2023-03-05 15:36:10 +01:00
/**
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* @ file stm32h7xx_ll_tim . h
* @ author MCD Application Team
* @ brief Header file of TIM LL module .
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* @ attention
*
* Copyright ( c ) 2017 STMicroelectronics .
* All rights reserved .
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component .
* If no LICENSE file comes with this software , it is provided AS - IS .
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
*/
/* Define to prevent recursive inclusion -------------------------------------*/
# ifndef __STM32H7xx_LL_TIM_H
# define __STM32H7xx_LL_TIM_H
# ifdef __cplusplus
extern " C " {
# endif
/* Includes ------------------------------------------------------------------*/
# include "stm32h7xx.h"
/** @addtogroup STM32H7xx_LL_Driver
* @ {
*/
# if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM4) || defined (TIM5) || defined (TIM6) || defined (TIM7) || defined (TIM8) || defined (TIM12) || defined (TIM13) || defined (TIM14) || defined (TIM15) || defined (TIM16) || defined (TIM17) || defined (TIM23) || defined (TIM24)
/** @defgroup TIM_LL TIM
* @ {
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/** @defgroup TIM_LL_Private_Variables TIM Private Variables
* @ {
*/
static const uint8_t OFFSET_TAB_CCMRx [ ] =
{
0x00U , /* 0: TIMx_CH1 */
0x00U , /* 1: TIMx_CH1N */
0x00U , /* 2: TIMx_CH2 */
0x00U , /* 3: TIMx_CH2N */
0x04U , /* 4: TIMx_CH3 */
0x04U , /* 5: TIMx_CH3N */
0x04U , /* 6: TIMx_CH4 */
0x3CU , /* 7: TIMx_CH5 */
0x3CU /* 8: TIMx_CH6 */
} ;
static const uint8_t SHIFT_TAB_OCxx [ ] =
{
0U , /* 0: OC1M, OC1FE, OC1PE */
0U , /* 1: - NA */
8U , /* 2: OC2M, OC2FE, OC2PE */
0U , /* 3: - NA */
0U , /* 4: OC3M, OC3FE, OC3PE */
0U , /* 5: - NA */
8U , /* 6: OC4M, OC4FE, OC4PE */
0U , /* 7: OC5M, OC5FE, OC5PE */
8U /* 8: OC6M, OC6FE, OC6PE */
} ;
static const uint8_t SHIFT_TAB_ICxx [ ] =
{
0U , /* 0: CC1S, IC1PSC, IC1F */
0U , /* 1: - NA */
8U , /* 2: CC2S, IC2PSC, IC2F */
0U , /* 3: - NA */
0U , /* 4: CC3S, IC3PSC, IC3F */
0U , /* 5: - NA */
8U , /* 6: CC4S, IC4PSC, IC4F */
0U , /* 7: - NA */
0U /* 8: - NA */
} ;
static const uint8_t SHIFT_TAB_CCxP [ ] =
{
0U , /* 0: CC1P */
2U , /* 1: CC1NP */
4U , /* 2: CC2P */
6U , /* 3: CC2NP */
8U , /* 4: CC3P */
10U , /* 5: CC3NP */
12U , /* 6: CC4P */
16U , /* 7: CC5P */
20U /* 8: CC6P */
} ;
static const uint8_t SHIFT_TAB_OISx [ ] =
{
0U , /* 0: OIS1 */
1U , /* 1: OIS1N */
2U , /* 2: OIS2 */
3U , /* 3: OIS2N */
4U , /* 4: OIS3 */
5U , /* 5: OIS3N */
6U , /* 6: OIS4 */
8U , /* 7: OIS5 */
10U /* 8: OIS6 */
} ;
/**
* @ }
*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup TIM_LL_Private_Constants TIM Private Constants
* @ {
*/
# if defined(TIM_BREAK_INPUT_SUPPORT)
/* Defines used for the bit position in the register and perform offsets */
# define TIM_POSITION_BRK_SOURCE (POSITION_VAL(Source) & 0x1FUL)
/* Generic bit definitions for TIMx_AF1 register */
# define TIMx_AF1_BKINP TIM1_AF1_BKINP /*!< BRK BKIN input polarity */
# define TIMx_AF1_ETRSEL TIM1_AF1_ETRSEL /*!< TIMx ETR source selection */
# endif /* TIM_BREAK_INPUT_SUPPORT */
/* Mask used to set the TDG[x:0] of the DTG bits of the TIMx_BDTR register */
# define DT_DELAY_1 ((uint8_t)0x7F)
# define DT_DELAY_2 ((uint8_t)0x3F)
# define DT_DELAY_3 ((uint8_t)0x1F)
# define DT_DELAY_4 ((uint8_t)0x1F)
/* Mask used to set the DTG[7:5] bits of the DTG bits of the TIMx_BDTR register */
# define DT_RANGE_1 ((uint8_t)0x00)
# define DT_RANGE_2 ((uint8_t)0x80)
# define DT_RANGE_3 ((uint8_t)0xC0)
# define DT_RANGE_4 ((uint8_t)0xE0)
/**
* @ }
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup TIM_LL_Private_Macros TIM Private Macros
* @ {
*/
/** @brief Convert channel id into channel index.
* @ param __CHANNEL__ This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CHANNEL_CH1
* @ arg @ ref LL_TIM_CHANNEL_CH1N
* @ arg @ ref LL_TIM_CHANNEL_CH2
* @ arg @ ref LL_TIM_CHANNEL_CH2N
* @ arg @ ref LL_TIM_CHANNEL_CH3
* @ arg @ ref LL_TIM_CHANNEL_CH3N
* @ arg @ ref LL_TIM_CHANNEL_CH4
* @ arg @ ref LL_TIM_CHANNEL_CH5
* @ arg @ ref LL_TIM_CHANNEL_CH6
* @ retval none
*/
# define TIM_GET_CHANNEL_INDEX( __CHANNEL__) \
( ( ( __CHANNEL__ ) = = LL_TIM_CHANNEL_CH1 ) ? 0U : \
( ( __CHANNEL__ ) = = LL_TIM_CHANNEL_CH1N ) ? 1U : \
( ( __CHANNEL__ ) = = LL_TIM_CHANNEL_CH2 ) ? 2U : \
( ( __CHANNEL__ ) = = LL_TIM_CHANNEL_CH2N ) ? 3U : \
( ( __CHANNEL__ ) = = LL_TIM_CHANNEL_CH3 ) ? 4U : \
( ( __CHANNEL__ ) = = LL_TIM_CHANNEL_CH3N ) ? 5U : \
( ( __CHANNEL__ ) = = LL_TIM_CHANNEL_CH4 ) ? 6U : \
( ( __CHANNEL__ ) = = LL_TIM_CHANNEL_CH5 ) ? 7U : 8U )
/** @brief Calculate the deadtime sampling period(in ps).
* @ param __TIMCLK__ timer input clock frequency ( in Hz ) .
* @ param __CKD__ This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CLOCKDIVISION_DIV1
* @ arg @ ref LL_TIM_CLOCKDIVISION_DIV2
* @ arg @ ref LL_TIM_CLOCKDIVISION_DIV4
* @ retval none
*/
# define TIM_CALC_DTS(__TIMCLK__, __CKD__) \
( ( ( __CKD__ ) = = LL_TIM_CLOCKDIVISION_DIV1 ) ? ( ( uint64_t ) 1000000000000U / ( __TIMCLK__ ) ) : \
( ( __CKD__ ) = = LL_TIM_CLOCKDIVISION_DIV2 ) ? ( ( uint64_t ) 1000000000000U / ( ( __TIMCLK__ ) > > 1U ) ) : \
( ( uint64_t ) 1000000000000U / ( ( __TIMCLK__ ) > > 2U ) ) )
/**
* @ }
*/
/* Exported types ------------------------------------------------------------*/
# if defined(USE_FULL_LL_DRIVER)
/** @defgroup TIM_LL_ES_INIT TIM Exported Init structure
* @ {
*/
/**
* @ brief TIM Time Base configuration structure definition .
*/
typedef struct
{
uint16_t Prescaler ; /*!< Specifies the prescaler value used to divide the TIM clock.
This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF .
This feature can be modified afterwards using unitary function
@ ref LL_TIM_SetPrescaler ( ) . */
uint32_t CounterMode ; /*!< Specifies the counter mode.
This parameter can be a value of @ ref TIM_LL_EC_COUNTERMODE .
This feature can be modified afterwards using unitary function
@ ref LL_TIM_SetCounterMode ( ) . */
uint32_t Autoreload ; /*!< Specifies the auto reload value to be loaded into the active
Auto - Reload Register at the next update event .
This parameter must be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF .
Some timer instances may support 32 bits counters . In that case this parameter must
be a number between 0x0000 and 0xFFFFFFFF .
This feature can be modified afterwards using unitary function
@ ref LL_TIM_SetAutoReload ( ) . */
uint32_t ClockDivision ; /*!< Specifies the clock division.
This parameter can be a value of @ ref TIM_LL_EC_CLOCKDIVISION .
This feature can be modified afterwards using unitary function
@ ref LL_TIM_SetClockDivision ( ) . */
uint32_t RepetitionCounter ; /*!< Specifies the repetition counter value. Each time the RCR downcounter
reaches zero , an update event is generated and counting restarts
from the RCR value ( N ) .
This means in PWM mode that ( N + 1 ) corresponds to :
- the number of PWM periods in edge - aligned mode
- the number of half PWM period in center - aligned mode
GP timers : this parameter must be a number between Min_Data = 0x00 and
Max_Data = 0xFF .
Advanced timers : this parameter must be a number between Min_Data = 0x0000 and
Max_Data = 0xFFFF .
This feature can be modified afterwards using unitary function
@ ref LL_TIM_SetRepetitionCounter ( ) . */
} LL_TIM_InitTypeDef ;
/**
* @ brief TIM Output Compare configuration structure definition .
*/
typedef struct
{
uint32_t OCMode ; /*!< Specifies the output mode.
This parameter can be a value of @ ref TIM_LL_EC_OCMODE .
This feature can be modified afterwards using unitary function
@ ref LL_TIM_OC_SetMode ( ) . */
uint32_t OCState ; /*!< Specifies the TIM Output Compare state.
This parameter can be a value of @ ref TIM_LL_EC_OCSTATE .
This feature can be modified afterwards using unitary functions
@ ref LL_TIM_CC_EnableChannel ( ) or @ ref LL_TIM_CC_DisableChannel ( ) . */
uint32_t OCNState ; /*!< Specifies the TIM complementary Output Compare state.
This parameter can be a value of @ ref TIM_LL_EC_OCSTATE .
This feature can be modified afterwards using unitary functions
@ ref LL_TIM_CC_EnableChannel ( ) or @ ref LL_TIM_CC_DisableChannel ( ) . */
uint32_t CompareValue ; /*!< Specifies the Compare value to be loaded into the Capture Compare Register.
This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF .
This feature can be modified afterwards using unitary function
LL_TIM_OC_SetCompareCHx ( x = 1. .6 ) . */
uint32_t OCPolarity ; /*!< Specifies the output polarity.
This parameter can be a value of @ ref TIM_LL_EC_OCPOLARITY .
This feature can be modified afterwards using unitary function
@ ref LL_TIM_OC_SetPolarity ( ) . */
uint32_t OCNPolarity ; /*!< Specifies the complementary output polarity.
This parameter can be a value of @ ref TIM_LL_EC_OCPOLARITY .
This feature can be modified afterwards using unitary function
@ ref LL_TIM_OC_SetPolarity ( ) . */
uint32_t OCIdleState ; /*!< Specifies the TIM Output Compare pin state during Idle state.
This parameter can be a value of @ ref TIM_LL_EC_OCIDLESTATE .
This feature can be modified afterwards using unitary function
@ ref LL_TIM_OC_SetIdleState ( ) . */
uint32_t OCNIdleState ; /*!< Specifies the TIM Output Compare pin state during Idle state.
This parameter can be a value of @ ref TIM_LL_EC_OCIDLESTATE .
This feature can be modified afterwards using unitary function
@ ref LL_TIM_OC_SetIdleState ( ) . */
} LL_TIM_OC_InitTypeDef ;
/**
* @ brief TIM Input Capture configuration structure definition .
*/
typedef struct
{
uint32_t ICPolarity ; /*!< Specifies the active edge of the input signal.
This parameter can be a value of @ ref TIM_LL_EC_IC_POLARITY .
This feature can be modified afterwards using unitary function
@ ref LL_TIM_IC_SetPolarity ( ) . */
uint32_t ICActiveInput ; /*!< Specifies the input.
This parameter can be a value of @ ref TIM_LL_EC_ACTIVEINPUT .
This feature can be modified afterwards using unitary function
@ ref LL_TIM_IC_SetActiveInput ( ) . */
uint32_t ICPrescaler ; /*!< Specifies the Input Capture Prescaler.
This parameter can be a value of @ ref TIM_LL_EC_ICPSC .
This feature can be modified afterwards using unitary function
@ ref LL_TIM_IC_SetPrescaler ( ) . */
uint32_t ICFilter ; /*!< Specifies the input capture filter.
This parameter can be a value of @ ref TIM_LL_EC_IC_FILTER .
This feature can be modified afterwards using unitary function
@ ref LL_TIM_IC_SetFilter ( ) . */
} LL_TIM_IC_InitTypeDef ;
/**
* @ brief TIM Encoder interface configuration structure definition .
*/
typedef struct
{
uint32_t EncoderMode ; /*!< Specifies the encoder resolution (x2 or x4).
This parameter can be a value of @ ref TIM_LL_EC_ENCODERMODE .
This feature can be modified afterwards using unitary function
@ ref LL_TIM_SetEncoderMode ( ) . */
uint32_t IC1Polarity ; /*!< Specifies the active edge of TI1 input.
This parameter can be a value of @ ref TIM_LL_EC_IC_POLARITY .
This feature can be modified afterwards using unitary function
@ ref LL_TIM_IC_SetPolarity ( ) . */
uint32_t IC1ActiveInput ; /*!< Specifies the TI1 input source
This parameter can be a value of @ ref TIM_LL_EC_ACTIVEINPUT .
This feature can be modified afterwards using unitary function
@ ref LL_TIM_IC_SetActiveInput ( ) . */
uint32_t IC1Prescaler ; /*!< Specifies the TI1 input prescaler value.
This parameter can be a value of @ ref TIM_LL_EC_ICPSC .
This feature can be modified afterwards using unitary function
@ ref LL_TIM_IC_SetPrescaler ( ) . */
uint32_t IC1Filter ; /*!< Specifies the TI1 input filter.
This parameter can be a value of @ ref TIM_LL_EC_IC_FILTER .
This feature can be modified afterwards using unitary function
@ ref LL_TIM_IC_SetFilter ( ) . */
uint32_t IC2Polarity ; /*!< Specifies the active edge of TI2 input.
This parameter can be a value of @ ref TIM_LL_EC_IC_POLARITY .
This feature can be modified afterwards using unitary function
@ ref LL_TIM_IC_SetPolarity ( ) . */
uint32_t IC2ActiveInput ; /*!< Specifies the TI2 input source
This parameter can be a value of @ ref TIM_LL_EC_ACTIVEINPUT .
This feature can be modified afterwards using unitary function
@ ref LL_TIM_IC_SetActiveInput ( ) . */
uint32_t IC2Prescaler ; /*!< Specifies the TI2 input prescaler value.
This parameter can be a value of @ ref TIM_LL_EC_ICPSC .
This feature can be modified afterwards using unitary function
@ ref LL_TIM_IC_SetPrescaler ( ) . */
uint32_t IC2Filter ; /*!< Specifies the TI2 input filter.
This parameter can be a value of @ ref TIM_LL_EC_IC_FILTER .
This feature can be modified afterwards using unitary function
@ ref LL_TIM_IC_SetFilter ( ) . */
} LL_TIM_ENCODER_InitTypeDef ;
/**
* @ brief TIM Hall sensor interface configuration structure definition .
*/
typedef struct
{
uint32_t IC1Polarity ; /*!< Specifies the active edge of TI1 input.
This parameter can be a value of @ ref TIM_LL_EC_IC_POLARITY .
This feature can be modified afterwards using unitary function
@ ref LL_TIM_IC_SetPolarity ( ) . */
uint32_t IC1Prescaler ; /*!< Specifies the TI1 input prescaler value.
Prescaler must be set to get a maximum counter period longer than the
time interval between 2 consecutive changes on the Hall inputs .
This parameter can be a value of @ ref TIM_LL_EC_ICPSC .
This feature can be modified afterwards using unitary function
@ ref LL_TIM_IC_SetPrescaler ( ) . */
uint32_t IC1Filter ; /*!< Specifies the TI1 input filter.
This parameter can be a value of
@ ref TIM_LL_EC_IC_FILTER .
This feature can be modified afterwards using unitary function
@ ref LL_TIM_IC_SetFilter ( ) . */
uint32_t CommutationDelay ; /*!< Specifies the compare value to be loaded into the Capture Compare Register.
A positive pulse ( TRGO event ) is generated with a programmable delay every time
a change occurs on the Hall inputs .
This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF .
This feature can be modified afterwards using unitary function
@ ref LL_TIM_OC_SetCompareCH2 ( ) . */
} LL_TIM_HALLSENSOR_InitTypeDef ;
/**
* @ brief BDTR ( Break and Dead Time ) structure definition
*/
typedef struct
{
uint32_t OSSRState ; /*!< Specifies the Off-State selection used in Run mode.
This parameter can be a value of @ ref TIM_LL_EC_OSSR
This feature can be modified afterwards using unitary function
@ ref LL_TIM_SetOffStates ( )
@ note This bit - field cannot be modified as long as LOCK level 2 has been
programmed . */
uint32_t OSSIState ; /*!< Specifies the Off-State used in Idle state.
This parameter can be a value of @ ref TIM_LL_EC_OSSI
This feature can be modified afterwards using unitary function
@ ref LL_TIM_SetOffStates ( )
@ note This bit - field cannot be modified as long as LOCK level 2 has been
programmed . */
uint32_t LockLevel ; /*!< Specifies the LOCK level parameters.
This parameter can be a value of @ ref TIM_LL_EC_LOCKLEVEL
@ note The LOCK bits can be written only once after the reset . Once the TIMx_BDTR
register has been written , their content is frozen until the next reset . */
uint8_t DeadTime ; /*!< Specifies the delay time between the switching-off and the
switching - on of the outputs .
This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF .
This feature can be modified afterwards using unitary function
@ ref LL_TIM_OC_SetDeadTime ( )
@ note This bit - field can not be modified as long as LOCK level 1 , 2 or 3 has been
programmed . */
uint16_t BreakState ; /*!< Specifies whether the TIM Break input is enabled or not.
This parameter can be a value of @ ref TIM_LL_EC_BREAK_ENABLE
This feature can be modified afterwards using unitary functions
@ ref LL_TIM_EnableBRK ( ) or @ ref LL_TIM_DisableBRK ( )
@ note This bit - field can not be modified as long as LOCK level 1 has been
programmed . */
uint32_t BreakPolarity ; /*!< Specifies the TIM Break Input pin polarity.
This parameter can be a value of @ ref TIM_LL_EC_BREAK_POLARITY
This feature can be modified afterwards using unitary function
@ ref LL_TIM_ConfigBRK ( )
@ note This bit - field can not be modified as long as LOCK level 1 has been
programmed . */
uint32_t BreakFilter ; /*!< Specifies the TIM Break Filter.
This parameter can be a value of @ ref TIM_LL_EC_BREAK_FILTER
This feature can be modified afterwards using unitary function
@ ref LL_TIM_ConfigBRK ( )
@ note This bit - field can not be modified as long as LOCK level 1 has been
programmed . */
# if defined(TIM_BDTR_BKBID)
uint32_t BreakAFMode ; /*!< Specifies the alternate function mode of the break input.
This parameter can be a value of @ ref TIM_LL_EC_BREAK_AFMODE
This feature can be modified afterwards using unitary functions
@ ref LL_TIM_ConfigBRK ( )
@ note Bidirectional break input is only supported by advanced timers instances .
@ note This bit - field can not be modified as long as LOCK level 1 has been
programmed . */
# endif /*TIM_BDTR_BKBID */
uint32_t Break2State ; /*!< Specifies whether the TIM Break2 input is enabled or not.
This parameter can be a value of @ ref TIM_LL_EC_BREAK2_ENABLE
This feature can be modified afterwards using unitary functions
@ ref LL_TIM_EnableBRK2 ( ) or @ ref LL_TIM_DisableBRK2 ( )
@ note This bit - field can not be modified as long as LOCK level 1 has been
programmed . */
uint32_t Break2Polarity ; /*!< Specifies the TIM Break2 Input pin polarity.
This parameter can be a value of @ ref TIM_LL_EC_BREAK2_POLARITY
This feature can be modified afterwards using unitary function
@ ref LL_TIM_ConfigBRK2 ( )
@ note This bit - field can not be modified as long as LOCK level 1 has been
programmed . */
uint32_t Break2Filter ; /*!< Specifies the TIM Break2 Filter.
This parameter can be a value of @ ref TIM_LL_EC_BREAK2_FILTER
This feature can be modified afterwards using unitary function
@ ref LL_TIM_ConfigBRK2 ( )
@ note This bit - field can not be modified as long as LOCK level 1 has been
programmed . */
# if defined(TIM_BDTR_BKBID)
uint32_t Break2AFMode ; /*!< Specifies the alternate function mode of the break2 input.
This parameter can be a value of @ ref TIM_LL_EC_BREAK2_AFMODE
This feature can be modified afterwards using unitary functions
@ ref LL_TIM_ConfigBRK2 ( )
@ note Bidirectional break input is only supported by advanced timers instances .
@ note This bit - field can not be modified as long as LOCK level 1 has been
programmed . */
# endif /*TIM_BDTR_BKBID */
uint32_t AutomaticOutput ; /*!< Specifies whether the TIM Automatic Output feature is enabled or not.
This parameter can be a value of @ ref TIM_LL_EC_AUTOMATICOUTPUT_ENABLE
This feature can be modified afterwards using unitary functions
@ ref LL_TIM_EnableAutomaticOutput ( ) or @ ref LL_TIM_DisableAutomaticOutput ( )
@ note This bit - field can not be modified as long as LOCK level 1 has been
programmed . */
} LL_TIM_BDTR_InitTypeDef ;
/**
* @ }
*/
# endif /* USE_FULL_LL_DRIVER */
/* Exported constants --------------------------------------------------------*/
/** @defgroup TIM_LL_Exported_Constants TIM Exported Constants
* @ {
*/
/** @defgroup TIM_LL_EC_GET_FLAG Get Flags Defines
* @ brief Flags defines which can be used with LL_TIM_ReadReg function .
* @ {
*/
# define LL_TIM_SR_UIF TIM_SR_UIF /*!< Update interrupt flag */
# define LL_TIM_SR_CC1IF TIM_SR_CC1IF /*!< Capture/compare 1 interrupt flag */
# define LL_TIM_SR_CC2IF TIM_SR_CC2IF /*!< Capture/compare 2 interrupt flag */
# define LL_TIM_SR_CC3IF TIM_SR_CC3IF /*!< Capture/compare 3 interrupt flag */
# define LL_TIM_SR_CC4IF TIM_SR_CC4IF /*!< Capture/compare 4 interrupt flag */
# define LL_TIM_SR_CC5IF TIM_SR_CC5IF /*!< Capture/compare 5 interrupt flag */
# define LL_TIM_SR_CC6IF TIM_SR_CC6IF /*!< Capture/compare 6 interrupt flag */
# define LL_TIM_SR_COMIF TIM_SR_COMIF /*!< COM interrupt flag */
# define LL_TIM_SR_TIF TIM_SR_TIF /*!< Trigger interrupt flag */
# define LL_TIM_SR_BIF TIM_SR_BIF /*!< Break interrupt flag */
# define LL_TIM_SR_B2IF TIM_SR_B2IF /*!< Second break interrupt flag */
# define LL_TIM_SR_CC1OF TIM_SR_CC1OF /*!< Capture/Compare 1 overcapture flag */
# define LL_TIM_SR_CC2OF TIM_SR_CC2OF /*!< Capture/Compare 2 overcapture flag */
# define LL_TIM_SR_CC3OF TIM_SR_CC3OF /*!< Capture/Compare 3 overcapture flag */
# define LL_TIM_SR_CC4OF TIM_SR_CC4OF /*!< Capture/Compare 4 overcapture flag */
# define LL_TIM_SR_SBIF TIM_SR_SBIF /*!< System Break interrupt flag */
/**
* @ }
*/
# if defined(USE_FULL_LL_DRIVER)
/** @defgroup TIM_LL_EC_BREAK_ENABLE Break Enable
* @ {
*/
# define LL_TIM_BREAK_DISABLE 0x00000000U /*!< Break function disabled */
# define LL_TIM_BREAK_ENABLE TIM_BDTR_BKE /*!< Break function enabled */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_BREAK2_ENABLE Break2 Enable
* @ {
*/
# define LL_TIM_BREAK2_DISABLE 0x00000000U /*!< Break2 function disabled */
# define LL_TIM_BREAK2_ENABLE TIM_BDTR_BK2E /*!< Break2 function enabled */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_AUTOMATICOUTPUT_ENABLE Automatic output enable
* @ {
*/
# define LL_TIM_AUTOMATICOUTPUT_DISABLE 0x00000000U /*!< MOE can be set only by software */
# define LL_TIM_AUTOMATICOUTPUT_ENABLE TIM_BDTR_AOE /*!< MOE can be set by software or automatically at the next update event */
/**
* @ }
*/
# endif /* USE_FULL_LL_DRIVER */
/** @defgroup TIM_LL_EC_IT IT Defines
* @ brief IT defines which can be used with LL_TIM_ReadReg and LL_TIM_WriteReg functions .
