diff --git a/CHANGELOG.txt b/CHANGELOG.txt index f6f05ac..7594bd0 100644 --- a/CHANGELOG.txt +++ b/CHANGELOG.txt @@ -6,4 +6,11 @@ V1.1 - changed PWM settings in mxcube for ESC_L/R_PWM - add pwm_calibrate_powerground - precharge and discharge are now timer dependent instead of voltage dependent -- remove the transitions (precharge -> discharge) to stop weird interactions \ No newline at end of file +- remove the transitions (precharge -> discharge) to stop weird interactions + +V1.2 +- change auxvoltages and cellvoltages to float to achieve higher precision +- added void sm_calibrate_powerground(); void sm_precharge_discharge_manager(); +- fixed the clock in mxcube +- cleaned up PWM_powerground_control() +- cleaned up the state machine \ No newline at end of file diff --git a/Core/Inc/ADBMS_Abstraction.h b/Core/Inc/ADBMS_Abstraction.h index c9aacc6..f095482 100644 --- a/Core/Inc/ADBMS_Abstraction.h +++ b/Core/Inc/ADBMS_Abstraction.h @@ -46,8 +46,8 @@ struct ADBMS6830_Internal_Status { }; typedef struct { - int16_t cellVoltages[MAXIMUM_CELL_VOLTAGES]; - int16_t auxVoltages[MAXIMUM_AUX_VOLTAGES]; + float cellVoltages[MAXIMUM_CELL_VOLTAGES]; + float auxVoltages[MAXIMUM_AUX_VOLTAGES]; struct ADBMS6830_Internal_Status status; uint16 internalDieTemp; diff --git a/Core/Inc/state_machine.h b/Core/Inc/state_machine.h index c5d5e3f..5219dbf 100644 --- a/Core/Inc/state_machine.h +++ b/Core/Inc/state_machine.h @@ -14,9 +14,9 @@ #define MIN_VEHICLE_SIDE_VOLTAGE 150000 // mV // Time to wait after reaching 95% of battery voltage before exiting precharge // Set this to 1000 in scruti to demonstrate the voltage on the multimeter -#define PRECHARGE_95_DURATION 0 // ms +#define PRECHARGE_DURATION 3000 // ms // Time to wait for discharge -#define DISCHARGE_DURATION 5000 // ms +#define DISCHARGE_DURATION 3000 // ms // Time to wait after there is no more error condition before exiting TS_ERROR #define NO_ERROR_TIME 1000 // ms // Time to wait for charger voltage before going to TS_ERROR @@ -88,6 +88,10 @@ void sm_check_battery_temperature(int8_t* id, int16_t* temp); int16_t sm_return_cell_temperature(int id); int16_t sm_return_cell_voltage(int id); +void sm_calibrate_powerground(); +void sm_precharge_discharge_manager(); +void sm_powerground_manager(int8_t percent, bool source); + void sm_handle_ams_in(const uint8 *data); void sm_check_errors(); void sm_set_error(ErrorKind error_kind, bool is_errored); diff --git a/Core/Src/PWM_control.c b/Core/Src/PWM_control.c index 2011836..3a1666f 100644 --- a/Core/Src/PWM_control.c +++ b/Core/Src/PWM_control.c @@ -41,14 +41,16 @@ void PWM_control_init(TIM_HandleTypeDef* pg, TIM_HandleTypeDef* bat_cool, TIM_Ha DUTYCYCLE = 40000 * X/100 */ void PWM_powerground_control(uint8_t percent){ - if (percent > 100) //something went wrong + if (percent > 100){ //something went wrong + __HAL_TIM_SET_COMPARE(powerground, TIM_CHANNEL_3, 0); + __HAL_TIM_SET_COMPARE(powerground, TIM_CHANNEL_4, 0); return; + } powerground_status = percent; - int ccr = 2000 + ((2000) * (percent/100.0)); + int ccr = 2000 + (20 * percent); __HAL_TIM_SET_COMPARE(powerground, TIM_CHANNEL_3, ccr); __HAL_TIM_SET_COMPARE(powerground, TIM_CHANNEL_4, ccr); - //TIM15->CCR1 = (TIM15->ARR*POWERGROUND_MAX_DUTY_CYCLE-TIM15->ARR*POWERGROUND_MIN_DUTY_CYCLE) * (percent/100.0) + TIM15->ARR*POWERGROUND_MIN_DUTY_CYCLE; } void PWM_set_throttle(){ diff --git a/Core/Src/main.c b/Core/Src/main.c index 5ee6ee5..a36326c 100644 --- a/Core/Src/main.c +++ b/Core/Src/main.c @@ -165,10 +165,9 @@ void SystemClock_Config(void) /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ - RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_HSE; + RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSIState = RCC_HSI_ON; - RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { @@ -189,8 +188,8 @@ void SystemClock_Config(void) Error_Handler(); } PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_I2C1|RCC_PERIPHCLK_I2C2; - PeriphClkInit.I2c1ClockSelection = RCC_I2C1CLKSOURCE_HSI; - PeriphClkInit.I2c2ClockSelection = RCC_I2C2CLKSOURCE_HSI; + PeriphClkInit.I2c1ClockSelection = RCC_I2C1CLKSOURCE_SYSCLK; + PeriphClkInit.I2c2ClockSelection = RCC_I2C2CLKSOURCE_SYSCLK; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); @@ -250,7 +249,7 @@ static void MX_I2C1_Init(void) /* USER CODE END I2C1_Init 1 */ hi2c1.Instance = I2C1; - hi2c1.Init.Timing = 0x2000090E; + hi2c1.Init.Timing = 0x00303D5B; hi2c1.Init.OwnAddress1 = 0; hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; @@ -298,7 +297,7 @@ static void MX_I2C2_Init(void) /* USER CODE END I2C2_Init 1 */ hi2c2.Instance = I2C2; - hi2c2.Init.Timing = 0x2000090E; + hi2c2.Init.Timing = 0x00303D5B; hi2c2.Init.OwnAddress1 = 0; hi2c2.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c2.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; @@ -438,9 +437,9 @@ static void MX_TIM3_Init(void) /* USER CODE END TIM3_Init 1 */ htim3.Instance = TIM3; - htim3.Init.Prescaler = 0; + htim3.Init.Prescaler = 7; htim3.Init.CounterMode = TIM_COUNTERMODE_UP; - htim3.Init.Period = 65535; + htim3.Init.Period = 39999; htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_PWM_Init(&htim3) != HAL_OK) diff --git a/Core/Src/state_machine.c b/Core/Src/state_machine.c index 89227f9..04266f6 100644 --- a/Core/Src/state_machine.c +++ b/Core/Src/state_machine.c @@ -1,5 +1,6 @@ #include "state_machine.h" #include "AMS_HighLevel.h" +#include "PWM_control.h" #include "TMP1075.h" #include "errors.h" #include "main.h" @@ -10,7 +11,15 @@ StateHandle state; int16_t RELAY_BAT_SIDE_VOLTAGE; int16_t RELAY_ESC_SIDE_VOLTAGE; int16_t CURRENT_MEASUREMENT; +bool CURRENT_MEASUREMENT_ON; + uint8_t powerground_status; +uint32_t precharge_timer; +uint32_t discharge_timer; +uint32_t charging_timer; + +uint32_t powerground_calibration_timer; +uint8_t powerground_calibration_stage; static uint32_t timestamp; @@ -18,15 +27,25 @@ void sm_init(){ state.current_state = STATE_INACTIVE; state.target_state = STATE_INACTIVE; state.error_source = 0; + precharge_timer = discharge_timer = charging_timer = powerground_calibration_timer = 0; } void sm_update(){ sm_check_errors(); + sm_precharge_discharge_manager(); + sm_calibrate_powerground(); + + int16_t base_offset = 0; + if (state.current_state == STATE_INACTIVE){ + base_offset = module.auxVoltages[0]; + } + + CURRENT_MEASUREMENT = (module.auxVoltages[0] - base_offset) * 300; + CURRENT_MEASUREMENT_ON = (module.auxVoltages[1] > 2400); + RELAY_ESC_SIDE_VOLTAGE = module.auxVoltages[2] * 11.711; + RELAY_BAT_SIDE_VOLTAGE = module.auxVoltages[3] * 11.711; // the calculation says the factor is 11. 