This commit is contained in:
2024-07-02 23:01:26 +03:00
parent 9e80b90fd4
commit dae660d8f2
20 changed files with 591 additions and 11288 deletions

View File

@ -1,9 +0,0 @@
#ifndef INC_PWM_CONTROL_H_
#define INC_PWM_CONTROL_H_
#include "stm32f3xx_hal_conf.h"
void PWMControl_UpdatePWMs(uint8_t pwrgndfans );
void PWMControl_init(TIM_HandleTypeDef* timer3);
#endif /* INC_CHANNEL_CONTROL_H_ */

View File

@ -25,9 +25,9 @@ CCR: 1/20 -> 500, 2/20 -> 1000
//#define BATTERY_COOLING_FREQ 20000
void PWM_control_init(TIM_HandleTypeDef* powerground, TIM_HandleTypeDef* battery_cooling);
void PWM_control_init(TIM_HandleTypeDef* pg, TIM_HandleTypeDef* bat_cool, TIM_HandleTypeDef* esc_cool);
void PWM_powerground_control(uint8_t percent);
void PWM_battery_cooling_control(uint8_t percent);
void PWM_esc_cooling(uint8_t percent);
#endif /* INC_CHANNEL_CONTROL_H */

View File

@ -1,64 +0,0 @@
#ifndef CAN_HALAL_H
#define CAN_HALAL_H
// Define family macros if none are defined and we recognize a chip macro
#if !defined(STM32F3) && !defined(STM32H7)
#if defined(STM32F302x6) || defined(STM32F302x8) || defined(STM32F302xB) || \
defined(STM32F302xC)
#define STM32F3
#endif
#if defined(STM32H7A3xx)
#define STM32H7
#endif
#endif
#if defined(STM32F3)
#include "stm32f3xx_hal.h"
#define FTCAN_IS_BXCAN
#define FTCAN_NUM_FILTERS 13
#elif defined(STM32H7)
#include "stm32h7xx_hal.h"
#define FTCAN_IS_FDCAN
#ifndef FTCAN_NUM_FILTERS
#error "Please configure the number of filters in CubeMX, and then add a compiler define for FTCAN_NUM_FILTERS"
#endif
#else
#error "Couldn't detect STM family"
#endif
#if defined(FTCAN_IS_BXCAN)
HAL_StatusTypeDef ftcan_init(CAN_HandleTypeDef *handle);
#elif defined(FTCAN_IS_FDCAN)
HAL_StatusTypeDef ftcan_init(FDCAN_HandleTypeDef *handle);
#else
#error "Unknown CAN peripheral"
#endif
HAL_StatusTypeDef ftcan_transmit(uint16_t id, const uint8_t *data,
size_t datalen);
HAL_StatusTypeDef ftcan_add_filter(uint16_t id, uint16_t mask);
/**
* Define this function to be notified of incoming CAN messages
*/
void ftcan_msg_received_cb(uint16_t id, size_t datalen, const uint8_t *data);
/**
* Read num_bytes bytes from a message (unmarshalled network byte order). The
* msg pointer is advanced by the corresponding number of bytes.
*
* Both methods return a 64-bit integer, but you can safely cast it to a smaller
* integer type.
*/
uint64_t ftcan_unmarshal_unsigned(const uint8_t **data, size_t num_bytes);
int64_t ftcan_unmarshal_signed(const uint8_t **data, size_t num_bytes);
/**
* Write num_bytes to a message (marshalled in network byte order). The pointer
* is advanced by the corresponding number of bytes and returned.
*/
uint8_t *ftcan_marshal_unsigned(uint8_t *data, uint64_t val, size_t num_bytes);
uint8_t *ftcan_marshal_signed(uint8_t *data, int64_t val, size_t num_bytes);
#endif // CAN_HALAL_H