* @ {
*/
# define LL_TIM_DIER_UIE TIM_DIER_UIE /*!< Update interrupt enable */
# define LL_TIM_DIER_CC1IE TIM_DIER_CC1IE /*!< Capture/compare 1 interrupt enable */
# define LL_TIM_DIER_CC2IE TIM_DIER_CC2IE /*!< Capture/compare 2 interrupt enable */
# define LL_TIM_DIER_CC3IE TIM_DIER_CC3IE /*!< Capture/compare 3 interrupt enable */
# define LL_TIM_DIER_CC4IE TIM_DIER_CC4IE /*!< Capture/compare 4 interrupt enable */
# define LL_TIM_DIER_COMIE TIM_DIER_COMIE /*!< COM interrupt enable */
# define LL_TIM_DIER_TIE TIM_DIER_TIE /*!< Trigger interrupt enable */
# define LL_TIM_DIER_BIE TIM_DIER_BIE /*!< Break interrupt enable */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_UPDATESOURCE Update Source
* @ {
*/
# define LL_TIM_UPDATESOURCE_REGULAR 0x00000000U /*!< Counter overflow/underflow, Setting the UG bit or Update generation through the slave mode controller generates an update request */
# define LL_TIM_UPDATESOURCE_COUNTER TIM_CR1_URS /*!< Only counter overflow/underflow generates an update request */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_ONEPULSEMODE One Pulse Mode
* @ {
*/
# define LL_TIM_ONEPULSEMODE_SINGLE TIM_CR1_OPM /*!< Counter stops counting at the next update event */
# define LL_TIM_ONEPULSEMODE_REPETITIVE 0x00000000U /*!< Counter is not stopped at update event */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_COUNTERMODE Counter Mode
* @ {
*/
# define LL_TIM_COUNTERMODE_UP 0x00000000U /*!<Counter used as upcounter */
# define LL_TIM_COUNTERMODE_DOWN TIM_CR1_DIR /*!< Counter used as downcounter */
# define LL_TIM_COUNTERMODE_CENTER_DOWN TIM_CR1_CMS_0 /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels are set only when the counter is counting down. */
# define LL_TIM_COUNTERMODE_CENTER_UP TIM_CR1_CMS_1 /*!<The counter counts up and down alternatively. Output compare interrupt flags of output channels are set only when the counter is counting up */
# define LL_TIM_COUNTERMODE_CENTER_UP_DOWN TIM_CR1_CMS /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels are set only when the counter is counting up or down. */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_CLOCKDIVISION Clock Division
* @ {
*/
# define LL_TIM_CLOCKDIVISION_DIV1 0x00000000U /*!< tDTS=tCK_INT */
# define LL_TIM_CLOCKDIVISION_DIV2 TIM_CR1_CKD_0 /*!< tDTS=2*tCK_INT */
# define LL_TIM_CLOCKDIVISION_DIV4 TIM_CR1_CKD_1 /*!< tDTS=4*tCK_INT */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_COUNTERDIRECTION Counter Direction
* @ {
*/
# define LL_TIM_COUNTERDIRECTION_UP 0x00000000U /*!< Timer counter counts up */
# define LL_TIM_COUNTERDIRECTION_DOWN TIM_CR1_DIR /*!< Timer counter counts down */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_CCUPDATESOURCE Capture Compare Update Source
* @ {
*/
# define LL_TIM_CCUPDATESOURCE_COMG_ONLY 0x00000000U /*!< Capture/compare control bits are updated by setting the COMG bit only */
# define LL_TIM_CCUPDATESOURCE_COMG_AND_TRGI TIM_CR2_CCUS /*!< Capture/compare control bits are updated by setting the COMG bit or when a rising edge occurs on trigger input (TRGI) */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_CCDMAREQUEST Capture Compare DMA Request
* @ {
*/
# define LL_TIM_CCDMAREQUEST_CC 0x00000000U /*!< CCx DMA request sent when CCx event occurs */
# define LL_TIM_CCDMAREQUEST_UPDATE TIM_CR2_CCDS /*!< CCx DMA requests sent when update event occurs */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_LOCKLEVEL Lock Level
* @ {
*/
# define LL_TIM_LOCKLEVEL_OFF 0x00000000U /*!< LOCK OFF - No bit is write protected */
# define LL_TIM_LOCKLEVEL_1 TIM_BDTR_LOCK_0 /*!< LOCK Level 1 */
# define LL_TIM_LOCKLEVEL_2 TIM_BDTR_LOCK_1 /*!< LOCK Level 2 */
# define LL_TIM_LOCKLEVEL_3 TIM_BDTR_LOCK /*!< LOCK Level 3 */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_CHANNEL Channel
* @ {
*/
# define LL_TIM_CHANNEL_CH1 TIM_CCER_CC1E /*!< Timer input/output channel 1 */
# define LL_TIM_CHANNEL_CH1N TIM_CCER_CC1NE /*!< Timer complementary output channel 1 */
# define LL_TIM_CHANNEL_CH2 TIM_CCER_CC2E /*!< Timer input/output channel 2 */
# define LL_TIM_CHANNEL_CH2N TIM_CCER_CC2NE /*!< Timer complementary output channel 2 */
# define LL_TIM_CHANNEL_CH3 TIM_CCER_CC3E /*!< Timer input/output channel 3 */
# define LL_TIM_CHANNEL_CH3N TIM_CCER_CC3NE /*!< Timer complementary output channel 3 */
# define LL_TIM_CHANNEL_CH4 TIM_CCER_CC4E /*!< Timer input/output channel 4 */
# define LL_TIM_CHANNEL_CH5 TIM_CCER_CC5E /*!< Timer output channel 5 */
# define LL_TIM_CHANNEL_CH6 TIM_CCER_CC6E /*!< Timer output channel 6 */
/**
* @ }
*/
# if defined(USE_FULL_LL_DRIVER)
/** @defgroup TIM_LL_EC_OCSTATE Output Configuration State
* @ {
*/
# define LL_TIM_OCSTATE_DISABLE 0x00000000U /*!< OCx is not active */
# define LL_TIM_OCSTATE_ENABLE TIM_CCER_CC1E /*!< OCx signal is output on the corresponding output pin */
/**
* @ }
*/
# endif /* USE_FULL_LL_DRIVER */
/** @defgroup TIM_LL_EC_OCMODE Output Configuration Mode
* @ {
*/
# define LL_TIM_OCMODE_FROZEN 0x00000000U /*!<The comparison between the output compare register TIMx_CCRy and the counter TIMx_CNT has no effect on the output channel level */
# define LL_TIM_OCMODE_ACTIVE TIM_CCMR1_OC1M_0 /*!<OCyREF is forced high on compare match*/
# define LL_TIM_OCMODE_INACTIVE TIM_CCMR1_OC1M_1 /*!<OCyREF is forced low on compare match*/
# define LL_TIM_OCMODE_TOGGLE (TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0) /*!<OCyREF toggles on compare match*/
# define LL_TIM_OCMODE_FORCED_INACTIVE TIM_CCMR1_OC1M_2 /*!<OCyREF is forced low*/
# define LL_TIM_OCMODE_FORCED_ACTIVE (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_0) /*!<OCyREF is forced high*/
# define LL_TIM_OCMODE_PWM1 (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1) /*!<In upcounting, channel y is active as long as TIMx_CNT<TIMx_CCRy else inactive. In downcounting, channel y is inactive as long as TIMx_CNT>TIMx_CCRy else active.*/
# define LL_TIM_OCMODE_PWM2 (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0) /*!<In upcounting, channel y is inactive as long as TIMx_CNT<TIMx_CCRy else active. In downcounting, channel y is active as long as TIMx_CNT>TIMx_CCRy else inactive*/
# define LL_TIM_OCMODE_RETRIG_OPM1 TIM_CCMR1_OC1M_3 /*!<Retrigerrable OPM mode 1*/
# define LL_TIM_OCMODE_RETRIG_OPM2 (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_0) /*!<Retrigerrable OPM mode 2*/
# define LL_TIM_OCMODE_COMBINED_PWM1 (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_2) /*!<Combined PWM mode 1*/
# define LL_TIM_OCMODE_COMBINED_PWM2 (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_0 | TIM_CCMR1_OC1M_2) /*!<Combined PWM mode 2*/
# define LL_TIM_OCMODE_ASSYMETRIC_PWM1 (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_2) /*!<Asymmetric PWM mode 1*/
# define LL_TIM_OCMODE_ASSYMETRIC_PWM2 (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M) /*!<Asymmetric PWM mode 2*/
/**
* @ }
*/
/** @defgroup TIM_LL_EC_OCPOLARITY Output Configuration Polarity
* @ {
*/
# define LL_TIM_OCPOLARITY_HIGH 0x00000000U /*!< OCxactive high*/
# define LL_TIM_OCPOLARITY_LOW TIM_CCER_CC1P /*!< OCxactive low*/
/**
* @ }
*/
/** @defgroup TIM_LL_EC_OCIDLESTATE Output Configuration Idle State
* @ {
*/
# define LL_TIM_OCIDLESTATE_LOW 0x00000000U /*!<OCx=0 (after a dead-time if OC is implemented) when MOE=0*/
# define LL_TIM_OCIDLESTATE_HIGH TIM_CR2_OIS1 /*!<OCx=1 (after a dead-time if OC is implemented) when MOE=0*/
/**
* @ }
*/
/** @defgroup TIM_LL_EC_GROUPCH5 GROUPCH5
* @ {
*/
# define LL_TIM_GROUPCH5_NONE 0x00000000U /*!< No effect of OC5REF on OC1REFC, OC2REFC and OC3REFC */
# define LL_TIM_GROUPCH5_OC1REFC TIM_CCR5_GC5C1 /*!< OC1REFC is the logical AND of OC1REFC and OC5REF */
# define LL_TIM_GROUPCH5_OC2REFC TIM_CCR5_GC5C2 /*!< OC2REFC is the logical AND of OC2REFC and OC5REF */
# define LL_TIM_GROUPCH5_OC3REFC TIM_CCR5_GC5C3 /*!< OC3REFC is the logical AND of OC3REFC and OC5REF */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_ACTIVEINPUT Active Input Selection
* @ {
*/
# define LL_TIM_ACTIVEINPUT_DIRECTTI (TIM_CCMR1_CC1S_0 << 16U) /*!< ICx is mapped on TIx */
# define LL_TIM_ACTIVEINPUT_INDIRECTTI (TIM_CCMR1_CC1S_1 << 16U) /*!< ICx is mapped on TIy */
# define LL_TIM_ACTIVEINPUT_TRC (TIM_CCMR1_CC1S << 16U) /*!< ICx is mapped on TRC */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_ICPSC Input Configuration Prescaler
* @ {
*/
# define LL_TIM_ICPSC_DIV1 0x00000000U /*!< No prescaler, capture is done each time an edge is detected on the capture input */
# define LL_TIM_ICPSC_DIV2 (TIM_CCMR1_IC1PSC_0 << 16U) /*!< Capture is done once every 2 events */
# define LL_TIM_ICPSC_DIV4 (TIM_CCMR1_IC1PSC_1 << 16U) /*!< Capture is done once every 4 events */
# define LL_TIM_ICPSC_DIV8 (TIM_CCMR1_IC1PSC << 16U) /*!< Capture is done once every 8 events */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_IC_FILTER Input Configuration Filter
* @ {
*/
# define LL_TIM_IC_FILTER_FDIV1 0x00000000U /*!< No filter, sampling is done at fDTS */
# define LL_TIM_IC_FILTER_FDIV1_N2 (TIM_CCMR1_IC1F_0 << 16U) /*!< fSAMPLING=fCK_INT, N=2 */
# define LL_TIM_IC_FILTER_FDIV1_N4 (TIM_CCMR1_IC1F_1 << 16U) /*!< fSAMPLING=fCK_INT, N=4 */
# define LL_TIM_IC_FILTER_FDIV1_N8 ((TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fCK_INT, N=8 */
# define LL_TIM_IC_FILTER_FDIV2_N6 (TIM_CCMR1_IC1F_2 << 16U) /*!< fSAMPLING=fDTS/2, N=6 */
# define LL_TIM_IC_FILTER_FDIV2_N8 ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fDTS/2, N=8 */
# define LL_TIM_IC_FILTER_FDIV4_N6 ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U) /*!< fSAMPLING=fDTS/4, N=6 */
# define LL_TIM_IC_FILTER_FDIV4_N8 ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fDTS/4, N=8 */
# define LL_TIM_IC_FILTER_FDIV8_N6 (TIM_CCMR1_IC1F_3 << 16U) /*!< fSAMPLING=fDTS/8, N=6 */
# define LL_TIM_IC_FILTER_FDIV8_N8 ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fDTS/8, N=8 */
# define LL_TIM_IC_FILTER_FDIV16_N5 ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1) << 16U) /*!< fSAMPLING=fDTS/16, N=5 */
# define LL_TIM_IC_FILTER_FDIV16_N6 ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fDTS/16, N=6 */
# define LL_TIM_IC_FILTER_FDIV16_N8 ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2) << 16U) /*!< fSAMPLING=fDTS/16, N=8 */
# define LL_TIM_IC_FILTER_FDIV32_N5 ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fDTS/32, N=5 */
# define LL_TIM_IC_FILTER_FDIV32_N6 ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U) /*!< fSAMPLING=fDTS/32, N=6 */
# define LL_TIM_IC_FILTER_FDIV32_N8 (TIM_CCMR1_IC1F << 16U) /*!< fSAMPLING=fDTS/32, N=8 */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_IC_POLARITY Input Configuration Polarity
* @ {
*/
# define LL_TIM_IC_POLARITY_RISING 0x00000000U /*!< The circuit is sensitive to TIxFP1 rising edge, TIxFP1 is not inverted */
# define LL_TIM_IC_POLARITY_FALLING TIM_CCER_CC1P /*!< The circuit is sensitive to TIxFP1 falling edge, TIxFP1 is inverted */
# define LL_TIM_IC_POLARITY_BOTHEDGE (TIM_CCER_CC1P | TIM_CCER_CC1NP) /*!< The circuit is sensitive to both TIxFP1 rising and falling edges, TIxFP1 is not inverted */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_CLOCKSOURCE Clock Source
* @ {
*/
# define LL_TIM_CLOCKSOURCE_INTERNAL 0x00000000U /*!< The timer is clocked by the internal clock provided from the RCC */
# define LL_TIM_CLOCKSOURCE_EXT_MODE1 (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0) /*!< Counter counts at each rising or falling edge on a selected input*/
# define LL_TIM_CLOCKSOURCE_EXT_MODE2 TIM_SMCR_ECE /*!< Counter counts at each rising or falling edge on the external trigger input ETR */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_ENCODERMODE Encoder Mode
* @ {
*/
# define LL_TIM_ENCODERMODE_X2_TI1 TIM_SMCR_SMS_0 /*!< Quadrature encoder mode 1, x2 mode - Counter counts up/down on TI1FP1 edge depending on TI2FP2 level */
# define LL_TIM_ENCODERMODE_X2_TI2 TIM_SMCR_SMS_1 /*!< Quadrature encoder mode 2, x2 mode - Counter counts up/down on TI2FP2 edge depending on TI1FP1 level */
# define LL_TIM_ENCODERMODE_X4_TI12 (TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0) /*!< Quadrature encoder mode 3, x4 mode - Counter counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_TRGO Trigger Output
* @ {
*/
# define LL_TIM_TRGO_RESET 0x00000000U /*!< UG bit from the TIMx_EGR register is used as trigger output */
# define LL_TIM_TRGO_ENABLE TIM_CR2_MMS_0 /*!< Counter Enable signal (CNT_EN) is used as trigger output */
# define LL_TIM_TRGO_UPDATE TIM_CR2_MMS_1 /*!< Update event is used as trigger output */
# define LL_TIM_TRGO_CC1IF (TIM_CR2_MMS_1 | TIM_CR2_MMS_0) /*!< CC1 capture or a compare match is used as trigger output */
# define LL_TIM_TRGO_OC1REF TIM_CR2_MMS_2 /*!< OC1REF signal is used as trigger output */
# define LL_TIM_TRGO_OC2REF (TIM_CR2_MMS_2 | TIM_CR2_MMS_0) /*!< OC2REF signal is used as trigger output */
# define LL_TIM_TRGO_OC3REF (TIM_CR2_MMS_2 | TIM_CR2_MMS_1) /*!< OC3REF signal is used as trigger output */
# define LL_TIM_TRGO_OC4REF (TIM_CR2_MMS_2 | TIM_CR2_MMS_1 | TIM_CR2_MMS_0) /*!< OC4REF signal is used as trigger output */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_TRGO2 Trigger Output 2
* @ {
*/
# define LL_TIM_TRGO2_RESET 0x00000000U /*!< UG bit from the TIMx_EGR register is used as trigger output 2 */
# define LL_TIM_TRGO2_ENABLE TIM_CR2_MMS2_0 /*!< Counter Enable signal (CNT_EN) is used as trigger output 2 */
# define LL_TIM_TRGO2_UPDATE TIM_CR2_MMS2_1 /*!< Update event is used as trigger output 2 */
# define LL_TIM_TRGO2_CC1F (TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0) /*!< CC1 capture or a compare match is used as trigger output 2 */
# define LL_TIM_TRGO2_OC1 TIM_CR2_MMS2_2 /*!< OC1REF signal is used as trigger output 2 */
# define LL_TIM_TRGO2_OC2 (TIM_CR2_MMS2_2 | TIM_CR2_MMS2_0) /*!< OC2REF signal is used as trigger output 2 */
# define LL_TIM_TRGO2_OC3 (TIM_CR2_MMS2_2 | TIM_CR2_MMS2_1) /*!< OC3REF signal is used as trigger output 2 */
# define LL_TIM_TRGO2_OC4 (TIM_CR2_MMS2_2 | TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0) /*!< OC4REF signal is used as trigger output 2 */
# define LL_TIM_TRGO2_OC5 TIM_CR2_MMS2_3 /*!< OC5REF signal is used as trigger output 2 */
# define LL_TIM_TRGO2_OC6 (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_0) /*!< OC6REF signal is used as trigger output 2 */
# define LL_TIM_TRGO2_OC4_RISINGFALLING (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_1) /*!< OC4REF rising or falling edges are used as trigger output 2 */
# define LL_TIM_TRGO2_OC6_RISINGFALLING (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0) /*!< OC6REF rising or falling edges are used as trigger output 2 */
# define LL_TIM_TRGO2_OC4_RISING_OC6_RISING (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2) /*!< OC4REF or OC6REF rising edges are used as trigger output 2 */
# define LL_TIM_TRGO2_OC4_RISING_OC6_FALLING (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2 | TIM_CR2_MMS2_0) /*!< OC4REF rising or OC6REF falling edges are used as trigger output 2 */
# define LL_TIM_TRGO2_OC5_RISING_OC6_RISING (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2 |TIM_CR2_MMS2_1) /*!< OC5REF or OC6REF rising edges are used as trigger output 2 */
# define LL_TIM_TRGO2_OC5_RISING_OC6_FALLING (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2 | TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0) /*!< OC5REF rising or OC6REF falling edges are used as trigger output 2 */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_SLAVEMODE Slave Mode
* @ {
*/
# define LL_TIM_SLAVEMODE_DISABLED 0x00000000U /*!< Slave mode disabled */
# define LL_TIM_SLAVEMODE_RESET TIM_SMCR_SMS_2 /*!< Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter */
# define LL_TIM_SLAVEMODE_GATED (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_0) /*!< Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high */
# define LL_TIM_SLAVEMODE_TRIGGER (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1) /*!< Trigger Mode - The counter starts at a rising edge of the trigger TRGI */
# define LL_TIM_SLAVEMODE_COMBINED_RESETTRIGGER TIM_SMCR_SMS_3 /*!< Combined reset + trigger mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter, generates an update of the registers and starts the counter */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_TS Trigger Selection
* @ {
*/
# define LL_TIM_TS_ITR0 0x00000000U /*!< Internal Trigger 0 (ITR0) is used as trigger input */
# define LL_TIM_TS_ITR1 TIM_SMCR_TS_0 /*!< Internal Trigger 1 (ITR1) is used as trigger input */
# define LL_TIM_TS_ITR2 TIM_SMCR_TS_1 /*!< Internal Trigger 2 (ITR2) is used as trigger input */
# define LL_TIM_TS_ITR3 (TIM_SMCR_TS_0 | TIM_SMCR_TS_1) /*!< Internal Trigger 3 (ITR3) is used as trigger input */
# define LL_TIM_TS_ITR4 (TIM_SMCR_TS_3) /*!< Internal Trigger 4 (ITR4) is used as trigger input */
# define LL_TIM_TS_ITR5 (TIM_SMCR_TS_0 | TIM_SMCR_TS_3) /*!< Internal Trigger 5 (ITR5) is used as trigger input */
# define LL_TIM_TS_ITR6 (TIM_SMCR_TS_1 | TIM_SMCR_TS_3) /*!< Internal Trigger 6 (ITR6) is used as trigger input */
# define LL_TIM_TS_ITR7 (TIM_SMCR_TS_0 | TIM_SMCR_TS_1 | TIM_SMCR_TS_3) /*!< Internal Trigger 7 (ITR7) is used as trigger input */
# define LL_TIM_TS_ITR8 (TIM_SMCR_TS_2 | TIM_SMCR_TS_3) /*!< Internal Trigger 8 (ITR8) is used as trigger input */
# define LL_TIM_TS_ITR9 (TIM_SMCR_TS_0 | TIM_SMCR_TS_2 | TIM_SMCR_TS_3) /*!< Internal Trigger 9 (ITR9) is used as trigger input */
# define LL_TIM_TS_ITR10 (TIM_SMCR_TS_1 | TIM_SMCR_TS_2 | TIM_SMCR_TS_3) /*!< Internal Trigger 10 (ITR10) is used as trigger input */
# define LL_TIM_TS_ITR11 (TIM_SMCR_TS_0 | TIM_SMCR_TS_1 | TIM_SMCR_TS_2 | TIM_SMCR_TS_3) /*!< Internal Trigger 11 (ITR11) is used as trigger input */
# define LL_TIM_TS_ITR12 (TIM_SMCR_TS_4) /*!< Internal Trigger 12 (ITR12) is used as trigger input */
# define LL_TIM_TS_ITR13 (TIM_SMCR_TS_0 | TIM_SMCR_TS_4) /*!< Internal Trigger 13 (ITR13) is used as trigger input */
# define LL_TIM_TS_TI1F_ED TIM_SMCR_TS_2 /*!< TI1 Edge Detector (TI1F_ED) is used as trigger input */
# define LL_TIM_TS_TI1FP1 (TIM_SMCR_TS_2 | TIM_SMCR_TS_0) /*!< Filtered Timer Input 1 (TI1FP1) is used as trigger input */
# define LL_TIM_TS_TI2FP2 (TIM_SMCR_TS_2 | TIM_SMCR_TS_1) /*!< Filtered Timer Input 2 (TI12P2) is used as trigger input */
# define LL_TIM_TS_ETRF (TIM_SMCR_TS_2 | TIM_SMCR_TS_1 | TIM_SMCR_TS_0) /*!< Filtered external Trigger (ETRF) is used as trigger input */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_ETR_POLARITY External Trigger Polarity
* @ {
*/
# define LL_TIM_ETR_POLARITY_NONINVERTED 0x00000000U /*!< ETR is non-inverted, active at high level or rising edge */
# define LL_TIM_ETR_POLARITY_INVERTED TIM_SMCR_ETP /*!< ETR is inverted, active at low level or falling edge */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_ETR_PRESCALER External Trigger Prescaler
* @ {
*/
# define LL_TIM_ETR_PRESCALER_DIV1 0x00000000U /*!< ETR prescaler OFF */
# define LL_TIM_ETR_PRESCALER_DIV2 TIM_SMCR_ETPS_0 /*!< ETR frequency is divided by 2 */
# define LL_TIM_ETR_PRESCALER_DIV4 TIM_SMCR_ETPS_1 /*!< ETR frequency is divided by 4 */
# define LL_TIM_ETR_PRESCALER_DIV8 TIM_SMCR_ETPS /*!< ETR frequency is divided by 8 */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_ETR_FILTER External Trigger Filter
* @ {
*/
# define LL_TIM_ETR_FILTER_FDIV1 0x00000000U /*!< No filter, sampling is done at fDTS */
# define LL_TIM_ETR_FILTER_FDIV1_N2 TIM_SMCR_ETF_0 /*!< fSAMPLING=fCK_INT, N=2 */
# define LL_TIM_ETR_FILTER_FDIV1_N4 TIM_SMCR_ETF_1 /*!< fSAMPLING=fCK_INT, N=4 */
# define LL_TIM_ETR_FILTER_FDIV1_N8 (TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fCK_INT, N=8 */
# define LL_TIM_ETR_FILTER_FDIV2_N6 TIM_SMCR_ETF_2 /*!< fSAMPLING=fDTS/2, N=6 */
# define LL_TIM_ETR_FILTER_FDIV2_N8 (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/2, N=8 */
# define LL_TIM_ETR_FILTER_FDIV4_N6 (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1) /*!< fSAMPLING=fDTS/4, N=6 */
# define LL_TIM_ETR_FILTER_FDIV4_N8 (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/4, N=8 */
# define LL_TIM_ETR_FILTER_FDIV8_N6 TIM_SMCR_ETF_3 /*!< fSAMPLING=fDTS/8, N=8 */
# define LL_TIM_ETR_FILTER_FDIV8_N8 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/16, N=5 */
# define LL_TIM_ETR_FILTER_FDIV16_N5 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1) /*!< fSAMPLING=fDTS/16, N=6 */
# define LL_TIM_ETR_FILTER_FDIV16_N6 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/16, N=8 */
# define LL_TIM_ETR_FILTER_FDIV16_N8 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2) /*!< fSAMPLING=fDTS/16, N=5 */
# define LL_TIM_ETR_FILTER_FDIV32_N5 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/32, N=5 */
# define LL_TIM_ETR_FILTER_FDIV32_N6 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1) /*!< fSAMPLING=fDTS/32, N=6 */
# define LL_TIM_ETR_FILTER_FDIV32_N8 TIM_SMCR_ETF /*!< fSAMPLING=fDTS/32, N=8 */
/**
* @ }
*/
2023-03-05 21:24:12 +01:00
# define LL_TIM_TIM1_ETRSOURCE_GPIO 0x00000000U /*!< TIM1_ETR is connected to GPIO */
# define LL_TIM_TIM1_ETRSOURCE_COMP1 TIM1_AF1_ETRSEL_0 /*!< TIM1_ETR is connected to COMP1 OUT */
# define LL_TIM_TIM1_ETRSOURCE_COMP2 TIM1_AF1_ETRSEL_1 /*!< TIM1_ETR is connected to COMP2 OUT */
# define LL_TIM_TIM1_ETRSOURCE_ADC1_AWD1 (TIM1_AF1_ETRSEL_1 | TIM1_AF1_ETRSEL_0) /*!< TIM1_ETR is connected to ADC1 AWD1 */
# define LL_TIM_TIM1_ETRSOURCE_ADC1_AWD2 (TIM1_AF1_ETRSEL_2) /*!< TIM1_ETR is connected to ADC1 AWD2 */
# define LL_TIM_TIM1_ETRSOURCE_ADC1_AWD3 (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_0) /*!< TIM1_ETR is connected to ADC1 AWD3 */
# define LL_TIM_TIM1_ETRSOURCE_ADC3_AWD1 (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1) /*!< TIM1_ETR is connected to ADC3 AWD1 */
# define LL_TIM_TIM1_ETRSOURCE_ADC3_AWD2 (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1 | TIM1_AF1_ETRSEL_0) /*!< TIM1_ETR is connected to ADC3 AWD2 */
# define LL_TIM_TIM1_ETRSOURCE_ADC3_AWD3 TIM1_AF1_ETRSEL_3 /*!< TIM1_ETR is connected to ADC3 AWD3 */
# define LL_TIM_TIM8_ETRSOURCE_GPIO 0x00000000U /*!< TIM8_ETR is connected to GPIO */
# define LL_TIM_TIM8_ETRSOURCE_COMP1 TIM8_AF1_ETRSEL_0 /*!< TIM8_ETR is connected to COMP1 OUT */
# define LL_TIM_TIM8_ETRSOURCE_COMP2 TIM8_AF1_ETRSEL_1 /*!< TIM8_ETR is connected to COMP2 OUT */
# define LL_TIM_TIM8_ETRSOURCE_ADC2_AWD1 (TIM8_AF1_ETRSEL_1 | TIM8_AF1_ETRSEL_0) /*!< TIM8_ETR is connected to ADC2 AWD1 */
# define LL_TIM_TIM8_ETRSOURCE_ADC2_AWD2 (TIM8_AF1_ETRSEL_2) /*!< TIM8_ETR is connected to ADC2 AWD2 */
# define LL_TIM_TIM8_ETRSOURCE_ADC2_AWD3 (TIM8_AF1_ETRSEL_2 | TIM8_AF1_ETRSEL_0) /*!< TIM8_ETR is connected to ADC2 AWD3 */
# define LL_TIM_TIM8_ETRSOURCE_ADC3_AWD1 (TIM8_AF1_ETRSEL_2 | TIM8_AF1_ETRSEL_1) /*!< TIM8_ETR is connected to ADC3 AWD1 */
# define LL_TIM_TIM8_ETRSOURCE_ADC3_AWD2 (TIM8_AF1_ETRSEL_2 | TIM8_AF1_ETRSEL_1 | TIM8_AF1_ETRSEL_0) /*!< TIM8_ETR is connected to ADC3 AWD2 */
# define LL_TIM_TIM8_ETRSOURCE_ADC3_AWD3 TIM8_AF1_ETRSEL_3 /*!< TIM8_ETR is connected to ADC3 AWD3 */
# define LL_TIM_TIM2_ETRSOURCE_GPIO 0x00000000U /*!< TIM2_ETR is connected to GPIO */
# define LL_TIM_TIM2_ETRSOURCE_COMP1 (TIM2_AF1_ETRSEL_0) /*!< TIM2_ETR is connected to COMP1 OUT */
# define LL_TIM_TIM2_ETRSOURCE_COMP2 (TIM2_AF1_ETRSEL_1) /*!< TIM2_ETR is connected to COMP2 OUT */
# define LL_TIM_TIM2_ETRSOURCE_RCC_LSE (TIM2_AF1_ETRSEL_1 | TIM8_AF1_ETRSEL_0) /*!< TIM2_ETR is connected to RCC LSE */
# define LL_TIM_TIM2_ETRSOURCE_SAI1_FSA TIM2_AF1_ETRSEL_2 /*!< TIM2_ETR is connected to SAI1 FS_A */
# define LL_TIM_TIM2_ETRSOURCE_SAI1_FSB (TIM2_AF1_ETRSEL_2 | TIM8_AF1_ETRSEL_0) /*!< TIM2_ETR is connected to SAI1 FS_B */
# define LL_TIM_TIM3_ETRSOURCE_GPIO 0x00000000U /*!< TIM3_ETR is connected to GPIO */
# define LL_TIM_TIM3_ETRSOURCE_COMP1 TIM3_AF1_ETRSEL_0 /*!< TIM3_ETR is connected to COMP1 OUT */
# define LL_TIM_TIM5_ETRSOURCE_GPIO 0x00000000U /*!< TIM5_ETR is connected to GPIO */
# define LL_TIM_TIM5_ETRSOURCE_SAI2_FSA TIM5_AF1_ETRSEL_0 /*!< TIM5_ETR is connected to SAI2 FS_A */
# define LL_TIM_TIM5_ETRSOURCE_SAI2_FSB TIM5_AF1_ETRSEL_1 /*!< TIM5_ETR is connected to SAI2 FS_B */
# define LL_TIM_TIM5_ETRSOURCE_SAI4_FSA TIM5_AF1_ETRSEL_0 /*!< TIM5_ETR is connected to SAI4 FS_A */
# define LL_TIM_TIM5_ETRSOURCE_SAI4_FSB TIM5_AF1_ETRSEL_1 /*!< TIM5_ETR is connected to SAI4 FS_B */
# define LL_TIM_TIM23_ETRSOURCE_GPIO 0x00000000U /*!< TIM23_ETR is connected to GPIO */
# define LL_TIM_TIM23_ETRSOURCE_COMP1 (TIM2_AF1_ETRSEL_0) /*!< TIM23_ETR is connected to COMP1 OUT */
# define LL_TIM_TIM23_ETRSOURCE_COMP2 (TIM2_AF1_ETRSEL_1) /*!< TIM23_ETR is connected to COMP2 OUT */
# define LL_TIM_TIM24_ETRSOURCE_GPIO 0x00000000U /*!< TIM24_ETR is connected to GPIO */
# define LL_TIM_TIM24_ETRSOURCE_SAI4_FSA TIM5_AF1_ETRSEL_0 /*!< TIM24_ETR is connected to SAI4 FS_A */
# define LL_TIM_TIM24_ETRSOURCE_SAI4_FSB TIM5_AF1_ETRSEL_1 /*!< TIM24_ETR is connected to SAI4 FS_B */
# define LL_TIM_TIM24_ETRSOURCE_SAI1_FSA (TIM2_AF1_ETRSEL_1 | TIM8_AF1_ETRSEL_0) /*!< TIM24_ETR is connected to SAI1 FS_A */
# define LL_TIM_TIM24_ETRSOURCE_SAI1_FSB TIM2_AF1_ETRSEL_2 /*!< TIM24_ETR is connected to SAI1 FS_B */
2023-03-05 15:36:10 +01:00
/** @defgroup TIM_LL_EC_BREAK_POLARITY break polarity
* @ {
*/
# define LL_TIM_BREAK_POLARITY_LOW 0x00000000U /*!< Break input BRK is active low */
# define LL_TIM_BREAK_POLARITY_HIGH TIM_BDTR_BKP /*!< Break input BRK is active high */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_BREAK_FILTER break filter
* @ {
*/
# define LL_TIM_BREAK_FILTER_FDIV1 0x00000000U /*!< No filter, BRK acts asynchronously */
# define LL_TIM_BREAK_FILTER_FDIV1_N2 0x00010000U /*!< fSAMPLING=fCK_INT, N=2 */
# define LL_TIM_BREAK_FILTER_FDIV1_N4 0x00020000U /*!< fSAMPLING=fCK_INT, N=4 */
# define LL_TIM_BREAK_FILTER_FDIV1_N8 0x00030000U /*!< fSAMPLING=fCK_INT, N=8 */
# define LL_TIM_BREAK_FILTER_FDIV2_N6 0x00040000U /*!< fSAMPLING=fDTS/2, N=6 */
# define LL_TIM_BREAK_FILTER_FDIV2_N8 0x00050000U /*!< fSAMPLING=fDTS/2, N=8 */
# define LL_TIM_BREAK_FILTER_FDIV4_N6 0x00060000U /*!< fSAMPLING=fDTS/4, N=6 */
# define LL_TIM_BREAK_FILTER_FDIV4_N8 0x00070000U /*!< fSAMPLING=fDTS/4, N=8 */
# define LL_TIM_BREAK_FILTER_FDIV8_N6 0x00080000U /*!< fSAMPLING=fDTS/8, N=6 */
# define LL_TIM_BREAK_FILTER_FDIV8_N8 0x00090000U /*!< fSAMPLING=fDTS/8, N=8 */
# define LL_TIM_BREAK_FILTER_FDIV16_N5 0x000A0000U /*!< fSAMPLING=fDTS/16, N=5 */
# define LL_TIM_BREAK_FILTER_FDIV16_N6 0x000B0000U /*!< fSAMPLING=fDTS/16, N=6 */
# define LL_TIM_BREAK_FILTER_FDIV16_N8 0x000C0000U /*!< fSAMPLING=fDTS/16, N=8 */
# define LL_TIM_BREAK_FILTER_FDIV32_N5 0x000D0000U /*!< fSAMPLING=fDTS/32, N=5 */
# define LL_TIM_BREAK_FILTER_FDIV32_N6 0x000E0000U /*!< fSAMPLING=fDTS/32, N=6 */
# define LL_TIM_BREAK_FILTER_FDIV32_N8 0x000F0000U /*!< fSAMPLING=fDTS/32, N=8 */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_BREAK2_POLARITY BREAK2 POLARITY
* @ {
*/
# define LL_TIM_BREAK2_POLARITY_LOW 0x00000000U /*!< Break input BRK2 is active low */
# define LL_TIM_BREAK2_POLARITY_HIGH TIM_BDTR_BK2P /*!< Break input BRK2 is active high */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_BREAK2_FILTER BREAK2 FILTER
* @ {
