE
*/
__STATIC_INLINE uint32_t LL_TIM_GetOnePulseMode(const TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_OPM));
}
/**
* @brief Set the timer counter counting mode.
* @note Macro IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to
* check whether or not the counter mode selection feature is supported
* by a timer instance.
* @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
* requires a timer reset to avoid unexpected direction
* due to DIR bit readonly in center aligned mode.
* @rmtoll CR1 DIR LL_TIM_SetCounterMode\n
* CR1 CMS LL_TIM_SetCounterMode
* @param TIMx Timer instance
* @param CounterMode This parameter can be one of the following values:
* @arg @ref LL_TIM_COUNTERMODE_UP
* @arg @ref LL_TIM_COUNTERMODE_DOWN
* @arg @ref LL_TIM_COUNTERMODE_CENTER_UP
* @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN
* @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetCounterMode(TIM_TypeDef *TIMx, uint32_t CounterMode)
{
MODIFY_REG(TIMx->CR1, (TIM_CR1_DIR | TIM_CR1_CMS), CounterMode);
}
/**
* @brief Get actual counter mode.
* @note Macro IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to
* check whether or not the counter mode selection feature is supported
* by a timer instance.
* @rmtoll CR1 DIR LL_TIM_GetCounterMode\n
* CR1 CMS LL_TIM_GetCounterMode
* @param TIMx Timer instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_TIM_COUNTERMODE_UP
* @arg @ref LL_TIM_COUNTERMODE_DOWN
* @arg @ref LL_TIM_COUNTERMODE_CENTER_UP
* @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN
* @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
*/
__STATIC_INLINE uint32_t LL_TIM_GetCounterMode(const TIM_TypeDef *TIMx)
{
uint32_t counter_mode;
counter_mode = (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_CMS));
if (counter_mode == 0U)
{
counter_mode = (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR));
}
return counter_mode;
}
/**
* @brief Enable auto-reload (ARR) preload.
* @rmtoll CR1 ARPE LL_TIM_EnableARRPreload
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableARRPreload(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->CR1, TIM_CR1_ARPE);
}
/**
* @brief Disable auto-reload (ARR) preload.
* @rmtoll CR1 ARPE LL_TIM_DisableARRPreload
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableARRPreload(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->CR1, TIM_CR1_ARPE);
}
/**
* @brief Indicates whether auto-reload (ARR) preload is enabled.
* @rmtoll CR1 ARPE LL_TIM_IsEnabledARRPreload
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledARRPreload(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->CR1, TIM_CR1_ARPE) == (TIM_CR1_ARPE)) ? 1UL : 0UL);
}
/**
* @brief Set the division ratio between the timer clock and the sampling clock used by the dead-time generators
* (when supported) and the digital filters.
* @note Macro IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check
* whether or not the clock division feature is supported by the timer
* instance.
* @rmtoll CR1 CKD LL_TIM_SetClockDivision
* @param TIMx Timer instance
* @param ClockDivision This parameter can be one of the following values:
* @arg @ref LL_TIM_CLOCKDIVISION_DIV1
* @arg @ref LL_TIM_CLOCKDIVISION_DIV2
* @arg @ref LL_TIM_CLOCKDIVISION_DIV4
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetClockDivision(TIM_TypeDef *TIMx, uint32_t ClockDivision)
{
MODIFY_REG(TIMx->CR1, TIM_CR1_CKD, ClockDivision);
}
/**
* @brief Get the actual division ratio between the timer clock and the sampling clock used by the dead-time
* generators (when supported) and the digital filters.
* @note Macro IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check
* whether or not the clock division feature is supported by the timer
* instance.
* @rmtoll CR1 CKD LL_TIM_GetClockDivision
* @param TIMx Timer instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_TIM_CLOCKDIVISION_DIV1
* @arg @ref LL_TIM_CLOCKDIVISION_DIV2
* @arg @ref LL_TIM_CLOCKDIVISION_DIV4
*/
__STATIC_INLINE uint32_t LL_TIM_GetClockDivision(const TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_CKD));
}
/**
* @brief Set the counter value.
* @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @rmtoll CNT CNT LL_TIM_SetCounter
* @param TIMx Timer instance
* @param Counter Counter value (between Min_Data=0 and Max_Data=0xFFFF or 0xFFFFFFFF)
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetCounter(TIM_TypeDef *TIMx, uint32_t Counter)
{
WRITE_REG(TIMx->CNT, Counter);
}
/**
* @brief Get the counter value.
* @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @rmtoll CNT CNT LL_TIM_GetCounter
* @param TIMx Timer instance
* @retval Counter value (between Min_Data=0 and Max_Data=0xFFFF or 0xFFFFFFFF)
*/
__STATIC_INLINE uint32_t LL_TIM_GetCounter(const TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_REG(TIMx->CNT));
}
/**
* @brief Get the current direction of the counter
* @rmtoll CR1 DIR LL_TIM_GetDirection
* @param TIMx Timer instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_TIM_COUNTERDIRECTION_UP
* @arg @ref LL_TIM_COUNTERDIRECTION_DOWN
*/
__STATIC_INLINE uint32_t LL_TIM_GetDirection(const TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR));
}
/**
* @brief Set the prescaler value.
* @note The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).
* @note The prescaler can be changed on the fly as this control register is buffered. The new
* prescaler ratio is taken into account at the next update event.
* @note Helper macro @ref __LL_TIM_CALC_PSC can be used to calculate the Prescaler parameter
* @rmtoll PSC PSC LL_TIM_SetPrescaler
* @param TIMx Timer instance
* @param Prescaler between Min_Data=0 and Max_Data=65535
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Prescaler)
{
WRITE_REG(TIMx->PSC, Prescaler);
}
/**
* @brief Get the prescaler value.
* @rmtoll PSC PSC LL_TIM_GetPrescaler
* @param TIMx Timer instance
* @retval Prescaler value between Min_Data=0 and Max_Data=65535
*/
__STATIC_INLINE uint32_t LL_TIM_GetPrescaler(const TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_REG(TIMx->PSC));
}
/**
* @brief Set the auto-reload value.
* @note The counter is blocked while the auto-reload value is null.
* @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @note Helper macro @ref __LL_TIM_CALC_ARR can be used to calculate the AutoReload parameter
* @rmtoll ARR ARR LL_TIM_SetAutoReload
* @param TIMx Timer instance
* @param AutoReload between Min_Data=0 and Max_Data=65535
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetAutoReload(TIM_TypeDef *TIMx, uint32_t AutoReload)
{
WRITE_REG(TIMx->ARR, AutoReload);
}
/**
* @brief Get the auto-reload value.
* @rmtoll ARR ARR LL_TIM_GetAutoReload
* @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @param TIMx Timer instance
* @retval Auto-reload value
*/
__STATIC_INLINE uint32_t LL_TIM_GetAutoReload(const TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_REG(TIMx->ARR));
}
/**
* @brief Set the repetition counter value.
* @note For advanced timer instances RepetitionCounter can be up to 65535.
* @note Macro IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a repetition counter.
* @rmtoll RCR REP LL_TIM_SetRepetitionCounter
* @param TIMx Timer instance
* @param RepetitionCounter between Min_Data=0 and Max_Data=255 or 65535 for advanced timer.
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetRepetitionCounter(TIM_TypeDef *TIMx, uint32_t RepetitionCounter)
{
WRITE_REG(TIMx->RCR, RepetitionCounter);
}
/**
* @brief Get the repetition counter value.
* @note Macro IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a repetition counter.
* @rmtoll RCR REP LL_TIM_GetRepetitionCounter
* @param TIMx Timer instance
* @retval Repetition counter value
*/
__STATIC_INLINE uint32_t LL_TIM_GetRepetitionCounter(const TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_REG(TIMx->RCR));
}
/**
* @brief Force a continuous copy of the update interrupt flag (UIF) into the timer counter register (bit 31).
* @note This allows both the counter value and a potential roll-over condition signalled by the UIFCPY flag to be read
* in an atomic way.
* @rmtoll CR1 UIFREMAP LL_TIM_EnableUIFRemap
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableUIFRemap(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->CR1, TIM_CR1_UIFREMAP);
}
/**
* @brief Disable update interrupt flag (UIF) remapping.
* @rmtoll CR1 UIFREMAP LL_TIM_DisableUIFRemap
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableUIFRemap(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->CR1, TIM_CR1_UIFREMAP);
}
/**
* @brief Indicate whether update interrupt flag (UIF) copy is set.
* @param Counter Counter value
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsActiveUIFCPY(const uint32_t Counter)
{
return (((Counter & TIM_CNT_UIFCPY) == (TIM_CNT_UIFCPY)) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup TIM_LL_EF_Capture_Compare Capture Compare configuration
* @{
*/
/**
* @brief Enable the capture/compare control bits (CCxE, CCxNE and OCxM) preload.
* @note CCxE, CCxNE and OCxM bits are preloaded, after having been written,
* they are updated only when a commutation event (COM) occurs.
* @note Only on channels that have a complementary output.
* @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
* whether or not a timer instance is able to generate a commutation event.
* @rmtoll CR2 CCPC LL_TIM_CC_EnablePreload
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_CC_EnablePreload(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->CR2, TIM_CR2_CCPC);
}
/**
* @brief Disable the capture/compare control bits (CCxE, CCxNE and OCxM) preload.
* @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
* whether or not a timer instance is able to generate a commutation event.
* @rmtoll CR2 CCPC LL_TIM_CC_DisablePreload
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_CC_DisablePreload(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->CR2, TIM_CR2_CCPC);
}
/**
* @brief Set the updated source of the capture/compare control bits (CCxE, CCxNE and OCxM).
* @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
* whether or not a timer instance is able to generate a commutation event.
* @rmtoll CR2 CCUS LL_TIM_CC_SetUpdate
* @param TIMx Timer instance
* @param CCUpdateSource This parameter can be one of the following values:
* @arg @ref LL_TIM_CCUPDATESOURCE_COMG_ONLY
* @arg @ref LL_TIM_CCUPDATESOURCE_COMG_AND_TRGI
* @retval None
*/
__STATIC_INLINE void LL_TIM_CC_SetUpdate(TIM_TypeDef *TIMx, uint32_t CCUpdateSource)
{
MODIFY_REG(TIMx->CR2, TIM_CR2_CCUS, CCUpdateSource);
}
/**
* @brief Set the trigger of the capture/compare DMA request.
* @rmtoll CR2 CCDS LL_TIM_CC_SetDMAReqTrigger
* @param TIMx Timer instance
* @param DMAReqTrigger This parameter can be one of the following values:
* @arg @ref LL_TIM_CCDMAREQUEST_CC
* @arg @ref LL_TIM_CCDMAREQUEST_UPDATE
* @retval None
*/
__STATIC_INLINE void LL_TIM_CC_SetDMAReqTrigger(TIM_TypeDef *TIMx, uint32_t DMAReqTrigger)
{
MODIFY_REG(TIMx->CR2, TIM_CR2_CCDS, DMAReqTrigger);
}
/**
* @brief Get actual trigger of the capture/compare DMA request.
* @rmtoll CR2 CCDS LL_TIM_CC_GetDMAReqTrigger
* @param TIMx Timer instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_TIM_CCDMAREQUEST_CC
* @arg @ref LL_TIM_CCDMAREQUEST_UPDATE
*/
__STATIC_INLINE uint32_t LL_TIM_CC_GetDMAReqTrigger(const TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_BIT(TIMx->CR2, TIM_CR2_CCDS));
}
/**
* @brief Set the lock level to freeze the
* configuration of several capture/compare parameters.
* @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
* the lock mechanism is supported by a timer instance.
* @rmtoll BDTR LOCK LL_TIM_CC_SetLockLevel
* @param TIMx Timer instance
* @param LockLevel This parameter can be one of the following values:
* @arg @ref LL_TIM_LOCKLEVEL_OFF
* @arg @ref LL_TIM_LOCKLEVEL_1
* @arg @ref LL_TIM_LOCKLEVEL_2
* @arg @ref LL_TIM_LOCKLEVEL_3
* @retval None
*/
__STATIC_INLINE void LL_TIM_CC_SetLockLevel(TIM_TypeDef *TIMx, uint32_t LockLevel)
{
MODIFY_REG(TIMx->BDTR, TIM_BDTR_LOCK, LockLevel);
}
/**
* @brief Enable capture/compare channels.
* @rmtoll CCER CC1E LL_TIM_CC_EnableChannel\n
* CCER CC1NE LL_TIM_CC_EnableChannel\n
* CCER CC2E LL_TIM_CC_EnableChannel\n
* CCER CC2NE LL_TIM_CC_EnableChannel\n
* CCER CC3E LL_TIM_CC_EnableChannel\n
* CCER CC3NE LL_TIM_CC_EnableChannel\n
* CCER CC4E LL_TIM_CC_EnableChannel\n
* CCER CC5E LL_TIM_CC_EnableChannel\n
* CCER CC6E LL_TIM_CC_EnableChannel
* @param TIMx Timer instance
* @param Channels This parameter can be a combination of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH1N
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH2N
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH3N
* @arg @ref LL_TIM_CHANNEL_CH4
* @arg @ref LL_TIM_CHANNEL_CH5
* @arg @ref LL_TIM_CHANNEL_CH6
* @retval None
*/
__STATIC_INLINE void LL_TIM_CC_EnableChannel(TIM_TypeDef *TIMx, uint32_t Channels)
{
SET_BIT(TIMx->CCER, Channels);
}
/**
* @brief Disable capture/compare channels.
* @rmtoll CCER CC1E LL_TIM_CC_DisableChannel\n
* CCER CC1NE LL_TIM_CC_DisableChannel\n
* CCER CC2E LL_TIM_CC_DisableChannel\n
* CCER CC2NE LL_TIM_CC_DisableChannel\n
* CCER CC3E LL_TIM_CC_DisableChannel\n
* CCER CC3NE LL_TIM_CC_DisableChannel\n
* CCER CC4E LL_TIM_CC_DisableChannel\n
* CCER CC5E LL_TIM_CC_DisableChannel\n
* CCER CC6E LL_TIM_CC_DisableChannel
* @param TIMx Timer instance
* @param Channels This parameter can be a combination of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH1N
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH2N
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH3N
* @arg @ref LL_TIM_CHANNEL_CH4
* @arg @ref LL_TIM_CHANNEL_CH5
* @arg @ref LL_TIM_CHANNEL_CH6
* @retval None
*/
__STATIC_INLINE void LL_TIM_CC_DisableChannel(TIM_TypeDef *TIMx, uint32_t Channels)
{
CLEAR_BIT(TIMx->CCER, Channels);
}
/**
* @brief Indicate whether channel(s) is(are) enabled.
* @rmtoll CCER CC1E LL_TIM_CC_IsEnabledChannel\n
* CCER CC1NE LL_TIM_CC_IsEnabledChannel\n
* CCER CC2E LL_TIM_CC_IsEnabledChannel\n
* CCER CC2NE LL_TIM_CC_IsEnabledChannel\n
* CCER CC3E LL_TIM_CC_IsEnabledChannel\n
* CCER CC3NE LL_TIM_CC_IsEnabledChannel\n
* CCER CC4E LL_TIM_CC_IsEnabledChannel\n
* CCER CC5E LL_TIM_CC_IsEnabledChannel\n
* CCER CC6E LL_TIM_CC_IsEnabledChannel
* @param TIMx Timer instance
* @param Channels This parameter can be a combination of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH1N
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH2N
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH3N
* @arg @ref LL_TIM_CHANNEL_CH4
* @arg @ref LL_TIM_CHANNEL_CH5
* @arg @ref LL_TIM_CHANNEL_CH6
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_CC_IsEnabledChannel(TIM_TypeDef *TIMx, uint32_t Channels)
{
return ((READ_BIT(TIMx->CCER, Channels) == (Channels)) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup TIM_LL_EF_Output_Channel Output channel configuration
* @{
*/
/**
* @brief Configure an output channel.
