This commit is contained in:
hamza
2024-07-05 12:46:52 +03:00
parent 676b5bb8d1
commit f50643cc84
6 changed files with 146 additions and 39 deletions

View File

@ -1,5 +1,6 @@
#include "state_machine.h"
#include "AMS_HighLevel.h"
#include "PWM_control.h"
#include "TMP1075.h"
#include "errors.h"
#include "main.h"
@ -10,7 +11,15 @@ StateHandle state;
int16_t RELAY_BAT_SIDE_VOLTAGE;
int16_t RELAY_ESC_SIDE_VOLTAGE;
int16_t CURRENT_MEASUREMENT;
bool CURRENT_MEASUREMENT_ON;
uint8_t powerground_status;
uint32_t precharge_timer;
uint32_t discharge_timer;
uint32_t charging_timer;
uint32_t powerground_calibration_timer;
uint8_t powerground_calibration_stage;
static uint32_t timestamp;
@ -18,15 +27,25 @@ void sm_init(){
state.current_state = STATE_INACTIVE;
state.target_state = STATE_INACTIVE;
state.error_source = 0;
precharge_timer = discharge_timer = charging_timer = powerground_calibration_timer = 0;
}
void sm_update(){
sm_check_errors();
sm_precharge_discharge_manager();
sm_calibrate_powerground();
int16_t base_offset = 0;
if (state.current_state == STATE_INACTIVE){
base_offset = module.auxVoltages[0];
}
CURRENT_MEASUREMENT = (module.auxVoltages[0] - base_offset) * 300;
CURRENT_MEASUREMENT_ON = (module.auxVoltages[1] > 2400);
RELAY_ESC_SIDE_VOLTAGE = module.auxVoltages[2] * 11.711;
RELAY_BAT_SIDE_VOLTAGE = module.auxVoltages[3] * 11.711; // the calculation says the factor is 11. 11.711 yields the better result
RELAY_BAT_SIDE_VOLTAGE = module.auxVoltages[0] * 12.42; // the calculation says the factor is 11.989. 12.42 yields the better result
RELAY_ESC_SIDE_VOLTAGE = module.auxVoltages[1] * 12.42;
CURRENT_MEASUREMENT = (module.auxVoltages[2] - 2496) * 300;
switch (state.current_state) {
case STATE_INACTIVE:
state.current_state = sm_update_inactive(); // monitor only
@ -73,14 +92,8 @@ State sm_update_precharge(){
switch (state.target_state) {
case STATE_INACTIVE: // if CAN Signal 0000 0000 then immidiete shutdown
return STATE_DISCHARGE;
case STATE_PRECHARGE:
if (RELAY_BAT_SIDE_VOLTAGE-RELAY_ESC_SIDE_VOLTAGE < 100){
PWM_set_throttle();
return STATE_READY;
}
return STATE_PRECHARGE;
case STATE_DISCHARGE:
return STATE_DISCHARGE;
case STATE_READY:
return STATE_READY;
default:
return STATE_PRECHARGE;
}
@ -93,6 +106,7 @@ State sm_update_ready(){
case STATE_DISCHARGE: // if CAN Signal 0000 0000 then shutdown
return STATE_DISCHARGE;
default:
sm_calibrate_powerground();
return STATE_READY;
}
}
@ -110,10 +124,8 @@ State sm_update_active(){
State sm_update_discharge(){
switch (state.target_state) {
case STATE_DISCHARGE:
return (RELAY_ESC_SIDE_VOLTAGE < 5000) ? STATE_INACTIVE : STATE_DISCHARGE;
case STATE_PRECHARGE: // if CAN Signal 1000 0000 then get ready
return STATE_PRECHARGE;
case STATE_INACTIVE:
return STATE_INACTIVE;
default:
return STATE_DISCHARGE;
}
@ -139,7 +151,6 @@ State sm_update_charging(){
}
}
State sm_update_error(){
switch (state.target_state) {
case STATE_DISCHARGE:
@ -169,7 +180,7 @@ void sm_set_relay_positions(State current_state){
break;
case STATE_DISCHARGE:
sm_set_relay(RELAY_MAIN, 0);
sm_set_relay(RELAY_PRECHARGE, 0);
sm_set_relay(RELAY_PRECHARGE, 1);
break;
case STATE_CHARGING_PRECHARGE:
sm_set_relay(RELAY_MAIN, 0);
@ -201,8 +212,10 @@ void sm_set_relay(Relay relay, bool closed){
}
void sm_check_charging(){
#warning fix this timestamp check
if (RELAY_BAT_SIDE_VOLTAGE < RELAY_ESC_SIDE_VOLTAGE && timestamp == 0)
timestamp = HAL_GetTick() + 5000;
if (timestamp < HAL_GetTick())
state.target_state = STATE_CHARGING_PRECHARGE;
}
@ -217,12 +230,81 @@ void sm_check_battery_temperature(int8_t *id, int16_t *temp){
}
}