*/
# define LL_TIM_BREAK2_FILTER_FDIV1 0x00000000U /*!< No filter, BRK acts asynchronously */
# define LL_TIM_BREAK2_FILTER_FDIV1_N2 0x00100000U /*!< fSAMPLING=fCK_INT, N=2 */
# define LL_TIM_BREAK2_FILTER_FDIV1_N4 0x00200000U /*!< fSAMPLING=fCK_INT, N=4 */
# define LL_TIM_BREAK2_FILTER_FDIV1_N8 0x00300000U /*!< fSAMPLING=fCK_INT, N=8 */
# define LL_TIM_BREAK2_FILTER_FDIV2_N6 0x00400000U /*!< fSAMPLING=fDTS/2, N=6 */
# define LL_TIM_BREAK2_FILTER_FDIV2_N8 0x00500000U /*!< fSAMPLING=fDTS/2, N=8 */
# define LL_TIM_BREAK2_FILTER_FDIV4_N6 0x00600000U /*!< fSAMPLING=fDTS/4, N=6 */
# define LL_TIM_BREAK2_FILTER_FDIV4_N8 0x00700000U /*!< fSAMPLING=fDTS/4, N=8 */
# define LL_TIM_BREAK2_FILTER_FDIV8_N6 0x00800000U /*!< fSAMPLING=fDTS/8, N=6 */
# define LL_TIM_BREAK2_FILTER_FDIV8_N8 0x00900000U /*!< fSAMPLING=fDTS/8, N=8 */
# define LL_TIM_BREAK2_FILTER_FDIV16_N5 0x00A00000U /*!< fSAMPLING=fDTS/16, N=5 */
# define LL_TIM_BREAK2_FILTER_FDIV16_N6 0x00B00000U /*!< fSAMPLING=fDTS/16, N=6 */
# define LL_TIM_BREAK2_FILTER_FDIV16_N8 0x00C00000U /*!< fSAMPLING=fDTS/16, N=8 */
# define LL_TIM_BREAK2_FILTER_FDIV32_N5 0x00D00000U /*!< fSAMPLING=fDTS/32, N=5 */
# define LL_TIM_BREAK2_FILTER_FDIV32_N6 0x00E00000U /*!< fSAMPLING=fDTS/32, N=6 */
# define LL_TIM_BREAK2_FILTER_FDIV32_N8 0x00F00000U /*!< fSAMPLING=fDTS/32, N=8 */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_OSSI OSSI
* @ {
*/
# define LL_TIM_OSSI_DISABLE 0x00000000U /*!< When inactive, OCx/OCxN outputs are disabled */
# define LL_TIM_OSSI_ENABLE TIM_BDTR_OSSI /*!< When inactive, OxC/OCxN outputs are first forced with their inactive level then forced to their idle level after the deadtime */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_OSSR OSSR
* @ {
*/
# define LL_TIM_OSSR_DISABLE 0x00000000U /*!< When inactive, OCx/OCxN outputs are disabled */
# define LL_TIM_OSSR_ENABLE TIM_BDTR_OSSR /*!< When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1 or CCxNE=1 */
/**
* @ }
*/
# if defined(TIM_BREAK_INPUT_SUPPORT)
/** @defgroup TIM_LL_EC_BREAK_INPUT BREAK INPUT
* @ {
*/
# define LL_TIM_BREAK_INPUT_BKIN 0x00000000U /*!< TIMx_BKIN input */
# define LL_TIM_BREAK_INPUT_BKIN2 0x00000004U /*!< TIMx_BKIN2 input */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_BKIN_SOURCE BKIN SOURCE
* @ {
*/
# define LL_TIM_BKIN_SOURCE_BKIN TIM1_AF1_BKINE /*!< BKIN input from AF controller */
# define LL_TIM_BKIN_SOURCE_BKCOMP1 TIM1_AF1_BKCMP1E /*!< internal signal: COMP1 output */
# define LL_TIM_BKIN_SOURCE_BKCOMP2 TIM1_AF1_BKCMP2E /*!< internal signal: COMP2 output */
# define LL_TIM_BKIN_SOURCE_DF1BK TIM1_AF1_BKDF1BK0E /*!< internal signal: DFSDM1 break output */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_BKIN_POLARITY BKIN POLARITY
* @ {
*/
# define LL_TIM_BKIN_POLARITY_LOW TIM1_AF1_BKINP /*!< BRK BKIN input is active low */
# define LL_TIM_BKIN_POLARITY_HIGH 0x00000000U /*!< BRK BKIN input is active high */
/**
* @ }
*/
# endif /* TIM_BREAK_INPUT_SUPPORT */
# if defined(TIM_BDTR_BKBID)
/** @defgroup TIM_LL_EC_BREAK_AFMODE BREAK AF MODE
* @ {
*/
# define LL_TIM_BREAK_AFMODE_INPUT 0x00000000U /*!< Break input BRK in input mode */
# define LL_TIM_BREAK_AFMODE_BIDIRECTIONAL TIM_BDTR_BKBID /*!< Break input BRK in bidirectional mode */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_BREAK2_AFMODE BREAK2 AF MODE
* @ {
*/
# define LL_TIM_BREAK2_AFMODE_INPUT 0x00000000U /*!< Break2 input BRK2 in input mode */
# define LL_TIM_BREAK2_AFMODE_BIDIRECTIONAL TIM_BDTR_BK2BID /*!< Break2 input BRK2 in bidirectional mode */
/**
* @ }
*/
# endif /*TIM_BDTR_BKBID */
/** @defgroup TIM_LL_EC_DMABURST_BASEADDR DMA Burst Base Address
* @ {
*/
# define LL_TIM_DMABURST_BASEADDR_CR1 0x00000000U /*!< TIMx_CR1 register is the DMA base address for DMA burst */
# define LL_TIM_DMABURST_BASEADDR_CR2 TIM_DCR_DBA_0 /*!< TIMx_CR2 register is the DMA base address for DMA burst */
# define LL_TIM_DMABURST_BASEADDR_SMCR TIM_DCR_DBA_1 /*!< TIMx_SMCR register is the DMA base address for DMA burst */
# define LL_TIM_DMABURST_BASEADDR_DIER (TIM_DCR_DBA_1 | TIM_DCR_DBA_0) /*!< TIMx_DIER register is the DMA base address for DMA burst */
# define LL_TIM_DMABURST_BASEADDR_SR TIM_DCR_DBA_2 /*!< TIMx_SR register is the DMA base address for DMA burst */
# define LL_TIM_DMABURST_BASEADDR_EGR (TIM_DCR_DBA_2 | TIM_DCR_DBA_0) /*!< TIMx_EGR register is the DMA base address for DMA burst */
# define LL_TIM_DMABURST_BASEADDR_CCMR1 (TIM_DCR_DBA_2 | TIM_DCR_DBA_1) /*!< TIMx_CCMR1 register is the DMA base address for DMA burst */
# define LL_TIM_DMABURST_BASEADDR_CCMR2 (TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0) /*!< TIMx_CCMR2 register is the DMA base address for DMA burst */
# define LL_TIM_DMABURST_BASEADDR_CCER TIM_DCR_DBA_3 /*!< TIMx_CCER register is the DMA base address for DMA burst */
# define LL_TIM_DMABURST_BASEADDR_CNT (TIM_DCR_DBA_3 | TIM_DCR_DBA_0) /*!< TIMx_CNT register is the DMA base address for DMA burst */
# define LL_TIM_DMABURST_BASEADDR_PSC (TIM_DCR_DBA_3 | TIM_DCR_DBA_1) /*!< TIMx_PSC register is the DMA base address for DMA burst */
# define LL_TIM_DMABURST_BASEADDR_ARR (TIM_DCR_DBA_3 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0) /*!< TIMx_ARR register is the DMA base address for DMA burst */
# define LL_TIM_DMABURST_BASEADDR_RCR (TIM_DCR_DBA_3 | TIM_DCR_DBA_2) /*!< TIMx_RCR register is the DMA base address for DMA burst */
# define LL_TIM_DMABURST_BASEADDR_CCR1 (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_0) /*!< TIMx_CCR1 register is the DMA base address for DMA burst */
# define LL_TIM_DMABURST_BASEADDR_CCR2 (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1) /*!< TIMx_CCR2 register is the DMA base address for DMA burst */
# define LL_TIM_DMABURST_BASEADDR_CCR3 (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0) /*!< TIMx_CCR3 register is the DMA base address for DMA burst */
# define LL_TIM_DMABURST_BASEADDR_CCR4 TIM_DCR_DBA_4 /*!< TIMx_CCR4 register is the DMA base address for DMA burst */
# define LL_TIM_DMABURST_BASEADDR_BDTR (TIM_DCR_DBA_4 | TIM_DCR_DBA_0) /*!< TIMx_BDTR register is the DMA base address for DMA burst */
# define LL_TIM_DMABURST_BASEADDR_CCMR3 (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_0) /*!< TIMx_CCMR3 register is the DMA base address for DMA burst */
# define LL_TIM_DMABURST_BASEADDR_CCR5 (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1) /*!< TIMx_CCR5 register is the DMA base address for DMA burst */
# define LL_TIM_DMABURST_BASEADDR_CCR6 (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0) /*!< TIMx_CCR6 register is the DMA base address for DMA burst */
# if defined(TIM1_AF1_BKINE)&&defined(TIM1_AF2_BKINE)
# define LL_TIM_DMABURST_BASEADDR_AF1 (TIM_DCR_DBA_4 | TIM_DCR_DBA_3) /*!< TIMx_AF1 register is the DMA base address for DMA burst */
# define LL_TIM_DMABURST_BASEADDR_AF2 (TIM_DCR_DBA_4 | TIM_DCR_DBA_3 | TIM_DCR_DBA_0) /*!< TIMx_AF2 register is the DMA base address for DMA burst */
# endif /* TIM1_AF1_BKINE && TIM1_AF2_BKINE */
# define LL_TIM_DMABURST_BASEADDR_TISEL (TIM_DCR_DBA_4 | TIM_DCR_DBA_3 | TIM_DCR_DBA_1) /*!< TIMx_TISEL register is the DMA base address for DMA burst */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_DMABURST_LENGTH DMA Burst Length
* @ {
*/
# define LL_TIM_DMABURST_LENGTH_1TRANSFER 0x00000000U /*!< Transfer is done to 1 register starting from the DMA burst base address */
# define LL_TIM_DMABURST_LENGTH_2TRANSFERS TIM_DCR_DBL_0 /*!< Transfer is done to 2 registers starting from the DMA burst base address */
# define LL_TIM_DMABURST_LENGTH_3TRANSFERS TIM_DCR_DBL_1 /*!< Transfer is done to 3 registers starting from the DMA burst base address */
# define LL_TIM_DMABURST_LENGTH_4TRANSFERS (TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 4 registers starting from the DMA burst base address */
# define LL_TIM_DMABURST_LENGTH_5TRANSFERS TIM_DCR_DBL_2 /*!< Transfer is done to 5 registers starting from the DMA burst base address */
# define LL_TIM_DMABURST_LENGTH_6TRANSFERS (TIM_DCR_DBL_2 | TIM_DCR_DBL_0) /*!< Transfer is done to 6 registers starting from the DMA burst base address */
# define LL_TIM_DMABURST_LENGTH_7TRANSFERS (TIM_DCR_DBL_2 | TIM_DCR_DBL_1) /*!< Transfer is done to 7 registers starting from the DMA burst base address */
# define LL_TIM_DMABURST_LENGTH_8TRANSFERS (TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 1 registers starting from the DMA burst base address */
# define LL_TIM_DMABURST_LENGTH_9TRANSFERS TIM_DCR_DBL_3 /*!< Transfer is done to 9 registers starting from the DMA burst base address */
# define LL_TIM_DMABURST_LENGTH_10TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_0) /*!< Transfer is done to 10 registers starting from the DMA burst base address */
# define LL_TIM_DMABURST_LENGTH_11TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_1) /*!< Transfer is done to 11 registers starting from the DMA burst base address */
# define LL_TIM_DMABURST_LENGTH_12TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 12 registers starting from the DMA burst base address */
# define LL_TIM_DMABURST_LENGTH_13TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_2) /*!< Transfer is done to 13 registers starting from the DMA burst base address */
# define LL_TIM_DMABURST_LENGTH_14TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_0) /*!< Transfer is done to 14 registers starting from the DMA burst base address */
# define LL_TIM_DMABURST_LENGTH_15TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1) /*!< Transfer is done to 15 registers starting from the DMA burst base address */
# define LL_TIM_DMABURST_LENGTH_16TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 16 registers starting from the DMA burst base address */
# define LL_TIM_DMABURST_LENGTH_17TRANSFERS TIM_DCR_DBL_4 /*!< Transfer is done to 17 registers starting from the DMA burst base address */
# define LL_TIM_DMABURST_LENGTH_18TRANSFERS (TIM_DCR_DBL_4 | TIM_DCR_DBL_0) /*!< Transfer is done to 18 registers starting from the DMA burst base address */
/**
* @ }
*/
/** @defgroup TIM_LL_EC_TIM1_TI1_RMP TIM1 Timer Input Ch1 Remap
* @ {
*/
2023-03-05 21:24:12 +01:00
# define LL_TIM_TIM1_TI1_RMP_GPIO 0x00000000U /*!< TIM1 input 1 is connected to GPIO */
# define LL_TIM_TIM1_TI1_RMP_COMP1 TIM_TISEL_TI1SEL_0 /*!< TIM1 input 1 is connected to COMP1 OUT */
2023-03-05 15:36:10 +01:00
/**
* @ }
*/
/** @defgroup TIM_LL_EC_TIM8_TI1_RMP TIM8 Timer Input Ch1 Remap
* @ {
*/
2023-03-05 21:24:12 +01:00
# define LL_TIM_TIM8_TI1_RMP_GPIO 0x00000000U /*!< TIM8 input 1 is connected to GPIO */
# define LL_TIM_TIM8_TI1_RMP_COMP2 TIM_TISEL_TI1SEL_0 /*!< TIM8 input 1 is connected to COMP2 OUT */
2023-03-05 15:36:10 +01:00
/**
* @ }
*/
/** @defgroup TIM_LL_EC_TIM2_TI4_RMP TIM2 Timer Input Ch4 Remap
* @ {
*/
2023-03-05 21:24:12 +01:00
# define LL_TIM_TIM2_TI4_RMP_GPIO 0x00000000U /*!< TIM2 input 4 is connected to GPIO */
# define LL_TIM_TIM2_TI4_RMP_COMP1 TIM_TISEL_TI4SEL_0 /*!< TIM2 input 4 is connected to COMP1 OUT */
# define LL_TIM_TIM2_TI4_RMP_COMP2 TIM_TISEL_TI4SEL_1 /*!< TIM2 input 4 is connected to COMP2 OUT */
# define LL_TIM_TIM2_TI4_RMP_COMP1_COMP2 (TIM_TISEL_TI4SEL_0 | TIM_TISEL_TI4SEL_1) /*!< TIM2 input 4 is connected to COMP2 OUT OR COMP2 OUT */
2023-03-05 15:36:10 +01:00
/**
* @ }
*/
/** @defgroup TIM_LL_EC_TIM3_TI1_RMP TIM3 Timer Input Ch1 Remap
* @ {
*/
2023-03-05 21:24:12 +01:00
# define LL_TIM_TIM3_TI1_RMP_GPIO 0x00000000U /*!< TIM3 input 1 is connected to GPIO */
# define LL_TIM_TIM3_TI1_RMP_COMP1 TIM_TISEL_TI1SEL_0 /*!< TIM3 input 1 is connected to COMP1 OUT */
# define LL_TIM_TIM3_TI1_RMP_COMP2 TIM_TISEL_TI1SEL_1 /*!< TIM3 input 1 is connected to COMP2 OUT */
# define LL_TIM_TIM3_TI1_RMP_COMP1_COMP2 (TIM_TISEL_TI1SEL_0 | TIM_TISEL_TI1SEL_1) /*!< TIM3 input 1 is connected to COMP1 OUT or COMP2 OUT */
2023-03-05 15:36:10 +01:00
/**
* @ }
*/
/** @defgroup TIM_LL_EC_TIM5_TI1_RMP TIM5 Timer Input Ch1 Remap
* @ {
*/
2023-03-05 21:24:12 +01:00
# define LL_TIM_TIM5_TI1_RMP_GPIO 0x00000000U /*!< TIM5 input 1 is connected to GPIO */
# define LL_TIM_TIM5_TI1_RMP_CAN_TMP TIM_TISEL_TI1SEL_0 /*!< TIM5 input 1 is connected to CAN TMP */
# define LL_TIM_TIM5_TI1_RMP_CAN_RTP TIM_TISEL_TI1SEL_1 /*!< TIM5 input 1 is connected to CAN RTP */
2023-03-05 15:36:10 +01:00
/**
* @ }
*/
/** @defgroup TIM_LL_EC_TIM12_TI1_RMP TIM12 Timer Input Ch1 Remap
* @ {
*/
2023-03-05 21:24:12 +01:00
# define LL_TIM_TIM12_TI1_RMP_GPIO 0x00000000U /*!< TIM12 input 1 is connected to GPIO */
# define LL_TIM_TIM12_TI1_RMP_SPDIF_FS TIM_TISEL_TI1SEL_0 /*!< TIM12 input 1 is connected to SPDIF FS */
2023-03-05 15:36:10 +01:00
/**
* @ }
*/
/** @defgroup TIM_LL_EC_TIM15_TI1_RMP TIM15 Timer Input Ch1 Remap
* @ {
*/
2023-03-05 21:24:12 +01:00
# define LL_TIM_TIM15_TI1_RMP_GPIO 0x00000000U /*!< TIM15 input 1 is connected to GPIO */
# define LL_TIM_TIM15_TI1_RMP_TIM2_CH1 TIM_TISEL_TI1SEL_0 /*!< TIM15 input 1 is connected to TIM2 CH1 */
# define LL_TIM_TIM15_TI1_RMP_TIM3_CH1 TIM_TISEL_TI1SEL_1 /*!< TIM15 input 1 is connected to TIM3 CH1 */
# define LL_TIM_TIM15_TI1_RMP_TIM4_CH1 (TIM_TISEL_TI1SEL_0 | TIM_TISEL_TI1SEL_1) /*!< TIM15 input 1 is connected to TIM4 CH1 */
# define LL_TIM_TIM15_TI1_RMP_RCC_LSE (TIM_TISEL_TI1SEL_2) /*!< TIM15 input 1 is connected to RCC LSE */
# define LL_TIM_TIM15_TI1_RMP_RCC_CSI (TIM_TISEL_TI1SEL_2 | TIM_TISEL_TI1SEL_0) /*!< TIM15 input 1 is connected to RCC CSI */
# define LL_TIM_TIM15_TI1_RMP_RCC_MCO2 (TIM_TISEL_TI1SEL_2 | TIM_TISEL_TI1SEL_1) /*!< TIM15 input 1 is connected to RCC MCO2 */
2023-03-05 15:36:10 +01:00
/**
* @ }
*/
/** @defgroup TIM_LL_EC_TIM15_TI2_RMP TIM15 Timer Input Ch2 Remap
* @ {
*/
2023-03-05 21:24:12 +01:00
# define LL_TIM_TIM15_TI2_RMP_GPIO 0x00000000U /*!< TIM15 input 2 is connected to GPIO */
# define LL_TIM_TIM15_TI2_RMP_TIM2_CH2 (TIM_TISEL_TI2SEL_0) /*!< TIM15 input 2 is connected to TIM2 CH2 */
# define LL_TIM_TIM15_TI2_RMP_TIM3_CH2 (TIM_TISEL_TI2SEL_1) /*!< TIM15 input 2 is connected to TIM3 CH2 */
# define LL_TIM_TIM15_TI2_RMP_TIM4_CH2 (TIM_TISEL_TI2SEL_0 | TIM_TISEL_TI2SEL_1) /*!< TIM15 input 2 is connected to TIM4 CH2 */
2023-03-05 15:36:10 +01:00
/**
* @ }
*/
/** @defgroup TIM_LL_EC_TIM16_TI1_RMP TIM16 Timer Input Ch1 Remap
* @ {
*/
2023-03-05 21:24:12 +01:00
# define LL_TIM_TIM16_TI1_RMP_GPIO 0x00000000U /*!< TIM16 input 1 is connected to GPIO */
# define LL_TIM_TIM16_TI1_RMP_RCC_LSI TIM_TISEL_TI1SEL_0 /*!< TIM16 input 1 is connected to RCC LSI */
# define LL_TIM_TIM16_TI1_RMP_RCC_LSE TIM_TISEL_TI1SEL_1 /*!< TIM16 input 1 is connected to RCC LSE */
# define LL_TIM_TIM16_TI1_RMP_WKUP_IT (TIM_TISEL_TI1SEL_0 | TIM_TISEL_TI1SEL_1) /*!< TIM16 input 1 is connected to WKUP_IT */
2023-03-05 15:36:10 +01:00
/**
* @ }
*/
/** @defgroup TIM_LL_EC_TIM17_TI1_RMP TIM17 Timer Input Ch1 Remap
* @ {
*/
2023-03-05 21:24:12 +01:00
# define LL_TIM_TIM17_TI1_RMP_GPIO 0x00000000U /*!< TIM17 input 1 is connected to GPIO */
# define LL_TIM_TIM17_TI1_RMP_SPDIF_FS TIM_TISEL_TI1SEL_0 /*!< TIM17 input 1 is connected to SPDIF FS */
# define LL_TIM_TIM17_TI1_RMP_RCC_HSE1MHZ TIM_TISEL_TI1SEL_1 /*!< TIM17 input 1 is connected to RCC HSE 1Mhz */
# define LL_TIM_TIM17_TI1_RMP_RCC_MCO1 (TIM_TISEL_TI1SEL_0 | TIM_TISEL_TI1SEL_1) /*!< TIM17 input 1 is connected to RCC MCO1 */
2023-03-05 15:36:10 +01:00
/**
* @ }
*/
/** @defgroup TIM_LL_EC_TIM23_TI4_RMP TIM23 Timer Input Ch4 Remap
* @ {
*/
2023-03-05 21:24:12 +01:00
# define LL_TIM_TIM23_TI4_RMP_GPIO 0x00000000U /*!< TIM23 input 4 is connected to GPIO */
# define LL_TIM_TIM23_TI4_RMP_COMP1 TIM_TISEL_TI4SEL_0 /*!< TIM23 input 4 is connected to COMP1 OUT */
# define LL_TIM_TIM23_TI4_RMP_COMP2 TIM_TISEL_TI4SEL_1 /*!< TIM23 input 4 is connected to COMP2 OUT */
# define LL_TIM_TIM23_TI4_RMP_COMP1_COMP2 (TIM_TISEL_TI4SEL_0 | TIM_TISEL_TI4SEL_1) /*!< TIM23 input 4 is connected to COMP1 OUT or COMP2 OUT */
2023-03-05 15:36:10 +01:00
/**
* @ }
*/
/** @defgroup TIM_LL_EC_TIM24_TI1_RMP TIM24 Timer Input Ch1 Remap
* @ {
*/
2023-03-05 21:24:12 +01:00
# define LL_TIM_TIM24_TI1_RMP_GPIO 0x00000000U /*!< TIM24 input 1 is connected to GPIO */
# define LL_TIM_TIM24_TI1_RMP_CAN_TMP TIM_TISEL_TI1SEL_0 /*!< TIM24 input 1 is connected to CAN TMP */
# define LL_TIM_TIM24_TI1_RMP_CAN_RTP TIM_TISEL_TI1SEL_1 /*!< TIM24 input 1 is connected to CAN RTP */
# define LL_TIM_TIM24_TI1_RMP_CAN_SOC (TIM_TISEL_TI4SEL_0 | TIM_TISEL_TI4SEL_1) /*!< TIM24 input 1 is connected to CAN SOC */
2023-03-05 15:36:10 +01:00
# if defined(TIM_BREAK_INPUT_SUPPORT)
/** Legacy definitions for compatibility purpose
@ cond 0
*/
# define LL_TIM_BKIN_SOURCE_DFBK LL_TIM_BKIN_SOURCE_DF1BK
/**
@ endcond
*/
# endif /* TIM_BREAK_INPUT_SUPPORT */
/**
* @ }
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup TIM_LL_Exported_Macros TIM Exported Macros
* @ {
*/
/** @defgroup TIM_LL_EM_WRITE_READ Common Write and read registers Macros
* @ {
*/
/**
* @ brief Write a value in TIM register .
* @ param __INSTANCE__ TIM Instance
* @ param __REG__ Register to be written
* @ param __VALUE__ Value to be written in the register
* @ retval None
*/
# define LL_TIM_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG((__INSTANCE__)->__REG__, (__VALUE__))
/**
* @ brief Read a value in TIM register .
* @ param __INSTANCE__ TIM Instance
* @ param __REG__ Register to be read
* @ retval Register value
*/
# define LL_TIM_ReadReg(__INSTANCE__, __REG__) READ_REG((__INSTANCE__)->__REG__)
/**
* @ }
*/
/**
* @ brief HELPER macro retrieving the UIFCPY flag from the counter value .
* @ note ex : @ ref __LL_TIM_GETFLAG_UIFCPY ( @ ref LL_TIM_GetCounter ( ) ) ;
* @ note Relevant only if UIF flag remapping has been enabled ( UIF status bit is copied
* to TIMx_CNT register bit 31 )
* @ param __CNT__ Counter value
* @ retval UIF status bit
*/
# define __LL_TIM_GETFLAG_UIFCPY(__CNT__) \
( READ_BIT ( ( __CNT__ ) , TIM_CNT_UIFCPY ) > > TIM_CNT_UIFCPY_Pos )
/**
* @ brief HELPER macro calculating DTG [ 0 : 7 ] in the TIMx_BDTR register to achieve the requested dead time duration .
* @ note ex : @ ref __LL_TIM_CALC_DEADTIME ( 80000000 , @ ref LL_TIM_GetClockDivision ( ) , 120 ) ;
* @ param __TIMCLK__ timer input clock frequency ( in Hz )
* @ param __CKD__ This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CLOCKDIVISION_DIV1
* @ arg @ ref LL_TIM_CLOCKDIVISION_DIV2
* @ arg @ ref LL_TIM_CLOCKDIVISION_DIV4
* @ param __DT__ deadtime duration ( in ns )
* @ retval DTG [ 0 : 7 ]
*/
# define __LL_TIM_CALC_DEADTIME(__TIMCLK__, __CKD__, __DT__) \
( ( ( ( uint64_t ) ( ( __DT__ ) * 1000U ) ) < ( ( DT_DELAY_1 + 1U ) * TIM_CALC_DTS ( ( __TIMCLK__ ) , ( __CKD__ ) ) ) ) ? \
( uint8_t ) ( ( ( uint64_t ) ( ( __DT__ ) * 1000U ) / TIM_CALC_DTS ( ( __TIMCLK__ ) , ( __CKD__ ) ) ) & DT_DELAY_1 ) : \
( ( ( uint64_t ) ( ( __DT__ ) * 1000U ) ) < ( ( 64U + ( DT_DELAY_2 + 1U ) ) * 2U * TIM_CALC_DTS ( ( __TIMCLK__ ) , ( __CKD__ ) ) ) ) ? \
( uint8_t ) ( DT_RANGE_2 | ( ( uint8_t ) ( ( uint8_t ) ( ( ( ( uint64_t ) ( ( __DT__ ) * 1000U ) ) / TIM_CALC_DTS ( ( __TIMCLK__ ) , \
( __CKD__ ) ) ) > > 1U ) - ( uint8_t ) 64 ) & DT_DELAY_2 ) ) : \
( ( ( uint64_t ) ( ( __DT__ ) * 1000U ) ) < ( ( 32U + ( DT_DELAY_3 + 1U ) ) * 8U * TIM_CALC_DTS ( ( __TIMCLK__ ) , ( __CKD__ ) ) ) ) ? \
( uint8_t ) ( DT_RANGE_3 | ( ( uint8_t ) ( ( uint8_t ) ( ( ( ( ( uint64_t ) ( __DT__ ) * 1000U ) ) / TIM_CALC_DTS ( ( __TIMCLK__ ) , \
( __CKD__ ) ) ) > > 3U ) - ( uint8_t ) 32 ) & DT_DELAY_3 ) ) : \
( ( ( uint64_t ) ( ( __DT__ ) * 1000U ) ) < ( ( 32U + ( DT_DELAY_4 + 1U ) ) * 16U * TIM_CALC_DTS ( ( __TIMCLK__ ) , ( __CKD__ ) ) ) ) ? \
( uint8_t ) ( DT_RANGE_4 | ( ( uint8_t ) ( ( uint8_t ) ( ( ( ( ( uint64_t ) ( __DT__ ) * 1000U ) ) / TIM_CALC_DTS ( ( __TIMCLK__ ) , \
( __CKD__ ) ) ) > > 4U ) - ( uint8_t ) 32 ) & DT_DELAY_4 ) ) : \
0U )
/**
* @ brief HELPER macro calculating the prescaler value to achieve the required counter clock frequency .
* @ note ex : @ ref __LL_TIM_CALC_PSC ( 80000000 , 1000000 ) ;
* @ param __TIMCLK__ timer input clock frequency ( in Hz )
* @ param __CNTCLK__ counter clock frequency ( in Hz )
* @ retval Prescaler value ( between Min_Data = 0 and Max_Data = 65535 )
*/
# define __LL_TIM_CALC_PSC(__TIMCLK__, __CNTCLK__) \
( ( ( __TIMCLK__ ) > = ( __CNTCLK__ ) ) ? ( uint32_t ) ( ( ( ( __TIMCLK__ ) + ( __CNTCLK__ ) / 2U ) / ( __CNTCLK__ ) ) - 1U ) : 0U )
/**
* @ brief HELPER macro calculating the auto - reload value to achieve the required output signal frequency .
* @ note ex : @ ref __LL_TIM_CALC_ARR ( 1000000 , @ ref LL_TIM_GetPrescaler ( ) , 10000 ) ;
* @ param __TIMCLK__ timer input clock frequency ( in Hz )
* @ param __PSC__ prescaler
* @ param __FREQ__ output signal frequency ( in Hz )
* @ retval Auto - reload value ( between Min_Data = 0 and Max_Data = 65535 )
*/
# define __LL_TIM_CALC_ARR(__TIMCLK__, __PSC__, __FREQ__) \
( ( ( ( __TIMCLK__ ) / ( ( __PSC__ ) + 1U ) ) > = ( __FREQ__ ) ) ? ( ( ( __TIMCLK__ ) / ( ( __FREQ__ ) * ( ( __PSC__ ) + 1U ) ) ) - 1U ) : 0U )
/**
* @ brief HELPER macro calculating the compare value required to achieve the required timer output compare
* active / inactive delay .
* @ note ex : @ ref __LL_TIM_CALC_DELAY ( 1000000 , @ ref LL_TIM_GetPrescaler ( ) , 10 ) ;
* @ param __TIMCLK__ timer input clock frequency ( in Hz )
* @ param __PSC__ prescaler
* @ param __DELAY__ timer output compare active / inactive delay ( in us )
* @ retval Compare value ( between Min_Data = 0 and Max_Data = 65535 )
*/
# define __LL_TIM_CALC_DELAY(__TIMCLK__, __PSC__, __DELAY__) \
( ( uint32_t ) ( ( ( uint64_t ) ( __TIMCLK__ ) * ( uint64_t ) ( __DELAY__ ) ) \
/ ( ( uint64_t ) 1000000U * ( uint64_t ) ( ( __PSC__ ) + 1U ) ) ) )
/**
* @ brief HELPER macro calculating the auto - reload value to achieve the required pulse duration
* ( when the timer operates in one pulse mode ) .
* @ note ex : @ ref __LL_TIM_CALC_PULSE ( 1000000 , @ ref LL_TIM_GetPrescaler ( ) , 10 , 20 ) ;
* @ param __TIMCLK__ timer input clock frequency ( in Hz )
* @ param __PSC__ prescaler
* @ param __DELAY__ timer output compare active / inactive delay ( in us )
* @ param __PULSE__ pulse duration ( in us )
* @ retval Auto - reload value ( between Min_Data = 0 and Max_Data = 65535 )
*/
# define __LL_TIM_CALC_PULSE(__TIMCLK__, __PSC__, __DELAY__, __PULSE__) \
( ( uint32_t ) ( __LL_TIM_CALC_DELAY ( ( __TIMCLK__ ) , ( __PSC__ ) , ( __PULSE__ ) ) \
+ __LL_TIM_CALC_DELAY ( ( __TIMCLK__ ) , ( __PSC__ ) , ( __DELAY__ ) ) ) )
/**
* @ brief HELPER macro retrieving the ratio of the input capture prescaler
* @ note ex : @ ref __LL_TIM_GET_ICPSC_RATIO ( @ ref LL_TIM_IC_GetPrescaler ( ) ) ;
* @ param __ICPSC__ This parameter can be one of the following values :
* @ arg @ ref LL_TIM_ICPSC_DIV1
* @ arg @ ref LL_TIM_ICPSC_DIV2
* @ arg @ ref LL_TIM_ICPSC_DIV4
* @ arg @ ref LL_TIM_ICPSC_DIV8
* @ retval Input capture prescaler ratio ( 1 , 2 , 4 or 8 )
*/
# define __LL_TIM_GET_ICPSC_RATIO(__ICPSC__) \
( ( uint32_t ) ( 0x01U < < ( ( ( __ICPSC__ ) > > 16U ) > > TIM_CCMR1_IC1PSC_Pos ) ) )
/**
* @ }
*/
/**
* @ }
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup TIM_LL_Exported_Functions TIM Exported Functions
* @ {
*/
/** @defgroup TIM_LL_EF_Time_Base Time Base configuration
* @ {
*/
/**
* @ brief Enable timer counter .
* @ rmtoll CR1 CEN LL_TIM_EnableCounter
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_EnableCounter ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > CR1 , TIM_CR1_CEN ) ;
}
/**
* @ brief Disable timer counter .
* @ rmtoll CR1 CEN LL_TIM_DisableCounter
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_DisableCounter ( TIM_TypeDef * TIMx )
{
CLEAR_BIT ( TIMx - > CR1 , TIM_CR1_CEN ) ;
}
/**
* @ brief Indicates whether the timer counter is enabled .
* @ rmtoll CR1 CEN LL_TIM_IsEnabledCounter
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsEnabledCounter ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > CR1 , TIM_CR1_CEN ) = = ( TIM_CR1_CEN ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Enable update event generation .
* @ rmtoll CR1 UDIS LL_TIM_EnableUpdateEvent
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_EnableUpdateEvent ( TIM_TypeDef * TIMx )
{
CLEAR_BIT ( TIMx - > CR1 , TIM_CR1_UDIS ) ;
}
/**
* @ brief Disable update event generation .
* @ rmtoll CR1 UDIS LL_TIM_DisableUpdateEvent
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_DisableUpdateEvent ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > CR1 , TIM_CR1_UDIS ) ;
}
/**
* @ brief Indicates whether update event generation is enabled .
* @ rmtoll CR1 UDIS LL_TIM_IsEnabledUpdateEvent
* @ param TIMx Timer instance
* @ retval Inverted state of bit ( 0 or 1 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsEnabledUpdateEvent ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > CR1 , TIM_CR1_UDIS ) = = ( uint32_t ) RESET ) ? 1UL : 0UL ) ;
}
/**
* @ brief Set update event source
* @ note Update event source set to LL_TIM_UPDATESOURCE_REGULAR : any of the following events
* generate an update interrupt or DMA request if enabled :
* - Counter overflow / underflow
* - Setting the UG bit
* - Update generation through the slave mode controller
* @ note Update event source set to LL_TIM_UPDATESOURCE_COUNTER : only counter
* overflow / underflow generates an update interrupt or DMA request if enabled .
* @ rmtoll CR1 URS LL_TIM_SetUpdateSource
* @ param TIMx Timer instance
* @ param UpdateSource This parameter can be one of the following values :
* @ arg @ ref LL_TIM_UPDATESOURCE_REGULAR
* @ arg @ ref LL_TIM_UPDATESOURCE_COUNTER
* @ retval None
*/
__STATIC_INLINE void LL_TIM_SetUpdateSource ( TIM_TypeDef * TIMx , uint32_t UpdateSource )
{
MODIFY_REG ( TIMx - > CR1 , TIM_CR1_URS , UpdateSource ) ;
}
/**
* @ brief Get actual event update source
* @ rmtoll CR1 URS LL_TIM_GetUpdateSource
* @ param TIMx Timer instance
* @ retval Returned value can be one of the following values :
* @ arg @ ref LL_TIM_UPDATESOURCE_REGULAR
* @ arg @ ref LL_TIM_UPDATESOURCE_COUNTER
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_GetUpdateSource ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( uint32_t ) ( READ_BIT ( TIMx - > CR1 , TIM_CR1_URS ) ) ;
}
/**
* @ brief Set one pulse mode ( one shot v . s . repetitive ) .
* @ rmtoll CR1 OPM LL_TIM_SetOnePulseMode
* @ param TIMx Timer instance
* @ param OnePulseMode This parameter can be one of the following values :
* @ arg @ ref LL_TIM_ONEPULSEMODE_SINGLE
* @ arg @ ref LL_TIM_ONEPULSEMODE_REPETITIVE
* @ retval None
*/
__STATIC_INLINE void LL_TIM_SetOnePulseMode ( TIM_TypeDef * TIMx , uint32_t OnePulseMode )
{
MODIFY_REG ( TIMx - > CR1 , TIM_CR1_OPM , OnePulseMode ) ;
}
/**
* @ brief Get actual one pulse mode .
* @ rmtoll CR1 OPM LL_TIM_GetOnePulseMode
* @ param TIMx Timer instance
* @ retval Returned value can be one of the following values :
* @ arg @ ref LL_TIM_ONEPULSEMODE_SINGLE
* @ arg @ ref LL_TIM_ONEPULSEMODE_REPETITIVE
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_GetOnePulseMode ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( uint32_t ) ( READ_BIT ( TIMx - > CR1 , TIM_CR1_OPM ) ) ;
}
/**
* @ brief Set the timer counter counting mode .