* @rmtoll CCMR1 CC1S LL_TIM_OC_ConfigOutput\n
* CCMR1 CC2S LL_TIM_OC_ConfigOutput\n
* CCMR2 CC3S LL_TIM_OC_ConfigOutput\n
* CCMR2 CC4S LL_TIM_OC_ConfigOutput\n
* CCMR3 CC5S LL_TIM_OC_ConfigOutput\n
* CCMR3 CC6S LL_TIM_OC_ConfigOutput\n
* CCER CC1P LL_TIM_OC_ConfigOutput\n
* CCER CC2P LL_TIM_OC_ConfigOutput\n
* CCER CC3P LL_TIM_OC_ConfigOutput\n
* CCER CC4P LL_TIM_OC_ConfigOutput\n
* CCER CC5P LL_TIM_OC_ConfigOutput\n
* CCER CC6P LL_TIM_OC_ConfigOutput\n
* CR2 OIS1 LL_TIM_OC_ConfigOutput\n
* CR2 OIS2 LL_TIM_OC_ConfigOutput\n
* CR2 OIS3 LL_TIM_OC_ConfigOutput\n
* CR2 OIS4 LL_TIM_OC_ConfigOutput\n
* CR2 OIS5 LL_TIM_OC_ConfigOutput\n
* CR2 OIS6 LL_TIM_OC_ConfigOutput
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @arg @ref LL_TIM_CHANNEL_CH5
* @arg @ref LL_TIM_CHANNEL_CH6
* @param Configuration This parameter must be a combination of all the following values:
* @arg @ref LL_TIM_OCPOLARITY_HIGH or @ref LL_TIM_OCPOLARITY_LOW
* @arg @ref LL_TIM_OCIDLESTATE_LOW or @ref LL_TIM_OCIDLESTATE_HIGH
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_ConfigOutput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration)
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
__IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
CLEAR_BIT(*pReg, (TIM_CCMR1_CC1S << SHIFT_TAB_OCxx[iChannel]));
MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]),
(Configuration & TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]);
MODIFY_REG(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel]),
(Configuration & TIM_CR2_OIS1) << SHIFT_TAB_OISx[iChannel]);
}
/**
* @brief Define the behavior of the output reference signal OCxREF from which
* OCx and OCxN (when relevant) are derived.
* @rmtoll CCMR1 OC1M LL_TIM_OC_SetMode\n
* CCMR1 OC2M LL_TIM_OC_SetMode\n
* CCMR2 OC3M LL_TIM_OC_SetMode\n
* CCMR2 OC4M LL_TIM_OC_SetMode\n
* CCMR3 OC5M LL_TIM_OC_SetMode\n
* CCMR3 OC6M LL_TIM_OC_SetMode
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @arg @ref LL_TIM_CHANNEL_CH5
* @arg @ref LL_TIM_CHANNEL_CH6
* @param Mode This parameter can be one of the following values:
* @arg @ref LL_TIM_OCMODE_FROZEN
* @arg @ref LL_TIM_OCMODE_ACTIVE
* @arg @ref LL_TIM_OCMODE_INACTIVE
* @arg @ref LL_TIM_OCMODE_TOGGLE
* @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE
* @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE
* @arg @ref LL_TIM_OCMODE_PWM1
* @arg @ref LL_TIM_OCMODE_PWM2
* @arg @ref LL_TIM_OCMODE_RETRIG_OPM1
* @arg @ref LL_TIM_OCMODE_RETRIG_OPM2
* @arg @ref LL_TIM_OCMODE_COMBINED_PWM1
* @arg @ref LL_TIM_OCMODE_COMBINED_PWM2
* @arg @ref LL_TIM_OCMODE_ASSYMETRIC_PWM1
* @arg @ref LL_TIM_OCMODE_ASSYMETRIC_PWM2
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_SetMode(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Mode)
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
__IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
MODIFY_REG(*pReg, ((TIM_CCMR1_OC1M | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel]), Mode << SHIFT_TAB_OCxx[iChannel]);
}
/**
* @brief Get the output compare mode of an output channel.
* @rmtoll CCMR1 OC1M LL_TIM_OC_GetMode\n
* CCMR1 OC2M LL_TIM_OC_GetMode\n
* CCMR2 OC3M LL_TIM_OC_GetMode\n
* CCMR2 OC4M LL_TIM_OC_GetMode\n
* CCMR3 OC5M LL_TIM_OC_GetMode\n
* CCMR3 OC6M LL_TIM_OC_GetMode
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @arg @ref LL_TIM_CHANNEL_CH5
* @arg @ref LL_TIM_CHANNEL_CH6
* @retval Returned value can be one of the following values:
* @arg @ref LL_TIM_OCMODE_FROZEN
* @arg @ref LL_TIM_OCMODE_ACTIVE
* @arg @ref LL_TIM_OCMODE_INACTIVE
* @arg @ref LL_TIM_OCMODE_TOGGLE
* @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE
* @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE
* @arg @ref LL_TIM_OCMODE_PWM1
* @arg @ref LL_TIM_OCMODE_PWM2
* @arg @ref LL_TIM_OCMODE_RETRIG_OPM1
* @arg @ref LL_TIM_OCMODE_RETRIG_OPM2
* @arg @ref LL_TIM_OCMODE_COMBINED_PWM1
* @arg @ref LL_TIM_OCMODE_COMBINED_PWM2
* @arg @ref LL_TIM_OCMODE_ASSYMETRIC_PWM1
* @arg @ref LL_TIM_OCMODE_ASSYMETRIC_PWM2
*/
__STATIC_INLINE uint32_t LL_TIM_OC_GetMode(const TIM_TypeDef *TIMx, uint32_t Channel)
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
return (READ_BIT(*pReg, ((TIM_CCMR1_OC1M | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel])) >> SHIFT_TAB_OCxx[iChannel]);
}
/**
* @brief Set the polarity of an output channel.
* @rmtoll CCER CC1P LL_TIM_OC_SetPolarity\n
* CCER CC1NP LL_TIM_OC_SetPolarity\n
* CCER CC2P LL_TIM_OC_SetPolarity\n
* CCER CC2NP LL_TIM_OC_SetPolarity\n
* CCER CC3P LL_TIM_OC_SetPolarity\n
* CCER CC3NP LL_TIM_OC_SetPolarity\n
* CCER CC4P LL_TIM_OC_SetPolarity\n
* CCER CC5P LL_TIM_OC_SetPolarity\n
* CCER CC6P LL_TIM_OC_SetPolarity
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH1N
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH2N
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH3N
* @arg @ref LL_TIM_CHANNEL_CH4
* @arg @ref LL_TIM_CHANNEL_CH5
* @arg @ref LL_TIM_CHANNEL_CH6
* @param Polarity This parameter can be one of the following values:
* @arg @ref LL_TIM_OCPOLARITY_HIGH
* @arg @ref LL_TIM_OCPOLARITY_LOW
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Polarity)
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]), Polarity << SHIFT_TAB_CCxP[iChannel]);
}
/**
* @brief Get the polarity of an output channel.
* @rmtoll CCER CC1P LL_TIM_OC_GetPolarity\n
* CCER CC1NP LL_TIM_OC_GetPolarity\n
* CCER CC2P LL_TIM_OC_GetPolarity\n
* CCER CC2NP LL_TIM_OC_GetPolarity\n
* CCER CC3P LL_TIM_OC_GetPolarity\n
* CCER CC3NP LL_TIM_OC_GetPolarity\n
* CCER CC4P LL_TIM_OC_GetPolarity\n
* CCER CC5P LL_TIM_OC_GetPolarity\n
* CCER CC6P LL_TIM_OC_GetPolarity
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH1N
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH2N
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH3N
* @arg @ref LL_TIM_CHANNEL_CH4
* @arg @ref LL_TIM_CHANNEL_CH5
* @arg @ref LL_TIM_CHANNEL_CH6
* @retval Returned value can be one of the following values:
* @arg @ref LL_TIM_OCPOLARITY_HIGH
* @arg @ref LL_TIM_OCPOLARITY_LOW
*/
__STATIC_INLINE uint32_t LL_TIM_OC_GetPolarity(const TIM_TypeDef *TIMx, uint32_t Channel)
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
return (READ_BIT(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel])) >> SHIFT_TAB_CCxP[iChannel]);
}
/**
* @brief Set the IDLE state of an output channel
* @note This function is significant only for the timer instances
* supporting the break feature. Macro IS_TIM_BREAK_INSTANCE(TIMx)
* can be used to check whether or not a timer instance provides
* a break input.
* @rmtoll CR2 OIS1 LL_TIM_OC_SetIdleState\n
* CR2 OIS2N LL_TIM_OC_SetIdleState\n
* CR2 OIS2 LL_TIM_OC_SetIdleState\n
* CR2 OIS2N LL_TIM_OC_SetIdleState\n
* CR2 OIS3 LL_TIM_OC_SetIdleState\n
* CR2 OIS3N LL_TIM_OC_SetIdleState\n
* CR2 OIS4 LL_TIM_OC_SetIdleState\n
* CR2 OIS5 LL_TIM_OC_SetIdleState\n
* CR2 OIS6 LL_TIM_OC_SetIdleState
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH1N
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH2N
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH3N
* @arg @ref LL_TIM_CHANNEL_CH4
* @arg @ref LL_TIM_CHANNEL_CH5
* @arg @ref LL_TIM_CHANNEL_CH6
* @param IdleState This parameter can be one of the following values:
* @arg @ref LL_TIM_OCIDLESTATE_LOW
* @arg @ref LL_TIM_OCIDLESTATE_HIGH
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_SetIdleState(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t IdleState)
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
MODIFY_REG(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel]), IdleState << SHIFT_TAB_OISx[iChannel]);
}
/**
* @brief Get the IDLE state of an output channel
* @rmtoll CR2 OIS1 LL_TIM_OC_GetIdleState\n
* CR2 OIS2N LL_TIM_OC_GetIdleState\n
* CR2 OIS2 LL_TIM_OC_GetIdleState\n
* CR2 OIS2N LL_TIM_OC_GetIdleState\n
* CR2 OIS3 LL_TIM_OC_GetIdleState\n
* CR2 OIS3N LL_TIM_OC_GetIdleState\n
* CR2 OIS4 LL_TIM_OC_GetIdleState\n
* CR2 OIS5 LL_TIM_OC_GetIdleState\n
* CR2 OIS6 LL_TIM_OC_GetIdleState
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH1N
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH2N
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH3N
* @arg @ref LL_TIM_CHANNEL_CH4
* @arg @ref LL_TIM_CHANNEL_CH5
* @arg @ref LL_TIM_CHANNEL_CH6
* @retval Returned value can be one of the following values:
* @arg @ref LL_TIM_OCIDLESTATE_LOW
* @arg @ref LL_TIM_OCIDLESTATE_HIGH
*/
__STATIC_INLINE uint32_t LL_TIM_OC_GetIdleState(const TIM_TypeDef *TIMx, uint32_t Channel)
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
return (READ_BIT(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel])) >> SHIFT_TAB_OISx[iChannel]);
}
/**
* @brief Enable fast mode for the output channel.
* @note Acts only if the channel is configured in PWM1 or PWM2 mode.
* @rmtoll CCMR1 OC1FE LL_TIM_OC_EnableFast\n
* CCMR1 OC2FE LL_TIM_OC_EnableFast\n
* CCMR2 OC3FE LL_TIM_OC_EnableFast\n
* CCMR2 OC4FE LL_TIM_OC_EnableFast\n
* CCMR3 OC5FE LL_TIM_OC_EnableFast\n
* CCMR3 OC6FE LL_TIM_OC_EnableFast
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @arg @ref LL_TIM_CHANNEL_CH5
* @arg @ref LL_TIM_CHANNEL_CH6
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_EnableFast(TIM_TypeDef *TIMx, uint32_t Channel)
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
__IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
SET_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]));
}
/**
* @brief Disable fast mode for the output channel.
* @rmtoll CCMR1 OC1FE LL_TIM_OC_DisableFast\n
* CCMR1 OC2FE LL_TIM_OC_DisableFast\n
* CCMR2 OC3FE LL_TIM_OC_DisableFast\n
* CCMR2 OC4FE LL_TIM_OC_DisableFast\n
* CCMR3 OC5FE LL_TIM_OC_DisableFast\n
* CCMR3 OC6FE LL_TIM_OC_DisableFast
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @arg @ref LL_TIM_CHANNEL_CH5
* @arg @ref LL_TIM_CHANNEL_CH6
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_DisableFast(TIM_TypeDef *TIMx, uint32_t Channel)
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
__IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
CLEAR_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]));
}
/**
* @brief Indicates whether fast mode is enabled for the output channel.
* @rmtoll CCMR1 OC1FE LL_TIM_OC_IsEnabledFast\n
* CCMR1 OC2FE LL_TIM_OC_IsEnabledFast\n
* CCMR2 OC3FE LL_TIM_OC_IsEnabledFast\n
* CCMR2 OC4FE LL_TIM_OC_IsEnabledFast\n
* CCMR3 OC5FE LL_TIM_OC_IsEnabledFast\n
* CCMR3 OC6FE LL_TIM_OC_IsEnabledFast
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @arg @ref LL_TIM_CHANNEL_CH5
* @arg @ref LL_TIM_CHANNEL_CH6
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledFast(TIM_TypeDef *TIMx, uint32_t Channel)
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
uint32_t bitfield = TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel];
return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
}
/**
* @brief Enable compare register (TIMx_CCRx) preload for the output channel.
* @rmtoll CCMR1 OC1PE LL_TIM_OC_EnablePreload\n
* CCMR1 OC2PE LL_TIM_OC_EnablePreload\n
* CCMR2 OC3PE LL_TIM_OC_EnablePreload\n
* CCMR2 OC4PE LL_TIM_OC_EnablePreload\n
* CCMR3 OC5PE LL_TIM_OC_EnablePreload\n
* CCMR3 OC6PE LL_TIM_OC_EnablePreload
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @arg @ref LL_TIM_CHANNEL_CH5
* @arg @ref LL_TIM_CHANNEL_CH6
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_EnablePreload(TIM_TypeDef *TIMx, uint32_t Channel)
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
__IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
SET_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]));
}
/**
* @brief Disable compare register (TIMx_CCRx) preload for the output channel.
* @rmtoll CCMR1 OC1PE LL_TIM_OC_DisablePreload\n
* CCMR1 OC2PE LL_TIM_OC_DisablePreload\n
* CCMR2 OC3PE LL_TIM_OC_DisablePreload\n
* CCMR2 OC4PE LL_TIM_OC_DisablePreload\n
* CCMR3 OC5PE LL_TIM_OC_DisablePreload\n
* CCMR3 OC6PE LL_TIM_OC_DisablePreload
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @arg @ref LL_TIM_CHANNEL_CH5
* @arg @ref LL_TIM_CHANNEL_CH6
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_DisablePreload(TIM_TypeDef *TIMx, uint32_t Channel)
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
__IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
CLEAR_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]));
}
/**
* @brief Indicates whether compare register (TIMx_CCRx) preload is enabled for the output channel.
