Updated TS-DC and SDC-schematic

This commit is contained in:
Hamza Tamim 2025-05-05 20:02:52 +02:00
parent 98d20a9e56
commit f02ea8f51c
5 changed files with 12 additions and 9 deletions

View File

@ -17,7 +17,7 @@ TeX source file for ESF and scrutineering
- [X] Provide latching capability explanation/simulation (AMS and IMD). - [X] Provide latching capability explanation/simulation (AMS and IMD).
- [X] Current consumption - [X] Current consumption
- [X] Describe overcurrent protection - [X] Describe overcurrent protection
- [ ] TSAL - [X] TSAL
- [X] Detailed TSAL schematic, including all remote circuitry (DC-link and TSAC output) - [X] Detailed TSAL schematic, including all remote circuitry (DC-link and TSAC output)
- [X] TS Accumulator - [X] TS Accumulator
- [X] Accumulator TSAL - [X] Accumulator TSAL

Binary file not shown.

View File

@ -62,18 +62,21 @@ The current consumption of the components are as follows:
\end{itemize} \end{itemize}
\end{multicols} \end{multicols}
We can then find the total consumption when we add all the the load together. $\SI{249}{\milli\ampere} \cdot 2 + \SI{8}{\milli\ampere} + \SI{9.6}{\milli\ampere} + \SI{4}{\milli\ampere} \approx \SI{520}{\milli\ampere}$. We can then find the total consumption when we add all the the load together.
\begin{align}
\SI{249}{\milli\ampere} \cdot 2 + \SI{8}{\milli\ampere} + \SI{9.6}{\milli\ampere} + \SI{4}{\milli\ampere} \approx \SI{520}{\milli\ampere}
\end{align}
\section*{Overcurrent Protection} \section*{Overcurrent Protection}
See: \hyperlink{./Documents/FT25_PDU-powerstages-SDC (9A).pdf.1}{PDU - SDC} \\ See: \hyperlink{./Documents/FT25_PDU-powerstages-SDC (9A).pdf.1}{PDU - SDC Schematic} \\
The overcurrent protection is achieved with a physical fuse and a power switch on our Power Distribution Unit PCB. The overcurrent protection is achieved with a physical fuse and a power switch on our Power Distribution Unit (PDU) PCB.
The fuse holder is the 3557-15\cite{fuseholder_datasheet}, which holds our 1A fuse, and the powerswitch is the BTT6050-1ERA\cite{profet_datasheet} from Infineon. The fuse holder is the 3557-15, which holds our 1A fuse, and the powerswitch is the BTT6050-1ERA from Infineon.\cite{fuseholder_datasheet}\cite{profet_datasheet}
\bibliographystyle{plain} \bibliographystyle{plain}
\includepdf[pages=-, landscape=true, link]{./Documents/SDC.pdf} \includepdf[pages=-, landscape=true, link]{./Documents/SDC.pdf}
\includepdf[pages={9}, landscape=true, link]{./Documents/Master_FT25.pdf}
\includepdf[pages={8}, landscape=true, link]{./Documents/Master_FT25.pdf} \includepdf[pages={8}, landscape=true, link]{./Documents/Master_FT25.pdf}
\includepdf[pages=-, landscape=true, link]{./Documents/FT25_PDU-powerstages-SDC (9A).pdf} \includepdf[pages=-, landscape=true, link]{./Documents/FT25_PDU-powerstages-SDC (9A).pdf}
\renewcommand\refname{Reference} \renewcommand\refname{Reference}

Binary file not shown.

View File

@ -77,9 +77,9 @@
\section*{Discharge Time} \section*{Discharge Time}
As seen in the Schematic, for our discharge circuitry a PTC (PTCEL13R251NxE\cite{ptc_datasheet}) is used. As seen in the schematic, for our discharge circuitry a PTC (PTCEL13R251NxE) is used.\cite{ptc_datasheet}
The total capacitance of the DC-link capacitor from the two inverters (Emsiso emDrive H100\cite{emdriver_datasheet}) that we are using is about \SI{200}{\micro\farad}, The total capacitance of the DC-link capacitor from the two inverters (Emsiso emDrive H100) that we are using is about \SI{200}{\micro\farad},
and the maximum voltage of the accumulator is 403.2V. Using the RC discharging circuit equation, we obtain the highest resistance that the PTC can have so that we are still within the 5s discharge limit. and the maximum voltage of the accumulator is 403.2V.\cite{emdriver_datasheet} Using the RC discharging circuit equation, we obtain the highest resistance that the PTC can have so that we are still within the 5s discharge limit.
\begin{align} \begin{align}
V_C &= V_0 \cdot e^{-t/RC} \\ V_C &= V_0 \cdot e^{-t/RC} \\
\SI{60}{\volt} &= \SI{403.2}{\volt} \cdot e^{-\SI{5}{\second}/(R_{PTC} \cdot \SI{200}{\micro\farad})} \\ \SI{60}{\volt} &= \SI{403.2}{\volt} \cdot e^{-\SI{5}{\second}/(R_{PTC} \cdot \SI{200}{\micro\farad})} \\