* @ note Macro IS_TIM_COUNTER_MODE_SELECT_INSTANCE ( TIMx ) can be used to
* check whether or not the counter mode selection feature is supported
* by a timer instance .
* @ note Switching from Center Aligned counter mode to Edge counter mode ( or reverse )
* requires a timer reset to avoid unexpected direction
* due to DIR bit readonly in center aligned mode .
* @ rmtoll CR1 DIR LL_TIM_SetCounterMode \ n
* CR1 CMS LL_TIM_SetCounterMode
* @ param TIMx Timer instance
* @ param CounterMode This parameter can be one of the following values :
* @ arg @ ref LL_TIM_COUNTERMODE_UP
* @ arg @ ref LL_TIM_COUNTERMODE_DOWN
* @ arg @ ref LL_TIM_COUNTERMODE_CENTER_UP
* @ arg @ ref LL_TIM_COUNTERMODE_CENTER_DOWN
* @ arg @ ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
* @ retval None
*/
__STATIC_INLINE void LL_TIM_SetCounterMode ( TIM_TypeDef * TIMx , uint32_t CounterMode )
{
MODIFY_REG ( TIMx - > CR1 , ( TIM_CR1_DIR | TIM_CR1_CMS ) , CounterMode ) ;
}
/**
* @ brief Get actual counter mode .
* @ note Macro IS_TIM_COUNTER_MODE_SELECT_INSTANCE ( TIMx ) can be used to
* check whether or not the counter mode selection feature is supported
* by a timer instance .
* @ rmtoll CR1 DIR LL_TIM_GetCounterMode \ n
* CR1 CMS LL_TIM_GetCounterMode
* @ param TIMx Timer instance
* @ retval Returned value can be one of the following values :
* @ arg @ ref LL_TIM_COUNTERMODE_UP
* @ arg @ ref LL_TIM_COUNTERMODE_DOWN
* @ arg @ ref LL_TIM_COUNTERMODE_CENTER_UP
* @ arg @ ref LL_TIM_COUNTERMODE_CENTER_DOWN
* @ arg @ ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_GetCounterMode ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
uint32_t counter_mode ;
counter_mode = ( uint32_t ) ( READ_BIT ( TIMx - > CR1 , TIM_CR1_CMS ) ) ;
if ( counter_mode = = 0U )
{
counter_mode = ( uint32_t ) ( READ_BIT ( TIMx - > CR1 , TIM_CR1_DIR ) ) ;
}
return counter_mode ;
}
/**
* @ brief Enable auto - reload ( ARR ) preload .
* @ rmtoll CR1 ARPE LL_TIM_EnableARRPreload
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_EnableARRPreload ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > CR1 , TIM_CR1_ARPE ) ;
}
/**
* @ brief Disable auto - reload ( ARR ) preload .
* @ rmtoll CR1 ARPE LL_TIM_DisableARRPreload
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_DisableARRPreload ( TIM_TypeDef * TIMx )
{
CLEAR_BIT ( TIMx - > CR1 , TIM_CR1_ARPE ) ;
}
/**
* @ brief Indicates whether auto - reload ( ARR ) preload is enabled .
* @ rmtoll CR1 ARPE LL_TIM_IsEnabledARRPreload
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsEnabledARRPreload ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > CR1 , TIM_CR1_ARPE ) = = ( TIM_CR1_ARPE ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Set the division ratio between the timer clock and the sampling clock used by the dead - time generators
* ( when supported ) and the digital filters .
* @ note Macro IS_TIM_CLOCK_DIVISION_INSTANCE ( TIMx ) can be used to check
* whether or not the clock division feature is supported by the timer
* instance .
* @ rmtoll CR1 CKD LL_TIM_SetClockDivision
* @ param TIMx Timer instance
* @ param ClockDivision This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CLOCKDIVISION_DIV1
* @ arg @ ref LL_TIM_CLOCKDIVISION_DIV2
* @ arg @ ref LL_TIM_CLOCKDIVISION_DIV4
* @ retval None
*/
__STATIC_INLINE void LL_TIM_SetClockDivision ( TIM_TypeDef * TIMx , uint32_t ClockDivision )
{
MODIFY_REG ( TIMx - > CR1 , TIM_CR1_CKD , ClockDivision ) ;
}
/**
* @ brief Get the actual division ratio between the timer clock and the sampling clock used by the dead - time
* generators ( when supported ) and the digital filters .
* @ note Macro IS_TIM_CLOCK_DIVISION_INSTANCE ( TIMx ) can be used to check
* whether or not the clock division feature is supported by the timer
* instance .
* @ rmtoll CR1 CKD LL_TIM_GetClockDivision
* @ param TIMx Timer instance
* @ retval Returned value can be one of the following values :
* @ arg @ ref LL_TIM_CLOCKDIVISION_DIV1
* @ arg @ ref LL_TIM_CLOCKDIVISION_DIV2
* @ arg @ ref LL_TIM_CLOCKDIVISION_DIV4
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_GetClockDivision ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( uint32_t ) ( READ_BIT ( TIMx - > CR1 , TIM_CR1_CKD ) ) ;
}
/**
* @ brief Set the counter value .
* @ note Macro IS_TIM_32B_COUNTER_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance supports a 32 bits counter .
* @ rmtoll CNT CNT LL_TIM_SetCounter
* @ param TIMx Timer instance
* @ param Counter Counter value ( between Min_Data = 0 and Max_Data = 0xFFFF or 0xFFFFFFFF )
* @ retval None
*/
__STATIC_INLINE void LL_TIM_SetCounter ( TIM_TypeDef * TIMx , uint32_t Counter )
{
WRITE_REG ( TIMx - > CNT , Counter ) ;
}
/**
* @ brief Get the counter value .
* @ note Macro IS_TIM_32B_COUNTER_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance supports a 32 bits counter .
* @ rmtoll CNT CNT LL_TIM_GetCounter
* @ param TIMx Timer instance
* @ retval Counter value ( between Min_Data = 0 and Max_Data = 0xFFFF or 0xFFFFFFFF )
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_GetCounter ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( uint32_t ) ( READ_REG ( TIMx - > CNT ) ) ;
}
/**
* @ brief Get the current direction of the counter
* @ rmtoll CR1 DIR LL_TIM_GetDirection
* @ param TIMx Timer instance
* @ retval Returned value can be one of the following values :
* @ arg @ ref LL_TIM_COUNTERDIRECTION_UP
* @ arg @ ref LL_TIM_COUNTERDIRECTION_DOWN
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_GetDirection ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( uint32_t ) ( READ_BIT ( TIMx - > CR1 , TIM_CR1_DIR ) ) ;
}
/**
* @ brief Set the prescaler value .
* @ note The counter clock frequency CK_CNT is equal to fCK_PSC / ( PSC [ 15 : 0 ] + 1 ) .
* @ note The prescaler can be changed on the fly as this control register is buffered . The new
* prescaler ratio is taken into account at the next update event .
* @ note Helper macro @ ref __LL_TIM_CALC_PSC can be used to calculate the Prescaler parameter
* @ rmtoll PSC PSC LL_TIM_SetPrescaler
* @ param TIMx Timer instance
* @ param Prescaler between Min_Data = 0 and Max_Data = 65535
* @ retval None
*/
__STATIC_INLINE void LL_TIM_SetPrescaler ( TIM_TypeDef * TIMx , uint32_t Prescaler )
{
WRITE_REG ( TIMx - > PSC , Prescaler ) ;
}
/**
* @ brief Get the prescaler value .
* @ rmtoll PSC PSC LL_TIM_GetPrescaler
* @ param TIMx Timer instance
* @ retval Prescaler value between Min_Data = 0 and Max_Data = 65535
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_GetPrescaler ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( uint32_t ) ( READ_REG ( TIMx - > PSC ) ) ;
}
/**
* @ brief Set the auto - reload value .
* @ note The counter is blocked while the auto - reload value is null .
* @ note Macro IS_TIM_32B_COUNTER_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance supports a 32 bits counter .
* @ note Helper macro @ ref __LL_TIM_CALC_ARR can be used to calculate the AutoReload parameter
* @ rmtoll ARR ARR LL_TIM_SetAutoReload
* @ param TIMx Timer instance
* @ param AutoReload between Min_Data = 0 and Max_Data = 65535
* @ retval None
*/
__STATIC_INLINE void LL_TIM_SetAutoReload ( TIM_TypeDef * TIMx , uint32_t AutoReload )
{
WRITE_REG ( TIMx - > ARR , AutoReload ) ;
}
/**
* @ brief Get the auto - reload value .
* @ rmtoll ARR ARR LL_TIM_GetAutoReload
* @ note Macro IS_TIM_32B_COUNTER_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance supports a 32 bits counter .
* @ param TIMx Timer instance
* @ retval Auto - reload value
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_GetAutoReload ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( uint32_t ) ( READ_REG ( TIMx - > ARR ) ) ;
}
/**
* @ brief Set the repetition counter value .
* @ note For advanced timer instances RepetitionCounter can be up to 65535.
* @ note Macro IS_TIM_REPETITION_COUNTER_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance supports a repetition counter .
* @ rmtoll RCR REP LL_TIM_SetRepetitionCounter
* @ param TIMx Timer instance
* @ param RepetitionCounter between Min_Data = 0 and Max_Data = 255 or 65535 for advanced timer .
* @ retval None
*/
__STATIC_INLINE void LL_TIM_SetRepetitionCounter ( TIM_TypeDef * TIMx , uint32_t RepetitionCounter )
{
WRITE_REG ( TIMx - > RCR , RepetitionCounter ) ;
}
/**
* @ brief Get the repetition counter value .
* @ note Macro IS_TIM_REPETITION_COUNTER_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance supports a repetition counter .
* @ rmtoll RCR REP LL_TIM_GetRepetitionCounter
* @ param TIMx Timer instance
* @ retval Repetition counter value
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_GetRepetitionCounter ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( uint32_t ) ( READ_REG ( TIMx - > RCR ) ) ;
}
/**
* @ brief Force a continuous copy of the update interrupt flag ( UIF ) into the timer counter register ( bit 31 ) .
* @ note This allows both the counter value and a potential roll - over condition signalled by the UIFCPY flag to be read
* in an atomic way .
* @ rmtoll CR1 UIFREMAP LL_TIM_EnableUIFRemap
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_EnableUIFRemap ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > CR1 , TIM_CR1_UIFREMAP ) ;
}
/**
* @ brief Disable update interrupt flag ( UIF ) remapping .
* @ rmtoll CR1 UIFREMAP LL_TIM_DisableUIFRemap
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_DisableUIFRemap ( TIM_TypeDef * TIMx )
{
CLEAR_BIT ( TIMx - > CR1 , TIM_CR1_UIFREMAP ) ;
}
/**
* @ brief Indicate whether update interrupt flag ( UIF ) copy is set .
* @ param Counter Counter value
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsActiveUIFCPY ( const uint32_t Counter )
2023-03-05 15:36:10 +01:00
{
return ( ( ( Counter & TIM_CNT_UIFCPY ) = = ( TIM_CNT_UIFCPY ) ) ? 1UL : 0UL ) ;
}
/**
* @ }
*/
/** @defgroup TIM_LL_EF_Capture_Compare Capture Compare configuration
* @ {
*/
/**
* @ brief Enable the capture / compare control bits ( CCxE , CCxNE and OCxM ) preload .
* @ note CCxE , CCxNE and OCxM bits are preloaded , after having been written ,
* they are updated only when a commutation event ( COM ) occurs .
* @ note Only on channels that have a complementary output .
* @ note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance is able to generate a commutation event .
* @ rmtoll CR2 CCPC LL_TIM_CC_EnablePreload
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_CC_EnablePreload ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > CR2 , TIM_CR2_CCPC ) ;
}
/**
* @ brief Disable the capture / compare control bits ( CCxE , CCxNE and OCxM ) preload .
* @ note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance is able to generate a commutation event .
* @ rmtoll CR2 CCPC LL_TIM_CC_DisablePreload
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_CC_DisablePreload ( TIM_TypeDef * TIMx )
{
CLEAR_BIT ( TIMx - > CR2 , TIM_CR2_CCPC ) ;
}
/**
* @ brief Set the updated source of the capture / compare control bits ( CCxE , CCxNE and OCxM ) .
* @ note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance is able to generate a commutation event .
* @ rmtoll CR2 CCUS LL_TIM_CC_SetUpdate
* @ param TIMx Timer instance
* @ param CCUpdateSource This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CCUPDATESOURCE_COMG_ONLY
* @ arg @ ref LL_TIM_CCUPDATESOURCE_COMG_AND_TRGI
* @ retval None
*/
__STATIC_INLINE void LL_TIM_CC_SetUpdate ( TIM_TypeDef * TIMx , uint32_t CCUpdateSource )
{
MODIFY_REG ( TIMx - > CR2 , TIM_CR2_CCUS , CCUpdateSource ) ;
}
/**
* @ brief Set the trigger of the capture / compare DMA request .
* @ rmtoll CR2 CCDS LL_TIM_CC_SetDMAReqTrigger
* @ param TIMx Timer instance
* @ param DMAReqTrigger This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CCDMAREQUEST_CC
* @ arg @ ref LL_TIM_CCDMAREQUEST_UPDATE
* @ retval None
*/
__STATIC_INLINE void LL_TIM_CC_SetDMAReqTrigger ( TIM_TypeDef * TIMx , uint32_t DMAReqTrigger )
{
MODIFY_REG ( TIMx - > CR2 , TIM_CR2_CCDS , DMAReqTrigger ) ;
}
/**
* @ brief Get actual trigger of the capture / compare DMA request .
* @ rmtoll CR2 CCDS LL_TIM_CC_GetDMAReqTrigger
* @ param TIMx Timer instance
* @ retval Returned value can be one of the following values :
* @ arg @ ref LL_TIM_CCDMAREQUEST_CC
* @ arg @ ref LL_TIM_CCDMAREQUEST_UPDATE
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_CC_GetDMAReqTrigger ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( uint32_t ) ( READ_BIT ( TIMx - > CR2 , TIM_CR2_CCDS ) ) ;
}
/**
* @ brief Set the lock level to freeze the
* configuration of several capture / compare parameters .
* @ note Macro IS_TIM_BREAK_INSTANCE ( TIMx ) can be used to check whether or not
* the lock mechanism is supported by a timer instance .
* @ rmtoll BDTR LOCK LL_TIM_CC_SetLockLevel
* @ param TIMx Timer instance
* @ param LockLevel This parameter can be one of the following values :
* @ arg @ ref LL_TIM_LOCKLEVEL_OFF
* @ arg @ ref LL_TIM_LOCKLEVEL_1
* @ arg @ ref LL_TIM_LOCKLEVEL_2
* @ arg @ ref LL_TIM_LOCKLEVEL_3
* @ retval None
*/
__STATIC_INLINE void LL_TIM_CC_SetLockLevel ( TIM_TypeDef * TIMx , uint32_t LockLevel )
{
MODIFY_REG ( TIMx - > BDTR , TIM_BDTR_LOCK , LockLevel ) ;
}
/**
* @ brief Enable capture / compare channels .
* @ rmtoll CCER CC1E LL_TIM_CC_EnableChannel \ n
* CCER CC1NE LL_TIM_CC_EnableChannel \ n
* CCER CC2E LL_TIM_CC_EnableChannel \ n
* CCER CC2NE LL_TIM_CC_EnableChannel \ n
* CCER CC3E LL_TIM_CC_EnableChannel \ n
* CCER CC3NE LL_TIM_CC_EnableChannel \ n
* CCER CC4E LL_TIM_CC_EnableChannel \ n
* CCER CC5E LL_TIM_CC_EnableChannel \ n
* CCER CC6E LL_TIM_CC_EnableChannel
* @ param TIMx Timer instance
* @ param Channels This parameter can be a combination of the following values :
* @ arg @ ref LL_TIM_CHANNEL_CH1
* @ arg @ ref LL_TIM_CHANNEL_CH1N
* @ arg @ ref LL_TIM_CHANNEL_CH2
* @ arg @ ref LL_TIM_CHANNEL_CH2N
* @ arg @ ref LL_TIM_CHANNEL_CH3
* @ arg @ ref LL_TIM_CHANNEL_CH3N
* @ arg @ ref LL_TIM_CHANNEL_CH4
* @ arg @ ref LL_TIM_CHANNEL_CH5
* @ arg @ ref LL_TIM_CHANNEL_CH6
* @ retval None
*/
__STATIC_INLINE void LL_TIM_CC_EnableChannel ( TIM_TypeDef * TIMx , uint32_t Channels )
{
SET_BIT ( TIMx - > CCER , Channels ) ;
}
/**
* @ brief Disable capture / compare channels .
* @ rmtoll CCER CC1E LL_TIM_CC_DisableChannel \ n
* CCER CC1NE LL_TIM_CC_DisableChannel \ n
* CCER CC2E LL_TIM_CC_DisableChannel \ n
* CCER CC2NE LL_TIM_CC_DisableChannel \ n
* CCER CC3E LL_TIM_CC_DisableChannel \ n
* CCER CC3NE LL_TIM_CC_DisableChannel \ n
* CCER CC4E LL_TIM_CC_DisableChannel \ n
* CCER CC5E LL_TIM_CC_DisableChannel \ n
* CCER CC6E LL_TIM_CC_DisableChannel
* @ param TIMx Timer instance
* @ param Channels This parameter can be a combination of the following values :
* @ arg @ ref LL_TIM_CHANNEL_CH1
* @ arg @ ref LL_TIM_CHANNEL_CH1N
* @ arg @ ref LL_TIM_CHANNEL_CH2
* @ arg @ ref LL_TIM_CHANNEL_CH2N
* @ arg @ ref LL_TIM_CHANNEL_CH3
* @ arg @ ref LL_TIM_CHANNEL_CH3N
* @ arg @ ref LL_TIM_CHANNEL_CH4
* @ arg @ ref LL_TIM_CHANNEL_CH5
* @ arg @ ref LL_TIM_CHANNEL_CH6
* @ retval None
*/
__STATIC_INLINE void LL_TIM_CC_DisableChannel ( TIM_TypeDef * TIMx , uint32_t Channels )
{
CLEAR_BIT ( TIMx - > CCER , Channels ) ;
}
/**
* @ brief Indicate whether channel ( s ) is ( are ) enabled .
* @ rmtoll CCER CC1E LL_TIM_CC_IsEnabledChannel \ n
* CCER CC1NE LL_TIM_CC_IsEnabledChannel \ n
* CCER CC2E LL_TIM_CC_IsEnabledChannel \ n
* CCER CC2NE LL_TIM_CC_IsEnabledChannel \ n
* CCER CC3E LL_TIM_CC_IsEnabledChannel \ n
* CCER CC3NE LL_TIM_CC_IsEnabledChannel \ n
* CCER CC4E LL_TIM_CC_IsEnabledChannel \ n
* CCER CC5E LL_TIM_CC_IsEnabledChannel \ n
* CCER CC6E LL_TIM_CC_IsEnabledChannel
* @ param TIMx Timer instance
* @ param Channels This parameter can be a combination of the following values :
* @ arg @ ref LL_TIM_CHANNEL_CH1
* @ arg @ ref LL_TIM_CHANNEL_CH1N
* @ arg @ ref LL_TIM_CHANNEL_CH2
* @ arg @ ref LL_TIM_CHANNEL_CH2N
* @ arg @ ref LL_TIM_CHANNEL_CH3
* @ arg @ ref LL_TIM_CHANNEL_CH3N
* @ arg @ ref LL_TIM_CHANNEL_CH4
* @ arg @ ref LL_TIM_CHANNEL_CH5
* @ arg @ ref LL_TIM_CHANNEL_CH6
* @ retval State of bit ( 1 or 0 ) .
*/
__STATIC_INLINE uint32_t LL_TIM_CC_IsEnabledChannel ( TIM_TypeDef * TIMx , uint32_t Channels )
{
return ( ( READ_BIT ( TIMx - > CCER , Channels ) = = ( Channels ) ) ? 1UL : 0UL ) ;
}
/**
* @ }
*/
/** @defgroup TIM_LL_EF_Output_Channel Output channel configuration
* @ {
*/
/**
* @ brief Configure an output channel .
* @ rmtoll CCMR1 CC1S LL_TIM_OC_ConfigOutput \ n
* CCMR1 CC2S LL_TIM_OC_ConfigOutput \ n
* CCMR2 CC3S LL_TIM_OC_ConfigOutput \ n
* CCMR2 CC4S LL_TIM_OC_ConfigOutput \ n
* CCMR3 CC5S LL_TIM_OC_ConfigOutput \ n
* CCMR3 CC6S LL_TIM_OC_ConfigOutput \ n
* CCER CC1P LL_TIM_OC_ConfigOutput \ n
* CCER CC2P LL_TIM_OC_ConfigOutput \ n
* CCER CC3P LL_TIM_OC_ConfigOutput \ n
* CCER CC4P LL_TIM_OC_ConfigOutput \ n
* CCER CC5P LL_TIM_OC_ConfigOutput \ n
* CCER CC6P LL_TIM_OC_ConfigOutput \ n
* CR2 OIS1 LL_TIM_OC_ConfigOutput \ n
* CR2 OIS2 LL_TIM_OC_ConfigOutput \ n
* CR2 OIS3 LL_TIM_OC_ConfigOutput \ n
* CR2 OIS4 LL_TIM_OC_ConfigOutput \ n
* CR2 OIS5 LL_TIM_OC_ConfigOutput \ n
* CR2 OIS6 LL_TIM_OC_ConfigOutput
* @ param TIMx Timer instance
* @ param Channel This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CHANNEL_CH1
* @ arg @ ref LL_TIM_CHANNEL_CH2
* @ arg @ ref LL_TIM_CHANNEL_CH3
* @ arg @ ref LL_TIM_CHANNEL_CH4
* @ arg @ ref LL_TIM_CHANNEL_CH5
* @ arg @ ref LL_TIM_CHANNEL_CH6
* @ param Configuration This parameter must be a combination of all the following values :
* @ arg @ ref LL_TIM_OCPOLARITY_HIGH or @ ref LL_TIM_OCPOLARITY_LOW
* @ arg @ ref LL_TIM_OCIDLESTATE_LOW or @ ref LL_TIM_OCIDLESTATE_HIGH
* @ retval None
*/
__STATIC_INLINE void LL_TIM_OC_ConfigOutput ( TIM_TypeDef * TIMx , uint32_t Channel , uint32_t Configuration )
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX ( Channel ) ;
__IO uint32_t * pReg = ( __IO uint32_t * ) ( ( uint32_t ) ( ( uint32_t ) ( & TIMx - > CCMR1 ) + OFFSET_TAB_CCMRx [ iChannel ] ) ) ;
CLEAR_BIT ( * pReg , ( TIM_CCMR1_CC1S < < SHIFT_TAB_OCxx [ iChannel ] ) ) ;
MODIFY_REG ( TIMx - > CCER , ( TIM_CCER_CC1P < < SHIFT_TAB_CCxP [ iChannel ] ) ,
( Configuration & TIM_CCER_CC1P ) < < SHIFT_TAB_CCxP [ iChannel ] ) ;
MODIFY_REG ( TIMx - > CR2 , ( TIM_CR2_OIS1 < < SHIFT_TAB_OISx [ iChannel ] ) ,
( Configuration & TIM_CR2_OIS1 ) < < SHIFT_TAB_OISx [ iChannel ] ) ;
}
/**
* @ brief Define the behavior of the output reference signal OCxREF from which
* OCx and OCxN ( when relevant ) are derived .
* @ rmtoll CCMR1 OC1M LL_TIM_OC_SetMode \ n
* CCMR1 OC2M LL_TIM_OC_SetMode \ n
* CCMR2 OC3M LL_TIM_OC_SetMode \ n
* CCMR2 OC4M LL_TIM_OC_SetMode \ n
* CCMR3 OC5M LL_TIM_OC_SetMode \ n
* CCMR3 OC6M LL_TIM_OC_SetMode
* @ param TIMx Timer instance
* @ param Channel This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CHANNEL_CH1
* @ arg @ ref LL_TIM_CHANNEL_CH2
* @ arg @ ref LL_TIM_CHANNEL_CH3
* @ arg @ ref LL_TIM_CHANNEL_CH4
* @ arg @ ref LL_TIM_CHANNEL_CH5
* @ arg @ ref LL_TIM_CHANNEL_CH6
* @ param Mode This parameter can be one of the following values :
* @ arg @ ref LL_TIM_OCMODE_FROZEN
* @ arg @ ref LL_TIM_OCMODE_ACTIVE
* @ arg @ ref LL_TIM_OCMODE_INACTIVE
* @ arg @ ref LL_TIM_OCMODE_TOGGLE
* @ arg @ ref LL_TIM_OCMODE_FORCED_INACTIVE
* @ arg @ ref LL_TIM_OCMODE_FORCED_ACTIVE
* @ arg @ ref LL_TIM_OCMODE_PWM1
* @ arg @ ref LL_TIM_OCMODE_PWM2
* @ arg @ ref LL_TIM_OCMODE_RETRIG_OPM1
* @ arg @ ref LL_TIM_OCMODE_RETRIG_OPM2
* @ arg @ ref LL_TIM_OCMODE_COMBINED_PWM1
* @ arg @ ref LL_TIM_OCMODE_COMBINED_PWM2
* @ arg @ ref LL_TIM_OCMODE_ASSYMETRIC_PWM1
* @ arg @ ref LL_TIM_OCMODE_ASSYMETRIC_PWM2
* @ retval None
*/
__STATIC_INLINE void LL_TIM_OC_SetMode ( TIM_TypeDef * TIMx , uint32_t Channel , uint32_t Mode )
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX ( Channel ) ;
__IO uint32_t * pReg = ( __IO uint32_t * ) ( ( uint32_t ) ( ( uint32_t ) ( & TIMx - > CCMR1 ) + OFFSET_TAB_CCMRx [ iChannel ] ) ) ;
MODIFY_REG ( * pReg , ( ( TIM_CCMR1_OC1M | TIM_CCMR1_CC1S ) < < SHIFT_TAB_OCxx [ iChannel ] ) , Mode < < SHIFT_TAB_OCxx [ iChannel ] ) ;
}
/**
* @ brief Get the output compare mode of an output channel .
* @ rmtoll CCMR1 OC1M LL_TIM_OC_GetMode \ n
* CCMR1 OC2M LL_TIM_OC_GetMode \ n
* CCMR2 OC3M LL_TIM_OC_GetMode \ n
* CCMR2 OC4M LL_TIM_OC_GetMode \ n
* CCMR3 OC5M LL_TIM_OC_GetMode \ n
* CCMR3 OC6M LL_TIM_OC_GetMode
* @ param TIMx Timer instance
* @ param Channel This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CHANNEL_CH1
* @ arg @ ref LL_TIM_CHANNEL_CH2
* @ arg @ ref LL_TIM_CHANNEL_CH3
* @ arg @ ref LL_TIM_CHANNEL_CH4
* @ arg @ ref LL_TIM_CHANNEL_CH5
* @ arg @ ref LL_TIM_CHANNEL_CH6
* @ retval Returned value can be one of the following values :
* @ arg @ ref LL_TIM_OCMODE_FROZEN
* @ arg @ ref LL_TIM_OCMODE_ACTIVE
* @ arg @ ref LL_TIM_OCMODE_INACTIVE
* @ arg @ ref LL_TIM_OCMODE_TOGGLE
* @ arg @ ref LL_TIM_OCMODE_FORCED_INACTIVE
* @ arg @ ref LL_TIM_OCMODE_FORCED_ACTIVE
* @ arg @ ref LL_TIM_OCMODE_PWM1
* @ arg @ ref LL_TIM_OCMODE_PWM2
* @ arg @ ref LL_TIM_OCMODE_RETRIG_OPM1
* @ arg @ ref LL_TIM_OCMODE_RETRIG_OPM2
* @ arg @ ref LL_TIM_OCMODE_COMBINED_PWM1
* @ arg @ ref LL_TIM_OCMODE_COMBINED_PWM2
* @ arg @ ref LL_TIM_OCMODE_ASSYMETRIC_PWM1
* @ arg @ ref LL_TIM_OCMODE_ASSYMETRIC_PWM2
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_OC_GetMode ( const TIM_TypeDef * TIMx , uint32_t Channel )
2023-03-05 15:36:10 +01:00
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX ( Channel ) ;
const __IO uint32_t * pReg = ( __IO uint32_t * ) ( ( uint32_t ) ( ( uint32_t ) ( & TIMx - > CCMR1 ) + OFFSET_TAB_CCMRx [ iChannel ] ) ) ;
return ( READ_BIT ( * pReg , ( ( TIM_CCMR1_OC1M | TIM_CCMR1_CC1S ) < < SHIFT_TAB_OCxx [ iChannel ] ) ) > > SHIFT_TAB_OCxx [ iChannel ] ) ;
}
/**
* @ brief Set the polarity of an output channel .
* @ rmtoll CCER CC1P LL_TIM_OC_SetPolarity \ n
* CCER CC1NP LL_TIM_OC_SetPolarity \ n
* CCER CC2P LL_TIM_OC_SetPolarity \ n
* CCER CC2NP LL_TIM_OC_SetPolarity \ n
* CCER CC3P LL_TIM_OC_SetPolarity \ n
* CCER CC3NP LL_TIM_OC_SetPolarity \ n
* CCER CC4P LL_TIM_OC_SetPolarity \ n
* CCER CC5P LL_TIM_OC_SetPolarity \ n
* CCER CC6P LL_TIM_OC_SetPolarity
* @ param TIMx Timer instance
* @ param Channel This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CHANNEL_CH1
* @ arg @ ref LL_TIM_CHANNEL_CH1N
* @ arg @ ref LL_TIM_CHANNEL_CH2
* @ arg @ ref LL_TIM_CHANNEL_CH2N
* @ arg @ ref LL_TIM_CHANNEL_CH3
* @ arg @ ref LL_TIM_CHANNEL_CH3N
* @ arg @ ref LL_TIM_CHANNEL_CH4
* @ arg @ ref LL_TIM_CHANNEL_CH5
* @ arg @ ref LL_TIM_CHANNEL_CH6
* @ param Polarity This parameter can be one of the following values :
* @ arg @ ref LL_TIM_OCPOLARITY_HIGH
* @ arg @ ref LL_TIM_OCPOLARITY_LOW
* @ retval None
*/
__STATIC_INLINE void LL_TIM_OC_SetPolarity ( TIM_TypeDef * TIMx , uint32_t Channel , uint32_t Polarity )
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX ( Channel ) ;
MODIFY_REG ( TIMx - > CCER , ( TIM_CCER_CC1P < < SHIFT_TAB_CCxP [ iChannel ] ) , Polarity < < SHIFT_TAB_CCxP [ iChannel ] ) ;
}
/**
* @ brief Get the polarity of an output channel .
* @ rmtoll CCER CC1P LL_TIM_OC_GetPolarity \ n
* CCER CC1NP LL_TIM_OC_GetPolarity \ n
* CCER CC2P LL_TIM_OC_GetPolarity \ n
* CCER CC2NP LL_TIM_OC_GetPolarity \ n
* CCER CC3P LL_TIM_OC_GetPolarity \ n
* CCER CC3NP LL_TIM_OC_GetPolarity \ n
* CCER CC4P LL_TIM_OC_GetPolarity \ n
* CCER CC5P LL_TIM_OC_GetPolarity \ n
* CCER CC6P LL_TIM_OC_GetPolarity
* @ param TIMx Timer instance
* @ param Channel This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CHANNEL_CH1
* @ arg @ ref LL_TIM_CHANNEL_CH1N
* @ arg @ ref LL_TIM_CHANNEL_CH2
* @ arg @ ref LL_TIM_CHANNEL_CH2N
* @ arg @ ref LL_TIM_CHANNEL_CH3
* @ arg @ ref LL_TIM_CHANNEL_CH3N
* @ arg @ ref LL_TIM_CHANNEL_CH4
* @ arg @ ref LL_TIM_CHANNEL_CH5
* @ arg @ ref LL_TIM_CHANNEL_CH6
* @ retval Returned value can be one of the following values :
* @ arg @ ref LL_TIM_OCPOLARITY_HIGH
* @ arg @ ref LL_TIM_OCPOLARITY_LOW
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_OC_GetPolarity ( const TIM_TypeDef * TIMx , uint32_t Channel )
2023-03-05 15:36:10 +01:00
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX ( Channel ) ;
return ( READ_BIT ( TIMx - > CCER , ( TIM_CCER_CC1P < < SHIFT_TAB_CCxP [ iChannel ] ) ) > > SHIFT_TAB_CCxP [ iChannel ] ) ;
}
/**
* @ brief Set the IDLE state of an output channel
* @ note This function is significant only for the timer instances
* supporting the break feature . Macro IS_TIM_BREAK_INSTANCE ( TIMx )
* can be used to check whether or not a timer instance provides
* a break input .