* @rmtoll CCMR1 OC1PE LL_TIM_OC_IsEnabledPreload\n
* CCMR1 OC2PE LL_TIM_OC_IsEnabledPreload\n
* CCMR2 OC3PE LL_TIM_OC_IsEnabledPreload\n
* CCMR2 OC4PE LL_TIM_OC_IsEnabledPreload\n
* CCMR3 OC5PE LL_TIM_OC_IsEnabledPreload\n
* CCMR3 OC6PE LL_TIM_OC_IsEnabledPreload
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @arg @ref LL_TIM_CHANNEL_CH5
* @arg @ref LL_TIM_CHANNEL_CH6
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledPreload(TIM_TypeDef *TIMx, uint32_t Channel)
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
uint32_t bitfield = TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel];
return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
}
/**
* @brief Enable clearing the output channel on an external event.
* @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode.
* @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
* or not a timer instance can clear the OCxREF signal on an external event.
* @rmtoll CCMR1 OC1CE LL_TIM_OC_EnableClear\n
* CCMR1 OC2CE LL_TIM_OC_EnableClear\n
* CCMR2 OC3CE LL_TIM_OC_EnableClear\n
* CCMR2 OC4CE LL_TIM_OC_EnableClear\n
* CCMR3 OC5CE LL_TIM_OC_EnableClear\n
* CCMR3 OC6CE LL_TIM_OC_EnableClear
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @arg @ref LL_TIM_CHANNEL_CH5
* @arg @ref LL_TIM_CHANNEL_CH6
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_EnableClear(TIM_TypeDef *TIMx, uint32_t Channel)
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
__IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
SET_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]));
}
/**
* @brief Disable clearing the output channel on an external event.
* @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
* or not a timer instance can clear the OCxREF signal on an external event.
* @rmtoll CCMR1 OC1CE LL_TIM_OC_DisableClear\n
* CCMR1 OC2CE LL_TIM_OC_DisableClear\n
* CCMR2 OC3CE LL_TIM_OC_DisableClear\n
* CCMR2 OC4CE LL_TIM_OC_DisableClear\n
* CCMR3 OC5CE LL_TIM_OC_DisableClear\n
* CCMR3 OC6CE LL_TIM_OC_DisableClear
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @arg @ref LL_TIM_CHANNEL_CH5
* @arg @ref LL_TIM_CHANNEL_CH6
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_DisableClear(TIM_TypeDef *TIMx, uint32_t Channel)
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
__IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
CLEAR_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]));
}
/**
* @brief Indicates clearing the output channel on an external event is enabled for the output channel.
* @note This function enables clearing the output channel on an external event.
* @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode.
* @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
* or not a timer instance can clear the OCxREF signal on an external event.
* @rmtoll CCMR1 OC1CE LL_TIM_OC_IsEnabledClear\n
* CCMR1 OC2CE LL_TIM_OC_IsEnabledClear\n
* CCMR2 OC3CE LL_TIM_OC_IsEnabledClear\n
* CCMR2 OC4CE LL_TIM_OC_IsEnabledClear\n
* CCMR3 OC5CE LL_TIM_OC_IsEnabledClear\n
* CCMR3 OC6CE LL_TIM_OC_IsEnabledClear
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @arg @ref LL_TIM_CHANNEL_CH5
* @arg @ref LL_TIM_CHANNEL_CH6
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledClear(TIM_TypeDef *TIMx, uint32_t Channel)
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
uint32_t bitfield = TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel];
return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
}
/**
* @brief Set the dead-time delay (delay inserted between the rising edge of the OCxREF signal and the rising edge of
* the Ocx and OCxN signals).
* @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
* dead-time insertion feature is supported by a timer instance.
* @note Helper macro @ref __LL_TIM_CALC_DEADTIME can be used to calculate the DeadTime parameter
* @rmtoll BDTR DTG LL_TIM_OC_SetDeadTime
* @param TIMx Timer instance
* @param DeadTime between Min_Data=0 and Max_Data=255
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_SetDeadTime(TIM_TypeDef *TIMx, uint32_t DeadTime)
{
MODIFY_REG(TIMx->BDTR, TIM_BDTR_DTG, DeadTime);
}
/**
* @brief Set compare value for output channel 1 (TIMx_CCR1).
* @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
* @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
* output channel 1 is supported by a timer instance.
* @rmtoll CCR1 CCR1 LL_TIM_OC_SetCompareCH1
* @param TIMx Timer instance
* @param CompareValue between Min_Data=0 and Max_Data=65535
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_SetCompareCH1(TIM_TypeDef *TIMx, uint32_t CompareValue)
{
WRITE_REG(TIMx->CCR1, CompareValue);
}
/**
* @brief Set compare value for output channel 2 (TIMx_CCR2).
* @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
* @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
* output channel 2 is supported by a timer instance.
* @rmtoll CCR2 CCR2 LL_TIM_OC_SetCompareCH2
* @param TIMx Timer instance
* @param CompareValue between Min_Data=0 and Max_Data=65535
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_SetCompareCH2(TIM_TypeDef *TIMx, uint32_t CompareValue)
{
WRITE_REG(TIMx->CCR2, CompareValue);
}
/**
* @brief Set compare value for output channel 3 (TIMx_CCR3).
* @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
* @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
* output channel is supported by a timer instance.
* @rmtoll CCR3 CCR3 LL_TIM_OC_SetCompareCH3
* @param TIMx Timer instance
* @param CompareValue between Min_Data=0 and Max_Data=65535
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_SetCompareCH3(TIM_TypeDef *TIMx, uint32_t CompareValue)
{
WRITE_REG(TIMx->CCR3, CompareValue);
}
/**
* @brief Set compare value for output channel 4 (TIMx_CCR4).
* @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
* @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
* output channel 4 is supported by a timer instance.
* @rmtoll CCR4 CCR4 LL_TIM_OC_SetCompareCH4
* @param TIMx Timer instance
* @param CompareValue between Min_Data=0 and Max_Data=65535
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_SetCompareCH4(TIM_TypeDef *TIMx, uint32_t CompareValue)
{
WRITE_REG(TIMx->CCR4, CompareValue);
}
/**
* @brief Set compare value for output channel 5 (TIMx_CCR5).
* @note Macro IS_TIM_CC5_INSTANCE(TIMx) can be used to check whether or not
* output channel 5 is supported by a timer instance.
* @rmtoll CCR5 CCR5 LL_TIM_OC_SetCompareCH5
* @param TIMx Timer instance
* @param CompareValue between Min_Data=0 and Max_Data=65535
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_SetCompareCH5(TIM_TypeDef *TIMx, uint32_t CompareValue)
{
MODIFY_REG(TIMx->CCR5, TIM_CCR5_CCR5, CompareValue);
}
/**
* @brief Set compare value for output channel 6 (TIMx_CCR6).
* @note Macro IS_TIM_CC6_INSTANCE(TIMx) can be used to check whether or not
* output channel 6 is supported by a timer instance.
* @rmtoll CCR6 CCR6 LL_TIM_OC_SetCompareCH6
* @param TIMx Timer instance
* @param CompareValue between Min_Data=0 and Max_Data=65535
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_SetCompareCH6(TIM_TypeDef *TIMx, uint32_t CompareValue)
{
WRITE_REG(TIMx->CCR6, CompareValue);
}
/**
* @brief Get compare value (TIMx_CCR1) set for output channel 1.
* @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
* @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
* output channel 1 is supported by a timer instance.
* @rmtoll CCR1 CCR1 LL_TIM_OC_GetCompareCH1
* @param TIMx Timer instance
* @retval CompareValue (between Min_Data=0 and Max_Data=65535)
*/
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH1(const TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_REG(TIMx->CCR1));
}
/**
* @brief Get compare value (TIMx_CCR2) set for output channel 2.
* @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
* @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
* output channel 2 is supported by a timer instance.
* @rmtoll CCR2 CCR2 LL_TIM_OC_GetCompareCH2
* @param TIMx Timer instance
* @retval CompareValue (between Min_Data=0 and Max_Data=65535)
*/
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH2(const TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_REG(TIMx->CCR2));
}
/**
* @brief Get compare value (TIMx_CCR3) set for output channel 3.
* @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
* @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
* output channel 3 is supported by a timer instance.
* @rmtoll CCR3 CCR3 LL_TIM_OC_GetCompareCH3
* @param TIMx Timer instance
* @retval CompareValue (between Min_Data=0 and Max_Data=65535)
*/
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH3(const TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_REG(TIMx->CCR3));
}
/**
* @brief Get compare value (TIMx_CCR4) set for output channel 4.
* @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
* @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
* output channel 4 is supported by a timer instance.
* @rmtoll CCR4 CCR4 LL_TIM_OC_GetCompareCH4
* @param TIMx Timer instance
* @retval CompareValue (between Min_Data=0 and Max_Data=65535)
*/
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH4(const TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_REG(TIMx->CCR4));
}
/**
* @brief Get compare value (TIMx_CCR5) set for output channel 5.
* @note Macro IS_TIM_CC5_INSTANCE(TIMx) can be used to check whether or not
* output channel 5 is supported by a timer instance.
* @rmtoll CCR5 CCR5 LL_TIM_OC_GetCompareCH5
* @param TIMx Timer instance
* @retval CompareValue (between Min_Data=0 and Max_Data=65535)
*/
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH5(const TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_BIT(TIMx->CCR5, TIM_CCR5_CCR5));
}
/**
* @brief Get compare value (TIMx_CCR6) set for output channel 6.
* @note Macro IS_TIM_CC6_INSTANCE(TIMx) can be used to check whether or not
* output channel 6 is supported by a timer instance.
* @rmtoll CCR6 CCR6 LL_TIM_OC_GetCompareCH6
* @param TIMx Timer instance
* @retval CompareValue (between Min_Data=0 and Max_Data=65535)
*/
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH6(const TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_REG(TIMx->CCR6));
}
/**
* @brief Select on which reference signal the OC5REF is combined to.
* @note Macro IS_TIM_COMBINED3PHASEPWM_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports the combined 3-phase PWM mode.
* @rmtoll CCR5 GC5C3 LL_TIM_SetCH5CombinedChannels\n
* CCR5 GC5C2 LL_TIM_SetCH5CombinedChannels\n
* CCR5 GC5C1 LL_TIM_SetCH5CombinedChannels
* @param TIMx Timer instance
* @param GroupCH5 This parameter can be a combination of the following values:
* @arg @ref LL_TIM_GROUPCH5_NONE
* @arg @ref LL_TIM_GROUPCH5_OC1REFC
* @arg @ref LL_TIM_GROUPCH5_OC2REFC
* @arg @ref LL_TIM_GROUPCH5_OC3REFC
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetCH5CombinedChannels(TIM_TypeDef *TIMx, uint32_t GroupCH5)
{
MODIFY_REG(TIMx->CCR5, (TIM_CCR5_GC5C3 | TIM_CCR5_GC5C2 | TIM_CCR5_GC5C1), GroupCH5);
}
/**
* @}
*/
/** @defgroup TIM_LL_EF_Input_Channel Input channel configuration
* @{
*/
/**
* @brief Configure input channel.
* @rmtoll CCMR1 CC1S LL_TIM_IC_Config\n
* CCMR1 IC1PSC LL_TIM_IC_Config\n
* CCMR1 IC1F LL_TIM_IC_Config\n
* CCMR1 CC2S LL_TIM_IC_Config\n
* CCMR1 IC2PSC LL_TIM_IC_Config\n
* CCMR1 IC2F LL_TIM_IC_Config\n
* CCMR2 CC3S LL_TIM_IC_Config\n
* CCMR2 IC3PSC LL_TIM_IC_Config\n
* CCMR2 IC3F LL_TIM_IC_Config\n
* CCMR2 CC4S LL_TIM_IC_Config\n
* CCMR2 IC4PSC LL_TIM_IC_Config\n
* CCMR2 IC4F LL_TIM_IC_Config\n
* CCER CC1P LL_TIM_IC_Config\n
* CCER CC1NP LL_TIM_IC_Config\n
* CCER CC2P LL_TIM_IC_Config\n
* CCER CC2NP LL_TIM_IC_Config\n
* CCER CC3P LL_TIM_IC_Config\n
* CCER CC3NP LL_TIM_IC_Config\n
* CCER CC4P LL_TIM_IC_Config\n
* CCER CC4NP LL_TIM_IC_Config
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @param Configuration This parameter must be a combination of all the following values:
* @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI or @ref LL_TIM_ACTIVEINPUT_INDIRECTTI or @ref LL_TIM_ACTIVEINPUT_TRC
* @arg @ref LL_TIM_ICPSC_DIV1 or ... or @ref LL_TIM_ICPSC_DIV8
* @arg @ref LL_TIM_IC_FILTER_FDIV1 or ... or @ref LL_TIM_IC_FILTER_FDIV32_N8
* @arg @ref LL_TIM_IC_POLARITY_RISING or @ref LL_TIM_IC_POLARITY_FALLING or @ref LL_TIM_IC_POLARITY_BOTHEDGE
* @retval None
*/
__STATIC_INLINE void LL_TIM_IC_Config(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration)
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
__IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]),
((Configuration >> 16U) & (TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S)) \
<< SHIFT_TAB_ICxx[iChannel]);
MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]),
(Configuration & (TIM_CCER_CC1NP | TIM_CCER_CC1P)) << SHIFT_TAB_CCxP[iChannel]);
}
/**
* @brief Set the active input.
* @rmtoll CCMR1 CC1S LL_TIM_IC_SetActiveInput\n
* CCMR1 CC2S LL_TIM_IC_SetActiveInput\n
* CCMR2 CC3S LL_TIM_IC_SetActiveInput\n
* CCMR2 CC4S LL_TIM_IC_SetActiveInput
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @param ICActiveInput This parameter can be one of the following values:
* @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI
* @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI
* @arg @ref LL_TIM_ACTIVEINPUT_TRC
* @retval None
*/
__STATIC_INLINE void LL_TIM_IC_SetActiveInput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICActiveInput)
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
__IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
MODIFY_REG(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]), (ICActiveInput >> 16U) << SHIFT_TAB_ICxx[iChannel]);
}
/**
* @brief Get the current active input.
* @rmtoll CCMR1 CC1S LL_TIM_IC_GetActiveInput\n
* CCMR1 CC2S LL_TIM_IC_GetActiveInput\n
* CCMR2 CC3S LL_TIM_IC_GetActiveInput\n
* CCMR2 CC4S LL_TIM_IC_GetActiveInput
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @retval Returned value can be one of the following values:
* @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI
* @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI
* @arg @ref LL_TIM_ACTIVEINPUT_TRC
*/
__STATIC_INLINE uint32_t LL_TIM_IC_GetActiveInput(const TIM_TypeDef *TIMx, uint32_t Channel)
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
return ((READ_BIT(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
}
/**
* @brief Set the prescaler of input channel.
* @rmtoll CCMR1 IC1PSC LL_TIM_IC_SetPrescaler\n
* CCMR1 IC2PSC LL_TIM_IC_SetPrescaler\n
* CCMR2 IC3PSC LL_TIM_IC_SetPrescaler\n
* CCMR2 IC4PSC LL_TIM_IC_SetPrescaler
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @param ICPrescaler This parameter can be one of the following values:
* @arg @ref LL_TIM_ICPSC_DIV1
* @arg @ref LL_TIM_ICPSC_DIV2
* @arg @ref LL_TIM_ICPSC_DIV4
* @arg @ref LL_TIM_ICPSC_DIV8
* @retval None
*/
__STATIC_INLINE void LL_TIM_IC_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPrescaler)
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
__IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
MODIFY_REG(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel]), (ICPrescaler >> 16U) << SHIFT_TAB_ICxx[iChannel]);
}
/**
* @brief Get the current prescaler value acting on an input channel.