View File

@ -59,28 +59,40 @@ void Error_Handler(void);
/* USER CODE END EFP */
/* Private defines -----------------------------------------------------------*/
#define RELAY_EN_Pin GPIO_PIN_0
#define RELAY_EN_GPIO_Port GPIOA
#define _60V_EN_Pin GPIO_PIN_1
#define _60V_EN_GPIO_Port GPIOA
#define CSB_Pin GPIO_PIN_4
#define CSB_GPIO_Port GPIOA
#define STATUS_LED_R_Pin GPIO_PIN_0
#define ESC_L_PWM_Pin GPIO_PIN_0
#define ESC_L_PWM_GPIO_Port GPIOB
#define ESC_R_PWM_Pin GPIO_PIN_1
#define ESC_R_PWM_GPIO_Port GPIOB
#define BAT_COOLING_PWM_Pin GPIO_PIN_10
#define BAT_COOLING_PWM_GPIO_Port GPIOB
#define BAT_COOLING_ENABLE_Pin GPIO_PIN_11
#define BAT_COOLING_ENABLE_GPIO_Port GPIOB
#define ESC_COOLING_ENABLE_Pin GPIO_PIN_14
#define ESC_COOLING_ENABLE_GPIO_Port GPIOB
#define ESC_COOLING_PWM_Pin GPIO_PIN_15
#define ESC_COOLING_PWM_GPIO_Port GPIOB
#define EEPROM___WC__Pin GPIO_PIN_8
#define EEPROM___WC__GPIO_Port GPIOA
#define EEPROM_SCL_Pin GPIO_PIN_9
#define EEPROM_SCL_GPIO_Port GPIOA
#define EEPROM_SDA_Pin GPIO_PIN_10
#define EEPROM_SDA_GPIO_Port GPIOA
#define TMP_SCL_Pin GPIO_PIN_15
#define TMP_SCL_GPIO_Port GPIOA
#define RELAY_ENABLE_Pin GPIO_PIN_4
#define RELAY_ENABLE_GPIO_Port GPIOB
#define PRECHARGE_ENABLE_Pin GPIO_PIN_5
#define PRECHARGE_ENABLE_GPIO_Port GPIOB
#define STATUS_LED_R_Pin GPIO_PIN_6
#define STATUS_LED_R_GPIO_Port GPIOB
#define STATUS_LED_B_Pin GPIO_PIN_1
#define STATUS_LED_B_GPIO_Port GPIOB
#define STATUS_LED_G_Pin GPIO_PIN_2
#define STATUS_LED_G_Pin GPIO_PIN_7
#define STATUS_LED_G_GPIO_Port GPIOB
#define PRECHARGE_EN_Pin GPIO_PIN_11
#define PRECHARGE_EN_GPIO_Port GPIOB
#define PWM_Battery_Cooling_Pin GPIO_PIN_15
#define PWM_Battery_Cooling_GPIO_Port GPIOB
#define RELAY_BATT_SIDE_ON_Pin GPIO_PIN_8
#define RELAY_BATT_SIDE_ON_GPIO_Port GPIOA
#define RELAY_ESC_SIDE_ON_Pin GPIO_PIN_9
#define RELAY_ESC_SIDE_ON_GPIO_Port GPIOA
#define CURRENT_SENSOR_ON_Pin GPIO_PIN_10
#define CURRENT_SENSOR_ON_GPIO_Port GPIOA
#define STATUS_LED_B_Pin GPIO_PIN_8
#define STATUS_LED_B_GPIO_Port GPIOB
#define TMP_SDA_Pin GPIO_PIN_9
#define TMP_SDA_GPIO_Port GPIOB
/* USER CODE BEGIN Private defines */

View File

@ -58,7 +58,7 @@
/*#define HAL_RTC_MODULE_ENABLED */
#define HAL_SPI_MODULE_ENABLED
#define HAL_TIM_MODULE_ENABLED
#define HAL_UART_MODULE_ENABLED
/*#define HAL_UART_MODULE_ENABLED */
/*#define HAL_USART_MODULE_ENABLED */
/*#define HAL_IRDA_MODULE_ENABLED */
/*#define HAL_SMARTCARD_MODULE_ENABLED */

View File

@ -1,31 +0,0 @@
#include "PWM_Control.h"
uint8_t timer2_running = 0;
TIM_HandleTypeDef* pwmtimer2;
void PWMControl_init( TIM_HandleTypeDef* timer2)
{
pwmtimer2 = timer2;
PWMControl_UpdatePWMs(0);
}
void PWMControl_UpdatePWMs(uint8_t pwrgndfans)
{
pwmtimer2->Instance->CCR3 = pwrgndfans << 8;
if (timer2_running) {
if ((pwrgndfans == 0)) {
timer2_running = 0;
HAL_TIM_PWM_Stop(pwmtimer2, TIM_CHANNEL_3);
}
} else {
if ( (pwrgndfans != 0)) {
timer2_running = 1;
HAL_TIM_PWM_Start(pwmtimer2, TIM_CHANNEL_3);
}
}
}