* @ rmtoll CR2 OIS1 LL_TIM_OC_SetIdleState \ n
* CR2 OIS2N LL_TIM_OC_SetIdleState \ n
* CR2 OIS2 LL_TIM_OC_SetIdleState \ n
* CR2 OIS2N LL_TIM_OC_SetIdleState \ n
* CR2 OIS3 LL_TIM_OC_SetIdleState \ n
* CR2 OIS3N LL_TIM_OC_SetIdleState \ n
* CR2 OIS4 LL_TIM_OC_SetIdleState \ n
* CR2 OIS5 LL_TIM_OC_SetIdleState \ n
* CR2 OIS6 LL_TIM_OC_SetIdleState
* @ param TIMx Timer instance
* @ param Channel This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CHANNEL_CH1
* @ arg @ ref LL_TIM_CHANNEL_CH1N
* @ arg @ ref LL_TIM_CHANNEL_CH2
* @ arg @ ref LL_TIM_CHANNEL_CH2N
* @ arg @ ref LL_TIM_CHANNEL_CH3
* @ arg @ ref LL_TIM_CHANNEL_CH3N
* @ arg @ ref LL_TIM_CHANNEL_CH4
* @ arg @ ref LL_TIM_CHANNEL_CH5
* @ arg @ ref LL_TIM_CHANNEL_CH6
* @ param IdleState This parameter can be one of the following values :
* @ arg @ ref LL_TIM_OCIDLESTATE_LOW
* @ arg @ ref LL_TIM_OCIDLESTATE_HIGH
* @ retval None
*/
__STATIC_INLINE void LL_TIM_OC_SetIdleState ( TIM_TypeDef * TIMx , uint32_t Channel , uint32_t IdleState )
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX ( Channel ) ;
MODIFY_REG ( TIMx - > CR2 , ( TIM_CR2_OIS1 < < SHIFT_TAB_OISx [ iChannel ] ) , IdleState < < SHIFT_TAB_OISx [ iChannel ] ) ;
}
/**
* @ brief Get the IDLE state of an output channel
* @ rmtoll CR2 OIS1 LL_TIM_OC_GetIdleState \ n
* CR2 OIS2N LL_TIM_OC_GetIdleState \ n
* CR2 OIS2 LL_TIM_OC_GetIdleState \ n
* CR2 OIS2N LL_TIM_OC_GetIdleState \ n
* CR2 OIS3 LL_TIM_OC_GetIdleState \ n
* CR2 OIS3N LL_TIM_OC_GetIdleState \ n
* CR2 OIS4 LL_TIM_OC_GetIdleState \ n
* CR2 OIS5 LL_TIM_OC_GetIdleState \ n
* CR2 OIS6 LL_TIM_OC_GetIdleState
* @ param TIMx Timer instance
* @ param Channel This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CHANNEL_CH1
* @ arg @ ref LL_TIM_CHANNEL_CH1N
* @ arg @ ref LL_TIM_CHANNEL_CH2
* @ arg @ ref LL_TIM_CHANNEL_CH2N
* @ arg @ ref LL_TIM_CHANNEL_CH3
* @ arg @ ref LL_TIM_CHANNEL_CH3N
* @ arg @ ref LL_TIM_CHANNEL_CH4
* @ arg @ ref LL_TIM_CHANNEL_CH5
* @ arg @ ref LL_TIM_CHANNEL_CH6
* @ retval Returned value can be one of the following values :
* @ arg @ ref LL_TIM_OCIDLESTATE_LOW
* @ arg @ ref LL_TIM_OCIDLESTATE_HIGH
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_OC_GetIdleState ( const TIM_TypeDef * TIMx , uint32_t Channel )
2023-03-05 15:36:10 +01:00
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX ( Channel ) ;
return ( READ_BIT ( TIMx - > CR2 , ( TIM_CR2_OIS1 < < SHIFT_TAB_OISx [ iChannel ] ) ) > > SHIFT_TAB_OISx [ iChannel ] ) ;
}
/**
* @ brief Enable fast mode for the output channel .
* @ note Acts only if the channel is configured in PWM1 or PWM2 mode .
* @ rmtoll CCMR1 OC1FE LL_TIM_OC_EnableFast \ n
* CCMR1 OC2FE LL_TIM_OC_EnableFast \ n
* CCMR2 OC3FE LL_TIM_OC_EnableFast \ n
* CCMR2 OC4FE LL_TIM_OC_EnableFast \ n
* CCMR3 OC5FE LL_TIM_OC_EnableFast \ n
* CCMR3 OC6FE LL_TIM_OC_EnableFast
* @ param TIMx Timer instance
* @ param Channel This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CHANNEL_CH1
* @ arg @ ref LL_TIM_CHANNEL_CH2
* @ arg @ ref LL_TIM_CHANNEL_CH3
* @ arg @ ref LL_TIM_CHANNEL_CH4
* @ arg @ ref LL_TIM_CHANNEL_CH5
* @ arg @ ref LL_TIM_CHANNEL_CH6
* @ retval None
*/
__STATIC_INLINE void LL_TIM_OC_EnableFast ( TIM_TypeDef * TIMx , uint32_t Channel )
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX ( Channel ) ;
__IO uint32_t * pReg = ( __IO uint32_t * ) ( ( uint32_t ) ( ( uint32_t ) ( & TIMx - > CCMR1 ) + OFFSET_TAB_CCMRx [ iChannel ] ) ) ;
SET_BIT ( * pReg , ( TIM_CCMR1_OC1FE < < SHIFT_TAB_OCxx [ iChannel ] ) ) ;
}
/**
* @ brief Disable fast mode for the output channel .
* @ rmtoll CCMR1 OC1FE LL_TIM_OC_DisableFast \ n
* CCMR1 OC2FE LL_TIM_OC_DisableFast \ n
* CCMR2 OC3FE LL_TIM_OC_DisableFast \ n
* CCMR2 OC4FE LL_TIM_OC_DisableFast \ n
* CCMR3 OC5FE LL_TIM_OC_DisableFast \ n
* CCMR3 OC6FE LL_TIM_OC_DisableFast
* @ param TIMx Timer instance
* @ param Channel This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CHANNEL_CH1
* @ arg @ ref LL_TIM_CHANNEL_CH2
* @ arg @ ref LL_TIM_CHANNEL_CH3
* @ arg @ ref LL_TIM_CHANNEL_CH4
* @ arg @ ref LL_TIM_CHANNEL_CH5
* @ arg @ ref LL_TIM_CHANNEL_CH6
* @ retval None
*/
__STATIC_INLINE void LL_TIM_OC_DisableFast ( TIM_TypeDef * TIMx , uint32_t Channel )
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX ( Channel ) ;
__IO uint32_t * pReg = ( __IO uint32_t * ) ( ( uint32_t ) ( ( uint32_t ) ( & TIMx - > CCMR1 ) + OFFSET_TAB_CCMRx [ iChannel ] ) ) ;
CLEAR_BIT ( * pReg , ( TIM_CCMR1_OC1FE < < SHIFT_TAB_OCxx [ iChannel ] ) ) ;
}
/**
* @ brief Indicates whether fast mode is enabled for the output channel .
* @ rmtoll CCMR1 OC1FE LL_TIM_OC_IsEnabledFast \ n
* CCMR1 OC2FE LL_TIM_OC_IsEnabledFast \ n
* CCMR2 OC3FE LL_TIM_OC_IsEnabledFast \ n
* CCMR2 OC4FE LL_TIM_OC_IsEnabledFast \ n
* CCMR3 OC5FE LL_TIM_OC_IsEnabledFast \ n
* CCMR3 OC6FE LL_TIM_OC_IsEnabledFast
* @ param TIMx Timer instance
* @ param Channel This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CHANNEL_CH1
* @ arg @ ref LL_TIM_CHANNEL_CH2
* @ arg @ ref LL_TIM_CHANNEL_CH3
* @ arg @ ref LL_TIM_CHANNEL_CH4
* @ arg @ ref LL_TIM_CHANNEL_CH5
* @ arg @ ref LL_TIM_CHANNEL_CH6
* @ retval State of bit ( 1 or 0 ) .
*/
__STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledFast ( TIM_TypeDef * TIMx , uint32_t Channel )
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX ( Channel ) ;
const __IO uint32_t * pReg = ( __IO uint32_t * ) ( ( uint32_t ) ( ( uint32_t ) ( & TIMx - > CCMR1 ) + OFFSET_TAB_CCMRx [ iChannel ] ) ) ;
uint32_t bitfield = TIM_CCMR1_OC1FE < < SHIFT_TAB_OCxx [ iChannel ] ;
return ( ( READ_BIT ( * pReg , bitfield ) = = bitfield ) ? 1UL : 0UL ) ;
}
/**
* @ brief Enable compare register ( TIMx_CCRx ) preload for the output channel .
* @ rmtoll CCMR1 OC1PE LL_TIM_OC_EnablePreload \ n
* CCMR1 OC2PE LL_TIM_OC_EnablePreload \ n
* CCMR2 OC3PE LL_TIM_OC_EnablePreload \ n
* CCMR2 OC4PE LL_TIM_OC_EnablePreload \ n
* CCMR3 OC5PE LL_TIM_OC_EnablePreload \ n
* CCMR3 OC6PE LL_TIM_OC_EnablePreload
* @ param TIMx Timer instance
* @ param Channel This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CHANNEL_CH1
* @ arg @ ref LL_TIM_CHANNEL_CH2
* @ arg @ ref LL_TIM_CHANNEL_CH3
* @ arg @ ref LL_TIM_CHANNEL_CH4
* @ arg @ ref LL_TIM_CHANNEL_CH5
* @ arg @ ref LL_TIM_CHANNEL_CH6
* @ retval None
*/
__STATIC_INLINE void LL_TIM_OC_EnablePreload ( TIM_TypeDef * TIMx , uint32_t Channel )
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX ( Channel ) ;
__IO uint32_t * pReg = ( __IO uint32_t * ) ( ( uint32_t ) ( ( uint32_t ) ( & TIMx - > CCMR1 ) + OFFSET_TAB_CCMRx [ iChannel ] ) ) ;
SET_BIT ( * pReg , ( TIM_CCMR1_OC1PE < < SHIFT_TAB_OCxx [ iChannel ] ) ) ;
}
/**
* @ brief Disable compare register ( TIMx_CCRx ) preload for the output channel .
* @ rmtoll CCMR1 OC1PE LL_TIM_OC_DisablePreload \ n
* CCMR1 OC2PE LL_TIM_OC_DisablePreload \ n
* CCMR2 OC3PE LL_TIM_OC_DisablePreload \ n
* CCMR2 OC4PE LL_TIM_OC_DisablePreload \ n
* CCMR3 OC5PE LL_TIM_OC_DisablePreload \ n
* CCMR3 OC6PE LL_TIM_OC_DisablePreload
* @ param TIMx Timer instance
* @ param Channel This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CHANNEL_CH1
* @ arg @ ref LL_TIM_CHANNEL_CH2
* @ arg @ ref LL_TIM_CHANNEL_CH3
* @ arg @ ref LL_TIM_CHANNEL_CH4
* @ arg @ ref LL_TIM_CHANNEL_CH5
* @ arg @ ref LL_TIM_CHANNEL_CH6
* @ retval None
*/
__STATIC_INLINE void LL_TIM_OC_DisablePreload ( TIM_TypeDef * TIMx , uint32_t Channel )
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX ( Channel ) ;
__IO uint32_t * pReg = ( __IO uint32_t * ) ( ( uint32_t ) ( ( uint32_t ) ( & TIMx - > CCMR1 ) + OFFSET_TAB_CCMRx [ iChannel ] ) ) ;
CLEAR_BIT ( * pReg , ( TIM_CCMR1_OC1PE < < SHIFT_TAB_OCxx [ iChannel ] ) ) ;
}
/**
* @ brief Indicates whether compare register ( TIMx_CCRx ) preload is enabled for the output channel .
* @ rmtoll CCMR1 OC1PE LL_TIM_OC_IsEnabledPreload \ n
* CCMR1 OC2PE LL_TIM_OC_IsEnabledPreload \ n
* CCMR2 OC3PE LL_TIM_OC_IsEnabledPreload \ n
* CCMR2 OC4PE LL_TIM_OC_IsEnabledPreload \ n
* CCMR3 OC5PE LL_TIM_OC_IsEnabledPreload \ n
* CCMR3 OC6PE LL_TIM_OC_IsEnabledPreload
* @ param TIMx Timer instance
* @ param Channel This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CHANNEL_CH1
* @ arg @ ref LL_TIM_CHANNEL_CH2
* @ arg @ ref LL_TIM_CHANNEL_CH3
* @ arg @ ref LL_TIM_CHANNEL_CH4
* @ arg @ ref LL_TIM_CHANNEL_CH5
* @ arg @ ref LL_TIM_CHANNEL_CH6
* @ retval State of bit ( 1 or 0 ) .
*/
__STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledPreload ( TIM_TypeDef * TIMx , uint32_t Channel )
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX ( Channel ) ;
const __IO uint32_t * pReg = ( __IO uint32_t * ) ( ( uint32_t ) ( ( uint32_t ) ( & TIMx - > CCMR1 ) + OFFSET_TAB_CCMRx [ iChannel ] ) ) ;
uint32_t bitfield = TIM_CCMR1_OC1PE < < SHIFT_TAB_OCxx [ iChannel ] ;
return ( ( READ_BIT ( * pReg , bitfield ) = = bitfield ) ? 1UL : 0UL ) ;
}
/**
* @ brief Enable clearing the output channel on an external event .
* @ note This function can only be used in Output compare and PWM modes . It does not work in Forced mode .
* @ note Macro IS_TIM_OCXREF_CLEAR_INSTANCE ( TIMx ) can be used to check whether
* or not a timer instance can clear the OCxREF signal on an external event .
* @ rmtoll CCMR1 OC1CE LL_TIM_OC_EnableClear \ n
* CCMR1 OC2CE LL_TIM_OC_EnableClear \ n
* CCMR2 OC3CE LL_TIM_OC_EnableClear \ n
* CCMR2 OC4CE LL_TIM_OC_EnableClear \ n
* CCMR3 OC5CE LL_TIM_OC_EnableClear \ n
* CCMR3 OC6CE LL_TIM_OC_EnableClear
* @ param TIMx Timer instance
* @ param Channel This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CHANNEL_CH1
* @ arg @ ref LL_TIM_CHANNEL_CH2
* @ arg @ ref LL_TIM_CHANNEL_CH3
* @ arg @ ref LL_TIM_CHANNEL_CH4
* @ arg @ ref LL_TIM_CHANNEL_CH5
* @ arg @ ref LL_TIM_CHANNEL_CH6
* @ retval None
*/
__STATIC_INLINE void LL_TIM_OC_EnableClear ( TIM_TypeDef * TIMx , uint32_t Channel )
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX ( Channel ) ;
__IO uint32_t * pReg = ( __IO uint32_t * ) ( ( uint32_t ) ( ( uint32_t ) ( & TIMx - > CCMR1 ) + OFFSET_TAB_CCMRx [ iChannel ] ) ) ;
SET_BIT ( * pReg , ( TIM_CCMR1_OC1CE < < SHIFT_TAB_OCxx [ iChannel ] ) ) ;
}
/**
* @ brief Disable clearing the output channel on an external event .
* @ note Macro IS_TIM_OCXREF_CLEAR_INSTANCE ( TIMx ) can be used to check whether
* or not a timer instance can clear the OCxREF signal on an external event .
* @ rmtoll CCMR1 OC1CE LL_TIM_OC_DisableClear \ n
* CCMR1 OC2CE LL_TIM_OC_DisableClear \ n
* CCMR2 OC3CE LL_TIM_OC_DisableClear \ n
* CCMR2 OC4CE LL_TIM_OC_DisableClear \ n
* CCMR3 OC5CE LL_TIM_OC_DisableClear \ n
* CCMR3 OC6CE LL_TIM_OC_DisableClear
* @ param TIMx Timer instance
* @ param Channel This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CHANNEL_CH1
* @ arg @ ref LL_TIM_CHANNEL_CH2
* @ arg @ ref LL_TIM_CHANNEL_CH3
* @ arg @ ref LL_TIM_CHANNEL_CH4
* @ arg @ ref LL_TIM_CHANNEL_CH5
* @ arg @ ref LL_TIM_CHANNEL_CH6
* @ retval None
*/
__STATIC_INLINE void LL_TIM_OC_DisableClear ( TIM_TypeDef * TIMx , uint32_t Channel )
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX ( Channel ) ;
__IO uint32_t * pReg = ( __IO uint32_t * ) ( ( uint32_t ) ( ( uint32_t ) ( & TIMx - > CCMR1 ) + OFFSET_TAB_CCMRx [ iChannel ] ) ) ;
CLEAR_BIT ( * pReg , ( TIM_CCMR1_OC1CE < < SHIFT_TAB_OCxx [ iChannel ] ) ) ;
}
/**
* @ brief Indicates clearing the output channel on an external event is enabled for the output channel .
* @ note This function enables clearing the output channel on an external event .
* @ note This function can only be used in Output compare and PWM modes . It does not work in Forced mode .
* @ note Macro IS_TIM_OCXREF_CLEAR_INSTANCE ( TIMx ) can be used to check whether
* or not a timer instance can clear the OCxREF signal on an external event .
* @ rmtoll CCMR1 OC1CE LL_TIM_OC_IsEnabledClear \ n
* CCMR1 OC2CE LL_TIM_OC_IsEnabledClear \ n
* CCMR2 OC3CE LL_TIM_OC_IsEnabledClear \ n
* CCMR2 OC4CE LL_TIM_OC_IsEnabledClear \ n
* CCMR3 OC5CE LL_TIM_OC_IsEnabledClear \ n
* CCMR3 OC6CE LL_TIM_OC_IsEnabledClear
* @ param TIMx Timer instance
* @ param Channel This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CHANNEL_CH1
* @ arg @ ref LL_TIM_CHANNEL_CH2
* @ arg @ ref LL_TIM_CHANNEL_CH3
* @ arg @ ref LL_TIM_CHANNEL_CH4
* @ arg @ ref LL_TIM_CHANNEL_CH5
* @ arg @ ref LL_TIM_CHANNEL_CH6
* @ retval State of bit ( 1 or 0 ) .
*/
__STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledClear ( TIM_TypeDef * TIMx , uint32_t Channel )
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX ( Channel ) ;
const __IO uint32_t * pReg = ( __IO uint32_t * ) ( ( uint32_t ) ( ( uint32_t ) ( & TIMx - > CCMR1 ) + OFFSET_TAB_CCMRx [ iChannel ] ) ) ;
uint32_t bitfield = TIM_CCMR1_OC1CE < < SHIFT_TAB_OCxx [ iChannel ] ;
return ( ( READ_BIT ( * pReg , bitfield ) = = bitfield ) ? 1UL : 0UL ) ;
}
/**
* @ brief Set the dead - time delay ( delay inserted between the rising edge of the OCxREF signal and the rising edge of
* the Ocx and OCxN signals ) .
* @ note Macro IS_TIM_BREAK_INSTANCE ( TIMx ) can be used to check whether or not
* dead - time insertion feature is supported by a timer instance .
* @ note Helper macro @ ref __LL_TIM_CALC_DEADTIME can be used to calculate the DeadTime parameter
* @ rmtoll BDTR DTG LL_TIM_OC_SetDeadTime
* @ param TIMx Timer instance
* @ param DeadTime between Min_Data = 0 and Max_Data = 255
* @ retval None
*/
__STATIC_INLINE void LL_TIM_OC_SetDeadTime ( TIM_TypeDef * TIMx , uint32_t DeadTime )
{
MODIFY_REG ( TIMx - > BDTR , TIM_BDTR_DTG , DeadTime ) ;
}
/**
* @ brief Set compare value for output channel 1 ( TIMx_CCR1 ) .
* @ note In 32 - bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF .
* @ note Macro IS_TIM_32B_COUNTER_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance supports a 32 bits counter .
* @ note Macro IS_TIM_CC1_INSTANCE ( TIMx ) can be used to check whether or not
* output channel 1 is supported by a timer instance .
* @ rmtoll CCR1 CCR1 LL_TIM_OC_SetCompareCH1
* @ param TIMx Timer instance
* @ param CompareValue between Min_Data = 0 and Max_Data = 65535
* @ retval None
*/
__STATIC_INLINE void LL_TIM_OC_SetCompareCH1 ( TIM_TypeDef * TIMx , uint32_t CompareValue )
{
WRITE_REG ( TIMx - > CCR1 , CompareValue ) ;
}
/**
* @ brief Set compare value for output channel 2 ( TIMx_CCR2 ) .
* @ note In 32 - bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF .
* @ note Macro IS_TIM_32B_COUNTER_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance supports a 32 bits counter .
* @ note Macro IS_TIM_CC2_INSTANCE ( TIMx ) can be used to check whether or not
* output channel 2 is supported by a timer instance .
* @ rmtoll CCR2 CCR2 LL_TIM_OC_SetCompareCH2
* @ param TIMx Timer instance
* @ param CompareValue between Min_Data = 0 and Max_Data = 65535
* @ retval None
*/
__STATIC_INLINE void LL_TIM_OC_SetCompareCH2 ( TIM_TypeDef * TIMx , uint32_t CompareValue )
{
WRITE_REG ( TIMx - > CCR2 , CompareValue ) ;
}
/**
* @ brief Set compare value for output channel 3 ( TIMx_CCR3 ) .
* @ note In 32 - bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF .
* @ note Macro IS_TIM_32B_COUNTER_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance supports a 32 bits counter .
* @ note Macro IS_TIM_CC3_INSTANCE ( TIMx ) can be used to check whether or not
* output channel is supported by a timer instance .
* @ rmtoll CCR3 CCR3 LL_TIM_OC_SetCompareCH3
* @ param TIMx Timer instance
* @ param CompareValue between Min_Data = 0 and Max_Data = 65535
* @ retval None
*/
__STATIC_INLINE void LL_TIM_OC_SetCompareCH3 ( TIM_TypeDef * TIMx , uint32_t CompareValue )
{
WRITE_REG ( TIMx - > CCR3 , CompareValue ) ;
}
/**
* @ brief Set compare value for output channel 4 ( TIMx_CCR4 ) .
* @ note In 32 - bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF .
* @ note Macro IS_TIM_32B_COUNTER_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance supports a 32 bits counter .
* @ note Macro IS_TIM_CC4_INSTANCE ( TIMx ) can be used to check whether or not
* output channel 4 is supported by a timer instance .
* @ rmtoll CCR4 CCR4 LL_TIM_OC_SetCompareCH4
* @ param TIMx Timer instance
* @ param CompareValue between Min_Data = 0 and Max_Data = 65535
* @ retval None
*/
__STATIC_INLINE void LL_TIM_OC_SetCompareCH4 ( TIM_TypeDef * TIMx , uint32_t CompareValue )
{
WRITE_REG ( TIMx - > CCR4 , CompareValue ) ;
}
/**
* @ brief Set compare value for output channel 5 ( TIMx_CCR5 ) .
* @ note Macro IS_TIM_CC5_INSTANCE ( TIMx ) can be used to check whether or not
* output channel 5 is supported by a timer instance .
* @ rmtoll CCR5 CCR5 LL_TIM_OC_SetCompareCH5
* @ param TIMx Timer instance
* @ param CompareValue between Min_Data = 0 and Max_Data = 65535
* @ retval None
*/
__STATIC_INLINE void LL_TIM_OC_SetCompareCH5 ( TIM_TypeDef * TIMx , uint32_t CompareValue )
{
MODIFY_REG ( TIMx - > CCR5 , TIM_CCR5_CCR5 , CompareValue ) ;
}
/**
* @ brief Set compare value for output channel 6 ( TIMx_CCR6 ) .
* @ note Macro IS_TIM_CC6_INSTANCE ( TIMx ) can be used to check whether or not
* output channel 6 is supported by a timer instance .
* @ rmtoll CCR6 CCR6 LL_TIM_OC_SetCompareCH6
* @ param TIMx Timer instance
* @ param CompareValue between Min_Data = 0 and Max_Data = 65535
* @ retval None
*/
__STATIC_INLINE void LL_TIM_OC_SetCompareCH6 ( TIM_TypeDef * TIMx , uint32_t CompareValue )
{
WRITE_REG ( TIMx - > CCR6 , CompareValue ) ;
}
/**
* @ brief Get compare value ( TIMx_CCR1 ) set for output channel 1.
* @ note In 32 - bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF .
* @ note Macro IS_TIM_32B_COUNTER_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance supports a 32 bits counter .
* @ note Macro IS_TIM_CC1_INSTANCE ( TIMx ) can be used to check whether or not
* output channel 1 is supported by a timer instance .
* @ rmtoll CCR1 CCR1 LL_TIM_OC_GetCompareCH1
* @ param TIMx Timer instance
* @ retval CompareValue ( between Min_Data = 0 and Max_Data = 65535 )
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH1 ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( uint32_t ) ( READ_REG ( TIMx - > CCR1 ) ) ;
}
/**
* @ brief Get compare value ( TIMx_CCR2 ) set for output channel 2.
* @ note In 32 - bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF .
* @ note Macro IS_TIM_32B_COUNTER_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance supports a 32 bits counter .
* @ note Macro IS_TIM_CC2_INSTANCE ( TIMx ) can be used to check whether or not
* output channel 2 is supported by a timer instance .
* @ rmtoll CCR2 CCR2 LL_TIM_OC_GetCompareCH2
* @ param TIMx Timer instance
* @ retval CompareValue ( between Min_Data = 0 and Max_Data = 65535 )
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH2 ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( uint32_t ) ( READ_REG ( TIMx - > CCR2 ) ) ;
}
/**
* @ brief Get compare value ( TIMx_CCR3 ) set for output channel 3.
* @ note In 32 - bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF .
* @ note Macro IS_TIM_32B_COUNTER_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance supports a 32 bits counter .
* @ note Macro IS_TIM_CC3_INSTANCE ( TIMx ) can be used to check whether or not
* output channel 3 is supported by a timer instance .
* @ rmtoll CCR3 CCR3 LL_TIM_OC_GetCompareCH3
* @ param TIMx Timer instance
* @ retval CompareValue ( between Min_Data = 0 and Max_Data = 65535 )
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH3 ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( uint32_t ) ( READ_REG ( TIMx - > CCR3 ) ) ;
}
/**
* @ brief Get compare value ( TIMx_CCR4 ) set for output channel 4.
* @ note In 32 - bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF .
* @ note Macro IS_TIM_32B_COUNTER_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance supports a 32 bits counter .
* @ note Macro IS_TIM_CC4_INSTANCE ( TIMx ) can be used to check whether or not
* output channel 4 is supported by a timer instance .
* @ rmtoll CCR4 CCR4 LL_TIM_OC_GetCompareCH4
* @ param TIMx Timer instance
* @ retval CompareValue ( between Min_Data = 0 and Max_Data = 65535 )
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH4 ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( uint32_t ) ( READ_REG ( TIMx - > CCR4 ) ) ;
}
/**
* @ brief Get compare value ( TIMx_CCR5 ) set for output channel 5.
* @ note Macro IS_TIM_CC5_INSTANCE ( TIMx ) can be used to check whether or not
* output channel 5 is supported by a timer instance .
* @ rmtoll CCR5 CCR5 LL_TIM_OC_GetCompareCH5
* @ param TIMx Timer instance
* @ retval CompareValue ( between Min_Data = 0 and Max_Data = 65535 )
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH5 ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( uint32_t ) ( READ_BIT ( TIMx - > CCR5 , TIM_CCR5_CCR5 ) ) ;
}
/**
* @ brief Get compare value ( TIMx_CCR6 ) set for output channel 6.
* @ note Macro IS_TIM_CC6_INSTANCE ( TIMx ) can be used to check whether or not
* output channel 6 is supported by a timer instance .
* @ rmtoll CCR6 CCR6 LL_TIM_OC_GetCompareCH6
* @ param TIMx Timer instance
* @ retval CompareValue ( between Min_Data = 0 and Max_Data = 65535 )
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH6 ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( uint32_t ) ( READ_REG ( TIMx - > CCR6 ) ) ;
}
/**
* @ brief Select on which reference signal the OC5REF is combined to .
* @ note Macro IS_TIM_COMBINED3PHASEPWM_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance supports the combined 3 - phase PWM mode .
* @ rmtoll CCR5 GC5C3 LL_TIM_SetCH5CombinedChannels \ n
* CCR5 GC5C2 LL_TIM_SetCH5CombinedChannels \ n
* CCR5 GC5C1 LL_TIM_SetCH5CombinedChannels
* @ param TIMx Timer instance
* @ param GroupCH5 This parameter can be a combination of the following values :
* @ arg @ ref LL_TIM_GROUPCH5_NONE
* @ arg @ ref LL_TIM_GROUPCH5_OC1REFC
* @ arg @ ref LL_TIM_GROUPCH5_OC2REFC
* @ arg @ ref LL_TIM_GROUPCH5_OC3REFC
* @ retval None
*/
__STATIC_INLINE void LL_TIM_SetCH5CombinedChannels ( TIM_TypeDef * TIMx , uint32_t GroupCH5 )
{
MODIFY_REG ( TIMx - > CCR5 , ( TIM_CCR5_GC5C3 | TIM_CCR5_GC5C2 | TIM_CCR5_GC5C1 ) , GroupCH5 ) ;
}
/**
* @ }
*/
/** @defgroup TIM_LL_EF_Input_Channel Input channel configuration
* @ {
*/
/**
* @ brief Configure input channel .
* @ rmtoll CCMR1 CC1S LL_TIM_IC_Config \ n
* CCMR1 IC1PSC LL_TIM_IC_Config \ n
* CCMR1 IC1F LL_TIM_IC_Config \ n
* CCMR1 CC2S LL_TIM_IC_Config \ n
* CCMR1 IC2PSC LL_TIM_IC_Config \ n
* CCMR1 IC2F LL_TIM_IC_Config \ n
* CCMR2 CC3S LL_TIM_IC_Config \ n
* CCMR2 IC3PSC LL_TIM_IC_Config \ n
* CCMR2 IC3F LL_TIM_IC_Config \ n
* CCMR2 CC4S LL_TIM_IC_Config \ n
* CCMR2 IC4PSC LL_TIM_IC_Config \ n
* CCMR2 IC4F LL_TIM_IC_Config \ n
* CCER CC1P LL_TIM_IC_Config \ n
* CCER CC1NP LL_TIM_IC_Config \ n
* CCER CC2P LL_TIM_IC_Config \ n
* CCER CC2NP LL_TIM_IC_Config \ n
* CCER CC3P LL_TIM_IC_Config \ n
* CCER CC3NP LL_TIM_IC_Config \ n
* CCER CC4P LL_TIM_IC_Config \ n
* CCER CC4NP LL_TIM_IC_Config
* @ param TIMx Timer instance
* @ param Channel This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CHANNEL_CH1
* @ arg @ ref LL_TIM_CHANNEL_CH2
* @ arg @ ref LL_TIM_CHANNEL_CH3
* @ arg @ ref LL_TIM_CHANNEL_CH4
* @ param Configuration This parameter must be a combination of all the following values :
* @ arg @ ref LL_TIM_ACTIVEINPUT_DIRECTTI or @ ref LL_TIM_ACTIVEINPUT_INDIRECTTI or @ ref LL_TIM_ACTIVEINPUT_TRC
* @ arg @ ref LL_TIM_ICPSC_DIV1 or . . . or @ ref LL_TIM_ICPSC_DIV8
* @ arg @ ref LL_TIM_IC_FILTER_FDIV1 or . . . or @ ref LL_TIM_IC_FILTER_FDIV32_N8
* @ arg @ ref LL_TIM_IC_POLARITY_RISING or @ ref LL_TIM_IC_POLARITY_FALLING or @ ref LL_TIM_IC_POLARITY_BOTHEDGE
* @ retval None
*/
__STATIC_INLINE void LL_TIM_IC_Config ( TIM_TypeDef * TIMx , uint32_t Channel , uint32_t Configuration )
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX ( Channel ) ;
__IO uint32_t * pReg = ( __IO uint32_t * ) ( ( uint32_t ) ( ( uint32_t ) ( & TIMx - > CCMR1 ) + OFFSET_TAB_CCMRx [ iChannel ] ) ) ;
MODIFY_REG ( * pReg , ( ( TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S ) < < SHIFT_TAB_ICxx [ iChannel ] ) ,
( ( Configuration > > 16U ) & ( TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S ) ) \
< < SHIFT_TAB_ICxx [ iChannel ] ) ;
MODIFY_REG ( TIMx - > CCER , ( ( TIM_CCER_CC1NP | TIM_CCER_CC1P ) < < SHIFT_TAB_CCxP [ iChannel ] ) ,
( Configuration & ( TIM_CCER_CC1NP | TIM_CCER_CC1P ) ) < < SHIFT_TAB_CCxP [ iChannel ] ) ;
}
/**
* @ brief Set the active input .