* @rmtoll CCMR1 IC1PSC LL_TIM_IC_GetPrescaler\n
* CCMR1 IC2PSC LL_TIM_IC_GetPrescaler\n
* CCMR2 IC3PSC LL_TIM_IC_GetPrescaler\n
* CCMR2 IC4PSC LL_TIM_IC_GetPrescaler
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @retval Returned value can be one of the following values:
* @arg @ref LL_TIM_ICPSC_DIV1
* @arg @ref LL_TIM_ICPSC_DIV2
* @arg @ref LL_TIM_ICPSC_DIV4
* @arg @ref LL_TIM_ICPSC_DIV8
*/
__STATIC_INLINE uint32_t LL_TIM_IC_GetPrescaler(const TIM_TypeDef *TIMx, uint32_t Channel)
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
}
/**
* @brief Set the input filter duration.
* @rmtoll CCMR1 IC1F LL_TIM_IC_SetFilter\n
* CCMR1 IC2F LL_TIM_IC_SetFilter\n
* CCMR2 IC3F LL_TIM_IC_SetFilter\n
* CCMR2 IC4F LL_TIM_IC_SetFilter
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @param ICFilter This parameter can be one of the following values:
* @arg @ref LL_TIM_IC_FILTER_FDIV1
* @arg @ref LL_TIM_IC_FILTER_FDIV1_N2
* @arg @ref LL_TIM_IC_FILTER_FDIV1_N4
* @arg @ref LL_TIM_IC_FILTER_FDIV1_N8
* @arg @ref LL_TIM_IC_FILTER_FDIV2_N6
* @arg @ref LL_TIM_IC_FILTER_FDIV2_N8
* @arg @ref LL_TIM_IC_FILTER_FDIV4_N6
* @arg @ref LL_TIM_IC_FILTER_FDIV4_N8
* @arg @ref LL_TIM_IC_FILTER_FDIV8_N6
* @arg @ref LL_TIM_IC_FILTER_FDIV8_N8
* @arg @ref LL_TIM_IC_FILTER_FDIV16_N5
* @arg @ref LL_TIM_IC_FILTER_FDIV16_N6
* @arg @ref LL_TIM_IC_FILTER_FDIV16_N8
* @arg @ref LL_TIM_IC_FILTER_FDIV32_N5
* @arg @ref LL_TIM_IC_FILTER_FDIV32_N6
* @arg @ref LL_TIM_IC_FILTER_FDIV32_N8
* @retval None
*/
__STATIC_INLINE void LL_TIM_IC_SetFilter(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICFilter)
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
__IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel]), (ICFilter >> 16U) << SHIFT_TAB_ICxx[iChannel]);
}
/**
* @brief Get the input filter duration.
* @rmtoll CCMR1 IC1F LL_TIM_IC_GetFilter\n
* CCMR1 IC2F LL_TIM_IC_GetFilter\n
* CCMR2 IC3F LL_TIM_IC_GetFilter\n
* CCMR2 IC4F LL_TIM_IC_GetFilter
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @retval Returned value can be one of the following values:
* @arg @ref LL_TIM_IC_FILTER_FDIV1
* @arg @ref LL_TIM_IC_FILTER_FDIV1_N2
* @arg @ref LL_TIM_IC_FILTER_FDIV1_N4
* @arg @ref LL_TIM_IC_FILTER_FDIV1_N8
* @arg @ref LL_TIM_IC_FILTER_FDIV2_N6
* @arg @ref LL_TIM_IC_FILTER_FDIV2_N8
* @arg @ref LL_TIM_IC_FILTER_FDIV4_N6
* @arg @ref LL_TIM_IC_FILTER_FDIV4_N8
* @arg @ref LL_TIM_IC_FILTER_FDIV8_N6
* @arg @ref LL_TIM_IC_FILTER_FDIV8_N8
* @arg @ref LL_TIM_IC_FILTER_FDIV16_N5
* @arg @ref LL_TIM_IC_FILTER_FDIV16_N6
* @arg @ref LL_TIM_IC_FILTER_FDIV16_N8
* @arg @ref LL_TIM_IC_FILTER_FDIV32_N5
* @arg @ref LL_TIM_IC_FILTER_FDIV32_N6
* @arg @ref LL_TIM_IC_FILTER_FDIV32_N8
*/
__STATIC_INLINE uint32_t LL_TIM_IC_GetFilter(const TIM_TypeDef *TIMx, uint32_t Channel)
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
}
/**
* @brief Set the input channel polarity.
* @rmtoll CCER CC1P LL_TIM_IC_SetPolarity\n
* CCER CC1NP LL_TIM_IC_SetPolarity\n
* CCER CC2P LL_TIM_IC_SetPolarity\n
* CCER CC2NP LL_TIM_IC_SetPolarity\n
* CCER CC3P LL_TIM_IC_SetPolarity\n
* CCER CC3NP LL_TIM_IC_SetPolarity\n
* CCER CC4P LL_TIM_IC_SetPolarity\n
* CCER CC4NP LL_TIM_IC_SetPolarity
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @param ICPolarity This parameter can be one of the following values:
* @arg @ref LL_TIM_IC_POLARITY_RISING
* @arg @ref LL_TIM_IC_POLARITY_FALLING
* @arg @ref LL_TIM_IC_POLARITY_BOTHEDGE
* @retval None
*/
__STATIC_INLINE void LL_TIM_IC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPolarity)
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]),
ICPolarity << SHIFT_TAB_CCxP[iChannel]);
}
/**
* @brief Get the current input channel polarity.
* @rmtoll CCER CC1P LL_TIM_IC_GetPolarity\n
* CCER CC1NP LL_TIM_IC_GetPolarity\n
* CCER CC2P LL_TIM_IC_GetPolarity\n
* CCER CC2NP LL_TIM_IC_GetPolarity\n
* CCER CC3P LL_TIM_IC_GetPolarity\n
* CCER CC3NP LL_TIM_IC_GetPolarity\n
* CCER CC4P LL_TIM_IC_GetPolarity\n
* CCER CC4NP LL_TIM_IC_GetPolarity
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @retval Returned value can be one of the following values:
* @arg @ref LL_TIM_IC_POLARITY_RISING
* @arg @ref LL_TIM_IC_POLARITY_FALLING
* @arg @ref LL_TIM_IC_POLARITY_BOTHEDGE
*/
__STATIC_INLINE uint32_t LL_TIM_IC_GetPolarity(const TIM_TypeDef *TIMx, uint32_t Channel)
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
return (READ_BIT(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel])) >>
SHIFT_TAB_CCxP[iChannel]);
}
/**
* @brief Connect the TIMx_CH1, CH2 and CH3 pins to the TI1 input (XOR combination).
* @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides an XOR input.
* @rmtoll CR2 TI1S LL_TIM_IC_EnableXORCombination
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_IC_EnableXORCombination(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->CR2, TIM_CR2_TI1S);
}
/**
* @brief Disconnect the TIMx_CH1, CH2 and CH3 pins from the TI1 input.
* @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides an XOR input.
* @rmtoll CR2 TI1S LL_TIM_IC_DisableXORCombination
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_IC_DisableXORCombination(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->CR2, TIM_CR2_TI1S);
}
/**
* @brief Indicates whether the TIMx_CH1, CH2 and CH3 pins are connectected to the TI1 input.
* @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides an XOR input.
* @rmtoll CR2 TI1S LL_TIM_IC_IsEnabledXORCombination
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IC_IsEnabledXORCombination(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->CR2, TIM_CR2_TI1S) == (TIM_CR2_TI1S)) ? 1UL : 0UL);
}
/**
* @brief Get captured value for input channel 1.
* @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
* @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
* input channel 1 is supported by a timer instance.
* @rmtoll CCR1 CCR1 LL_TIM_IC_GetCaptureCH1
* @param TIMx Timer instance
* @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
*/
__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH1(const TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_REG(TIMx->CCR1));
}
/**
* @brief Get captured value for input channel 2.
* @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
* @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
* input channel 2 is supported by a timer instance.
* @rmtoll CCR2 CCR2 LL_TIM_IC_GetCaptureCH2
* @param TIMx Timer instance
* @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
*/
__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH2(const TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_REG(TIMx->CCR2));
}
/**
* @brief Get captured value for input channel 3.
* @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
* @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
* input channel 3 is supported by a timer instance.
* @rmtoll CCR3 CCR3 LL_TIM_IC_GetCaptureCH3
* @param TIMx Timer instance
* @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
*/
__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH3(const TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_REG(TIMx->CCR3));
}
/**
* @brief Get captured value for input channel 4.
* @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
* @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
* input channel 4 is supported by a timer instance.
* @rmtoll CCR4 CCR4 LL_TIM_IC_GetCaptureCH4
* @param TIMx Timer instance
* @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
*/
__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH4(const TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_REG(TIMx->CCR4));
}
/**
* @}
*/
/** @defgroup TIM_LL_EF_Clock_Selection Counter clock selection
* @{
*/
/**
* @brief Enable external clock mode 2.
* @note When external clock mode 2 is enabled the counter is clocked by any active edge on the ETRF signal.
* @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports external clock mode2.
* @rmtoll SMCR ECE LL_TIM_EnableExternalClock
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableExternalClock(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->SMCR, TIM_SMCR_ECE);
}
/**
* @brief Disable external clock mode 2.
* @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports external clock mode2.
* @rmtoll SMCR ECE LL_TIM_DisableExternalClock
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableExternalClock(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->SMCR, TIM_SMCR_ECE);
}
/**
* @brief Indicate whether external clock mode 2 is enabled.
* @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports external clock mode2.
* @rmtoll SMCR ECE LL_TIM_IsEnabledExternalClock
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledExternalClock(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SMCR, TIM_SMCR_ECE) == (TIM_SMCR_ECE)) ? 1UL : 0UL);
}
/**
* @brief Set the clock source of the counter clock.
* @note when selected clock source is external clock mode 1, the timer input
* the external clock is applied is selected by calling the @ref LL_TIM_SetTriggerInput()
* function. This timer input must be configured by calling
* the @ref LL_TIM_IC_Config() function.
* @note Macro IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports external clock mode1.
* @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports external clock mode2.
* @rmtoll SMCR SMS LL_TIM_SetClockSource\n
* SMCR ECE LL_TIM_SetClockSource
* @param TIMx Timer instance
* @param ClockSource This parameter can be one of the following values:
* @arg @ref LL_TIM_CLOCKSOURCE_INTERNAL
* @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE1
* @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE2
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetClockSource(TIM_TypeDef *TIMx, uint32_t ClockSource)
{
MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS | TIM_SMCR_ECE, ClockSource);
}
/**
* @brief Set the encoder interface mode.
* @note Macro IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports the encoder mode.
* @rmtoll SMCR SMS LL_TIM_SetEncoderMode
* @param TIMx Timer instance
* @param EncoderMode This parameter can be one of the following values:
* @arg @ref LL_TIM_ENCODERMODE_X2_TI1
* @arg @ref LL_TIM_ENCODERMODE_X2_TI2
* @arg @ref LL_TIM_ENCODERMODE_X4_TI12
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetEncoderMode(TIM_TypeDef *TIMx, uint32_t EncoderMode)
{
MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, EncoderMode);
}
/**
* @}
*/
/** @defgroup TIM_LL_EF_Timer_Synchronization Timer synchronisation configuration
* @{
*/
/**
* @brief Set the trigger output (TRGO) used for timer synchronization .
* @note Macro IS_TIM_MASTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance can operate as a master timer.
* @rmtoll CR2 MMS LL_TIM_SetTriggerOutput
* @param TIMx Timer instance
* @param TimerSynchronization This parameter can be one of the following values:
* @arg @ref LL_TIM_TRGO_RESET
* @arg @ref LL_TIM_TRGO_ENABLE
* @arg @ref LL_TIM_TRGO_UPDATE
* @arg @ref LL_TIM_TRGO_CC1IF
* @arg @ref LL_TIM_TRGO_OC1REF
* @arg @ref LL_TIM_TRGO_OC2REF
* @arg @ref LL_TIM_TRGO_OC3REF
* @arg @ref LL_TIM_TRGO_OC4REF
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetTriggerOutput(TIM_TypeDef *TIMx, uint32_t TimerSynchronization)
{
MODIFY_REG(TIMx->CR2, TIM_CR2_MMS, TimerSynchronization);
}
/**
* @brief Set the trigger output 2 (TRGO2) used for ADC synchronization .
* @note Macro IS_TIM_TRGO2_INSTANCE(TIMx) can be used to check
* whether or not a timer instance can be used for ADC synchronization.
* @rmtoll CR2 MMS2 LL_TIM_SetTriggerOutput2
* @param TIMx Timer Instance
* @param ADCSynchronization This parameter can be one of the following values:
* @arg @ref LL_TIM_TRGO2_RESET
* @arg @ref LL_TIM_TRGO2_ENABLE
* @arg @ref LL_TIM_TRGO2_UPDATE
* @arg @ref LL_TIM_TRGO2_CC1F
* @arg @ref LL_TIM_TRGO2_OC1
* @arg @ref LL_TIM_TRGO2_OC2
* @arg @ref LL_TIM_TRGO2_OC3
* @arg @ref LL_TIM_TRGO2_OC4
* @arg @ref LL_TIM_TRGO2_OC5
* @arg @ref LL_TIM_TRGO2_OC6
* @arg @ref LL_TIM_TRGO2_OC4_RISINGFALLING
* @arg @ref LL_TIM_TRGO2_OC6_RISINGFALLING
* @arg @ref LL_TIM_TRGO2_OC4_RISING_OC6_RISING
* @arg @ref LL_TIM_TRGO2_OC4_RISING_OC6_FALLING
* @arg @ref LL_TIM_TRGO2_OC5_RISING_OC6_RISING
* @arg @ref LL_TIM_TRGO2_OC5_RISING_OC6_FALLING
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetTriggerOutput2(TIM_TypeDef *TIMx, uint32_t ADCSynchronization)
{
MODIFY_REG(TIMx->CR2, TIM_CR2_MMS2, ADCSynchronization);
}
/**
* @brief Set the synchronization mode of a slave timer.
* @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
* a timer instance can operate as a slave timer.
* @rmtoll SMCR SMS LL_TIM_SetSlaveMode
* @param TIMx Timer instance
* @param SlaveMode This parameter can be one of the following values:
* @arg @ref LL_TIM_SLAVEMODE_DISABLED
* @arg @ref LL_TIM_SLAVEMODE_RESET
* @arg @ref LL_TIM_SLAVEMODE_GATED
* @arg @ref LL_TIM_SLAVEMODE_TRIGGER
* @arg @ref LL_TIM_SLAVEMODE_COMBINED_RESETTRIGGER
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetSlaveMode(TIM_TypeDef *TIMx, uint32_t SlaveMode)
{
MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, SlaveMode);
}
/**
* @brief Set the selects the trigger input to be used to synchronize the counter.
* @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
* a timer instance can operate as a slave timer.