View File

@ -1,18 +1,16 @@
#include "PWM_control.h"
uint8_t battery_cooling_status;
//uint32_t powerground1_CCR, powerground2_CCR, battery_cooling_CCR;
TIM_HandleTypeDef* powerground, *battery_cooling;
TIM_HandleTypeDef *powerground, *battery_cooling, *esc_cooling;
/*
Pulse width modulation mode allows for generating a signal with a frequency determined by
the value of the TIMx_ARR register and a duty cycle determined by the value of the TIMx_CCRx register.
*/
void PWM_control_init(TIM_HandleTypeDef* pg, TIM_HandleTypeDef* bat_cool){
void PWM_control_init(TIM_HandleTypeDef* pg, TIM_HandleTypeDef* bat_cool, TIM_HandleTypeDef* esc_cool){
powerground_status = 0;
battery_cooling_status = 0;
HAL_TIM_PWM_Start(pg, TIM_CHANNEL_1); //TIM15CH1
HAL_TIM_PWM_Start(pg, TIM_CHANNEL_2); //TIM15CH2
@ -20,6 +18,8 @@ void PWM_control_init(TIM_HandleTypeDef* pg, TIM_HandleTypeDef* bat_cool){
powerground = pg;
battery_cooling = bat_cool;
esc_cooling = esc_cool;
__HAL_TIM_SET_COMPARE(powerground, TIM_CHANNEL_1, 2000);
__HAL_TIM_SET_COMPARE(powerground, TIM_CHANNEL_2, 2000);
//__HAL_TIM_SET_COMPARE(battery_cooling, TIM_CHANNEL_3, 2000);
@ -38,4 +38,5 @@ void PWM_powerground_control(uint8_t percent){
//TIM15->CCR1 = (TIM15->ARR*POWERGROUND_MAX_DUTY_CYCLE-TIM15->ARR*POWERGROUND_MIN_DUTY_CYCLE) * (percent/100.0) + TIM15->ARR*POWERGROUND_MIN_DUTY_CYCLE;
}
void PWM_battery_cooling_control(uint8_t percent){}
void PWM_battery_cooling_control(uint8_t percent){}
void PWM_esc_cooling(uint8_t percent){}