* @ rmtoll CCMR1 CC1S LL_TIM_IC_SetActiveInput \ n
* CCMR1 CC2S LL_TIM_IC_SetActiveInput \ n
* CCMR2 CC3S LL_TIM_IC_SetActiveInput \ n
* CCMR2 CC4S LL_TIM_IC_SetActiveInput
* @ param TIMx Timer instance
* @ param Channel This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CHANNEL_CH1
* @ arg @ ref LL_TIM_CHANNEL_CH2
* @ arg @ ref LL_TIM_CHANNEL_CH3
* @ arg @ ref LL_TIM_CHANNEL_CH4
* @ param ICActiveInput This parameter can be one of the following values :
* @ arg @ ref LL_TIM_ACTIVEINPUT_DIRECTTI
* @ arg @ ref LL_TIM_ACTIVEINPUT_INDIRECTTI
* @ arg @ ref LL_TIM_ACTIVEINPUT_TRC
* @ retval None
*/
__STATIC_INLINE void LL_TIM_IC_SetActiveInput ( TIM_TypeDef * TIMx , uint32_t Channel , uint32_t ICActiveInput )
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX ( Channel ) ;
__IO uint32_t * pReg = ( __IO uint32_t * ) ( ( uint32_t ) ( ( uint32_t ) ( & TIMx - > CCMR1 ) + OFFSET_TAB_CCMRx [ iChannel ] ) ) ;
MODIFY_REG ( * pReg , ( ( TIM_CCMR1_CC1S ) < < SHIFT_TAB_ICxx [ iChannel ] ) , ( ICActiveInput > > 16U ) < < SHIFT_TAB_ICxx [ iChannel ] ) ;
}
/**
* @ brief Get the current active input .
* @ rmtoll CCMR1 CC1S LL_TIM_IC_GetActiveInput \ n
* CCMR1 CC2S LL_TIM_IC_GetActiveInput \ n
* CCMR2 CC3S LL_TIM_IC_GetActiveInput \ n
* CCMR2 CC4S LL_TIM_IC_GetActiveInput
* @ param TIMx Timer instance
* @ param Channel This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CHANNEL_CH1
* @ arg @ ref LL_TIM_CHANNEL_CH2
* @ arg @ ref LL_TIM_CHANNEL_CH3
* @ arg @ ref LL_TIM_CHANNEL_CH4
* @ retval Returned value can be one of the following values :
* @ arg @ ref LL_TIM_ACTIVEINPUT_DIRECTTI
* @ arg @ ref LL_TIM_ACTIVEINPUT_INDIRECTTI
* @ arg @ ref LL_TIM_ACTIVEINPUT_TRC
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IC_GetActiveInput ( const TIM_TypeDef * TIMx , uint32_t Channel )
2023-03-05 15:36:10 +01:00
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX ( Channel ) ;
const __IO uint32_t * pReg = ( __IO uint32_t * ) ( ( uint32_t ) ( ( uint32_t ) ( & TIMx - > CCMR1 ) + OFFSET_TAB_CCMRx [ iChannel ] ) ) ;
return ( ( READ_BIT ( * pReg , ( ( TIM_CCMR1_CC1S ) < < SHIFT_TAB_ICxx [ iChannel ] ) ) > > SHIFT_TAB_ICxx [ iChannel ] ) < < 16U ) ;
}
/**
* @ brief Set the prescaler of input channel .
* @ rmtoll CCMR1 IC1PSC LL_TIM_IC_SetPrescaler \ n
* CCMR1 IC2PSC LL_TIM_IC_SetPrescaler \ n
* CCMR2 IC3PSC LL_TIM_IC_SetPrescaler \ n
* CCMR2 IC4PSC LL_TIM_IC_SetPrescaler
* @ param TIMx Timer instance
* @ param Channel This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CHANNEL_CH1
* @ arg @ ref LL_TIM_CHANNEL_CH2
* @ arg @ ref LL_TIM_CHANNEL_CH3
* @ arg @ ref LL_TIM_CHANNEL_CH4
* @ param ICPrescaler This parameter can be one of the following values :
* @ arg @ ref LL_TIM_ICPSC_DIV1
* @ arg @ ref LL_TIM_ICPSC_DIV2
* @ arg @ ref LL_TIM_ICPSC_DIV4
* @ arg @ ref LL_TIM_ICPSC_DIV8
* @ retval None
*/
__STATIC_INLINE void LL_TIM_IC_SetPrescaler ( TIM_TypeDef * TIMx , uint32_t Channel , uint32_t ICPrescaler )
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX ( Channel ) ;
__IO uint32_t * pReg = ( __IO uint32_t * ) ( ( uint32_t ) ( ( uint32_t ) ( & TIMx - > CCMR1 ) + OFFSET_TAB_CCMRx [ iChannel ] ) ) ;
MODIFY_REG ( * pReg , ( ( TIM_CCMR1_IC1PSC ) < < SHIFT_TAB_ICxx [ iChannel ] ) , ( ICPrescaler > > 16U ) < < SHIFT_TAB_ICxx [ iChannel ] ) ;
}
/**
* @ brief Get the current prescaler value acting on an input channel .
* @ rmtoll CCMR1 IC1PSC LL_TIM_IC_GetPrescaler \ n
* CCMR1 IC2PSC LL_TIM_IC_GetPrescaler \ n
* CCMR2 IC3PSC LL_TIM_IC_GetPrescaler \ n
* CCMR2 IC4PSC LL_TIM_IC_GetPrescaler
* @ param TIMx Timer instance
* @ param Channel This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CHANNEL_CH1
* @ arg @ ref LL_TIM_CHANNEL_CH2
* @ arg @ ref LL_TIM_CHANNEL_CH3
* @ arg @ ref LL_TIM_CHANNEL_CH4
* @ retval Returned value can be one of the following values :
* @ arg @ ref LL_TIM_ICPSC_DIV1
* @ arg @ ref LL_TIM_ICPSC_DIV2
* @ arg @ ref LL_TIM_ICPSC_DIV4
* @ arg @ ref LL_TIM_ICPSC_DIV8
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IC_GetPrescaler ( const TIM_TypeDef * TIMx , uint32_t Channel )
2023-03-05 15:36:10 +01:00
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX ( Channel ) ;
const __IO uint32_t * pReg = ( __IO uint32_t * ) ( ( uint32_t ) ( ( uint32_t ) ( & TIMx - > CCMR1 ) + OFFSET_TAB_CCMRx [ iChannel ] ) ) ;
return ( ( READ_BIT ( * pReg , ( ( TIM_CCMR1_IC1PSC ) < < SHIFT_TAB_ICxx [ iChannel ] ) ) > > SHIFT_TAB_ICxx [ iChannel ] ) < < 16U ) ;
}
/**
* @ brief Set the input filter duration .
* @ rmtoll CCMR1 IC1F LL_TIM_IC_SetFilter \ n
* CCMR1 IC2F LL_TIM_IC_SetFilter \ n
* CCMR2 IC3F LL_TIM_IC_SetFilter \ n
* CCMR2 IC4F LL_TIM_IC_SetFilter
* @ param TIMx Timer instance
* @ param Channel This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CHANNEL_CH1
* @ arg @ ref LL_TIM_CHANNEL_CH2
* @ arg @ ref LL_TIM_CHANNEL_CH3
* @ arg @ ref LL_TIM_CHANNEL_CH4
* @ param ICFilter This parameter can be one of the following values :
* @ arg @ ref LL_TIM_IC_FILTER_FDIV1
* @ arg @ ref LL_TIM_IC_FILTER_FDIV1_N2
* @ arg @ ref LL_TIM_IC_FILTER_FDIV1_N4
* @ arg @ ref LL_TIM_IC_FILTER_FDIV1_N8
* @ arg @ ref LL_TIM_IC_FILTER_FDIV2_N6
* @ arg @ ref LL_TIM_IC_FILTER_FDIV2_N8
* @ arg @ ref LL_TIM_IC_FILTER_FDIV4_N6
* @ arg @ ref LL_TIM_IC_FILTER_FDIV4_N8
* @ arg @ ref LL_TIM_IC_FILTER_FDIV8_N6
* @ arg @ ref LL_TIM_IC_FILTER_FDIV8_N8
* @ arg @ ref LL_TIM_IC_FILTER_FDIV16_N5
* @ arg @ ref LL_TIM_IC_FILTER_FDIV16_N6
* @ arg @ ref LL_TIM_IC_FILTER_FDIV16_N8
* @ arg @ ref LL_TIM_IC_FILTER_FDIV32_N5
* @ arg @ ref LL_TIM_IC_FILTER_FDIV32_N6
* @ arg @ ref LL_TIM_IC_FILTER_FDIV32_N8
* @ retval None
*/
__STATIC_INLINE void LL_TIM_IC_SetFilter ( TIM_TypeDef * TIMx , uint32_t Channel , uint32_t ICFilter )
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX ( Channel ) ;
__IO uint32_t * pReg = ( __IO uint32_t * ) ( ( uint32_t ) ( ( uint32_t ) ( & TIMx - > CCMR1 ) + OFFSET_TAB_CCMRx [ iChannel ] ) ) ;
MODIFY_REG ( * pReg , ( ( TIM_CCMR1_IC1F ) < < SHIFT_TAB_ICxx [ iChannel ] ) , ( ICFilter > > 16U ) < < SHIFT_TAB_ICxx [ iChannel ] ) ;
}
/**
* @ brief Get the input filter duration .
* @ rmtoll CCMR1 IC1F LL_TIM_IC_GetFilter \ n
* CCMR1 IC2F LL_TIM_IC_GetFilter \ n
* CCMR2 IC3F LL_TIM_IC_GetFilter \ n
* CCMR2 IC4F LL_TIM_IC_GetFilter
* @ param TIMx Timer instance
* @ param Channel This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CHANNEL_CH1
* @ arg @ ref LL_TIM_CHANNEL_CH2
* @ arg @ ref LL_TIM_CHANNEL_CH3
* @ arg @ ref LL_TIM_CHANNEL_CH4
* @ retval Returned value can be one of the following values :
* @ arg @ ref LL_TIM_IC_FILTER_FDIV1
* @ arg @ ref LL_TIM_IC_FILTER_FDIV1_N2
* @ arg @ ref LL_TIM_IC_FILTER_FDIV1_N4
* @ arg @ ref LL_TIM_IC_FILTER_FDIV1_N8
* @ arg @ ref LL_TIM_IC_FILTER_FDIV2_N6
* @ arg @ ref LL_TIM_IC_FILTER_FDIV2_N8
* @ arg @ ref LL_TIM_IC_FILTER_FDIV4_N6
* @ arg @ ref LL_TIM_IC_FILTER_FDIV4_N8
* @ arg @ ref LL_TIM_IC_FILTER_FDIV8_N6
* @ arg @ ref LL_TIM_IC_FILTER_FDIV8_N8
* @ arg @ ref LL_TIM_IC_FILTER_FDIV16_N5
* @ arg @ ref LL_TIM_IC_FILTER_FDIV16_N6
* @ arg @ ref LL_TIM_IC_FILTER_FDIV16_N8
* @ arg @ ref LL_TIM_IC_FILTER_FDIV32_N5
* @ arg @ ref LL_TIM_IC_FILTER_FDIV32_N6
* @ arg @ ref LL_TIM_IC_FILTER_FDIV32_N8
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IC_GetFilter ( const TIM_TypeDef * TIMx , uint32_t Channel )
2023-03-05 15:36:10 +01:00
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX ( Channel ) ;
const __IO uint32_t * pReg = ( __IO uint32_t * ) ( ( uint32_t ) ( ( uint32_t ) ( & TIMx - > CCMR1 ) + OFFSET_TAB_CCMRx [ iChannel ] ) ) ;
return ( ( READ_BIT ( * pReg , ( ( TIM_CCMR1_IC1F ) < < SHIFT_TAB_ICxx [ iChannel ] ) ) > > SHIFT_TAB_ICxx [ iChannel ] ) < < 16U ) ;
}
/**
* @ brief Set the input channel polarity .
* @ rmtoll CCER CC1P LL_TIM_IC_SetPolarity \ n
* CCER CC1NP LL_TIM_IC_SetPolarity \ n
* CCER CC2P LL_TIM_IC_SetPolarity \ n
* CCER CC2NP LL_TIM_IC_SetPolarity \ n
* CCER CC3P LL_TIM_IC_SetPolarity \ n
* CCER CC3NP LL_TIM_IC_SetPolarity \ n
* CCER CC4P LL_TIM_IC_SetPolarity \ n
* CCER CC4NP LL_TIM_IC_SetPolarity
* @ param TIMx Timer instance
* @ param Channel This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CHANNEL_CH1
* @ arg @ ref LL_TIM_CHANNEL_CH2
* @ arg @ ref LL_TIM_CHANNEL_CH3
* @ arg @ ref LL_TIM_CHANNEL_CH4
* @ param ICPolarity This parameter can be one of the following values :
* @ arg @ ref LL_TIM_IC_POLARITY_RISING
* @ arg @ ref LL_TIM_IC_POLARITY_FALLING
* @ arg @ ref LL_TIM_IC_POLARITY_BOTHEDGE
* @ retval None
*/
__STATIC_INLINE void LL_TIM_IC_SetPolarity ( TIM_TypeDef * TIMx , uint32_t Channel , uint32_t ICPolarity )
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX ( Channel ) ;
MODIFY_REG ( TIMx - > CCER , ( ( TIM_CCER_CC1NP | TIM_CCER_CC1P ) < < SHIFT_TAB_CCxP [ iChannel ] ) ,
ICPolarity < < SHIFT_TAB_CCxP [ iChannel ] ) ;
}
/**
* @ brief Get the current input channel polarity .
* @ rmtoll CCER CC1P LL_TIM_IC_GetPolarity \ n
* CCER CC1NP LL_TIM_IC_GetPolarity \ n
* CCER CC2P LL_TIM_IC_GetPolarity \ n
* CCER CC2NP LL_TIM_IC_GetPolarity \ n
* CCER CC3P LL_TIM_IC_GetPolarity \ n
* CCER CC3NP LL_TIM_IC_GetPolarity \ n
* CCER CC4P LL_TIM_IC_GetPolarity \ n
* CCER CC4NP LL_TIM_IC_GetPolarity
* @ param TIMx Timer instance
* @ param Channel This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CHANNEL_CH1
* @ arg @ ref LL_TIM_CHANNEL_CH2
* @ arg @ ref LL_TIM_CHANNEL_CH3
* @ arg @ ref LL_TIM_CHANNEL_CH4
* @ retval Returned value can be one of the following values :
* @ arg @ ref LL_TIM_IC_POLARITY_RISING
* @ arg @ ref LL_TIM_IC_POLARITY_FALLING
* @ arg @ ref LL_TIM_IC_POLARITY_BOTHEDGE
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IC_GetPolarity ( const TIM_TypeDef * TIMx , uint32_t Channel )
2023-03-05 15:36:10 +01:00
{
uint8_t iChannel = TIM_GET_CHANNEL_INDEX ( Channel ) ;
return ( READ_BIT ( TIMx - > CCER , ( ( TIM_CCER_CC1NP | TIM_CCER_CC1P ) < < SHIFT_TAB_CCxP [ iChannel ] ) ) > >
SHIFT_TAB_CCxP [ iChannel ] ) ;
}
/**
* @ brief Connect the TIMx_CH1 , CH2 and CH3 pins to the TI1 input ( XOR combination ) .
* @ note Macro IS_TIM_XOR_INSTANCE ( TIMx ) can be used to check whether or not
* a timer instance provides an XOR input .
* @ rmtoll CR2 TI1S LL_TIM_IC_EnableXORCombination
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_IC_EnableXORCombination ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > CR2 , TIM_CR2_TI1S ) ;
}
/**
* @ brief Disconnect the TIMx_CH1 , CH2 and CH3 pins from the TI1 input .
* @ note Macro IS_TIM_XOR_INSTANCE ( TIMx ) can be used to check whether or not
* a timer instance provides an XOR input .
* @ rmtoll CR2 TI1S LL_TIM_IC_DisableXORCombination
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_IC_DisableXORCombination ( TIM_TypeDef * TIMx )
{
CLEAR_BIT ( TIMx - > CR2 , TIM_CR2_TI1S ) ;
}
/**
* @ brief Indicates whether the TIMx_CH1 , CH2 and CH3 pins are connectected to the TI1 input .
* @ note Macro IS_TIM_XOR_INSTANCE ( TIMx ) can be used to check whether or not
* a timer instance provides an XOR input .
* @ rmtoll CR2 TI1S LL_TIM_IC_IsEnabledXORCombination
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
__STATIC_INLINE uint32_t LL_TIM_IC_IsEnabledXORCombination ( TIM_TypeDef * TIMx )
{
return ( ( READ_BIT ( TIMx - > CR2 , TIM_CR2_TI1S ) = = ( TIM_CR2_TI1S ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Get captured value for input channel 1.
* @ note In 32 - bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF .
* @ note Macro IS_TIM_32B_COUNTER_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance supports a 32 bits counter .
* @ note Macro IS_TIM_CC1_INSTANCE ( TIMx ) can be used to check whether or not
* input channel 1 is supported by a timer instance .
* @ rmtoll CCR1 CCR1 LL_TIM_IC_GetCaptureCH1
* @ param TIMx Timer instance
* @ retval CapturedValue ( between Min_Data = 0 and Max_Data = 65535 )
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH1 ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( uint32_t ) ( READ_REG ( TIMx - > CCR1 ) ) ;
}
/**
* @ brief Get captured value for input channel 2.
* @ note In 32 - bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF .
* @ note Macro IS_TIM_32B_COUNTER_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance supports a 32 bits counter .
* @ note Macro IS_TIM_CC2_INSTANCE ( TIMx ) can be used to check whether or not
* input channel 2 is supported by a timer instance .
* @ rmtoll CCR2 CCR2 LL_TIM_IC_GetCaptureCH2
* @ param TIMx Timer instance
* @ retval CapturedValue ( between Min_Data = 0 and Max_Data = 65535 )
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH2 ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( uint32_t ) ( READ_REG ( TIMx - > CCR2 ) ) ;
}
/**
* @ brief Get captured value for input channel 3.
* @ note In 32 - bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF .
* @ note Macro IS_TIM_32B_COUNTER_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance supports a 32 bits counter .
* @ note Macro IS_TIM_CC3_INSTANCE ( TIMx ) can be used to check whether or not
* input channel 3 is supported by a timer instance .
* @ rmtoll CCR3 CCR3 LL_TIM_IC_GetCaptureCH3
* @ param TIMx Timer instance
* @ retval CapturedValue ( between Min_Data = 0 and Max_Data = 65535 )
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH3 ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( uint32_t ) ( READ_REG ( TIMx - > CCR3 ) ) ;
}
/**
* @ brief Get captured value for input channel 4.
* @ note In 32 - bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF .
* @ note Macro IS_TIM_32B_COUNTER_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance supports a 32 bits counter .
* @ note Macro IS_TIM_CC4_INSTANCE ( TIMx ) can be used to check whether or not
* input channel 4 is supported by a timer instance .
* @ rmtoll CCR4 CCR4 LL_TIM_IC_GetCaptureCH4
* @ param TIMx Timer instance
* @ retval CapturedValue ( between Min_Data = 0 and Max_Data = 65535 )
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH4 ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( uint32_t ) ( READ_REG ( TIMx - > CCR4 ) ) ;
}
/**
* @ }
*/
/** @defgroup TIM_LL_EF_Clock_Selection Counter clock selection
* @ {
*/
/**
* @ brief Enable external clock mode 2.
* @ note When external clock mode 2 is enabled the counter is clocked by any active edge on the ETRF signal .
* @ note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance supports external clock mode2 .
* @ rmtoll SMCR ECE LL_TIM_EnableExternalClock
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_EnableExternalClock ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > SMCR , TIM_SMCR_ECE ) ;
}
/**
* @ brief Disable external clock mode 2.
* @ note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance supports external clock mode2 .
* @ rmtoll SMCR ECE LL_TIM_DisableExternalClock
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_DisableExternalClock ( TIM_TypeDef * TIMx )
{
CLEAR_BIT ( TIMx - > SMCR , TIM_SMCR_ECE ) ;
}
/**
* @ brief Indicate whether external clock mode 2 is enabled .
* @ note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance supports external clock mode2 .
* @ rmtoll SMCR ECE LL_TIM_IsEnabledExternalClock
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsEnabledExternalClock ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > SMCR , TIM_SMCR_ECE ) = = ( TIM_SMCR_ECE ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Set the clock source of the counter clock .
* @ note when selected clock source is external clock mode 1 , the timer input
* the external clock is applied is selected by calling the @ ref LL_TIM_SetTriggerInput ( )
* function . This timer input must be configured by calling
* the @ ref LL_TIM_IC_Config ( ) function .
* @ note Macro IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance supports external clock mode1 .
* @ note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance supports external clock mode2 .
* @ rmtoll SMCR SMS LL_TIM_SetClockSource \ n
* SMCR ECE LL_TIM_SetClockSource
* @ param TIMx Timer instance
* @ param ClockSource This parameter can be one of the following values :
* @ arg @ ref LL_TIM_CLOCKSOURCE_INTERNAL
* @ arg @ ref LL_TIM_CLOCKSOURCE_EXT_MODE1
* @ arg @ ref LL_TIM_CLOCKSOURCE_EXT_MODE2
* @ retval None
*/
__STATIC_INLINE void LL_TIM_SetClockSource ( TIM_TypeDef * TIMx , uint32_t ClockSource )
{
MODIFY_REG ( TIMx - > SMCR , TIM_SMCR_SMS | TIM_SMCR_ECE , ClockSource ) ;
}
/**
* @ brief Set the encoder interface mode .
* @ note Macro IS_TIM_ENCODER_INTERFACE_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance supports the encoder mode .
* @ rmtoll SMCR SMS LL_TIM_SetEncoderMode
* @ param TIMx Timer instance
* @ param EncoderMode This parameter can be one of the following values :
* @ arg @ ref LL_TIM_ENCODERMODE_X2_TI1
* @ arg @ ref LL_TIM_ENCODERMODE_X2_TI2
* @ arg @ ref LL_TIM_ENCODERMODE_X4_TI12
* @ retval None
*/
__STATIC_INLINE void LL_TIM_SetEncoderMode ( TIM_TypeDef * TIMx , uint32_t EncoderMode )
{
MODIFY_REG ( TIMx - > SMCR , TIM_SMCR_SMS , EncoderMode ) ;
}
/**
* @ }
*/
/** @defgroup TIM_LL_EF_Timer_Synchronization Timer synchronisation configuration
* @ {
*/
/**
* @ brief Set the trigger output ( TRGO ) used for timer synchronization .
* @ note Macro IS_TIM_MASTER_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance can operate as a master timer .
* @ rmtoll CR2 MMS LL_TIM_SetTriggerOutput
* @ param TIMx Timer instance
* @ param TimerSynchronization This parameter can be one of the following values :
* @ arg @ ref LL_TIM_TRGO_RESET
* @ arg @ ref LL_TIM_TRGO_ENABLE
* @ arg @ ref LL_TIM_TRGO_UPDATE
* @ arg @ ref LL_TIM_TRGO_CC1IF
* @ arg @ ref LL_TIM_TRGO_OC1REF
* @ arg @ ref LL_TIM_TRGO_OC2REF
* @ arg @ ref LL_TIM_TRGO_OC3REF
* @ arg @ ref LL_TIM_TRGO_OC4REF
* @ retval None
*/
__STATIC_INLINE void LL_TIM_SetTriggerOutput ( TIM_TypeDef * TIMx , uint32_t TimerSynchronization )
{
MODIFY_REG ( TIMx - > CR2 , TIM_CR2_MMS , TimerSynchronization ) ;
}
/**
* @ brief Set the trigger output 2 ( TRGO2 ) used for ADC synchronization .
* @ note Macro IS_TIM_TRGO2_INSTANCE ( TIMx ) can be used to check
* whether or not a timer instance can be used for ADC synchronization .
* @ rmtoll CR2 MMS2 LL_TIM_SetTriggerOutput2
* @ param TIMx Timer Instance
* @ param ADCSynchronization This parameter can be one of the following values :
* @ arg @ ref LL_TIM_TRGO2_RESET
* @ arg @ ref LL_TIM_TRGO2_ENABLE
* @ arg @ ref LL_TIM_TRGO2_UPDATE
* @ arg @ ref LL_TIM_TRGO2_CC1F
* @ arg @ ref LL_TIM_TRGO2_OC1
* @ arg @ ref LL_TIM_TRGO2_OC2
* @ arg @ ref LL_TIM_TRGO2_OC3
* @ arg @ ref LL_TIM_TRGO2_OC4
* @ arg @ ref LL_TIM_TRGO2_OC5
* @ arg @ ref LL_TIM_TRGO2_OC6
* @ arg @ ref LL_TIM_TRGO2_OC4_RISINGFALLING
* @ arg @ ref LL_TIM_TRGO2_OC6_RISINGFALLING
* @ arg @ ref LL_TIM_TRGO2_OC4_RISING_OC6_RISING
* @ arg @ ref LL_TIM_TRGO2_OC4_RISING_OC6_FALLING
* @ arg @ ref LL_TIM_TRGO2_OC5_RISING_OC6_RISING
* @ arg @ ref LL_TIM_TRGO2_OC5_RISING_OC6_FALLING
* @ retval None
*/
__STATIC_INLINE void LL_TIM_SetTriggerOutput2 ( TIM_TypeDef * TIMx , uint32_t ADCSynchronization )
{
MODIFY_REG ( TIMx - > CR2 , TIM_CR2_MMS2 , ADCSynchronization ) ;
}
/**
* @ brief Set the synchronization mode of a slave timer .
* @ note Macro IS_TIM_SLAVE_INSTANCE ( TIMx ) can be used to check whether or not
* a timer instance can operate as a slave timer .
* @ rmtoll SMCR SMS LL_TIM_SetSlaveMode
* @ param TIMx Timer instance
* @ param SlaveMode This parameter can be one of the following values :
* @ arg @ ref LL_TIM_SLAVEMODE_DISABLED
* @ arg @ ref LL_TIM_SLAVEMODE_RESET
* @ arg @ ref LL_TIM_SLAVEMODE_GATED
* @ arg @ ref LL_TIM_SLAVEMODE_TRIGGER
* @ arg @ ref LL_TIM_SLAVEMODE_COMBINED_RESETTRIGGER
* @ retval None
*/
__STATIC_INLINE void LL_TIM_SetSlaveMode ( TIM_TypeDef * TIMx , uint32_t SlaveMode )
{
MODIFY_REG ( TIMx - > SMCR , TIM_SMCR_SMS , SlaveMode ) ;
}
/**
* @ brief Set the selects the trigger input to be used to synchronize the counter .
* @ note Macro IS_TIM_SLAVE_INSTANCE ( TIMx ) can be used to check whether or not
* a timer instance can operate as a slave timer .
* @ rmtoll SMCR TS LL_TIM_SetTriggerInput
* @ param TIMx Timer instance
* @ param TriggerInput This parameter can be one of the following values :
* @ arg @ ref LL_TIM_TS_ITR0
* @ arg @ ref LL_TIM_TS_ITR1
* @ arg @ ref LL_TIM_TS_ITR2
* @ arg @ ref LL_TIM_TS_ITR3
* @ arg @ ref LL_TIM_TS_ITR4
* @ arg @ ref LL_TIM_TS_ITR5
* @ arg @ ref LL_TIM_TS_ITR6
* @ arg @ ref LL_TIM_TS_ITR7
* @ arg @ ref LL_TIM_TS_ITR8 ( * )
* @ arg @ ref LL_TIM_TS_ITR9 ( * )
* @ arg @ ref LL_TIM_TS_ITR10 ( * )
* @ arg @ ref LL_TIM_TS_ITR11 ( * )
* @ arg @ ref LL_TIM_TS_ITR12 ( * )
* @ arg @ ref LL_TIM_TS_ITR13 ( * )
* @ arg @ ref LL_TIM_TS_TI1F_ED
* @ arg @ ref LL_TIM_TS_TI1FP1
* @ arg @ ref LL_TIM_TS_TI2FP2
* @ arg @ ref LL_TIM_TS_ETRF
*
* ( * ) Value not defined in all devices .
* @ retval None
*/
__STATIC_INLINE void LL_TIM_SetTriggerInput ( TIM_TypeDef * TIMx , uint32_t TriggerInput )
{
MODIFY_REG ( TIMx - > SMCR , TIM_SMCR_TS , TriggerInput ) ;
}
/**
* @ brief Enable the Master / Slave mode .
* @ note Macro IS_TIM_SLAVE_INSTANCE ( TIMx ) can be used to check whether or not
* a timer instance can operate as a slave timer .
* @ rmtoll SMCR MSM LL_TIM_EnableMasterSlaveMode
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_EnableMasterSlaveMode ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > SMCR , TIM_SMCR_MSM ) ;
}
/**
* @ brief Disable the Master / Slave mode .
* @ note Macro IS_TIM_SLAVE_INSTANCE ( TIMx ) can be used to check whether or not
* a timer instance can operate as a slave timer .
* @ rmtoll SMCR MSM LL_TIM_DisableMasterSlaveMode
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_DisableMasterSlaveMode ( TIM_TypeDef * TIMx )
{
CLEAR_BIT ( TIMx - > SMCR , TIM_SMCR_MSM ) ;
}
/**
* @ brief Indicates whether the Master / Slave mode is enabled .
* @ note Macro IS_TIM_SLAVE_INSTANCE ( TIMx ) can be used to check whether or not
* a timer instance can operate as a slave timer .
* @ rmtoll SMCR MSM LL_TIM_IsEnabledMasterSlaveMode
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsEnabledMasterSlaveMode ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > SMCR , TIM_SMCR_MSM ) = = ( TIM_SMCR_MSM ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Configure the external trigger ( ETR ) input .
* @ note Macro IS_TIM_ETR_INSTANCE ( TIMx ) can be used to check whether or not
* a timer instance provides an external trigger input .
* @ rmtoll SMCR ETP LL_TIM_ConfigETR \ n
* SMCR ETPS LL_TIM_ConfigETR \ n
* SMCR ETF LL_TIM_ConfigETR
* @ param TIMx Timer instance
* @ param ETRPolarity This parameter can be one of the following values :
* @ arg @ ref LL_TIM_ETR_POLARITY_NONINVERTED
* @ arg @ ref LL_TIM_ETR_POLARITY_INVERTED
* @ param ETRPrescaler This parameter can be one of the following values :
* @ arg @ ref LL_TIM_ETR_PRESCALER_DIV1
* @ arg @ ref LL_TIM_ETR_PRESCALER_DIV2
* @ arg @ ref LL_TIM_ETR_PRESCALER_DIV4
* @ arg @ ref LL_TIM_ETR_PRESCALER_DIV8
* @ param ETRFilter This parameter can be one of the following values :
* @ arg @ ref LL_TIM_ETR_FILTER_FDIV1
* @ arg @ ref LL_TIM_ETR_FILTER_FDIV1_N2
* @ arg @ ref LL_TIM_ETR_FILTER_FDIV1_N4
* @ arg @ ref LL_TIM_ETR_FILTER_FDIV1_N8
* @ arg @ ref LL_TIM_ETR_FILTER_FDIV2_N6
* @ arg @ ref LL_TIM_ETR_FILTER_FDIV2_N8
* @ arg @ ref LL_TIM_ETR_FILTER_FDIV4_N6
* @ arg @ ref LL_TIM_ETR_FILTER_FDIV4_N8
* @ arg @ ref LL_TIM_ETR_FILTER_FDIV8_N6
* @ arg @ ref LL_TIM_ETR_FILTER_FDIV8_N8
* @ arg @ ref LL_TIM_ETR_FILTER_FDIV16_N5
* @ arg @ ref LL_TIM_ETR_FILTER_FDIV16_N6
* @ arg @ ref LL_TIM_ETR_FILTER_FDIV16_N8
* @ arg @ ref LL_TIM_ETR_FILTER_FDIV32_N5
* @ arg @ ref LL_TIM_ETR_FILTER_FDIV32_N6
* @ arg @ ref LL_TIM_ETR_FILTER_FDIV32_N8
* @ retval None
*/
__STATIC_INLINE void LL_TIM_ConfigETR ( TIM_TypeDef * TIMx , uint32_t ETRPolarity , uint32_t ETRPrescaler ,
uint32_t ETRFilter )
{
MODIFY_REG ( TIMx - > SMCR , TIM_SMCR_ETP | TIM_SMCR_ETPS | TIM_SMCR_ETF , ETRPolarity | ETRPrescaler | ETRFilter ) ;
}
/**
* @ brief Select the external trigger ( ETR ) input source .
* @ note Macro IS_TIM_ETRSEL_INSTANCE ( TIMx ) can be used to check whether or
* not a timer instance supports ETR source selection .