* @rmtoll SMCR TS LL_TIM_SetTriggerInput
* @param TIMx Timer instance
* @param TriggerInput This parameter can be one of the following values:
* @arg @ref LL_TIM_TS_ITR0
* @arg @ref LL_TIM_TS_ITR1
* @arg @ref LL_TIM_TS_ITR2
* @arg @ref LL_TIM_TS_ITR3
* @arg @ref LL_TIM_TS_ITR4
* @arg @ref LL_TIM_TS_ITR5
* @arg @ref LL_TIM_TS_ITR6
* @arg @ref LL_TIM_TS_ITR7
* @arg @ref LL_TIM_TS_ITR8 (*)
* @arg @ref LL_TIM_TS_ITR9 (*)
* @arg @ref LL_TIM_TS_ITR10 (*)
* @arg @ref LL_TIM_TS_ITR11 (*)
* @arg @ref LL_TIM_TS_ITR12 (*)
* @arg @ref LL_TIM_TS_ITR13 (*)
* @arg @ref LL_TIM_TS_TI1F_ED
* @arg @ref LL_TIM_TS_TI1FP1
* @arg @ref LL_TIM_TS_TI2FP2
* @arg @ref LL_TIM_TS_ETRF
*
* (*) Value not defined in all devices.
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetTriggerInput(TIM_TypeDef *TIMx, uint32_t TriggerInput)
{
MODIFY_REG(TIMx->SMCR, TIM_SMCR_TS, TriggerInput);
}
/**
* @brief Enable the Master/Slave mode.
* @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
* a timer instance can operate as a slave timer.
* @rmtoll SMCR MSM LL_TIM_EnableMasterSlaveMode
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableMasterSlaveMode(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->SMCR, TIM_SMCR_MSM);
}
/**
* @brief Disable the Master/Slave mode.
* @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
* a timer instance can operate as a slave timer.
* @rmtoll SMCR MSM LL_TIM_DisableMasterSlaveMode
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableMasterSlaveMode(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->SMCR, TIM_SMCR_MSM);
}
/**
* @brief Indicates whether the Master/Slave mode is enabled.
* @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
* a timer instance can operate as a slave timer.
* @rmtoll SMCR MSM LL_TIM_IsEnabledMasterSlaveMode
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledMasterSlaveMode(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SMCR, TIM_SMCR_MSM) == (TIM_SMCR_MSM)) ? 1UL : 0UL);
}
/**
* @brief Configure the external trigger (ETR) input.
* @note Macro IS_TIM_ETR_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides an external trigger input.
* @rmtoll SMCR ETP LL_TIM_ConfigETR\n
* SMCR ETPS LL_TIM_ConfigETR\n
* SMCR ETF LL_TIM_ConfigETR
* @param TIMx Timer instance
* @param ETRPolarity This parameter can be one of the following values:
* @arg @ref LL_TIM_ETR_POLARITY_NONINVERTED
* @arg @ref LL_TIM_ETR_POLARITY_INVERTED
* @param ETRPrescaler This parameter can be one of the following values:
* @arg @ref LL_TIM_ETR_PRESCALER_DIV1
* @arg @ref LL_TIM_ETR_PRESCALER_DIV2
* @arg @ref LL_TIM_ETR_PRESCALER_DIV4
* @arg @ref LL_TIM_ETR_PRESCALER_DIV8
* @param ETRFilter This parameter can be one of the following values:
* @arg @ref LL_TIM_ETR_FILTER_FDIV1
* @arg @ref LL_TIM_ETR_FILTER_FDIV1_N2
* @arg @ref LL_TIM_ETR_FILTER_FDIV1_N4
* @arg @ref LL_TIM_ETR_FILTER_FDIV1_N8
* @arg @ref LL_TIM_ETR_FILTER_FDIV2_N6
* @arg @ref LL_TIM_ETR_FILTER_FDIV2_N8
* @arg @ref LL_TIM_ETR_FILTER_FDIV4_N6
* @arg @ref LL_TIM_ETR_FILTER_FDIV4_N8
* @arg @ref LL_TIM_ETR_FILTER_FDIV8_N6
* @arg @ref LL_TIM_ETR_FILTER_FDIV8_N8
* @arg @ref LL_TIM_ETR_FILTER_FDIV16_N5
* @arg @ref LL_TIM_ETR_FILTER_FDIV16_N6
* @arg @ref LL_TIM_ETR_FILTER_FDIV16_N8
* @arg @ref LL_TIM_ETR_FILTER_FDIV32_N5
* @arg @ref LL_TIM_ETR_FILTER_FDIV32_N6
* @arg @ref LL_TIM_ETR_FILTER_FDIV32_N8
* @retval None
*/
__STATIC_INLINE void LL_TIM_ConfigETR(TIM_TypeDef *TIMx, uint32_t ETRPolarity, uint32_t ETRPrescaler,
uint32_t ETRFilter)
{
MODIFY_REG(TIMx->SMCR, TIM_SMCR_ETP | TIM_SMCR_ETPS | TIM_SMCR_ETF, ETRPolarity | ETRPrescaler | ETRFilter);
}
/**
* @brief Select the external trigger (ETR) input source.
* @note Macro IS_TIM_ETRSEL_INSTANCE(TIMx) can be used to check whether or
* not a timer instance supports ETR source selection.
* @rmtoll AF1 ETRSEL LL_TIM_SetETRSource
* @param TIMx Timer instance
* @param ETRSource This parameter can be one of the following values:
* For TIM1, the parameter is one of the following values:
* @arg LL_TIM_TIM1_ETRSOURCE_GPIO: TIM1_ETR is connected to GPIO
* @arg LL_TIM_TIM1_ETRSOURCE_COMP1: TIM1_ETR is connected to COMP1 output
* @arg LL_TIM_TIM1_ETRSOURCE_COMP2: TIM1_ETR is connected to COMP2 output
* @arg LL_TIM_TIM1_ETRSOURCE_ADC1_AWD1: TIM1_ETR is connected to ADC1 AWD1
* @arg LL_TIM_TIM1_ETRSOURCE_ADC1_AWD2: TIM1_ETR is connected to ADC1 AWD2
* @arg LL_TIM_TIM1_ETRSOURCE_ADC1_AWD3: TIM1_ETR is connected to ADC1 AWD3
* @arg LL_TIM_TIM1_ETRSOURCE_ADC3_AWD1: TIM1_ETR is connected to ADC3 AWD1
* @arg LL_TIM_TIM1_ETRSOURCE_ADC3_AWD2: TIM1_ETR is connected to ADC3 AWD2
* @arg LL_TIM_TIM1_ETRSOURCE_ADC3_AWD3: TIM1_ETR is connected to ADC3 AWD3
*
* For TIM2, the parameter is one of the following values:
* @arg LL_TIM_TIM2_ETRSOURCE_GPIO: TIM2_ETR is connected to GPIO
* @arg LL_TIM_TIM2_ETRSOURCE_COMP1: TIM2_ETR is connected to COMP1 output
* @arg LL_TIM_TIM2_ETRSOURCE_COMP2: TIM2_ETR is connected to COMP2 output
* @arg LL_TIM_TIM2_ETRSOURCE_LSE: TIM2_ETR is connected to LSE
* @arg LL_TIM_TIM2_ETRSOURCE_SAI1_FSA: TIM2_ETR is connected to SAI1 FS_A
* @arg LL_TIM_TIM2_ETRSOURCE_SAI1_FSB: TIM2_ETR is connected to SAI1 FS_B
*
* For TIM3, the parameter is one of the following values:
* @arg LL_TIM_TIM3_ETRSOURCE_GPIO: TIM3_ETR is connected to GPIO
* @arg LL_TIM_TIM3_ETRSOURCE_COMP1: TIM3_ETR is connected to COMP1 output
*
* For TIM5, the parameter is one of the following values:
* @arg LL_TIM_TIM5_ETRSOURCE_GPIO: TIM5_ETR is connected to GPIO
* @arg LL_TIM_TIM5_ETRSOURCE_SAI2_FSA: TIM5_ETR is connected to SAI2 FS_A (*)
* @arg LL_TIM_TIM5_ETRSOURCE_SAI2_FSB: TIM5_ETR is connected to SAI2 FS_B (*)
* @arg LL_TIM_TIM5_ETRSOURCE_SAI4_FSA: TIM5_ETR is connected to SAI2 FS_A (*)
* @arg LL_TIM_TIM5_ETRSOURCE_SAI4_FSB: TIM5_ETR is connected to SAI2 FS_B (*)
*
* For TIM8, the parameter is one of the following values:
* @arg LL_TIM_TIM8_ETRSOURCE_GPIO: TIM8_ETR is connected to GPIO
* @arg LL_TIM_TIM8_ETRSOURCE_COMP1: TIM8_ETR is connected to COMP1 output
* @arg LL_TIM_TIM8_ETRSOURCE_COMP2: TIM8_ETR is connected to COMP2 output
* @arg LL_TIM_TIM8_ETRSOURCE_ADC2_AWD1: TIM8_ETR is connected to ADC2 AWD1
* @arg LL_TIM_TIM8_ETRSOURCE_ADC2_AWD2: TIM8_ETR is connected to ADC2 AWD2
* @arg LL_TIM_TIM8_ETRSOURCE_ADC2_AWD3: TIM8_ETR is connected to ADC2 AWD3
* @arg LL_TIM_TIM8_ETRSOURCE_ADC3_AWD1: TIM8_ETR is connected to ADC3 AWD1
* @arg LL_TIM_TIM8_ETRSOURCE_ADC3_AWD2: TIM8_ETR is connected to ADC3 AWD2
* @arg LL_TIM_TIM8_ETRSOURCE_ADC3_AWD3: TIM8_ETR is connected to ADC3 AWD3
*
* For TIM23, the parameter is one of the following values: (*)
* @arg LL_TIM_TIM23_ETRSOURCE_GPIO TIM23_ETR is connected to GPIO
* @arg LL_TIM_TIM23_ETRSOURCE_COMP1 TIM23_ETR is connected to COMP1 output
* @arg LL_TIM_TIM23_ETRSOURCE_COMP2 TIM23_ETR is connected to COMP2 output
*
* For TIM24, the parameter is one of the following values: (*)
* @arg LL_TIM_TIM24_ETRSOURCE_GPIO TIM24_ETR is connected to GPIO
* @arg LL_TIM_TIM24_ETRSOURCE_SAI4_FSA TIM24_ETR is connected to SAI4 FS_A
* @arg LL_TIM_TIM24_ETRSOURCE_SAI4_FSB TIM24_ETR is connected to SAI4 FS_B
* @arg LL_TIM_TIM24_ETRSOURCE_SAI1_FSA TIM24_ETR is connected to SAI1 FS_A
* @arg LL_TIM_TIM24_ETRSOURCE_SAI1_FSB TIM24_ETR is connected to SAI1 FS_B
*
* (*) Value not defined in all devices.
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetETRSource(TIM_TypeDef *TIMx, uint32_t ETRSource)
{
MODIFY_REG(TIMx->AF1, TIMx_AF1_ETRSEL, ETRSource);
}
/**
* @}
*/
/** @defgroup TIM_LL_EF_Break_Function Break function configuration
* @{
*/
/**
* @brief Enable the break function.
* @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides a break input.
* @rmtoll BDTR BKE LL_TIM_EnableBRK
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableBRK(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->BDTR, TIM_BDTR_BKE);
}
/**
* @brief Disable the break function.
* @rmtoll BDTR BKE LL_TIM_DisableBRK
* @param TIMx Timer instance
* @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides a break input.
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableBRK(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BKE);
}
#if defined(TIM_BDTR_BKBID)
/**
* @brief Configure the break input.
* @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides a break input.
* @note Bidirectional mode is only supported by advanced timer instances.
* Macro IS_TIM_ADVANCED_INSTANCE(TIMx) can be used to check whether or not
* a timer instance is an advanced-control timer.
* @note In bidirectional mode (BKBID bit set), the Break input is configured both
* in input mode and in open drain output mode. Any active Break event will
* assert a low logic level on the Break input to indicate an internal break
* event to external devices.
* @note When bidirectional mode isn't supported, BreakAFMode must be set to
* LL_TIM_BREAK_AFMODE_INPUT.
* @rmtoll BDTR BKP LL_TIM_ConfigBRK\n
* BDTR BKF LL_TIM_ConfigBRK\n
* BDTR BKBID LL_TIM_ConfigBRK
* @param TIMx Timer instance
* @param BreakPolarity This parameter can be one of the following values:
* @arg @ref LL_TIM_BREAK_POLARITY_LOW
* @arg @ref LL_TIM_BREAK_POLARITY_HIGH
* @param BreakFilter This parameter can be one of the following values:
* @arg @ref LL_TIM_BREAK_FILTER_FDIV1
* @arg @ref LL_TIM_BREAK_FILTER_FDIV1_N2
* @arg @ref LL_TIM_BREAK_FILTER_FDIV1_N4
* @arg @ref LL_TIM_BREAK_FILTER_FDIV1_N8
* @arg @ref LL_TIM_BREAK_FILTER_FDIV2_N6
* @arg @ref LL_TIM_BREAK_FILTER_FDIV2_N8
* @arg @ref LL_TIM_BREAK_FILTER_FDIV4_N6
* @arg @ref LL_TIM_BREAK_FILTER_FDIV4_N8
* @arg @ref LL_TIM_BREAK_FILTER_FDIV8_N6
* @arg @ref LL_TIM_BREAK_FILTER_FDIV8_N8
* @arg @ref LL_TIM_BREAK_FILTER_FDIV16_N5
* @arg @ref LL_TIM_BREAK_FILTER_FDIV16_N6
* @arg @ref LL_TIM_BREAK_FILTER_FDIV16_N8
* @arg @ref LL_TIM_BREAK_FILTER_FDIV32_N5
* @arg @ref LL_TIM_BREAK_FILTER_FDIV32_N6
* @arg @ref LL_TIM_BREAK_FILTER_FDIV32_N8
* @param BreakAFMode This parameter can be one of the following values:
* @arg @ref LL_TIM_BREAK_AFMODE_INPUT
* @arg @ref LL_TIM_BREAK_AFMODE_BIDIRECTIONAL
* @retval None
*/
__STATIC_INLINE void LL_TIM_ConfigBRK(TIM_TypeDef *TIMx, uint32_t BreakPolarity, uint32_t BreakFilter,
uint32_t BreakAFMode)
{
MODIFY_REG(TIMx->BDTR, TIM_BDTR_BKP | TIM_BDTR_BKF | TIM_BDTR_BKBID, BreakPolarity | BreakFilter | BreakAFMode);
}
#else
/**
* @brief Configure the break input.
* @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides a break input.
* @rmtoll BDTR BKP LL_TIM_ConfigBRK\n
* BDTR BKF LL_TIM_ConfigBRK
* @param TIMx Timer instance
* @param BreakPolarity This parameter can be one of the following values:
* @arg @ref LL_TIM_BREAK_POLARITY_LOW
* @arg @ref LL_TIM_BREAK_POLARITY_HIGH
* @param BreakFilter This parameter can be one of the following values:
* @arg @ref LL_TIM_BREAK_FILTER_FDIV1
* @arg @ref LL_TIM_BREAK_FILTER_FDIV1_N2
* @arg @ref LL_TIM_BREAK_FILTER_FDIV1_N4
* @arg @ref LL_TIM_BREAK_FILTER_FDIV1_N8
* @arg @ref LL_TIM_BREAK_FILTER_FDIV2_N6
* @arg @ref LL_TIM_BREAK_FILTER_FDIV2_N8
* @arg @ref LL_TIM_BREAK_FILTER_FDIV4_N6
* @arg @ref LL_TIM_BREAK_FILTER_FDIV4_N8
* @arg @ref LL_TIM_BREAK_FILTER_FDIV8_N6
* @arg @ref LL_TIM_BREAK_FILTER_FDIV8_N8
* @arg @ref LL_TIM_BREAK_FILTER_FDIV16_N5
* @arg @ref LL_TIM_BREAK_FILTER_FDIV16_N6
* @arg @ref LL_TIM_BREAK_FILTER_FDIV16_N8
* @arg @ref LL_TIM_BREAK_FILTER_FDIV32_N5
* @arg @ref LL_TIM_BREAK_FILTER_FDIV32_N6
* @arg @ref LL_TIM_BREAK_FILTER_FDIV32_N8
* @retval None
*/
__STATIC_INLINE void LL_TIM_ConfigBRK(TIM_TypeDef *TIMx, uint32_t BreakPolarity,
uint32_t BreakFilter)
{
MODIFY_REG(TIMx->BDTR, TIM_BDTR_BKP | TIM_BDTR_BKF, BreakPolarity | BreakFilter);
}
#endif /* TIM_BDTR_BKBID */
#if defined(TIM_BDTR_BKBID)
/**
* @brief Disarm the break input (when it operates in bidirectional mode).