View File

@ -1,273 +0,0 @@
#include "can-halal.h"
#include <string.h>
#if defined(FTCAN_IS_BXCAN)
static CAN_HandleTypeDef *hcan;
HAL_StatusTypeDef ftcan_init(CAN_HandleTypeDef *handle) {
hcan = handle;
HAL_StatusTypeDef status =
HAL_CAN_ActivateNotification(hcan, CAN_IT_RX_FIFO0_MSG_PENDING);
if (status != HAL_OK) {
return status;
}
return HAL_CAN_Start(hcan);
}
HAL_StatusTypeDef ftcan_transmit(uint16_t id, const uint8_t *data,
size_t datalen) {
static CAN_TxHeaderTypeDef header;
header.StdId = id;
header.IDE = CAN_ID_STD;
header.RTR = CAN_RTR_DATA;
header.DLC = datalen;
uint32_t mailbox;
return HAL_CAN_AddTxMessage(hcan, &header, data, &mailbox);
}
HAL_StatusTypeDef ftcan_add_filter(uint16_t id, uint16_t mask) {
static uint32_t next_filter_no = 0;
static CAN_FilterTypeDef filter;
if (next_filter_no % 2 == 0) {
filter.FilterIdHigh = id << 5;
filter.FilterMaskIdHigh = mask << 5;
filter.FilterIdLow = id << 5;
filter.FilterMaskIdLow = mask << 5;
} else {
// Leave high filter untouched from the last configuration
filter.FilterIdLow = id << 5;
filter.FilterMaskIdLow = mask << 5;
}
filter.FilterFIFOAssignment = CAN_FILTER_FIFO0;
filter.FilterBank = next_filter_no / 2;
if (filter.FilterBank > FTCAN_NUM_FILTERS + 1) {
return HAL_ERROR;
}
filter.FilterMode = CAN_FILTERMODE_IDMASK;
filter.FilterScale = CAN_FILTERSCALE_16BIT;
filter.FilterActivation = CAN_FILTER_ENABLE;
// Disable slave filters
// TODO: Some STM32 have multiple CAN peripherals, and one uses the slave
// filter bank
filter.SlaveStartFilterBank = FTCAN_NUM_FILTERS;
HAL_StatusTypeDef status = HAL_CAN_ConfigFilter(hcan, &filter);
if (status == HAL_OK) {
next_filter_no++;
}
return status;
}
void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *handle) {
if (handle != hcan) {
return;
}
CAN_RxHeaderTypeDef header;
uint8_t data[8];
if (HAL_CAN_GetRxMessage(hcan, CAN_RX_FIFO0, &header, data) != HAL_OK) {
return;
}
if (header.IDE != CAN_ID_STD) {
return;
}
ftcan_msg_received_cb(header.StdId, header.DLC, data);
}
#elif defined(FTCAN_IS_FDCAN)
static FDCAN_HandleTypeDef *hcan;
HAL_StatusTypeDef ftcan_init(FDCAN_HandleTypeDef *handle) {
hcan = handle;
HAL_StatusTypeDef status =
HAL_FDCAN_ActivateNotification(hcan, FDCAN_IT_RX_FIFO0_NEW_MESSAGE, 0);
if (status != HAL_OK) {
return status;
}
// Reject non-matching messages
status =
HAL_FDCAN_ConfigGlobalFilter(hcan, FDCAN_REJECT, FDCAN_REJECT,
FDCAN_REJECT_REMOTE, FDCAN_REJECT_REMOTE);
if (status != HAL_OK) {
return status;
}
return HAL_FDCAN_Start(hcan);
}
HAL_StatusTypeDef ftcan_transmit(uint16_t id, const uint8_t *data,
size_t datalen) {
static FDCAN_TxHeaderTypeDef header;
header.Identifier = id;
header.IdType = FDCAN_STANDARD_ID;
header.TxFrameType = FDCAN_DATA_FRAME;
switch (datalen) {
case 0:
header.DataLength = FDCAN_DLC_BYTES_0;
break;
case 1:
header.DataLength = FDCAN_DLC_BYTES_1;
break;
case 2:
header.DataLength = FDCAN_DLC_BYTES_2;
break;
case 3:
header.DataLength = FDCAN_DLC_BYTES_3;
break;
case 4:
header.DataLength = FDCAN_DLC_BYTES_4;
break;
case 5:
header.DataLength = FDCAN_DLC_BYTES_5;
break;
case 6:
header.DataLength = FDCAN_DLC_BYTES_6;
break;
case 7:
header.DataLength = FDCAN_DLC_BYTES_7;
break;
case 8:
default:
header.DataLength = FDCAN_DLC_BYTES_8;
break;
}
header.ErrorStateIndicator = FDCAN_ESI_PASSIVE;
header.BitRateSwitch = FDCAN_BRS_OFF;
header.FDFormat = FDCAN_CLASSIC_CAN;
header.TxEventFifoControl = FDCAN_NO_TX_EVENTS;
// HAL_FDCAN_AddMessageToTxFifoQ doesn't modify the data, but it's not marked
// as const for some reason.
uint8_t *data_nonconst = (uint8_t *)data;
return HAL_FDCAN_AddMessageToTxFifoQ(hcan, &header, data_nonconst);
}
HAL_StatusTypeDef ftcan_add_filter(uint16_t id, uint16_t mask) {
static uint32_t next_filter_no = 0;
static FDCAN_FilterTypeDef filter;
filter.IdType = FDCAN_STANDARD_ID;
filter.FilterIndex = next_filter_no;
if (filter.FilterIndex > FTCAN_NUM_FILTERS + 1) {
return HAL_ERROR;
}
filter.FilterType = FDCAN_FILTER_MASK;
filter.FilterConfig = FDCAN_FILTER_TO_RXFIFO0;
filter.FilterID1 = id;
filter.FilterID2 = mask;
HAL_StatusTypeDef status = HAL_FDCAN_ConfigFilter(hcan, &filter);
if (status == HAL_OK) {
next_filter_no++;
}
return status;
}
void HAL_FDCAN_RxFifo0Callback(FDCAN_HandleTypeDef *handle,
uint32_t RxFifo0ITs) {
if (handle != hcan || (RxFifo0ITs & FDCAN_IT_RX_FIFO0_NEW_MESSAGE) == RESET) {
return;
}
static FDCAN_RxHeaderTypeDef header;
static uint8_t data[8];
if (HAL_FDCAN_GetRxMessage(hcan, FDCAN_RX_FIFO0, &header, data) != HAL_OK) {
return;
}
if (header.FDFormat != FDCAN_CLASSIC_CAN ||
header.RxFrameType != FDCAN_DATA_FRAME ||
header.IdType != FDCAN_STANDARD_ID) {
return;
}
size_t datalen;
switch (header.DataLength) {
case FDCAN_DLC_BYTES_0:
datalen = 0;
break;
case FDCAN_DLC_BYTES_1:
datalen = 1;
break;
case FDCAN_DLC_BYTES_2:
datalen = 2;
break;
case FDCAN_DLC_BYTES_3:
datalen = 3;
break;
case FDCAN_DLC_BYTES_4:
datalen = 4;
break;
case FDCAN_DLC_BYTES_5:
datalen = 5;
break;
case FDCAN_DLC_BYTES_6:
datalen = 6;
break;
case FDCAN_DLC_BYTES_7:
datalen = 7;
break;
case FDCAN_DLC_BYTES_8:
datalen = 8;
break;
default:
return;
}
ftcan_msg_received_cb(header.Identifier, datalen, data);
}
#endif
__weak void ftcan_msg_received_cb(uint16_t id, size_t datalen,
const uint8_t *data) {}
uint64_t ftcan_unmarshal_unsigned(const uint8_t **data_ptr, size_t num_bytes) {
if (num_bytes > 8) {
num_bytes = 8;
}
const uint8_t *data = *data_ptr;
uint64_t result = 0;
for (size_t i = 0; i < num_bytes; i++) {
result <<= 8;
result |= data[i];
}
*data_ptr += num_bytes;
return result;
}
int64_t ftcan_unmarshal_signed(const uint8_t **data_ptr, size_t num_bytes) {
if (num_bytes > 8) {
num_bytes = 8;
}
uint64_t result_unsigned = ftcan_unmarshal_unsigned(data_ptr, num_bytes);
// Sign extend by shifting left, then copying to a signed int and shifting
// back to the right
size_t diff_to_64 = 64 - num_bytes * 8;
result_unsigned <<= diff_to_64;
int64_t result;
memcpy(&result, &result_unsigned, 8);
return result >> diff_to_64;
}
uint8_t *ftcan_marshal_unsigned(uint8_t *data, uint64_t val, size_t num_bytes) {
if (num_bytes > 8) {
num_bytes = 8;
}
for (int i = num_bytes - 1; i >= 0; i--) {
data[i] = val & 0xFF;
val >>= 8;
}
return data + num_bytes;
}
uint8_t *ftcan_marshal_signed(uint8_t *data, int64_t val, size_t num_bytes) {
return ftcan_marshal_unsigned(data, val, num_bytes);
}