* @ rmtoll AF1 ETRSEL LL_TIM_SetETRSource
* @ param TIMx Timer instance
* @ param ETRSource This parameter can be one of the following values :
* For TIM1 , the parameter is one of the following values :
* @ arg LL_TIM_TIM1_ETRSOURCE_GPIO : TIM1_ETR is connected to GPIO
* @ arg LL_TIM_TIM1_ETRSOURCE_COMP1 : TIM1_ETR is connected to COMP1 output
* @ arg LL_TIM_TIM1_ETRSOURCE_COMP2 : TIM1_ETR is connected to COMP2 output
* @ arg LL_TIM_TIM1_ETRSOURCE_ADC1_AWD1 : TIM1_ETR is connected to ADC1 AWD1
* @ arg LL_TIM_TIM1_ETRSOURCE_ADC1_AWD2 : TIM1_ETR is connected to ADC1 AWD2
* @ arg LL_TIM_TIM1_ETRSOURCE_ADC1_AWD3 : TIM1_ETR is connected to ADC1 AWD3
* @ arg LL_TIM_TIM1_ETRSOURCE_ADC3_AWD1 : TIM1_ETR is connected to ADC3 AWD1
* @ arg LL_TIM_TIM1_ETRSOURCE_ADC3_AWD2 : TIM1_ETR is connected to ADC3 AWD2
* @ arg LL_TIM_TIM1_ETRSOURCE_ADC3_AWD3 : TIM1_ETR is connected to ADC3 AWD3
*
* For TIM2 , the parameter is one of the following values :
* @ arg LL_TIM_TIM2_ETRSOURCE_GPIO : TIM2_ETR is connected to GPIO
* @ arg LL_TIM_TIM2_ETRSOURCE_COMP1 : TIM2_ETR is connected to COMP1 output
* @ arg LL_TIM_TIM2_ETRSOURCE_COMP2 : TIM2_ETR is connected to COMP2 output
* @ arg LL_TIM_TIM2_ETRSOURCE_LSE : TIM2_ETR is connected to LSE
* @ arg LL_TIM_TIM2_ETRSOURCE_SAI1_FSA : TIM2_ETR is connected to SAI1 FS_A
* @ arg LL_TIM_TIM2_ETRSOURCE_SAI1_FSB : TIM2_ETR is connected to SAI1 FS_B
*
* For TIM3 , the parameter is one of the following values :
* @ arg LL_TIM_TIM3_ETRSOURCE_GPIO : TIM3_ETR is connected to GPIO
* @ arg LL_TIM_TIM3_ETRSOURCE_COMP1 : TIM3_ETR is connected to COMP1 output
*
* For TIM5 , the parameter is one of the following values :
* @ arg LL_TIM_TIM5_ETRSOURCE_GPIO : TIM5_ETR is connected to GPIO
* @ arg LL_TIM_TIM5_ETRSOURCE_SAI2_FSA : TIM5_ETR is connected to SAI2 FS_A ( * )
* @ arg LL_TIM_TIM5_ETRSOURCE_SAI2_FSB : TIM5_ETR is connected to SAI2 FS_B ( * )
* @ arg LL_TIM_TIM5_ETRSOURCE_SAI4_FSA : TIM5_ETR is connected to SAI2 FS_A ( * )
* @ arg LL_TIM_TIM5_ETRSOURCE_SAI4_FSB : TIM5_ETR is connected to SAI2 FS_B ( * )
*
* For TIM8 , the parameter is one of the following values :
* @ arg LL_TIM_TIM8_ETRSOURCE_GPIO : TIM8_ETR is connected to GPIO
* @ arg LL_TIM_TIM8_ETRSOURCE_COMP1 : TIM8_ETR is connected to COMP1 output
* @ arg LL_TIM_TIM8_ETRSOURCE_COMP2 : TIM8_ETR is connected to COMP2 output
* @ arg LL_TIM_TIM8_ETRSOURCE_ADC2_AWD1 : TIM8_ETR is connected to ADC2 AWD1
* @ arg LL_TIM_TIM8_ETRSOURCE_ADC2_AWD2 : TIM8_ETR is connected to ADC2 AWD2
* @ arg LL_TIM_TIM8_ETRSOURCE_ADC2_AWD3 : TIM8_ETR is connected to ADC2 AWD3
* @ arg LL_TIM_TIM8_ETRSOURCE_ADC3_AWD1 : TIM8_ETR is connected to ADC3 AWD1
* @ arg LL_TIM_TIM8_ETRSOURCE_ADC3_AWD2 : TIM8_ETR is connected to ADC3 AWD2
* @ arg LL_TIM_TIM8_ETRSOURCE_ADC3_AWD3 : TIM8_ETR is connected to ADC3 AWD3
*
* For TIM23 , the parameter is one of the following values : ( * )
* @ arg LL_TIM_TIM23_ETRSOURCE_GPIO TIM23_ETR is connected to GPIO
* @ arg LL_TIM_TIM23_ETRSOURCE_COMP1 TIM23_ETR is connected to COMP1 output
* @ arg LL_TIM_TIM23_ETRSOURCE_COMP2 TIM23_ETR is connected to COMP2 output
*
* For TIM24 , the parameter is one of the following values : ( * )
* @ arg LL_TIM_TIM24_ETRSOURCE_GPIO TIM24_ETR is connected to GPIO
* @ arg LL_TIM_TIM24_ETRSOURCE_SAI4_FSA TIM24_ETR is connected to SAI4 FS_A
* @ arg LL_TIM_TIM24_ETRSOURCE_SAI4_FSB TIM24_ETR is connected to SAI4 FS_B
* @ arg LL_TIM_TIM24_ETRSOURCE_SAI1_FSA TIM24_ETR is connected to SAI1 FS_A
* @ arg LL_TIM_TIM24_ETRSOURCE_SAI1_FSB TIM24_ETR is connected to SAI1 FS_B
*
* ( * ) Value not defined in all devices .
* @ retval None
*/
__STATIC_INLINE void LL_TIM_SetETRSource ( TIM_TypeDef * TIMx , uint32_t ETRSource )
{
MODIFY_REG ( TIMx - > AF1 , TIMx_AF1_ETRSEL , ETRSource ) ;
}
/**
* @ }
*/
/** @defgroup TIM_LL_EF_Break_Function Break function configuration
* @ {
*/
/**
* @ brief Enable the break function .
* @ note Macro IS_TIM_BREAK_INSTANCE ( TIMx ) can be used to check whether or not
* a timer instance provides a break input .
* @ rmtoll BDTR BKE LL_TIM_EnableBRK
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_EnableBRK ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > BDTR , TIM_BDTR_BKE ) ;
}
/**
* @ brief Disable the break function .
* @ rmtoll BDTR BKE LL_TIM_DisableBRK
* @ param TIMx Timer instance
* @ note Macro IS_TIM_BREAK_INSTANCE ( TIMx ) can be used to check whether or not
* a timer instance provides a break input .
* @ retval None
*/
__STATIC_INLINE void LL_TIM_DisableBRK ( TIM_TypeDef * TIMx )
{
CLEAR_BIT ( TIMx - > BDTR , TIM_BDTR_BKE ) ;
}
# if defined(TIM_BDTR_BKBID)
/**
* @ brief Configure the break input .
* @ note Macro IS_TIM_BREAK_INSTANCE ( TIMx ) can be used to check whether or not
* a timer instance provides a break input .
* @ note Bidirectional mode is only supported by advanced timer instances .
* Macro IS_TIM_ADVANCED_INSTANCE ( TIMx ) can be used to check whether or not
* a timer instance is an advanced - control timer .
* @ note In bidirectional mode ( BKBID bit set ) , the Break input is configured both
* in input mode and in open drain output mode . Any active Break event will
* assert a low logic level on the Break input to indicate an internal break
* event to external devices .
* @ note When bidirectional mode isn ' t supported , BreakAFMode must be set to
* LL_TIM_BREAK_AFMODE_INPUT .
* @ rmtoll BDTR BKP LL_TIM_ConfigBRK \ n
* BDTR BKF LL_TIM_ConfigBRK \ n
* BDTR BKBID LL_TIM_ConfigBRK
* @ param TIMx Timer instance
* @ param BreakPolarity This parameter can be one of the following values :
* @ arg @ ref LL_TIM_BREAK_POLARITY_LOW
* @ arg @ ref LL_TIM_BREAK_POLARITY_HIGH
* @ param BreakFilter This parameter can be one of the following values :
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV1
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV1_N2
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV1_N4
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV1_N8
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV2_N6
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV2_N8
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV4_N6
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV4_N8
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV8_N6
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV8_N8
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV16_N5
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV16_N6
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV16_N8
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV32_N5
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV32_N6
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV32_N8
* @ param BreakAFMode This parameter can be one of the following values :
* @ arg @ ref LL_TIM_BREAK_AFMODE_INPUT
* @ arg @ ref LL_TIM_BREAK_AFMODE_BIDIRECTIONAL
* @ retval None
*/
__STATIC_INLINE void LL_TIM_ConfigBRK ( TIM_TypeDef * TIMx , uint32_t BreakPolarity , uint32_t BreakFilter ,
uint32_t BreakAFMode )
{
MODIFY_REG ( TIMx - > BDTR , TIM_BDTR_BKP | TIM_BDTR_BKF | TIM_BDTR_BKBID , BreakPolarity | BreakFilter | BreakAFMode ) ;
}
# else
/**
* @ brief Configure the break input .
* @ note Macro IS_TIM_BREAK_INSTANCE ( TIMx ) can be used to check whether or not
* a timer instance provides a break input .
* @ rmtoll BDTR BKP LL_TIM_ConfigBRK \ n
* BDTR BKF LL_TIM_ConfigBRK
* @ param TIMx Timer instance
* @ param BreakPolarity This parameter can be one of the following values :
* @ arg @ ref LL_TIM_BREAK_POLARITY_LOW
* @ arg @ ref LL_TIM_BREAK_POLARITY_HIGH
* @ param BreakFilter This parameter can be one of the following values :
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV1
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV1_N2
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV1_N4
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV1_N8
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV2_N6
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV2_N8
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV4_N6
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV4_N8
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV8_N6
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV8_N8
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV16_N5
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV16_N6
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV16_N8
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV32_N5
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV32_N6
* @ arg @ ref LL_TIM_BREAK_FILTER_FDIV32_N8
* @ retval None
*/
__STATIC_INLINE void LL_TIM_ConfigBRK ( TIM_TypeDef * TIMx , uint32_t BreakPolarity ,
uint32_t BreakFilter )
{
MODIFY_REG ( TIMx - > BDTR , TIM_BDTR_BKP | TIM_BDTR_BKF , BreakPolarity | BreakFilter ) ;
}
# endif /* TIM_BDTR_BKBID */
# if defined(TIM_BDTR_BKBID)
/**
* @ brief Disarm the break input ( when it operates in bidirectional mode ) .
* @ note The break input can be disarmed only when it is configured in
* bidirectional mode and when when MOE is reset .
* @ note Purpose is to be able to have the input voltage back to high - state ,
* whatever the time constant on the output .
* @ rmtoll BDTR BKDSRM LL_TIM_DisarmBRK
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_DisarmBRK ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > BDTR , TIM_BDTR_BKDSRM ) ;
}
/**
* @ brief Re - arm the break input ( when it operates in bidirectional mode ) .
* @ note The Break input is automatically armed as soon as MOE bit is set .
* @ rmtoll BDTR BKDSRM LL_TIM_ReArmBRK
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_ReArmBRK ( TIM_TypeDef * TIMx )
{
CLEAR_BIT ( TIMx - > BDTR , TIM_BDTR_BKDSRM ) ;
}
# endif /*TIM_BDTR_BKBID */
/**
* @ brief Enable the break 2 function .
* @ note Macro IS_TIM_BKIN2_INSTANCE ( TIMx ) can be used to check whether or not
* a timer instance provides a second break input .
* @ rmtoll BDTR BK2E LL_TIM_EnableBRK2
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_EnableBRK2 ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > BDTR , TIM_BDTR_BK2E ) ;
}
/**
* @ brief Disable the break 2 function .
* @ note Macro IS_TIM_BKIN2_INSTANCE ( TIMx ) can be used to check whether or not
* a timer instance provides a second break input .
* @ rmtoll BDTR BK2E LL_TIM_DisableBRK2
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_DisableBRK2 ( TIM_TypeDef * TIMx )
{
CLEAR_BIT ( TIMx - > BDTR , TIM_BDTR_BK2E ) ;
}
# if defined(TIM_BDTR_BKBID)
/**
* @ brief Configure the break 2 input .
* @ note Macro IS_TIM_BKIN2_INSTANCE ( TIMx ) can be used to check whether or not
* a timer instance provides a second break input .
* @ note Bidirectional mode is only supported by advanced timer instances .
* Macro IS_TIM_ADVANCED_INSTANCE ( TIMx ) can be used to check whether or not
* a timer instance is an advanced - control timer .
* @ note In bidirectional mode ( BK2BID bit set ) , the Break 2 input is configured both
* in input mode and in open drain output mode . Any active Break event will
* assert a low logic level on the Break 2 input to indicate an internal break
* event to external devices .
* @ note When bidirectional mode isn ' t supported , Break2AFMode must be set to
* LL_TIM_BREAK2_AFMODE_INPUT .
* @ rmtoll BDTR BK2P LL_TIM_ConfigBRK2 \ n
* BDTR BK2F LL_TIM_ConfigBRK2 \ n
* BDTR BK2BID LL_TIM_ConfigBRK2
* @ param TIMx Timer instance
* @ param Break2Polarity This parameter can be one of the following values :
* @ arg @ ref LL_TIM_BREAK2_POLARITY_LOW
* @ arg @ ref LL_TIM_BREAK2_POLARITY_HIGH
* @ param Break2Filter This parameter can be one of the following values :
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV1
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV1_N2
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV1_N4
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV1_N8
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV2_N6
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV2_N8
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV4_N6
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV4_N8
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV8_N6
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV8_N8
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV16_N5
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV16_N6
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV16_N8
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV32_N5
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV32_N6
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV32_N8
* @ param Break2AFMode This parameter can be one of the following values :
* @ arg @ ref LL_TIM_BREAK2_AFMODE_INPUT
* @ arg @ ref LL_TIM_BREAK2_AFMODE_BIDIRECTIONAL
* @ retval None
*/
__STATIC_INLINE void LL_TIM_ConfigBRK2 ( TIM_TypeDef * TIMx , uint32_t Break2Polarity , uint32_t Break2Filter ,
uint32_t Break2AFMode )
{
MODIFY_REG ( TIMx - > BDTR , TIM_BDTR_BK2P | TIM_BDTR_BK2F | TIM_BDTR_BK2BID , Break2Polarity | Break2Filter | Break2AFMode ) ;
}
# else
/**
* @ brief Configure the break 2 input .
* @ note Macro IS_TIM_BKIN2_INSTANCE ( TIMx ) can be used to check whether or not
* a timer instance provides a second break input .
* @ rmtoll BDTR BK2P LL_TIM_ConfigBRK2 \ n
* BDTR BK2F LL_TIM_ConfigBRK2
* @ param TIMx Timer instance
* @ param Break2Polarity This parameter can be one of the following values :
* @ arg @ ref LL_TIM_BREAK2_POLARITY_LOW
* @ arg @ ref LL_TIM_BREAK2_POLARITY_HIGH
* @ param Break2Filter This parameter can be one of the following values :
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV1
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV1_N2
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV1_N4
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV1_N8
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV2_N6
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV2_N8
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV4_N6
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV4_N8
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV8_N6
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV8_N8
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV16_N5
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV16_N6
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV16_N8
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV32_N5
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV32_N6
* @ arg @ ref LL_TIM_BREAK2_FILTER_FDIV32_N8
* @ retval None
*/
__STATIC_INLINE void LL_TIM_ConfigBRK2 ( TIM_TypeDef * TIMx , uint32_t Break2Polarity , uint32_t Break2Filter )
{
MODIFY_REG ( TIMx - > BDTR , TIM_BDTR_BK2P | TIM_BDTR_BK2F , Break2Polarity | Break2Filter ) ;
}
# endif /*TIM_BDTR_BKBID */
# if defined(TIM_BDTR_BKBID)
/**
* @ brief Disarm the break 2 input ( when it operates in bidirectional mode ) .
* @ note The break 2 input can be disarmed only when it is configured in
* bidirectional mode and when when MOE is reset .
* @ note Purpose is to be able to have the input voltage back to high - state ,
* whatever the time constant on the output .
* @ rmtoll BDTR BK2DSRM LL_TIM_DisarmBRK2
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_DisarmBRK2 ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > BDTR , TIM_BDTR_BK2DSRM ) ;
}
/**
* @ brief Re - arm the break 2 input ( when it operates in bidirectional mode ) .
* @ note The Break 2 input is automatically armed as soon as MOE bit is set .
* @ rmtoll BDTR BK2DSRM LL_TIM_ReArmBRK2
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_ReArmBRK2 ( TIM_TypeDef * TIMx )
{
CLEAR_BIT ( TIMx - > BDTR , TIM_BDTR_BK2DSRM ) ;
}
# endif /*TIM_BDTR_BKBID */
/**
* @ brief Select the outputs off state ( enabled v . s . disabled ) in Idle and Run modes .
* @ note Macro IS_TIM_BREAK_INSTANCE ( TIMx ) can be used to check whether or not
* a timer instance provides a break input .
* @ rmtoll BDTR OSSI LL_TIM_SetOffStates \ n
* BDTR OSSR LL_TIM_SetOffStates
* @ param TIMx Timer instance
* @ param OffStateIdle This parameter can be one of the following values :
* @ arg @ ref LL_TIM_OSSI_DISABLE
* @ arg @ ref LL_TIM_OSSI_ENABLE
* @ param OffStateRun This parameter can be one of the following values :
* @ arg @ ref LL_TIM_OSSR_DISABLE
* @ arg @ ref LL_TIM_OSSR_ENABLE
* @ retval None
*/
__STATIC_INLINE void LL_TIM_SetOffStates ( TIM_TypeDef * TIMx , uint32_t OffStateIdle , uint32_t OffStateRun )
{
MODIFY_REG ( TIMx - > BDTR , TIM_BDTR_OSSI | TIM_BDTR_OSSR , OffStateIdle | OffStateRun ) ;
}
/**
* @ brief Enable automatic output ( MOE can be set by software or automatically when a break input is active ) .
* @ note Macro IS_TIM_BREAK_INSTANCE ( TIMx ) can be used to check whether or not
* a timer instance provides a break input .
* @ rmtoll BDTR AOE LL_TIM_EnableAutomaticOutput
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_EnableAutomaticOutput ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > BDTR , TIM_BDTR_AOE ) ;
}
/**
* @ brief Disable automatic output ( MOE can be set only by software ) .
* @ note Macro IS_TIM_BREAK_INSTANCE ( TIMx ) can be used to check whether or not
* a timer instance provides a break input .
* @ rmtoll BDTR AOE LL_TIM_DisableAutomaticOutput
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_DisableAutomaticOutput ( TIM_TypeDef * TIMx )
{
CLEAR_BIT ( TIMx - > BDTR , TIM_BDTR_AOE ) ;
}
/**
* @ brief Indicate whether automatic output is enabled .
* @ note Macro IS_TIM_BREAK_INSTANCE ( TIMx ) can be used to check whether or not
* a timer instance provides a break input .
* @ rmtoll BDTR AOE LL_TIM_IsEnabledAutomaticOutput
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsEnabledAutomaticOutput ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > BDTR , TIM_BDTR_AOE ) = = ( TIM_BDTR_AOE ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Enable the outputs ( set the MOE bit in TIMx_BDTR register ) .
* @ note The MOE bit in TIMx_BDTR register allows to enable / disable the outputs by
* software and is reset in case of break or break2 event
* @ note Macro IS_TIM_BREAK_INSTANCE ( TIMx ) can be used to check whether or not
* a timer instance provides a break input .
* @ rmtoll BDTR MOE LL_TIM_EnableAllOutputs
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_EnableAllOutputs ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > BDTR , TIM_BDTR_MOE ) ;
}
/**
* @ brief Disable the outputs ( reset the MOE bit in TIMx_BDTR register ) .
* @ note The MOE bit in TIMx_BDTR register allows to enable / disable the outputs by
* software and is reset in case of break or break2 event .
* @ note Macro IS_TIM_BREAK_INSTANCE ( TIMx ) can be used to check whether or not
* a timer instance provides a break input .
* @ rmtoll BDTR MOE LL_TIM_DisableAllOutputs
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_DisableAllOutputs ( TIM_TypeDef * TIMx )
{
CLEAR_BIT ( TIMx - > BDTR , TIM_BDTR_MOE ) ;
}
/**
* @ brief Indicates whether outputs are enabled .
* @ note Macro IS_TIM_BREAK_INSTANCE ( TIMx ) can be used to check whether or not
* a timer instance provides a break input .
* @ rmtoll BDTR MOE LL_TIM_IsEnabledAllOutputs
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsEnabledAllOutputs ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > BDTR , TIM_BDTR_MOE ) = = ( TIM_BDTR_MOE ) ) ? 1UL : 0UL ) ;
}
# if defined(TIM_BREAK_INPUT_SUPPORT)
/**
* @ brief Enable the signals connected to the designated timer break input .
* @ note Macro IS_TIM_BREAKSOURCE_INSTANCE ( TIMx ) can be used to check whether
* or not a timer instance allows for break input selection .
* @ rmtoll AF1 BKINE LL_TIM_EnableBreakInputSource \ n
* AF1 BKCMP1E LL_TIM_EnableBreakInputSource \ n
* AF1 BKCMP2E LL_TIM_EnableBreakInputSource \ n
* AF1 BKDF1BK0E LL_TIM_EnableBreakInputSource \ n
* AF2 BK2INE LL_TIM_EnableBreakInputSource \ n
* AF2 BK2CMP1E LL_TIM_EnableBreakInputSource \ n
* AF2 BK2CMP2E LL_TIM_EnableBreakInputSource \ n
* AF2 BK2DF1BK1E LL_TIM_EnableBreakInputSource
* @ param TIMx Timer instance
* @ param BreakInput This parameter can be one of the following values :
* @ arg @ ref LL_TIM_BREAK_INPUT_BKIN
* @ arg @ ref LL_TIM_BREAK_INPUT_BKIN2
* @ param Source This parameter can be one of the following values :
* @ arg @ ref LL_TIM_BKIN_SOURCE_BKIN
* @ arg @ ref LL_TIM_BKIN_SOURCE_BKCOMP1
* @ arg @ ref LL_TIM_BKIN_SOURCE_BKCOMP2
* @ arg @ ref LL_TIM_BKIN_SOURCE_DF1BK
* @ retval None
*/
__STATIC_INLINE void LL_TIM_EnableBreakInputSource ( TIM_TypeDef * TIMx , uint32_t BreakInput , uint32_t Source )
{
__IO uint32_t * pReg = ( __IO uint32_t * ) ( ( uint32_t ) ( ( uint32_t ) ( & TIMx - > AF1 ) + BreakInput ) ) ;
SET_BIT ( * pReg , Source ) ;
}
/**
* @ brief Disable the signals connected to the designated timer break input .
* @ note Macro IS_TIM_BREAKSOURCE_INSTANCE ( TIMx ) can be used to check whether
* or not a timer instance allows for break input selection .
* @ rmtoll AF1 BKINE LL_TIM_DisableBreakInputSource \ n
* AF1 BKCMP1E LL_TIM_DisableBreakInputSource \ n
* AF1 BKCMP2E LL_TIM_DisableBreakInputSource \ n
* AF1 BKDF1BK0E LL_TIM_DisableBreakInputSource \ n
* AF2 BK2INE LL_TIM_DisableBreakInputSource \ n
* AF2 BK2CMP1E LL_TIM_DisableBreakInputSource \ n
* AF2 BK2CMP2E LL_TIM_DisableBreakInputSource \ n
* AF2 BK2DF1BK1E LL_TIM_DisableBreakInputSource
* @ param TIMx Timer instance
* @ param BreakInput This parameter can be one of the following values :
* @ arg @ ref LL_TIM_BREAK_INPUT_BKIN
* @ arg @ ref LL_TIM_BREAK_INPUT_BKIN2
* @ param Source This parameter can be one of the following values :
* @ arg @ ref LL_TIM_BKIN_SOURCE_BKIN
* @ arg @ ref LL_TIM_BKIN_SOURCE_BKCOMP1
* @ arg @ ref LL_TIM_BKIN_SOURCE_BKCOMP2
* @ arg @ ref LL_TIM_BKIN_SOURCE_DF1BK
* @ retval None
*/
__STATIC_INLINE void LL_TIM_DisableBreakInputSource ( TIM_TypeDef * TIMx , uint32_t BreakInput , uint32_t Source )
{
__IO uint32_t * pReg = ( __IO uint32_t * ) ( ( uint32_t ) ( ( uint32_t ) ( & TIMx - > AF1 ) + BreakInput ) ) ;
CLEAR_BIT ( * pReg , Source ) ;
}
/**
* @ brief Set the polarity of the break signal for the timer break input .
* @ note Macro IS_TIM_BREAKSOURCE_INSTANCE ( TIMx ) can be used to check whether
* or not a timer instance allows for break input selection .
* @ rmtoll AF1 BKINP LL_TIM_SetBreakInputSourcePolarity \ n
* AF1 BKCMP1P LL_TIM_SetBreakInputSourcePolarity \ n
* AF1 BKCMP2P LL_TIM_SetBreakInputSourcePolarity \ n
* AF2 BK2INP LL_TIM_SetBreakInputSourcePolarity \ n
* AF2 BK2CMP1P LL_TIM_SetBreakInputSourcePolarity \ n
* AF2 BK2CMP2P LL_TIM_SetBreakInputSourcePolarity
* @ param TIMx Timer instance
* @ param BreakInput This parameter can be one of the following values :
* @ arg @ ref LL_TIM_BREAK_INPUT_BKIN
* @ arg @ ref LL_TIM_BREAK_INPUT_BKIN2
* @ param Source This parameter can be one of the following values :
* @ arg @ ref LL_TIM_BKIN_SOURCE_BKIN
* @ arg @ ref LL_TIM_BKIN_SOURCE_BKCOMP1
* @ arg @ ref LL_TIM_BKIN_SOURCE_BKCOMP2
* @ param Polarity This parameter can be one of the following values :
* @ arg @ ref LL_TIM_BKIN_POLARITY_LOW
* @ arg @ ref LL_TIM_BKIN_POLARITY_HIGH
* @ retval None
*/
__STATIC_INLINE void LL_TIM_SetBreakInputSourcePolarity ( TIM_TypeDef * TIMx , uint32_t BreakInput , uint32_t Source ,
uint32_t Polarity )
{
__IO uint32_t * pReg = ( __IO uint32_t * ) ( ( uint32_t ) ( ( uint32_t ) ( & TIMx - > AF1 ) + BreakInput ) ) ;
MODIFY_REG ( * pReg , ( TIMx_AF1_BKINP < < TIM_POSITION_BRK_SOURCE ) , ( Polarity < < TIM_POSITION_BRK_SOURCE ) ) ;
}
# endif /* TIM_BREAK_INPUT_SUPPORT */
/**
* @ }
*/
/** @defgroup TIM_LL_EF_DMA_Burst_Mode DMA burst mode configuration
* @ {
*/
/**
* @ brief Configures the timer DMA burst feature .
* @ note Macro IS_TIM_DMABURST_INSTANCE ( TIMx ) can be used to check whether or
* not a timer instance supports the DMA burst mode .
* @ rmtoll DCR DBL LL_TIM_ConfigDMABurst \ n
* DCR DBA LL_TIM_ConfigDMABurst
* @ param TIMx Timer instance
* @ param DMABurstBaseAddress This parameter can be one of the following values :
* @ arg @ ref LL_TIM_DMABURST_BASEADDR_CR1
* @ arg @ ref LL_TIM_DMABURST_BASEADDR_CR2
* @ arg @ ref LL_TIM_DMABURST_BASEADDR_SMCR
* @ arg @ ref LL_TIM_DMABURST_BASEADDR_DIER
* @ arg @ ref LL_TIM_DMABURST_BASEADDR_SR
* @ arg @ ref LL_TIM_DMABURST_BASEADDR_EGR
* @ arg @ ref LL_TIM_DMABURST_BASEADDR_CCMR1
* @ arg @ ref LL_TIM_DMABURST_BASEADDR_CCMR2
* @ arg @ ref LL_TIM_DMABURST_BASEADDR_CCER
* @ arg @ ref LL_TIM_DMABURST_BASEADDR_CNT
* @ arg @ ref LL_TIM_DMABURST_BASEADDR_PSC
* @ arg @ ref LL_TIM_DMABURST_BASEADDR_ARR
* @ arg @ ref LL_TIM_DMABURST_BASEADDR_RCR
* @ arg @ ref LL_TIM_DMABURST_BASEADDR_CCR1
* @ arg @ ref LL_TIM_DMABURST_BASEADDR_CCR2
* @ arg @ ref LL_TIM_DMABURST_BASEADDR_CCR3
* @ arg @ ref LL_TIM_DMABURST_BASEADDR_CCR4
* @ arg @ ref LL_TIM_DMABURST_BASEADDR_BDTR
* @ arg @ ref LL_TIM_DMABURST_BASEADDR_CCMR3
* @ arg @ ref LL_TIM_DMABURST_BASEADDR_CCR5
* @ arg @ ref LL_TIM_DMABURST_BASEADDR_CCR6
* @ arg @ ref LL_TIM_DMABURST_BASEADDR_AF1
* @ arg @ ref LL_TIM_DMABURST_BASEADDR_AF2
* @ arg @ ref LL_TIM_DMABURST_BASEADDR_TISEL
*
* @ param DMABurstLength This parameter can be one of the following values :
* @ arg @ ref LL_TIM_DMABURST_LENGTH_1TRANSFER
* @ arg @ ref LL_TIM_DMABURST_LENGTH_2TRANSFERS
* @ arg @ ref LL_TIM_DMABURST_LENGTH_3TRANSFERS
* @ arg @ ref LL_TIM_DMABURST_LENGTH_4TRANSFERS
* @ arg @ ref LL_TIM_DMABURST_LENGTH_5TRANSFERS
* @ arg @ ref LL_TIM_DMABURST_LENGTH_6TRANSFERS
* @ arg @ ref LL_TIM_DMABURST_LENGTH_7TRANSFERS
* @ arg @ ref LL_TIM_DMABURST_LENGTH_8TRANSFERS
* @ arg @ ref LL_TIM_DMABURST_LENGTH_9TRANSFERS
* @ arg @ ref LL_TIM_DMABURST_LENGTH_10TRANSFERS
* @ arg @ ref LL_TIM_DMABURST_LENGTH_11TRANSFERS
* @ arg @ ref LL_TIM_DMABURST_LENGTH_12TRANSFERS
* @ arg @ ref LL_TIM_DMABURST_LENGTH_13TRANSFERS
* @ arg @ ref LL_TIM_DMABURST_LENGTH_14TRANSFERS
* @ arg @ ref LL_TIM_DMABURST_LENGTH_15TRANSFERS
* @ arg @ ref LL_TIM_DMABURST_LENGTH_16TRANSFERS
* @ arg @ ref LL_TIM_DMABURST_LENGTH_17TRANSFERS
* @ arg @ ref LL_TIM_DMABURST_LENGTH_18TRANSFERS
* @ retval None
*/
__STATIC_INLINE void LL_TIM_ConfigDMABurst ( TIM_TypeDef * TIMx , uint32_t DMABurstBaseAddress , uint32_t DMABurstLength )
{
MODIFY_REG ( TIMx - > DCR , ( TIM_DCR_DBL | TIM_DCR_DBA ) , ( DMABurstBaseAddress | DMABurstLength ) ) ;
}
/**
* @ }
*/
/** @defgroup TIM_LL_EF_Timer_Inputs_Remapping Timer input remapping
* @ {
*/
/**
* @ brief Remap TIM inputs ( input channel , internal / external triggers ) .
* @ note Macro IS_TIM_REMAP_INSTANCE ( TIMx ) can be used to check whether or not
* a some timer inputs can be remapped .