* @note The break input can be disarmed only when it is configured in
* bidirectional mode and when when MOE is reset.
* @note Purpose is to be able to have the input voltage back to high-state,
* whatever the time constant on the output .
* @rmtoll BDTR BKDSRM LL_TIM_DisarmBRK
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisarmBRK(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->BDTR, TIM_BDTR_BKDSRM);
}
/**
* @brief Re-arm the break input (when it operates in bidirectional mode).
* @note The Break input is automatically armed as soon as MOE bit is set.
* @rmtoll BDTR BKDSRM LL_TIM_ReArmBRK
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ReArmBRK(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BKDSRM);
}
#endif /*TIM_BDTR_BKBID */
/**
* @brief Enable the break 2 function.
* @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides a second break input.
* @rmtoll BDTR BK2E LL_TIM_EnableBRK2
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableBRK2(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->BDTR, TIM_BDTR_BK2E);
}
/**
* @brief Disable the break 2 function.
* @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides a second break input.
* @rmtoll BDTR BK2E LL_TIM_DisableBRK2
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableBRK2(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BK2E);
}
#if defined(TIM_BDTR_BKBID)
/**
* @brief Configure the break 2 input.
* @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides a second break input.
* @note Bidirectional mode is only supported by advanced timer instances.
* Macro IS_TIM_ADVANCED_INSTANCE(TIMx) can be used to check whether or not
* a timer instance is an advanced-control timer.
* @note In bidirectional mode (BK2BID bit set), the Break 2 input is configured both
* in input mode and in open drain output mode. Any active Break event will
* assert a low logic level on the Break 2 input to indicate an internal break
* event to external devices.
* @note When bidirectional mode isn't supported, Break2AFMode must be set to
* LL_TIM_BREAK2_AFMODE_INPUT.
* @rmtoll BDTR BK2P LL_TIM_ConfigBRK2\n
* BDTR BK2F LL_TIM_ConfigBRK2\n
* BDTR BK2BID LL_TIM_ConfigBRK2
* @param TIMx Timer instance
* @param Break2Polarity This parameter can be one of the following values:
* @arg @ref LL_TIM_BREAK2_POLARITY_LOW
* @arg @ref LL_TIM_BREAK2_POLARITY_HIGH
* @param Break2Filter This parameter can be one of the following values:
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV1
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV1_N2
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV1_N4
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV1_N8
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV2_N6
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV2_N8
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV4_N6
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV4_N8
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV8_N6
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV8_N8
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV16_N5
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV16_N6
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV16_N8
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV32_N5
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV32_N6
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV32_N8
* @param Break2AFMode This parameter can be one of the following values:
* @arg @ref LL_TIM_BREAK2_AFMODE_INPUT
* @arg @ref LL_TIM_BREAK2_AFMODE_BIDIRECTIONAL
* @retval None
*/
__STATIC_INLINE void LL_TIM_ConfigBRK2(TIM_TypeDef *TIMx, uint32_t Break2Polarity, uint32_t Break2Filter,
uint32_t Break2AFMode)
{
MODIFY_REG(TIMx->BDTR, TIM_BDTR_BK2P | TIM_BDTR_BK2F | TIM_BDTR_BK2BID, Break2Polarity | Break2Filter | Break2AFMode);
}
#else
/**
* @brief Configure the break 2 input.
* @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides a second break input.
* @rmtoll BDTR BK2P LL_TIM_ConfigBRK2\n
* BDTR BK2F LL_TIM_ConfigBRK2
* @param TIMx Timer instance
* @param Break2Polarity This parameter can be one of the following values:
* @arg @ref LL_TIM_BREAK2_POLARITY_LOW
* @arg @ref LL_TIM_BREAK2_POLARITY_HIGH
* @param Break2Filter This parameter can be one of the following values:
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV1
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV1_N2
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV1_N4
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV1_N8
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV2_N6
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV2_N8
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV4_N6
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV4_N8
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV8_N6
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV8_N8
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV16_N5
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV16_N6
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV16_N8
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV32_N5
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV32_N6
* @arg @ref LL_TIM_BREAK2_FILTER_FDIV32_N8
* @retval None
*/
__STATIC_INLINE void LL_TIM_ConfigBRK2(TIM_TypeDef *TIMx, uint32_t Break2Polarity, uint32_t Break2Filter)
{
MODIFY_REG(TIMx->BDTR, TIM_BDTR_BK2P | TIM_BDTR_BK2F, Break2Polarity | Break2Filter);
}
#endif /*TIM_BDTR_BKBID */
#if defined(TIM_BDTR_BKBID)
/**
* @brief Disarm the break 2 input (when it operates in bidirectional mode).
* @note The break 2 input can be disarmed only when it is configured in
* bidirectional mode and when when MOE is reset.
* @note Purpose is to be able to have the input voltage back to high-state,
* whatever the time constant on the output.
* @rmtoll BDTR BK2DSRM LL_TIM_DisarmBRK2
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisarmBRK2(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->BDTR, TIM_BDTR_BK2DSRM);
}
/**
* @brief Re-arm the break 2 input (when it operates in bidirectional mode).
* @note The Break 2 input is automatically armed as soon as MOE bit is set.
* @rmtoll BDTR BK2DSRM LL_TIM_ReArmBRK2
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ReArmBRK2(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BK2DSRM);
}
#endif /*TIM_BDTR_BKBID */
/**
* @brief Select the outputs off state (enabled v.s. disabled) in Idle and Run modes.
* @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides a break input.
* @rmtoll BDTR OSSI LL_TIM_SetOffStates\n
* BDTR OSSR LL_TIM_SetOffStates
* @param TIMx Timer instance
* @param OffStateIdle This parameter can be one of the following values:
* @arg @ref LL_TIM_OSSI_DISABLE
* @arg @ref LL_TIM_OSSI_ENABLE
* @param OffStateRun This parameter can be one of the following values:
* @arg @ref LL_TIM_OSSR_DISABLE
* @arg @ref LL_TIM_OSSR_ENABLE
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetOffStates(TIM_TypeDef *TIMx, uint32_t OffStateIdle, uint32_t OffStateRun)
{
MODIFY_REG(TIMx->BDTR, TIM_BDTR_OSSI | TIM_BDTR_OSSR, OffStateIdle | OffStateRun);
}
/**
* @brief Enable automatic output (MOE can be set by software or automatically when a break input is active).
* @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides a break input.
* @rmtoll BDTR AOE LL_TIM_EnableAutomaticOutput
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableAutomaticOutput(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->BDTR, TIM_BDTR_AOE);
}
/**
* @brief Disable automatic output (MOE can be set only by software).
* @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides a break input.
* @rmtoll BDTR AOE LL_TIM_DisableAutomaticOutput
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableAutomaticOutput(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->BDTR, TIM_BDTR_AOE);
}
/**
* @brief Indicate whether automatic output is enabled.
* @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides a break input.
* @rmtoll BDTR AOE LL_TIM_IsEnabledAutomaticOutput
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledAutomaticOutput(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->BDTR, TIM_BDTR_AOE) == (TIM_BDTR_AOE)) ? 1UL : 0UL);
}
/**
* @brief Enable the outputs (set the MOE bit in TIMx_BDTR register).
* @note The MOE bit in TIMx_BDTR register allows to enable /disable the outputs by
* software and is reset in case of break or break2 event
* @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides a break input.
* @rmtoll BDTR MOE LL_TIM_EnableAllOutputs
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableAllOutputs(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->BDTR, TIM_BDTR_MOE);
}
/**
* @brief Disable the outputs (reset the MOE bit in TIMx_BDTR register).
* @note The MOE bit in TIMx_BDTR register allows to enable /disable the outputs by
* software and is reset in case of break or break2 event.
* @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides a break input.
* @rmtoll BDTR MOE LL_TIM_DisableAllOutputs
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableAllOutputs(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->BDTR, TIM_BDTR_MOE);
}
/**
* @brief Indicates whether outputs are enabled.
* @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides a break input.
* @rmtoll BDTR MOE LL_TIM_IsEnabledAllOutputs
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledAllOutputs(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->BDTR, TIM_BDTR_MOE) == (TIM_BDTR_MOE)) ? 1UL : 0UL);
}
#if defined(TIM_BREAK_INPUT_SUPPORT)
/**
* @brief Enable the signals connected to the designated timer break input.
* @note Macro IS_TIM_BREAKSOURCE_INSTANCE(TIMx) can be used to check whether
* or not a timer instance allows for break input selection.
* @rmtoll AF1 BKINE LL_TIM_EnableBreakInputSource\n
* AF1 BKCMP1E LL_TIM_EnableBreakInputSource\n
* AF1 BKCMP2E LL_TIM_EnableBreakInputSource\n
* AF1 BKDF1BK0E LL_TIM_EnableBreakInputSource\n
* AF2 BK2INE LL_TIM_EnableBreakInputSource\n
* AF2 BK2CMP1E LL_TIM_EnableBreakInputSource\n
* AF2 BK2CMP2E LL_TIM_EnableBreakInputSource\n
* AF2 BK2DF1BK1E LL_TIM_EnableBreakInputSource
* @param TIMx Timer instance
* @param BreakInput This parameter can be one of the following values:
* @arg @ref LL_TIM_BREAK_INPUT_BKIN
* @arg @ref LL_TIM_BREAK_INPUT_BKIN2
* @param Source This parameter can be one of the following values:
* @arg @ref LL_TIM_BKIN_SOURCE_BKIN
* @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP1
* @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP2
* @arg @ref LL_TIM_BKIN_SOURCE_DF1BK
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableBreakInputSource(TIM_TypeDef *TIMx, uint32_t BreakInput, uint32_t Source)
{
__IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->AF1) + BreakInput));
SET_BIT(*pReg, Source);
}
/**
* @brief Disable the signals connected to the designated timer break input.
* @note Macro IS_TIM_BREAKSOURCE_INSTANCE(TIMx) can be used to check whether
* or not a timer instance allows for break input selection.
* @rmtoll AF1 BKINE LL_TIM_DisableBreakInputSource\n
* AF1 BKCMP1E LL_TIM_DisableBreakInputSource\n
* AF1 BKCMP2E LL_TIM_DisableBreakInputSource\n
* AF1 BKDF1BK0E LL_TIM_DisableBreakInputSource\n
* AF2 BK2INE LL_TIM_DisableBreakInputSource\n
* AF2 BK2CMP1E LL_TIM_DisableBreakInputSource\n
* AF2 BK2CMP2E LL_TIM_DisableBreakInputSource\n
* AF2 BK2DF1BK1E LL_TIM_DisableBreakInputSource
* @param TIMx Timer instance
* @param BreakInput This parameter can be one of the following values:
* @arg @ref LL_TIM_BREAK_INPUT_BKIN
* @arg @ref LL_TIM_BREAK_INPUT_BKIN2
* @param Source This parameter can be one of the following values:
* @arg @ref LL_TIM_BKIN_SOURCE_BKIN
* @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP1
* @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP2
* @arg @ref LL_TIM_BKIN_SOURCE_DF1BK
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableBreakInputSource(TIM_TypeDef *TIMx, uint32_t BreakInput, uint32_t Source)
{
__IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->AF1) + BreakInput));
CLEAR_BIT(*pReg, Source);
}
/**
* @brief Set the polarity of the break signal for the timer break input.
* @note Macro IS_TIM_BREAKSOURCE_INSTANCE(TIMx) can be used to check whether
* or not a timer instance allows for break input selection.
* @rmtoll AF1 BKINP LL_TIM_SetBreakInputSourcePolarity\n
* AF1 BKCMP1P LL_TIM_SetBreakInputSourcePolarity\n
* AF1 BKCMP2P LL_TIM_SetBreakInputSourcePolarity\n
* AF2 BK2INP LL_TIM_SetBreakInputSourcePolarity\n
* AF2 BK2CMP1P LL_TIM_SetBreakInputSourcePolarity\n
* AF2 BK2CMP2P LL_TIM_SetBreakInputSourcePolarity
* @param TIMx Timer instance
* @param BreakInput This parameter can be one of the following values:
* @arg @ref LL_TIM_BREAK_INPUT_BKIN
* @arg @ref LL_TIM_BREAK_INPUT_BKIN2
* @param Source This parameter can be one of the following values:
* @arg @ref LL_TIM_BKIN_SOURCE_BKIN
* @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP1
* @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP2
* @param Polarity This parameter can be one of the following values:
* @arg @ref LL_TIM_BKIN_POLARITY_LOW
* @arg @ref LL_TIM_BKIN_POLARITY_HIGH
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetBreakInputSourcePolarity(TIM_TypeDef *TIMx, uint32_t BreakInput, uint32_t Source,
uint32_t Polarity)
{
__IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->AF1) + BreakInput));
MODIFY_REG(*pReg, (TIMx_AF1_BKINP << TIM_POSITION_BRK_SOURCE), (Polarity << TIM_POSITION_BRK_SOURCE));
}
#endif /* TIM_BREAK_INPUT_SUPPORT */
/**
* @}
*/
/** @defgroup TIM_LL_EF_DMA_Burst_Mode DMA burst mode configuration
* @{
*/
/**
* @brief Configures the timer DMA burst feature.
* @note Macro IS_TIM_DMABURST_INSTANCE(TIMx) can be used to check whether or
* not a timer instance supports the DMA burst mode.
* @rmtoll DCR DBL LL_TIM_ConfigDMABurst\n
* DCR DBA LL_TIM_ConfigDMABurst
* @param TIMx Timer instance
* @param DMABurstBaseAddress This parameter can be one of the following values:
* @arg @ref LL_TIM_DMABURST_BASEADDR_CR1
* @arg @ref LL_TIM_DMABURST_BASEADDR_CR2
* @arg @ref LL_TIM_DMABURST_BASEADDR_SMCR
* @arg @ref LL_TIM_DMABURST_BASEADDR_DIER
* @arg @ref LL_TIM_DMABURST_BASEADDR_SR
* @arg @ref LL_TIM_DMABURST_BASEADDR_EGR
* @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR1
* @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR2
* @arg @ref LL_TIM_DMABURST_BASEADDR_CCER
* @arg @ref LL_TIM_DMABURST_BASEADDR_CNT
* @arg @ref LL_TIM_DMABURST_BASEADDR_PSC
* @arg @ref LL_TIM_DMABURST_BASEADDR_ARR
* @arg @ref LL_TIM_DMABURST_BASEADDR_RCR
* @arg @ref LL_TIM_DMABURST_BASEADDR_CCR1
* @arg @ref LL_TIM_DMABURST_BASEADDR_CCR2
* @arg @ref LL_TIM_DMABURST_BASEADDR_CCR3
* @arg @ref LL_TIM_DMABURST_BASEADDR_CCR4
* @arg @ref LL_TIM_DMABURST_BASEADDR_BDTR
* @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR3
* @arg @ref LL_TIM_DMABURST_BASEADDR_CCR5
* @arg @ref LL_TIM_DMABURST_BASEADDR_CCR6
* @arg @ref LL_TIM_DMABURST_BASEADDR_AF1
* @arg @ref LL_TIM_DMABURST_BASEADDR_AF2
* @arg @ref LL_TIM_DMABURST_BASEADDR_TISEL
*
* @param DMABurstLength This parameter can be one of the following values:
* @arg @ref LL_TIM_DMABURST_LENGTH_1TRANSFER
* @arg @ref LL_TIM_DMABURST_LENGTH_2TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_3TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_4TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_5TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_6TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_7TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_8TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_9TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_10TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_11TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_12TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_13TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_14TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_15TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_16TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_17TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_18TRANSFERS
* @retval None
*/
__STATIC_INLINE void LL_TIM_ConfigDMABurst(TIM_TypeDef *TIMx, uint32_t DMABurstBaseAddress, uint32_t DMABurstLength)
{
MODIFY_REG(TIMx->DCR, (TIM_DCR_DBL | TIM_DCR_DBA), (DMABurstBaseAddress | DMABurstLength));
}
/**
* @}
*/
/** @defgroup TIM_LL_EF_Timer_Inputs_Remapping Timer input remapping
* @{
*/
/**
* @brief Remap TIM inputs (input channel, internal/external triggers).