11.711 yields the better result + - RELAY_BAT_SIDE_VOLTAGE = module.auxVoltages[0] * 12.42; // the calculation says the factor is 11.989. 12.42 yields the better result - RELAY_ESC_SIDE_VOLTAGE = module.auxVoltages[1] * 12.42; - CURRENT_MEASUREMENT = (module.auxVoltages[2] - 2496) * 300; - switch (state.current_state) { case STATE_INACTIVE: state.current_state = sm_update_inactive(); // monitor only @@ -73,14 +92,8 @@ State sm_update_precharge(){ switch (state.target_state) { case STATE_INACTIVE: // if CAN Signal 0000 0000 then immidiete shutdown return STATE_DISCHARGE; - case STATE_PRECHARGE: - if (RELAY_BAT_SIDE_VOLTAGE-RELAY_ESC_SIDE_VOLTAGE < 100){ - PWM_set_throttle(); - return STATE_READY; - } - return STATE_PRECHARGE; - case STATE_DISCHARGE: - return STATE_DISCHARGE; + case STATE_READY: + return STATE_READY; default: return STATE_PRECHARGE; } @@ -93,6 +106,7 @@ State sm_update_ready(){ case STATE_DISCHARGE: // if CAN Signal 0000 0000 then shutdown return STATE_DISCHARGE; default: + sm_calibrate_powerground(); return STATE_READY; } } @@ -110,10 +124,8 @@ State sm_update_active(){ State sm_update_discharge(){ switch (state.target_state) { - case STATE_DISCHARGE: - return (RELAY_ESC_SIDE_VOLTAGE < 5000) ? STATE_INACTIVE : STATE_DISCHARGE; - case STATE_PRECHARGE: // if CAN Signal 1000 0000 then get ready - return STATE_PRECHARGE; + case STATE_INACTIVE: + return STATE_INACTIVE; default: return STATE_DISCHARGE; } @@ -139,7 +151,6 @@ State sm_update_charging(){ } } - State sm_update_error(){ switch (state.target_state) { case STATE_DISCHARGE: @@ -169,7 +180,7 @@ void sm_set_relay_positions(State current_state){ break; case STATE_DISCHARGE: sm_set_relay(RELAY_MAIN, 0); - sm_set_relay(RELAY_PRECHARGE, 0); + sm_set_relay(RELAY_PRECHARGE, 1); break; case STATE_CHARGING_PRECHARGE: sm_set_relay(RELAY_MAIN, 0); @@ -201,8 +212,10 @@ void sm_set_relay(Relay relay, bool closed){ } void sm_check_charging(){ + #warning fix this timestamp check if (RELAY_BAT_SIDE_VOLTAGE < RELAY_ESC_SIDE_VOLTAGE && timestamp == 0) timestamp = HAL_GetTick() + 5000; + if (timestamp < HAL_GetTick()) state.target_state = STATE_CHARGING_PRECHARGE; } @@ -217,12 +230,81 @@ void sm_check_battery_temperature(int8_t *id, int16_t *temp){ } } -int16_t sm_return_cell_temperature(int id){ - return tmp1075_temps[id]; +void sm_precharge_discharge_manager(){ + + if (state.current_state != STATE_DISCHARGE && state.target_state == STATE_DISCHARGE){ + discharge_timer = HAL_GetTick() + DISCHARGE_DURATION; + } else if (state.current_state == STATE_DISCHARGE && discharge_timer < HAL_GetTick()) { + state.target_state = STATE_INACTIVE; + discharge_timer = 0; + } + + if (state.current_state != STATE_PRECHARGE && state.target_state == STATE_PRECHARGE){ + precharge_timer = HAL_GetTick() + PRECHARGE_DURATION; + } else if (state.current_state == STATE_PRECHARGE && precharge_timer < HAL_GetTick()) { + state.target_state = STATE_READY; + precharge_timer = 0; + } + + if (state.current_state != STATE_CHARGING_PRECHARGE && state.target_state == STATE_CHARGING_PRECHARGE){ + precharge_timer = HAL_GetTick() + PRECHARGE_DURATION; + } else if (state.current_state == STATE_CHARGING_PRECHARGE && precharge_timer < HAL_GetTick()) { + state.target_state = STATE_READY; + precharge_timer = 0; + } + } -int16_t sm_return_cell_voltage(int id){ - return module.cellVoltages[id]; +// source 0 -> sm_update() +// source 1 -> sm_ams_in() +void sm_powerground_manager(int8_t percent, bool source){ + if (powerground_calibration_stage != 4 && state.current_state == STATE_ACTIVE){ + sm_calibrate_powerground(); + } else if (powerground_calibration_stage == 4){ + if (state.current_state == STATE_PRECHARGE){ + PWM_powerground_control(0); + } else if (state.current_state == STATE_READY || state.current_state == STATE_ACTIVE){ + if (percent < 10){ + PWM_powerground_control(0); + } else if (percent > 100){ + PWM_powerground_control(255); + state.current_state = STATE_ACTIVE; + } + PWM_powerground_control(percent); + } else { + PWM_powerground_control(255); + } + } +} + +void sm_calibrate_powerground(){ + if (powerground_calibration_stage != 4 && state.current_state == STATE_READY){ + switch (powerground_calibration_stage) { + case 0: + powerground_calibration_timer = HAL_GetTick() + 5000; + powerground_calibration_stage = 1; + return; + case 1: + if (powerground_calibration_timer < HAL_GetTick()){ + powerground_calibration_timer = HAL_GetTick() + 2000; + powerground_calibration_stage = 2; + PWM_powerground_control(100); + } + return; + case 2: + if (powerground_calibration_timer < HAL_GetTick()){ + powerground_calibration_timer = HAL_GetTick() + 1000; + powerground_calibration_stage = 3; + PWM_powerground_control(0); + } + return; + case 3: + if (powerground_calibration_timer < HAL_GetTick()){ + powerground_calibration_stage = 4; + } + return; + } + } } void sm_handle_ams_in(const uint8_t *data){ @@ -230,13 +312,16 @@ void sm_handle_ams_in(const uint8_t *data){ case 0x00: if (state.current_state != STATE_INACTIVE){ state.target_state = STATE_DISCHARGE; + PWM_powerground_control(255); } break; case 0x01: if (state.target_state == STATE_INACTIVE || state.target_state == STATE_DISCHARGE){ state.target_state = STATE_PRECHARGE; + PWM_powerground_control(0); } else if (state.target_state == STATE_ACTIVE){ state.target_state = STATE_READY; + PWM_powerground_control(0); } break; case 0x02: @@ -245,6 +330,8 @@ void sm_handle_ams_in(const uint8_t *data){ state.target_state = STATE_ACTIVE; // READY -> ACTIVE } break; + case 0xFF: // emergency shutdown or EEPROM + break; } } @@ -293,6 +380,14 @@ void sm_check_errors(){ } } +int16_t sm_return_cell_temperature(int id){ + return tmp1075_temps[id]; +} + +int16_t sm_return_cell_voltage(int id){ + return module.cellVoltages[id]; +} + void sm_test_cycle_states(){ RELAY_BAT_SIDE_VOLTAGE = module.auxVoltages[0]; RELAY_ESC_SIDE_VOLTAGE = module.auxVoltages[1]; @@ -327,4 +422,4 @@ void sm_test_cycle_states(){ } state.target_state = state.current_state; -} \ No newline at end of file +}