* TIM1 : one of the following values :
* @ arg LL_TIM_TIM1_TI1_RMP_GPIO : TIM1 TI1 is connected to GPIO
* @ arg LL_TIM_TIM1_TI1_RMP_COMP1 : TIM1 TI1 is connected to COMP1 output
*
* TIM2 : one of the following values :
* @ arg LL_TIM_TIM2_TI4_RMP_GPIO : TIM2 TI4 is connected to GPIO
* @ arg LL_TIM_TIM2_TI4_RMP_COMP1 : TIM2 TI4 is connected to COMP1 output
* @ arg LL_TIM_TIM2_TI4_RMP_COMP2 : TIM2 TI4 is connected to COMP2 output
* @ arg LL_TIM_TIM2_TI4_RMP_COMP1_COMP2 : TIM2 TI4 is connected to logical OR between COMP1 and COMP2 output
*
* TIM3 : one of the following values :
* @ arg LL_TIM_TIM3_TI1_RMP_GPIO : TIM3 TI1 is connected to GPIO
* @ arg LL_TIM_TIM3_TI1_RMP_COMP1 : TIM3 TI1 is connected to COMP1 output
* @ arg LL_TIM_TIM3_TI1_RMP_COMP2 : TIM3 TI1 is connected to COMP2 output
* @ arg LL_TIM_TIM3_TI1_RMP_COMP1_COMP2 : TIM3 TI1 is connected to logical OR between COMP1 and COMP2 output
*
* TIM5 : one of the following values :
* @ arg LL_TIM_TIM5_TI1_RMP_GPIO : TIM5 TI1 is connected to GPIO
* @ arg LL_TIM_TIM5_TI1_RMP_CAN_TMP : TIM5 TI1 is connected to CAN TMP
* @ arg LL_TIM_TIM5_TI1_RMP_CAN_RTP : TIM5 TI1 is connected to CAN RTP
*
* TIM8 : one of the following values :
* @ arg LL_TIM_TIM8_TI1_RMP_GPIO : TIM8 TI1 is connected to GPIO
* @ arg LL_TIM_TIM8_TI1_RMP_COMP2 : TIM8 TI1 is connected to COMP2 output
*
* TIM12 : one of the following values : ( * )
* @ arg LL_TIM_TIM12_TI1_RMP_GPIO : TIM12 TI1 is connected to GPIO
* @ arg LL_TIM_TIM12_TI1_RMP_SPDIF_FS : TIM12 TI1 is connected to SPDIF FS
*
* TIM15 : one of the following values :
* @ arg LL_TIM_TIM15_TI1_RMP_GPIO : TIM15 TI1 is connected to GPIO
* @ arg LL_TIM_TIM15_TI1_RMP_TIM2 : TIM15 TI1 is connected to TIM2 CH1
* @ arg LL_TIM_TIM15_TI1_RMP_TIM3 : TIM15 TI1 is connected to TIM3 CH1
* @ arg LL_TIM_TIM15_TI1_RMP_TIM4 : TIM15 TI1 is connected to TIM4 CH1
* @ arg LL_TIM_TIM15_TI1_RMP_LSE : TIM15 TI1 is connected to LSE
* @ arg LL_TIM_TIM15_TI1_RMP_CSI : TIM15 TI1 is connected to CSI
* @ arg LL_TIM_TIM15_TI1_RMP_MCO2 : TIM15 TI1 is connected to MCO2
* @ arg LL_TIM_TIM15_TI2_RMP_GPIO : TIM15 TI2 is connected to GPIO
* @ arg LL_TIM_TIM15_TI2_RMP_TIM2 : TIM15 TI2 is connected to TIM2 CH2
* @ arg LL_TIM_TIM15_TI2_RMP_TIM3 : TIM15 TI2 is connected to TIM3 CH2
* @ arg LL_TIM_TIM15_TI2_RMP_TIM4 : TIM15 TI2 is connected to TIM4 CH2
*
* TIM16 : one of the following values :
* @ arg LL_TIM_TIM16_TI1_RMP_GPIO : TIM16 TI1 is connected to GPIO
* @ arg LL_TIM_TIM16_TI1_RMP_LSI : TIM16 TI1 is connected to LSI
* @ arg LL_TIM_TIM16_TI1_RMP_LSE : TIM16 TI1 is connected to LSE
* @ arg LL_TIM_TIM16_TI1_RMP_RTC : TIM16 TI1 is connected to RTC wakeup interrupt
*
* TIM17 : one of the following values :
* @ arg LL_TIM_TIM17_TI1_RMP_GPIO : TIM17 TI1 is connected to GPIO
* @ arg LL_TIM_TIM17_TI1_RMP_SPDIF_FS : TIM17 TI1 is connected to SPDIF FS ( * )
* @ arg LL_TIM_TIM17_TI1_RMP_HSE_1MHZ : TIM17 TI1 is connected to HSE 1 MHz
* @ arg LL_TIM_TIM17_TI1_RMP_MCO1 : TIM17 TI1 is connected to MCO1
*
* TIM23 : one of the following values : ( * )
* @ arg LL_TIM_TIM23_TI4_RMP_GPIO TIM23_TI4 is connected to GPIO
* @ arg LL_TIM_TIM23_TI4_RMP_COMP1 TIM23_TI4 is connected to COMP1 output
* @ arg LL_TIM_TIM23_TI4_RMP_COMP2 TIM23_TI4 is connected to COMP2 output
* @ arg LL_TIM_TIM23_TI4_RMP_COMP1_COMP2 TIM23_TI4 is connected to COMP2 output
*
* TIM24 : one of the following values : ( * )
* @ arg LL_TIM_TIM24_TI1_RMP_GPIO TIM24_TI1 is connected to GPIO
* @ arg LL_TIM_TIM24_TI1_RMP_CAN_TMP TIM24_TI1 is connected to CAN_TMP
* @ arg LL_TIM_TIM24_TI1_RMP_CAN_RTP TIM24_TI1 is connected to CAN_RTP
* @ arg LL_TIM_TIM24_TI1_RMP_CAN_SOC TIM24_TI1 is connected to CAN_SOC
*
* ( * ) Value not defined in all devices . \ n
* @ retval None
*/
__STATIC_INLINE void LL_TIM_SetRemap ( TIM_TypeDef * TIMx , uint32_t Remap )
{
MODIFY_REG ( TIMx - > TISEL , ( TIM_TISEL_TI1SEL | TIM_TISEL_TI2SEL | TIM_TISEL_TI3SEL | TIM_TISEL_TI4SEL ) , Remap ) ;
}
/**
* @ }
*/
/** @defgroup TIM_LL_EF_FLAG_Management FLAG-Management
* @ {
*/
/**
* @ brief Clear the update interrupt flag ( UIF ) .
* @ rmtoll SR UIF LL_TIM_ClearFlag_UPDATE
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_UPDATE ( TIM_TypeDef * TIMx )
{
WRITE_REG ( TIMx - > SR , ~ ( TIM_SR_UIF ) ) ;
}
/**
* @ brief Indicate whether update interrupt flag ( UIF ) is set ( update interrupt is pending ) .
* @ rmtoll SR UIF LL_TIM_IsActiveFlag_UPDATE
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_UPDATE ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > SR , TIM_SR_UIF ) = = ( TIM_SR_UIF ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Clear the Capture / Compare 1 interrupt flag ( CC1F ) .
* @ rmtoll SR CC1IF LL_TIM_ClearFlag_CC1
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_CC1 ( TIM_TypeDef * TIMx )
{
WRITE_REG ( TIMx - > SR , ~ ( TIM_SR_CC1IF ) ) ;
}
/**
* @ brief Indicate whether Capture / Compare 1 interrupt flag ( CC1F ) is set ( Capture / Compare 1 interrupt is pending ) .
* @ rmtoll SR CC1IF LL_TIM_IsActiveFlag_CC1
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1 ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > SR , TIM_SR_CC1IF ) = = ( TIM_SR_CC1IF ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Clear the Capture / Compare 2 interrupt flag ( CC2F ) .
* @ rmtoll SR CC2IF LL_TIM_ClearFlag_CC2
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_CC2 ( TIM_TypeDef * TIMx )
{
WRITE_REG ( TIMx - > SR , ~ ( TIM_SR_CC2IF ) ) ;
}
/**
* @ brief Indicate whether Capture / Compare 2 interrupt flag ( CC2F ) is set ( Capture / Compare 2 interrupt is pending ) .
* @ rmtoll SR CC2IF LL_TIM_IsActiveFlag_CC2
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2 ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > SR , TIM_SR_CC2IF ) = = ( TIM_SR_CC2IF ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Clear the Capture / Compare 3 interrupt flag ( CC3F ) .
* @ rmtoll SR CC3IF LL_TIM_ClearFlag_CC3
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_CC3 ( TIM_TypeDef * TIMx )
{
WRITE_REG ( TIMx - > SR , ~ ( TIM_SR_CC3IF ) ) ;
}
/**
* @ brief Indicate whether Capture / Compare 3 interrupt flag ( CC3F ) is set ( Capture / Compare 3 interrupt is pending ) .
* @ rmtoll SR CC3IF LL_TIM_IsActiveFlag_CC3
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3 ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > SR , TIM_SR_CC3IF ) = = ( TIM_SR_CC3IF ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Clear the Capture / Compare 4 interrupt flag ( CC4F ) .
* @ rmtoll SR CC4IF LL_TIM_ClearFlag_CC4
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_CC4 ( TIM_TypeDef * TIMx )
{
WRITE_REG ( TIMx - > SR , ~ ( TIM_SR_CC4IF ) ) ;
}
/**
* @ brief Indicate whether Capture / Compare 4 interrupt flag ( CC4F ) is set ( Capture / Compare 4 interrupt is pending ) .
* @ rmtoll SR CC4IF LL_TIM_IsActiveFlag_CC4
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4 ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > SR , TIM_SR_CC4IF ) = = ( TIM_SR_CC4IF ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Clear the Capture / Compare 5 interrupt flag ( CC5F ) .
* @ rmtoll SR CC5IF LL_TIM_ClearFlag_CC5
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_CC5 ( TIM_TypeDef * TIMx )
{
WRITE_REG ( TIMx - > SR , ~ ( TIM_SR_CC5IF ) ) ;
}
/**
* @ brief Indicate whether Capture / Compare 5 interrupt flag ( CC5F ) is set ( Capture / Compare 5 interrupt is pending ) .
* @ rmtoll SR CC5IF LL_TIM_IsActiveFlag_CC5
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC5 ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > SR , TIM_SR_CC5IF ) = = ( TIM_SR_CC5IF ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Clear the Capture / Compare 6 interrupt flag ( CC6F ) .
* @ rmtoll SR CC6IF LL_TIM_ClearFlag_CC6
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_CC6 ( TIM_TypeDef * TIMx )
{
WRITE_REG ( TIMx - > SR , ~ ( TIM_SR_CC6IF ) ) ;
}
/**
* @ brief Indicate whether Capture / Compare 6 interrupt flag ( CC6F ) is set ( Capture / Compare 6 interrupt is pending ) .
* @ rmtoll SR CC6IF LL_TIM_IsActiveFlag_CC6
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC6 ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > SR , TIM_SR_CC6IF ) = = ( TIM_SR_CC6IF ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Clear the commutation interrupt flag ( COMIF ) .
* @ rmtoll SR COMIF LL_TIM_ClearFlag_COM
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_COM ( TIM_TypeDef * TIMx )
{
WRITE_REG ( TIMx - > SR , ~ ( TIM_SR_COMIF ) ) ;
}
/**
* @ brief Indicate whether commutation interrupt flag ( COMIF ) is set ( commutation interrupt is pending ) .
* @ rmtoll SR COMIF LL_TIM_IsActiveFlag_COM
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_COM ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > SR , TIM_SR_COMIF ) = = ( TIM_SR_COMIF ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Clear the trigger interrupt flag ( TIF ) .
* @ rmtoll SR TIF LL_TIM_ClearFlag_TRIG
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_TRIG ( TIM_TypeDef * TIMx )
{
WRITE_REG ( TIMx - > SR , ~ ( TIM_SR_TIF ) ) ;
}
/**
* @ brief Indicate whether trigger interrupt flag ( TIF ) is set ( trigger interrupt is pending ) .
* @ rmtoll SR TIF LL_TIM_IsActiveFlag_TRIG
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_TRIG ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > SR , TIM_SR_TIF ) = = ( TIM_SR_TIF ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Clear the break interrupt flag ( BIF ) .
* @ rmtoll SR BIF LL_TIM_ClearFlag_BRK
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_BRK ( TIM_TypeDef * TIMx )
{
WRITE_REG ( TIMx - > SR , ~ ( TIM_SR_BIF ) ) ;
}
/**
* @ brief Indicate whether break interrupt flag ( BIF ) is set ( break interrupt is pending ) .
* @ rmtoll SR BIF LL_TIM_IsActiveFlag_BRK
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_BRK ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > SR , TIM_SR_BIF ) = = ( TIM_SR_BIF ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Clear the break 2 interrupt flag ( B2IF ) .
* @ rmtoll SR B2IF LL_TIM_ClearFlag_BRK2
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_BRK2 ( TIM_TypeDef * TIMx )
{
WRITE_REG ( TIMx - > SR , ~ ( TIM_SR_B2IF ) ) ;
}
/**
* @ brief Indicate whether break 2 interrupt flag ( B2IF ) is set ( break 2 interrupt is pending ) .
* @ rmtoll SR B2IF LL_TIM_IsActiveFlag_BRK2
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_BRK2 ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > SR , TIM_SR_B2IF ) = = ( TIM_SR_B2IF ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Clear the Capture / Compare 1 over - capture interrupt flag ( CC1OF ) .
* @ rmtoll SR CC1OF LL_TIM_ClearFlag_CC1OVR
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_CC1OVR ( TIM_TypeDef * TIMx )
{
WRITE_REG ( TIMx - > SR , ~ ( TIM_SR_CC1OF ) ) ;
}
/**
* @ brief Indicate whether Capture / Compare 1 over - capture interrupt flag ( CC1OF ) is set
* ( Capture / Compare 1 interrupt is pending ) .
* @ rmtoll SR CC1OF LL_TIM_IsActiveFlag_CC1OVR
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1OVR ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > SR , TIM_SR_CC1OF ) = = ( TIM_SR_CC1OF ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Clear the Capture / Compare 2 over - capture interrupt flag ( CC2OF ) .
* @ rmtoll SR CC2OF LL_TIM_ClearFlag_CC2OVR
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_CC2OVR ( TIM_TypeDef * TIMx )
{
WRITE_REG ( TIMx - > SR , ~ ( TIM_SR_CC2OF ) ) ;
}
/**
* @ brief Indicate whether Capture / Compare 2 over - capture interrupt flag ( CC2OF ) is set
* ( Capture / Compare 2 over - capture interrupt is pending ) .
* @ rmtoll SR CC2OF LL_TIM_IsActiveFlag_CC2OVR
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2OVR ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > SR , TIM_SR_CC2OF ) = = ( TIM_SR_CC2OF ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Clear the Capture / Compare 3 over - capture interrupt flag ( CC3OF ) .
* @ rmtoll SR CC3OF LL_TIM_ClearFlag_CC3OVR
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_CC3OVR ( TIM_TypeDef * TIMx )
{
WRITE_REG ( TIMx - > SR , ~ ( TIM_SR_CC3OF ) ) ;
}
/**
* @ brief Indicate whether Capture / Compare 3 over - capture interrupt flag ( CC3OF ) is set
* ( Capture / Compare 3 over - capture interrupt is pending ) .
* @ rmtoll SR CC3OF LL_TIM_IsActiveFlag_CC3OVR
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3OVR ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > SR , TIM_SR_CC3OF ) = = ( TIM_SR_CC3OF ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Clear the Capture / Compare 4 over - capture interrupt flag ( CC4OF ) .
* @ rmtoll SR CC4OF LL_TIM_ClearFlag_CC4OVR
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_CC4OVR ( TIM_TypeDef * TIMx )
{
WRITE_REG ( TIMx - > SR , ~ ( TIM_SR_CC4OF ) ) ;
}
/**
* @ brief Indicate whether Capture / Compare 4 over - capture interrupt flag ( CC4OF ) is set
* ( Capture / Compare 4 over - capture interrupt is pending ) .
* @ rmtoll SR CC4OF LL_TIM_IsActiveFlag_CC4OVR
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4OVR ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > SR , TIM_SR_CC4OF ) = = ( TIM_SR_CC4OF ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Clear the system break interrupt flag ( SBIF ) .
* @ rmtoll SR SBIF LL_TIM_ClearFlag_SYSBRK
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_SYSBRK ( TIM_TypeDef * TIMx )
{
WRITE_REG ( TIMx - > SR , ~ ( TIM_SR_SBIF ) ) ;
}
/**
* @ brief Indicate whether system break interrupt flag ( SBIF ) is set ( system break interrupt is pending ) .
* @ rmtoll SR SBIF LL_TIM_IsActiveFlag_SYSBRK
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_SYSBRK ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > SR , TIM_SR_SBIF ) = = ( TIM_SR_SBIF ) ) ? 1UL : 0UL ) ;
}
/**
* @ }
*/
/** @defgroup TIM_LL_EF_IT_Management IT-Management
* @ {
*/
/**
* @ brief Enable update interrupt ( UIE ) .
* @ rmtoll DIER UIE LL_TIM_EnableIT_UPDATE
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_EnableIT_UPDATE ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > DIER , TIM_DIER_UIE ) ;
}
/**
* @ brief Disable update interrupt ( UIE ) .
* @ rmtoll DIER UIE LL_TIM_DisableIT_UPDATE
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_DisableIT_UPDATE ( TIM_TypeDef * TIMx )
{
CLEAR_BIT ( TIMx - > DIER , TIM_DIER_UIE ) ;
}
/**
* @ brief Indicates whether the update interrupt ( UIE ) is enabled .
* @ rmtoll DIER UIE LL_TIM_IsEnabledIT_UPDATE
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_UPDATE ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > DIER , TIM_DIER_UIE ) = = ( TIM_DIER_UIE ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Enable capture / compare 1 interrupt ( CC1IE ) .
* @ rmtoll DIER CC1IE LL_TIM_EnableIT_CC1
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_EnableIT_CC1 ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > DIER , TIM_DIER_CC1IE ) ;
}
/**
* @ brief Disable capture / compare 1 interrupt ( CC1IE ) .
* @ rmtoll DIER CC1IE LL_TIM_DisableIT_CC1
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_DisableIT_CC1 ( TIM_TypeDef * TIMx )
{
CLEAR_BIT ( TIMx - > DIER , TIM_DIER_CC1IE ) ;
}
/**
* @ brief Indicates whether the capture / compare 1 interrupt ( CC1IE ) is enabled .
* @ rmtoll DIER CC1IE LL_TIM_IsEnabledIT_CC1
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC1 ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > DIER , TIM_DIER_CC1IE ) = = ( TIM_DIER_CC1IE ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Enable capture / compare 2 interrupt ( CC2IE ) .
* @ rmtoll DIER CC2IE LL_TIM_EnableIT_CC2
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_EnableIT_CC2 ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > DIER , TIM_DIER_CC2IE ) ;
}
/**
* @ brief Disable capture / compare 2 interrupt ( CC2IE ) .
* @ rmtoll DIER CC2IE LL_TIM_DisableIT_CC2
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_DisableIT_CC2 ( TIM_TypeDef * TIMx )
{
CLEAR_BIT ( TIMx - > DIER , TIM_DIER_CC2IE ) ;
}
/**
* @ brief Indicates whether the capture / compare 2 interrupt ( CC2IE ) is enabled .
* @ rmtoll DIER CC2IE LL_TIM_IsEnabledIT_CC2
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC2 ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > DIER , TIM_DIER_CC2IE ) = = ( TIM_DIER_CC2IE ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Enable capture / compare 3 interrupt ( CC3IE ) .
* @ rmtoll DIER CC3IE LL_TIM_EnableIT_CC3
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_EnableIT_CC3 ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > DIER , TIM_DIER_CC3IE ) ;
}
/**
* @ brief Disable capture / compare 3 interrupt ( CC3IE ) .
* @ rmtoll DIER CC3IE LL_TIM_DisableIT_CC3
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_DisableIT_CC3 ( TIM_TypeDef * TIMx )
{
CLEAR_BIT ( TIMx - > DIER , TIM_DIER_CC3IE ) ;
}
/**
* @ brief Indicates whether the capture / compare 3 interrupt ( CC3IE ) is enabled .
* @ rmtoll DIER CC3IE LL_TIM_IsEnabledIT_CC3
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC3 ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > DIER , TIM_DIER_CC3IE ) = = ( TIM_DIER_CC3IE ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Enable capture / compare 4 interrupt ( CC4IE ) .
* @ rmtoll DIER CC4IE LL_TIM_EnableIT_CC4
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_EnableIT_CC4 ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > DIER , TIM_DIER_CC4IE ) ;
}
/**
* @ brief Disable capture / compare 4 interrupt ( CC4IE ) .
* @ rmtoll DIER CC4IE LL_TIM_DisableIT_CC4
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_DisableIT_CC4 ( TIM_TypeDef * TIMx )
{
CLEAR_BIT ( TIMx - > DIER , TIM_DIER_CC4IE ) ;
}
/**
* @ brief Indicates whether the capture / compare 4 interrupt ( CC4IE ) is enabled .
* @ rmtoll DIER CC4IE LL_TIM_IsEnabledIT_CC4
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC4 ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > DIER , TIM_DIER_CC4IE ) = = ( TIM_DIER_CC4IE ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Enable commutation interrupt ( COMIE ) .
* @ rmtoll DIER COMIE LL_TIM_EnableIT_COM
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_EnableIT_COM ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > DIER , TIM_DIER_COMIE ) ;
}
/**
* @ brief Disable commutation interrupt ( COMIE ) .
* @ rmtoll DIER COMIE LL_TIM_DisableIT_COM
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_DisableIT_COM ( TIM_TypeDef * TIMx )
{
CLEAR_BIT ( TIMx - > DIER , TIM_DIER_COMIE ) ;
}
/**
* @ brief Indicates whether the commutation interrupt ( COMIE ) is enabled .
* @ rmtoll DIER COMIE LL_TIM_IsEnabledIT_COM
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_COM ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > DIER , TIM_DIER_COMIE ) = = ( TIM_DIER_COMIE ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Enable trigger interrupt ( TIE ) .
* @ rmtoll DIER TIE LL_TIM_EnableIT_TRIG
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_EnableIT_TRIG ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > DIER , TIM_DIER_TIE ) ;
}
/**
* @ brief Disable trigger interrupt ( TIE ) .
* @ rmtoll DIER TIE LL_TIM_DisableIT_TRIG
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_DisableIT_TRIG ( TIM_TypeDef * TIMx )
{
CLEAR_BIT ( TIMx - > DIER , TIM_DIER_TIE ) ;
}
/**
* @ brief Indicates whether the trigger interrupt ( TIE ) is enabled .
* @ rmtoll DIER TIE LL_TIM_IsEnabledIT_TRIG
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_TRIG ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > DIER , TIM_DIER_TIE ) = = ( TIM_DIER_TIE ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Enable break interrupt ( BIE ) .
* @ rmtoll DIER BIE LL_TIM_EnableIT_BRK
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_EnableIT_BRK ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > DIER , TIM_DIER_BIE ) ;
}
/**
* @ brief Disable break interrupt ( BIE ) .
* @ rmtoll DIER BIE LL_TIM_DisableIT_BRK
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_DisableIT_BRK ( TIM_TypeDef * TIMx )
{
CLEAR_BIT ( TIMx - > DIER , TIM_DIER_BIE ) ;
}
/**
* @ brief Indicates whether the break interrupt ( BIE ) is enabled .
* @ rmtoll DIER BIE LL_TIM_IsEnabledIT_BRK
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_BRK ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > DIER , TIM_DIER_BIE ) = = ( TIM_DIER_BIE ) ) ? 1UL : 0UL ) ;
}
/**
* @ }
*/
/** @defgroup TIM_LL_EF_DMA_Management DMA Management
* @ {
*/
/**
* @ brief Enable update DMA request ( UDE ) .
* @ rmtoll DIER UDE LL_TIM_EnableDMAReq_UPDATE
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_EnableDMAReq_UPDATE ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > DIER , TIM_DIER_UDE ) ;
}
/**
* @ brief Disable update DMA request ( UDE ) .
* @ rmtoll DIER UDE LL_TIM_DisableDMAReq_UPDATE
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_DisableDMAReq_UPDATE ( TIM_TypeDef * TIMx )
{
CLEAR_BIT ( TIMx - > DIER , TIM_DIER_UDE ) ;
}
/**
* @ brief Indicates whether the update DMA request ( UDE ) is enabled .
* @ rmtoll DIER UDE LL_TIM_IsEnabledDMAReq_UPDATE
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_UPDATE ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > DIER , TIM_DIER_UDE ) = = ( TIM_DIER_UDE ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Enable capture / compare 1 DMA request ( CC1DE ) .
* @ rmtoll DIER CC1DE LL_TIM_EnableDMAReq_CC1
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_EnableDMAReq_CC1 ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > DIER , TIM_DIER_CC1DE ) ;
}
/**
* @ brief Disable capture / compare 1 DMA request ( CC1DE ) .
* @ rmtoll DIER CC1DE LL_TIM_DisableDMAReq_CC1
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_DisableDMAReq_CC1 ( TIM_TypeDef * TIMx )
{
CLEAR_BIT ( TIMx - > DIER , TIM_DIER_CC1DE ) ;
}
/**
* @ brief Indicates whether the capture / compare 1 DMA request ( CC1DE ) is enabled .
* @ rmtoll DIER CC1DE LL_TIM_IsEnabledDMAReq_CC1
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC1 ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > DIER , TIM_DIER_CC1DE ) = = ( TIM_DIER_CC1DE ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Enable capture / compare 2 DMA request ( CC2DE ) .
* @ rmtoll DIER CC2DE LL_TIM_EnableDMAReq_CC2
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_EnableDMAReq_CC2 ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > DIER , TIM_DIER_CC2DE ) ;
}
/**
* @ brief Disable capture / compare 2 DMA request ( CC2DE ) .
* @ rmtoll DIER CC2DE LL_TIM_DisableDMAReq_CC2
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_DisableDMAReq_CC2 ( TIM_TypeDef * TIMx )
{
CLEAR_BIT ( TIMx - > DIER , TIM_DIER_CC2DE ) ;
}
/**
* @ brief Indicates whether the capture / compare 2 DMA request ( CC2DE ) is enabled .
* @ rmtoll DIER CC2DE LL_TIM_IsEnabledDMAReq_CC2
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC2 ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > DIER , TIM_DIER_CC2DE ) = = ( TIM_DIER_CC2DE ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Enable capture / compare 3 DMA request ( CC3DE ) .
* @ rmtoll DIER CC3DE LL_TIM_EnableDMAReq_CC3
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_EnableDMAReq_CC3 ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > DIER , TIM_DIER_CC3DE ) ;
}
/**
* @ brief Disable capture / compare 3 DMA request ( CC3DE ) .
* @ rmtoll DIER CC3DE LL_TIM_DisableDMAReq_CC3
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_DisableDMAReq_CC3 ( TIM_TypeDef * TIMx )
{
CLEAR_BIT ( TIMx - > DIER , TIM_DIER_CC3DE ) ;
}
/**
* @ brief Indicates whether the capture / compare 3 DMA request ( CC3DE ) is enabled .
* @ rmtoll DIER CC3DE LL_TIM_IsEnabledDMAReq_CC3
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC3 ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > DIER , TIM_DIER_CC3DE ) = = ( TIM_DIER_CC3DE ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Enable capture / compare 4 DMA request ( CC4DE ) .
* @ rmtoll DIER CC4DE LL_TIM_EnableDMAReq_CC4
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_EnableDMAReq_CC4 ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > DIER , TIM_DIER_CC4DE ) ;
}
/**
* @ brief Disable capture / compare 4 DMA request ( CC4DE ) .
* @ rmtoll DIER CC4DE LL_TIM_DisableDMAReq_CC4
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_DisableDMAReq_CC4 ( TIM_TypeDef * TIMx )
{
CLEAR_BIT ( TIMx - > DIER , TIM_DIER_CC4DE ) ;
}
/**
* @ brief Indicates whether the capture / compare 4 DMA request ( CC4DE ) is enabled .
* @ rmtoll DIER CC4DE LL_TIM_IsEnabledDMAReq_CC4
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC4 ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > DIER , TIM_DIER_CC4DE ) = = ( TIM_DIER_CC4DE ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Enable commutation DMA request ( COMDE ) .
* @ rmtoll DIER COMDE LL_TIM_EnableDMAReq_COM
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_EnableDMAReq_COM ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > DIER , TIM_DIER_COMDE ) ;
}
/**
* @ brief Disable commutation DMA request ( COMDE ) .
* @ rmtoll DIER COMDE LL_TIM_DisableDMAReq_COM
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_DisableDMAReq_COM ( TIM_TypeDef * TIMx )
{
CLEAR_BIT ( TIMx - > DIER , TIM_DIER_COMDE ) ;
}
/**
* @ brief Indicates whether the commutation DMA request ( COMDE ) is enabled .
* @ rmtoll DIER COMDE LL_TIM_IsEnabledDMAReq_COM
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_COM ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > DIER , TIM_DIER_COMDE ) = = ( TIM_DIER_COMDE ) ) ? 1UL : 0UL ) ;
}
/**
* @ brief Enable trigger interrupt ( TDE ) .
* @ rmtoll DIER TDE LL_TIM_EnableDMAReq_TRIG
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_EnableDMAReq_TRIG ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > DIER , TIM_DIER_TDE ) ;
}
/**
* @ brief Disable trigger interrupt ( TDE ) .
* @ rmtoll DIER TDE LL_TIM_DisableDMAReq_TRIG
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_DisableDMAReq_TRIG ( TIM_TypeDef * TIMx )
{
CLEAR_BIT ( TIMx - > DIER , TIM_DIER_TDE ) ;
}
/**
* @ brief Indicates whether the trigger interrupt ( TDE ) is enabled .
* @ rmtoll DIER TDE LL_TIM_IsEnabledDMAReq_TRIG
* @ param TIMx Timer instance
* @ retval State of bit ( 1 or 0 ) .
*/
2023-03-05 21:24:12 +01:00
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_TRIG ( const TIM_TypeDef * TIMx )
2023-03-05 15:36:10 +01:00
{
return ( ( READ_BIT ( TIMx - > DIER , TIM_DIER_TDE ) = = ( TIM_DIER_TDE ) ) ? 1UL : 0UL ) ;
}
/**
* @ }
*/
/** @defgroup TIM_LL_EF_EVENT_Management EVENT-Management
* @ {
*/
/**
* @ brief Generate an update event .
* @ rmtoll EGR UG LL_TIM_GenerateEvent_UPDATE
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_GenerateEvent_UPDATE ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > EGR , TIM_EGR_UG ) ;
}
/**
* @ brief Generate Capture / Compare 1 event .
* @ rmtoll EGR CC1G LL_TIM_GenerateEvent_CC1
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_GenerateEvent_CC1 ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > EGR , TIM_EGR_CC1G ) ;
}
/**
* @ brief Generate Capture / Compare 2 event .
* @ rmtoll EGR CC2G LL_TIM_GenerateEvent_CC2
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_GenerateEvent_CC2 ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > EGR , TIM_EGR_CC2G ) ;
}
/**
* @ brief Generate Capture / Compare 3 event .
* @ rmtoll EGR CC3G LL_TIM_GenerateEvent_CC3
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_GenerateEvent_CC3 ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > EGR , TIM_EGR_CC3G ) ;
}
/**
* @ brief Generate Capture / Compare 4 event .
* @ rmtoll EGR CC4G LL_TIM_GenerateEvent_CC4
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_GenerateEvent_CC4 ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > EGR , TIM_EGR_CC4G ) ;
}
/**
* @ brief Generate commutation event .
* @ rmtoll EGR COMG LL_TIM_GenerateEvent_COM
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_GenerateEvent_COM ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > EGR , TIM_EGR_COMG ) ;
}
/**
* @ brief Generate trigger event .
* @ rmtoll EGR TG LL_TIM_GenerateEvent_TRIG
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_GenerateEvent_TRIG ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > EGR , TIM_EGR_TG ) ;
}
/**
* @ brief Generate break event .
* @ rmtoll EGR BG LL_TIM_GenerateEvent_BRK
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_GenerateEvent_BRK ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > EGR , TIM_EGR_BG ) ;
}
/**
* @ brief Generate break 2 event .
* @ rmtoll EGR B2G LL_TIM_GenerateEvent_BRK2
* @ param TIMx Timer instance
* @ retval None
*/
__STATIC_INLINE void LL_TIM_GenerateEvent_BRK2 ( TIM_TypeDef * TIMx )
{
SET_BIT ( TIMx - > EGR , TIM_EGR_B2G ) ;
}
/**
* @ }
*/
# if defined(USE_FULL_LL_DRIVER)
/** @defgroup TIM_LL_EF_Init Initialisation and deinitialisation functions
* @ {
*/
ErrorStatus LL_TIM_DeInit ( TIM_TypeDef * TIMx ) ;
void LL_TIM_StructInit ( LL_TIM_InitTypeDef * TIM_InitStruct ) ;
2023-03-05 21:24:12 +01:00
ErrorStatus LL_TIM_Init ( TIM_TypeDef * TIMx , const LL_TIM_InitTypeDef * TIM_InitStruct ) ;
2023-03-05 15:36:10 +01:00
void LL_TIM_OC_StructInit ( LL_TIM_OC_InitTypeDef * TIM_OC_InitStruct ) ;
2023-03-05 21:24:12 +01:00
ErrorStatus LL_TIM_OC_Init ( TIM_TypeDef * TIMx , uint32_t Channel , const LL_TIM_OC_InitTypeDef * TIM_OC_InitStruct ) ;
2023-03-05 15:36:10 +01:00
void LL_TIM_IC_StructInit ( LL_TIM_IC_InitTypeDef * TIM_ICInitStruct ) ;
2023-03-05 21:24:12 +01:00
ErrorStatus LL_TIM_IC_Init ( TIM_TypeDef * TIMx , uint32_t Channel , const LL_TIM_IC_InitTypeDef * TIM_IC_InitStruct ) ;
2023-03-05 15:36:10 +01:00
void LL_TIM_ENCODER_StructInit ( LL_TIM_ENCODER_InitTypeDef * TIM_EncoderInitStruct ) ;
2023-03-05 21:24:12 +01:00
ErrorStatus LL_TIM_ENCODER_Init ( TIM_TypeDef * TIMx , const LL_TIM_ENCODER_InitTypeDef * TIM_EncoderInitStruct ) ;
2023-03-05 15:36:10 +01:00
void LL_TIM_HALLSENSOR_StructInit ( LL_TIM_HALLSENSOR_InitTypeDef * TIM_HallSensorInitStruct ) ;
2023-03-05 21:24:12 +01:00
ErrorStatus LL_TIM_HALLSENSOR_Init ( TIM_TypeDef * TIMx , const LL_TIM_HALLSENSOR_InitTypeDef * TIM_HallSensorInitStruct ) ;
2023-03-05 15:36:10 +01:00
void LL_TIM_BDTR_StructInit ( LL_TIM_BDTR_InitTypeDef * TIM_BDTRInitStruct ) ;
2023-03-05 21:24:12 +01:00
ErrorStatus LL_TIM_BDTR_Init ( TIM_TypeDef * TIMx , const LL_TIM_BDTR_InitTypeDef * TIM_BDTRInitStruct ) ;
2023-03-05 15:36:10 +01:00
/**
* @ }
*/
# endif /* USE_FULL_LL_DRIVER */
/**
* @ }
*/
/**
* @ }
*/
# endif /* TIM1 || TIM2 || TIM3 || TIM4 || TIM5 || TIM6 || TIM7 || TIM8 || TIM12 || TIM13 ||TIM14 || TIM15 || TIM16 || TIM17 || TIM23 || TIM24 */
/**
* @ }
*/
# ifdef __cplusplus
}
# endif
# endif /* __STM32H7xx_LL_TIM_H */