* @note Macro IS_TIM_REMAP_INSTANCE(TIMx) can be used to check whether or not
* a some timer inputs can be remapped.
* TIM1: one of the following values:
* @arg LL_TIM_TIM1_TI1_RMP_GPIO: TIM1 TI1 is connected to GPIO
* @arg LL_TIM_TIM1_TI1_RMP_COMP1: TIM1 TI1 is connected to COMP1 output
*
* TIM2: one of the following values:
* @arg LL_TIM_TIM2_TI4_RMP_GPIO: TIM2 TI4 is connected to GPIO
* @arg LL_TIM_TIM2_TI4_RMP_COMP1: TIM2 TI4 is connected to COMP1 output
* @arg LL_TIM_TIM2_TI4_RMP_COMP2: TIM2 TI4 is connected to COMP2 output
* @arg LL_TIM_TIM2_TI4_RMP_COMP1_COMP2: TIM2 TI4 is connected to logical OR between COMP1 and COMP2 output
*
* TIM3: one of the following values:
* @arg LL_TIM_TIM3_TI1_RMP_GPIO: TIM3 TI1 is connected to GPIO
* @arg LL_TIM_TIM3_TI1_RMP_COMP1: TIM3 TI1 is connected to COMP1 output
* @arg LL_TIM_TIM3_TI1_RMP_COMP2: TIM3 TI1 is connected to COMP2 output
* @arg LL_TIM_TIM3_TI1_RMP_COMP1_COMP2: TIM3 TI1 is connected to logical OR between COMP1 and COMP2 output
*
* TIM5: one of the following values:
* @arg LL_TIM_TIM5_TI1_RMP_GPIO: TIM5 TI1 is connected to GPIO
* @arg LL_TIM_TIM5_TI1_RMP_CAN_TMP: TIM5 TI1 is connected to CAN TMP
* @arg LL_TIM_TIM5_TI1_RMP_CAN_RTP: TIM5 TI1 is connected to CAN RTP
*
* TIM8: one of the following values:
* @arg LL_TIM_TIM8_TI1_RMP_GPIO: TIM8 TI1 is connected to GPIO
* @arg LL_TIM_TIM8_TI1_RMP_COMP2: TIM8 TI1 is connected to COMP2 output
*
* TIM12: one of the following values: (*)
* @arg LL_TIM_TIM12_TI1_RMP_GPIO: TIM12 TI1 is connected to GPIO
* @arg LL_TIM_TIM12_TI1_RMP_SPDIF_FS: TIM12 TI1 is connected to SPDIF FS
*
* TIM15: one of the following values:
* @arg LL_TIM_TIM15_TI1_RMP_GPIO: TIM15 TI1 is connected to GPIO
* @arg LL_TIM_TIM15_TI1_RMP_TIM2: TIM15 TI1 is connected to TIM2 CH1
* @arg LL_TIM_TIM15_TI1_RMP_TIM3: TIM15 TI1 is connected to TIM3 CH1
* @arg LL_TIM_TIM15_TI1_RMP_TIM4: TIM15 TI1 is connected to TIM4 CH1
* @arg LL_TIM_TIM15_TI1_RMP_LSE: TIM15 TI1 is connected to LSE
* @arg LL_TIM_TIM15_TI1_RMP_CSI: TIM15 TI1 is connected to CSI
* @arg LL_TIM_TIM15_TI1_RMP_MCO2: TIM15 TI1 is connected to MCO2
* @arg LL_TIM_TIM15_TI2_RMP_GPIO: TIM15 TI2 is connected to GPIO
* @arg LL_TIM_TIM15_TI2_RMP_TIM2: TIM15 TI2 is connected to TIM2 CH2
* @arg LL_TIM_TIM15_TI2_RMP_TIM3: TIM15 TI2 is connected to TIM3 CH2
* @arg LL_TIM_TIM15_TI2_RMP_TIM4: TIM15 TI2 is connected to TIM4 CH2
*
* TIM16: one of the following values:
* @arg LL_TIM_TIM16_TI1_RMP_GPIO: TIM16 TI1 is connected to GPIO
* @arg LL_TIM_TIM16_TI1_RMP_LSI: TIM16 TI1 is connected to LSI
* @arg LL_TIM_TIM16_TI1_RMP_LSE: TIM16 TI1 is connected to LSE
* @arg LL_TIM_TIM16_TI1_RMP_RTC: TIM16 TI1 is connected to RTC wakeup interrupt
*
* TIM17: one of the following values:
* @arg LL_TIM_TIM17_TI1_RMP_GPIO: TIM17 TI1 is connected to GPIO
* @arg LL_TIM_TIM17_TI1_RMP_SPDIF_FS: TIM17 TI1 is connected to SPDIF FS (*)
* @arg LL_TIM_TIM17_TI1_RMP_HSE_1MHZ: TIM17 TI1 is connected to HSE 1MHz
* @arg LL_TIM_TIM17_TI1_RMP_MCO1: TIM17 TI1 is connected to MCO1
*
* TIM23: one of the following values: (*)
* @arg LL_TIM_TIM23_TI4_RMP_GPIO TIM23_TI4 is connected to GPIO
* @arg LL_TIM_TIM23_TI4_RMP_COMP1 TIM23_TI4 is connected to COMP1 output
* @arg LL_TIM_TIM23_TI4_RMP_COMP2 TIM23_TI4 is connected to COMP2 output
* @arg LL_TIM_TIM23_TI4_RMP_COMP1_COMP2 TIM23_TI4 is connected to COMP2 output
*
* TIM24: one of the following values: (*)
* @arg LL_TIM_TIM24_TI1_RMP_GPIO TIM24_TI1 is connected to GPIO
* @arg LL_TIM_TIM24_TI1_RMP_CAN_TMP TIM24_TI1 is connected to CAN_TMP
* @arg LL_TIM_TIM24_TI1_RMP_CAN_RTP TIM24_TI1 is connected to CAN_RTP
* @arg LL_TIM_TIM24_TI1_RMP_CAN_SOC TIM24_TI1 is connected to CAN_SOC
*
* (*) Value not defined in all devices. \n
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetRemap(TIM_TypeDef *TIMx, uint32_t Remap)
{
MODIFY_REG(TIMx->TISEL, (TIM_TISEL_TI1SEL | TIM_TISEL_TI2SEL | TIM_TISEL_TI3SEL | TIM_TISEL_TI4SEL), Remap);
}
/**
* @}
*/
/** @defgroup TIM_LL_EF_FLAG_Management FLAG-Management
* @{
*/
/**
* @brief Clear the update interrupt flag (UIF).
* @rmtoll SR UIF LL_TIM_ClearFlag_UPDATE
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_UPDATE(TIM_TypeDef *TIMx)
{
WRITE_REG(TIMx->SR, ~(TIM_SR_UIF));
}
/**
* @brief Indicate whether update interrupt flag (UIF) is set (update interrupt is pending).
* @rmtoll SR UIF LL_TIM_IsActiveFlag_UPDATE
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_UPDATE(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SR, TIM_SR_UIF) == (TIM_SR_UIF)) ? 1UL : 0UL);
}
/**
* @brief Clear the Capture/Compare 1 interrupt flag (CC1F).
* @rmtoll SR CC1IF LL_TIM_ClearFlag_CC1
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_CC1(TIM_TypeDef *TIMx)
{
WRITE_REG(TIMx->SR, ~(TIM_SR_CC1IF));
}
/**
* @brief Indicate whether Capture/Compare 1 interrupt flag (CC1F) is set (Capture/Compare 1 interrupt is pending).
* @rmtoll SR CC1IF LL_TIM_IsActiveFlag_CC1
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SR, TIM_SR_CC1IF) == (TIM_SR_CC1IF)) ? 1UL : 0UL);
}
/**
* @brief Clear the Capture/Compare 2 interrupt flag (CC2F).
* @rmtoll SR CC2IF LL_TIM_ClearFlag_CC2
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_CC2(TIM_TypeDef *TIMx)
{
WRITE_REG(TIMx->SR, ~(TIM_SR_CC2IF));
}
/**
* @brief Indicate whether Capture/Compare 2 interrupt flag (CC2F) is set (Capture/Compare 2 interrupt is pending).
* @rmtoll SR CC2IF LL_TIM_IsActiveFlag_CC2
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SR, TIM_SR_CC2IF) == (TIM_SR_CC2IF)) ? 1UL : 0UL);
}
/**
* @brief Clear the Capture/Compare 3 interrupt flag (CC3F).
* @rmtoll SR CC3IF LL_TIM_ClearFlag_CC3
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_CC3(TIM_TypeDef *TIMx)
{
WRITE_REG(TIMx->SR, ~(TIM_SR_CC3IF));
}
/**
* @brief Indicate whether Capture/Compare 3 interrupt flag (CC3F) is set (Capture/Compare 3 interrupt is pending).
* @rmtoll SR CC3IF LL_TIM_IsActiveFlag_CC3
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SR, TIM_SR_CC3IF) == (TIM_SR_CC3IF)) ? 1UL : 0UL);
}
/**
* @brief Clear the Capture/Compare 4 interrupt flag (CC4F).
* @rmtoll SR CC4IF LL_TIM_ClearFlag_CC4
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_CC4(TIM_TypeDef *TIMx)
{
WRITE_REG(TIMx->SR, ~(TIM_SR_CC4IF));
}
/**
* @brief Indicate whether Capture/Compare 4 interrupt flag (CC4F) is set (Capture/Compare 4 interrupt is pending).
* @rmtoll SR CC4IF LL_TIM_IsActiveFlag_CC4
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SR, TIM_SR_CC4IF) == (TIM_SR_CC4IF)) ? 1UL : 0UL);
}
/**
* @brief Clear the Capture/Compare 5 interrupt flag (CC5F).
* @rmtoll SR CC5IF LL_TIM_ClearFlag_CC5
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_CC5(TIM_TypeDef *TIMx)
{
WRITE_REG(TIMx->SR, ~(TIM_SR_CC5IF));
}
/**
* @brief Indicate whether Capture/Compare 5 interrupt flag (CC5F) is set (Capture/Compare 5 interrupt is pending).
* @rmtoll SR CC5IF LL_TIM_IsActiveFlag_CC5
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC5(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SR, TIM_SR_CC5IF) == (TIM_SR_CC5IF)) ? 1UL : 0UL);
}
/**
* @brief Clear the Capture/Compare 6 interrupt flag (CC6F).
* @rmtoll SR CC6IF LL_TIM_ClearFlag_CC6
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_CC6(TIM_TypeDef *TIMx)
{
WRITE_REG(TIMx->SR, ~(TIM_SR_CC6IF));
}
/**
* @brief Indicate whether Capture/Compare 6 interrupt flag (CC6F) is set (Capture/Compare 6 interrupt is pending).
* @rmtoll SR CC6IF LL_TIM_IsActiveFlag_CC6
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC6(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SR, TIM_SR_CC6IF) == (TIM_SR_CC6IF)) ? 1UL : 0UL);
}
/**
* @brief Clear the commutation interrupt flag (COMIF).
* @rmtoll SR COMIF LL_TIM_ClearFlag_COM
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_COM(TIM_TypeDef *TIMx)
{
WRITE_REG(TIMx->SR, ~(TIM_SR_COMIF));
}
/**
* @brief Indicate whether commutation interrupt flag (COMIF) is set (commutation interrupt is pending).
* @rmtoll SR COMIF LL_TIM_IsActiveFlag_COM
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_COM(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SR, TIM_SR_COMIF) == (TIM_SR_COMIF)) ? 1UL : 0UL);
}
/**
* @brief Clear the trigger interrupt flag (TIF).
* @rmtoll SR TIF LL_TIM_ClearFlag_TRIG
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_TRIG(TIM_TypeDef *TIMx)
{
WRITE_REG(TIMx->SR, ~(TIM_SR_TIF));
}
/**
* @brief Indicate whether trigger interrupt flag (TIF) is set (trigger interrupt is pending).
* @rmtoll SR TIF LL_TIM_IsActiveFlag_TRIG
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_TRIG(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SR, TIM_SR_TIF) == (TIM_SR_TIF)) ? 1UL : 0UL);
}
/**
* @brief Clear the break interrupt flag (BIF).
* @rmtoll SR BIF LL_TIM_ClearFlag_BRK
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_BRK(TIM_TypeDef *TIMx)
{
WRITE_REG(TIMx->SR, ~(TIM_SR_BIF));
}
/**
* @brief Indicate whether break interrupt flag (BIF) is set (break interrupt is pending).
* @rmtoll SR BIF LL_TIM_IsActiveFlag_BRK
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_BRK(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SR, TIM_SR_BIF) == (TIM_SR_BIF)) ? 1UL : 0UL);
}
/**
* @brief Clear the break 2 interrupt flag (B2IF).
* @rmtoll SR B2IF LL_TIM_ClearFlag_BRK2
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_BRK2(TIM_TypeDef *TIMx)
{
WRITE_REG(TIMx->SR, ~(TIM_SR_B2IF));
}
/**
* @brief Indicate whether break 2 interrupt flag (B2IF) is set (break 2 interrupt is pending).
* @rmtoll SR B2IF LL_TIM_IsActiveFlag_BRK2
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_BRK2(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SR, TIM_SR_B2IF) == (TIM_SR_B2IF)) ? 1UL : 0UL);
}
/**
* @brief Clear the Capture/Compare 1 over-capture interrupt flag (CC1OF).
* @rmtoll SR CC1OF LL_TIM_ClearFlag_CC1OVR
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_CC1OVR(TIM_TypeDef *TIMx)
{
WRITE_REG(TIMx->SR, ~(TIM_SR_CC1OF));
}
/**
* @brief Indicate whether Capture/Compare 1 over-capture interrupt flag (CC1OF) is set
* (Capture/Compare 1 interrupt is pending).
* @rmtoll SR CC1OF LL_TIM_IsActiveFlag_CC1OVR
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1OVR(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SR, TIM_SR_CC1OF) == (TIM_SR_CC1OF)) ? 1UL : 0UL);
}
/**
* @brief Clear the Capture/Compare 2 over-capture interrupt flag (CC2OF).