int16_t sm_return_cell_temperature(int id){
return tmp1075_temps[id];
void sm_precharge_discharge_manager(){
if (state.current_state != STATE_DISCHARGE && state.target_state == STATE_DISCHARGE){
discharge_timer = HAL_GetTick() + DISCHARGE_DURATION;
} else if (state.current_state == STATE_DISCHARGE && discharge_timer < HAL_GetTick()) {
state.target_state = STATE_INACTIVE;
discharge_timer = 0;
}
if (state.current_state != STATE_PRECHARGE && state.target_state == STATE_PRECHARGE){
precharge_timer = HAL_GetTick() + PRECHARGE_DURATION;
} else if (state.current_state == STATE_PRECHARGE && precharge_timer < HAL_GetTick()) {
state.target_state = STATE_READY;
precharge_timer = 0;
}
if (state.current_state != STATE_CHARGING_PRECHARGE && state.target_state == STATE_CHARGING_PRECHARGE){
precharge_timer = HAL_GetTick() + PRECHARGE_DURATION;
} else if (state.current_state == STATE_CHARGING_PRECHARGE && precharge_timer < HAL_GetTick()) {
state.target_state = STATE_READY;
precharge_timer = 0;
}
}
int16_t sm_return_cell_voltage(int id){
return module.cellVoltages[id];
// source 0 -> sm_update()
// source 1 -> sm_ams_in()
void sm_powerground_manager(int8_t percent, bool source){
if (powerground_calibration_stage != 4 && state.current_state == STATE_ACTIVE){
sm_calibrate_powerground();
} else if (powerground_calibration_stage == 4){
if (state.current_state == STATE_PRECHARGE){
PWM_powerground_control(0);
} else if (state.current_state == STATE_READY || state.current_state == STATE_ACTIVE){
if (percent < 10){
PWM_powerground_control(0);
} else if (percent > 100){
PWM_powerground_control(255);
state.current_state = STATE_ACTIVE;
}
PWM_powerground_control(percent);
} else {
PWM_powerground_control(255);
}
}
}
void sm_calibrate_powerground(){
if (powerground_calibration_stage != 4 && state.current_state == STATE_READY){
switch (powerground_calibration_stage) {
case 0:
powerground_calibration_timer = HAL_GetTick() + 5000;
powerground_calibration_stage = 1;
return;
case 1:
if (powerground_calibration_timer < HAL_GetTick()){
powerground_calibration_timer = HAL_GetTick() + 2000;
powerground_calibration_stage = 2;
PWM_powerground_control(100);
}
return;
case 2:
if (powerground_calibration_timer < HAL_GetTick()){
powerground_calibration_timer = HAL_GetTick() + 1000;
powerground_calibration_stage = 3;
PWM_powerground_control(0);
}
return;
case 3:
if (powerground_calibration_timer < HAL_GetTick()){
powerground_calibration_stage = 4;
}
return;
}
}
}
void sm_handle_ams_in(const uint8_t *data){
@ -230,13 +312,16 @@ void sm_handle_ams_in(const uint8_t *data){
case 0x00:
if (state.current_state != STATE_INACTIVE){
state.target_state = STATE_DISCHARGE;
PWM_powerground_control(255);
}
break;
case 0x01:
if (state.target_state == STATE_INACTIVE || state.target_state == STATE_DISCHARGE){
state.target_state = STATE_PRECHARGE;
PWM_powerground_control(0);
} else if (state.target_state == STATE_ACTIVE){
state.target_state = STATE_READY;
PWM_powerground_control(0);
}
break;
case 0x02:
@ -245,6 +330,8 @@ void sm_handle_ams_in(const uint8_t *data){
state.target_state = STATE_ACTIVE; // READY -> ACTIVE
}
break;
case 0xFF: // emergency shutdown or EEPROM
break;
}
}
@ -293,6 +380,14 @@ void sm_check_errors(){
}
}
int16_t sm_return_cell_temperature(int id){
return tmp1075_temps[id];
}
int16_t sm_return_cell_voltage(int id){
return module.cellVoltages[id];
}
void sm_test_cycle_states(){
RELAY_BAT_SIDE_VOLTAGE = module.auxVoltages[0];
RELAY_ESC_SIDE_VOLTAGE = module.auxVoltages[1];
@ -327,4 +422,4 @@ void sm_test_cycle_states(){
}
state.target_state = state.current_state;
}
}