* @rmtoll SR CC2OF LL_TIM_ClearFlag_CC2OVR
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_CC2OVR(TIM_TypeDef *TIMx)
{
WRITE_REG(TIMx->SR, ~(TIM_SR_CC2OF));
}
/**
* @brief Indicate whether Capture/Compare 2 over-capture interrupt flag (CC2OF) is set
* (Capture/Compare 2 over-capture interrupt is pending).
* @rmtoll SR CC2OF LL_TIM_IsActiveFlag_CC2OVR
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2OVR(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SR, TIM_SR_CC2OF) == (TIM_SR_CC2OF)) ? 1UL : 0UL);
}
/**
* @brief Clear the Capture/Compare 3 over-capture interrupt flag (CC3OF).
* @rmtoll SR CC3OF LL_TIM_ClearFlag_CC3OVR
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_CC3OVR(TIM_TypeDef *TIMx)
{
WRITE_REG(TIMx->SR, ~(TIM_SR_CC3OF));
}
/**
* @brief Indicate whether Capture/Compare 3 over-capture interrupt flag (CC3OF) is set
* (Capture/Compare 3 over-capture interrupt is pending).
* @rmtoll SR CC3OF LL_TIM_IsActiveFlag_CC3OVR
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3OVR(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SR, TIM_SR_CC3OF) == (TIM_SR_CC3OF)) ? 1UL : 0UL);
}
/**
* @brief Clear the Capture/Compare 4 over-capture interrupt flag (CC4OF).
* @rmtoll SR CC4OF LL_TIM_ClearFlag_CC4OVR
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_CC4OVR(TIM_TypeDef *TIMx)
{
WRITE_REG(TIMx->SR, ~(TIM_SR_CC4OF));
}
/**
* @brief Indicate whether Capture/Compare 4 over-capture interrupt flag (CC4OF) is set
* (Capture/Compare 4 over-capture interrupt is pending).
* @rmtoll SR CC4OF LL_TIM_IsActiveFlag_CC4OVR
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4OVR(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SR, TIM_SR_CC4OF) == (TIM_SR_CC4OF)) ? 1UL : 0UL);
}
/**
* @brief Clear the system break interrupt flag (SBIF).
* @rmtoll SR SBIF LL_TIM_ClearFlag_SYSBRK
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_SYSBRK(TIM_TypeDef *TIMx)
{
WRITE_REG(TIMx->SR, ~(TIM_SR_SBIF));
}
/**
* @brief Indicate whether system break interrupt flag (SBIF) is set (system break interrupt is pending).
* @rmtoll SR SBIF LL_TIM_IsActiveFlag_SYSBRK
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_SYSBRK(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SR, TIM_SR_SBIF) == (TIM_SR_SBIF)) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup TIM_LL_EF_IT_Management IT-Management
* @{
*/
/**
* @brief Enable update interrupt (UIE).
* @rmtoll DIER UIE LL_TIM_EnableIT_UPDATE
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableIT_UPDATE(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_UIE);
}
/**
* @brief Disable update interrupt (UIE).
* @rmtoll DIER UIE LL_TIM_DisableIT_UPDATE
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableIT_UPDATE(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_UIE);
}
/**
* @brief Indicates whether the update interrupt (UIE) is enabled.
* @rmtoll DIER UIE LL_TIM_IsEnabledIT_UPDATE
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_UPDATE(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_UIE) == (TIM_DIER_UIE)) ? 1UL : 0UL);
}
/**
* @brief Enable capture/compare 1 interrupt (CC1IE).
* @rmtoll DIER CC1IE LL_TIM_EnableIT_CC1
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableIT_CC1(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_CC1IE);
}
/**
* @brief Disable capture/compare 1 interrupt (CC1IE).
* @rmtoll DIER CC1IE LL_TIM_DisableIT_CC1
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableIT_CC1(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1IE);
}
/**
* @brief Indicates whether the capture/compare 1 interrupt (CC1IE) is enabled.
* @rmtoll DIER CC1IE LL_TIM_IsEnabledIT_CC1
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC1(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_CC1IE) == (TIM_DIER_CC1IE)) ? 1UL : 0UL);
}
/**
* @brief Enable capture/compare 2 interrupt (CC2IE).
* @rmtoll DIER CC2IE LL_TIM_EnableIT_CC2
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableIT_CC2(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_CC2IE);
}
/**
* @brief Disable capture/compare 2 interrupt (CC2IE).
* @rmtoll DIER CC2IE LL_TIM_DisableIT_CC2
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableIT_CC2(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2IE);
}
/**
* @brief Indicates whether the capture/compare 2 interrupt (CC2IE) is enabled.
* @rmtoll DIER CC2IE LL_TIM_IsEnabledIT_CC2
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC2(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_CC2IE) == (TIM_DIER_CC2IE)) ? 1UL : 0UL);
}
/**
* @brief Enable capture/compare 3 interrupt (CC3IE).
* @rmtoll DIER CC3IE LL_TIM_EnableIT_CC3
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableIT_CC3(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_CC3IE);
}
/**
* @brief Disable capture/compare 3 interrupt (CC3IE).
* @rmtoll DIER CC3IE LL_TIM_DisableIT_CC3
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableIT_CC3(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3IE);
}
/**
* @brief Indicates whether the capture/compare 3 interrupt (CC3IE) is enabled.
* @rmtoll DIER CC3IE LL_TIM_IsEnabledIT_CC3
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC3(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_CC3IE) == (TIM_DIER_CC3IE)) ? 1UL : 0UL);
}
/**
* @brief Enable capture/compare 4 interrupt (CC4IE).
* @rmtoll DIER CC4IE LL_TIM_EnableIT_CC4
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableIT_CC4(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_CC4IE);
}
/**
* @brief Disable capture/compare 4 interrupt (CC4IE).
* @rmtoll DIER CC4IE LL_TIM_DisableIT_CC4
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableIT_CC4(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4IE);
}
/**
* @brief Indicates whether the capture/compare 4 interrupt (CC4IE) is enabled.
* @rmtoll DIER CC4IE LL_TIM_IsEnabledIT_CC4
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC4(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_CC4IE) == (TIM_DIER_CC4IE)) ? 1UL : 0UL);
}
/**
* @brief Enable commutation interrupt (COMIE).
* @rmtoll DIER COMIE LL_TIM_EnableIT_COM
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableIT_COM(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_COMIE);
}
/**
* @brief Disable commutation interrupt (COMIE).
* @rmtoll DIER COMIE LL_TIM_DisableIT_COM
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableIT_COM(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_COMIE);
}
/**
* @brief Indicates whether the commutation interrupt (COMIE) is enabled.
* @rmtoll DIER COMIE LL_TIM_IsEnabledIT_COM
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_COM(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_COMIE) == (TIM_DIER_COMIE)) ? 1UL : 0UL);
}
/**
* @brief Enable trigger interrupt (TIE).
* @rmtoll DIER TIE LL_TIM_EnableIT_TRIG
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableIT_TRIG(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_TIE);
}
/**
* @brief Disable trigger interrupt (TIE).
* @rmtoll DIER TIE LL_TIM_DisableIT_TRIG
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableIT_TRIG(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_TIE);
}
/**
* @brief Indicates whether the trigger interrupt (TIE) is enabled.
* @rmtoll DIER TIE LL_TIM_IsEnabledIT_TRIG
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_TRIG(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_TIE) == (TIM_DIER_TIE)) ? 1UL : 0UL);
}
/**
* @brief Enable break interrupt (BIE).
* @rmtoll DIER BIE LL_TIM_EnableIT_BRK
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableIT_BRK(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_BIE);
}
/**
* @brief Disable break interrupt (BIE).
* @rmtoll DIER BIE LL_TIM_DisableIT_BRK
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableIT_BRK(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_BIE);
}
/**
* @brief Indicates whether the break interrupt (BIE) is enabled.
* @rmtoll DIER BIE LL_TIM_IsEnabledIT_BRK
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_BRK(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_BIE) == (TIM_DIER_BIE)) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup TIM_LL_EF_DMA_Management DMA Management
* @{
*/
/**
* @brief Enable update DMA request (UDE).
* @rmtoll DIER UDE LL_TIM_EnableDMAReq_UPDATE
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableDMAReq_UPDATE(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_UDE);
}
/**
* @brief Disable update DMA request (UDE).
* @rmtoll DIER UDE LL_TIM_DisableDMAReq_UPDATE
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableDMAReq_UPDATE(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_UDE);
}
/**
* @brief Indicates whether the update DMA request (UDE) is enabled.
* @rmtoll DIER UDE LL_TIM_IsEnabledDMAReq_UPDATE
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_UPDATE(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_UDE) == (TIM_DIER_UDE)) ? 1UL : 0UL);
}
/**
* @brief Enable capture/compare 1 DMA request (CC1DE).
* @rmtoll DIER CC1DE LL_TIM_EnableDMAReq_CC1
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableDMAReq_CC1(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_CC1DE);
}
/**
* @brief Disable capture/compare 1 DMA request (CC1DE).
* @rmtoll DIER CC1DE LL_TIM_DisableDMAReq_CC1
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableDMAReq_CC1(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1DE);
}
/**
* @brief Indicates whether the capture/compare 1 DMA request (CC1DE) is enabled.
* @rmtoll DIER CC1DE LL_TIM_IsEnabledDMAReq_CC1
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC1(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_CC1DE) == (TIM_DIER_CC1DE)) ? 1UL : 0UL);
}
/**
* @brief Enable capture/compare 2 DMA request (CC2DE).
* @rmtoll DIER CC2DE LL_TIM_EnableDMAReq_CC2
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableDMAReq_CC2(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_CC2DE);
}
/**
* @brief Disable capture/compare 2 DMA request (CC2DE).
* @rmtoll DIER CC2DE LL_TIM_DisableDMAReq_CC2
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableDMAReq_CC2(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2DE);
}
/**
* @brief Indicates whether the capture/compare 2 DMA request (CC2DE) is enabled.
* @rmtoll DIER CC2DE LL_TIM_IsEnabledDMAReq_CC2
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC2(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_CC2DE) == (TIM_DIER_CC2DE)) ? 1UL : 0UL);
}
/**
* @brief Enable capture/compare 3 DMA request (CC3DE).
* @rmtoll DIER CC3DE LL_TIM_EnableDMAReq_CC3
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableDMAReq_CC3(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_CC3DE);
}
/**
* @brief Disable capture/compare 3 DMA request (CC3DE).
* @rmtoll DIER CC3DE LL_TIM_DisableDMAReq_CC3
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableDMAReq_CC3(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3DE);
}
/**
* @brief Indicates whether the capture/compare 3 DMA request (CC3DE) is enabled.
* @rmtoll DIER CC3DE LL_TIM_IsEnabledDMAReq_CC3
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC3(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_CC3DE) == (TIM_DIER_CC3DE)) ? 1UL : 0UL);
}
/**
* @brief Enable capture/compare 4 DMA request (CC4DE).
* @rmtoll DIER CC4DE LL_TIM_EnableDMAReq_CC4
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableDMAReq_CC4(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_CC4DE);
}
/**
* @brief Disable capture/compare 4 DMA request (CC4DE).
* @rmtoll DIER CC4DE LL_TIM_DisableDMAReq_CC4
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableDMAReq_CC4(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4DE);
}
/**
* @brief Indicates whether the capture/compare 4 DMA request (CC4DE) is enabled.
* @rmtoll DIER CC4DE LL_TIM_IsEnabledDMAReq_CC4
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC4(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_CC4DE) == (TIM_DIER_CC4DE)) ? 1UL : 0UL);
}
/**
* @brief Enable commutation DMA request (COMDE).
* @rmtoll DIER COMDE LL_TIM_EnableDMAReq_COM
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableDMAReq_COM(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_COMDE);
}
/**
* @brief Disable commutation DMA request (COMDE).
* @rmtoll DIER COMDE LL_TIM_DisableDMAReq_COM
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableDMAReq_COM(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_COMDE);
}
/**
* @brief Indicates whether the commutation DMA request (COMDE) is enabled.
* @rmtoll DIER COMDE LL_TIM_IsEnabledDMAReq_COM
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_COM(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_COMDE) == (TIM_DIER_COMDE)) ? 1UL : 0UL);
}
/**
* @brief Enable trigger interrupt (TDE).
* @rmtoll DIER TDE LL_TIM_EnableDMAReq_TRIG
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableDMAReq_TRIG(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_TDE);
}
/**
* @brief Disable trigger interrupt (TDE).
* @rmtoll DIER TDE LL_TIM_DisableDMAReq_TRIG
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableDMAReq_TRIG(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_TDE);
}
/**
* @brief Indicates whether the trigger interrupt (TDE) is enabled.
* @rmtoll DIER TDE LL_TIM_IsEnabledDMAReq_TRIG
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_TRIG(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_TDE) == (TIM_DIER_TDE)) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup TIM_LL_EF_EVENT_Management EVENT-Management
* @{
*/
/**
* @brief Generate an update event.
* @rmtoll EGR UG LL_TIM_GenerateEvent_UPDATE
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_GenerateEvent_UPDATE(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->EGR, TIM_EGR_UG);
}
/**
* @brief Generate Capture/Compare 1 event.
* @rmtoll EGR CC1G LL_TIM_GenerateEvent_CC1
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_GenerateEvent_CC1(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->EGR, TIM_EGR_CC1G);
}
/**
* @brief Generate Capture/Compare 2 event.
* @rmtoll EGR CC2G LL_TIM_GenerateEvent_CC2
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_GenerateEvent_CC2(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->EGR, TIM_EGR_CC2G);
}
/**
* @brief Generate Capture/Compare 3 event.
* @rmtoll EGR CC3G LL_TIM_GenerateEvent_CC3
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_GenerateEvent_CC3(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->EGR, TIM_EGR_CC3G);
}
/**
* @brief Generate Capture/Compare 4 event.
* @rmtoll EGR CC4G LL_TIM_GenerateEvent_CC4
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_GenerateEvent_CC4(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->EGR, TIM_EGR_CC4G);
}
/**
* @brief Generate commutation event.
* @rmtoll EGR COMG LL_TIM_GenerateEvent_COM
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_GenerateEvent_COM(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->EGR, TIM_EGR_COMG);
}
/**
* @brief Generate trigger event.
* @rmtoll EGR TG LL_TIM_GenerateEvent_TRIG
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_GenerateEvent_TRIG(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->EGR, TIM_EGR_TG);
}
/**
* @brief Generate break event.
* @rmtoll EGR BG LL_TIM_GenerateEvent_BRK
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_GenerateEvent_BRK(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->EGR, TIM_EGR_BG);
}
/**
* @brief Generate break 2 event.
* @rmtoll EGR B2G LL_TIM_GenerateEvent_BRK2
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_GenerateEvent_BRK2(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->EGR, TIM_EGR_B2G);
}
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup TIM_LL_EF_Init Initialisation and deinitialisation functions
* @{
*/
ErrorStatus LL_TIM_DeInit(TIM_TypeDef *TIMx);
void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct);
ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, const LL_TIM_InitTypeDef *TIM_InitStruct);
void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct);
ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct);
void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct);
void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct);
ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, const LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct);
void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct);
ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, const LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct);
void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct);
ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, const LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct);
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/**
* @}
*/
/**
* @}
*/
#endif /* TIM1 || TIM2 || TIM3 || TIM4 || TIM5 || TIM6 || TIM7 || TIM8 || TIM12 || TIM13 ||TIM14 || TIM15 || TIM16 || TIM17 || TIM23 || TIM24 */
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32H7xx_LL_TIM_H */