View File

@ -47,19 +47,25 @@
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
// htim2 CH3,4 BAT_COOLING_PWM,ENABLE
// htim3 CH3,4 ESC_L_PWM,R_PWM
// htim4 CH1,2,3 LED R,G,B
// htim15 CH1,2 ESC_COOLING_ENABLE,PWM
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
CAN_HandleTypeDef hcan;
I2C_HandleTypeDef hi2c1;
I2C_HandleTypeDef hi2c2;
SPI_HandleTypeDef hspi1;
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim2;
UART_HandleTypeDef huart1;
TIM_HandleTypeDef htim3;
TIM_HandleTypeDef htim4;
TIM_HandleTypeDef htim15;
/* USER CODE BEGIN PV */
@ -71,9 +77,11 @@ static void MX_GPIO_Init(void);
static void MX_CAN_Init(void);
static void MX_I2C1_Init(void);
static void MX_SPI1_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_TIM1_Init(void);
static void MX_TIM15_Init(void);
static void MX_I2C2_Init(void);
static void MX_TIM2_Init(void);
static void MX_TIM3_Init(void);
static void MX_TIM4_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
@ -115,15 +123,17 @@ int main(void)
MX_CAN_Init();
MX_I2C1_Init();
MX_SPI1_Init();
MX_USART1_UART_Init();
MX_TIM1_Init();
MX_TIM15_Init();
MX_I2C2_Init();
MX_TIM2_Init();
MX_TIM3_Init();
MX_TIM4_Init();
/* USER CODE BEGIN 2 */
sm_init();
tmp1075_init(&hi2c1);
AMS_Init(&hspi1);
can_init(&hcan);
PWM_control_init(&htim15, &htim1);
PWM_control_init(&htim3, &htim2, &htim15);
HAL_Delay(10);
/* USER CODE END 2 */
@ -178,11 +188,9 @@ void SystemClock_Config(void)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1|RCC_PERIPHCLK_I2C1
|RCC_PERIPHCLK_TIM1;
PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2;
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_I2C1|RCC_PERIPHCLK_I2C2;
PeriphClkInit.I2c1ClockSelection = RCC_I2C1CLKSOURCE_HSI;
PeriphClkInit.Tim1ClockSelection = RCC_TIM1CLK_HCLK;
PeriphClkInit.I2c2ClockSelection = RCC_I2C2CLKSOURCE_HSI;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
@ -274,6 +282,54 @@ static void MX_I2C1_Init(void)
}
/**
* @brief I2C2 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C2_Init(void)
{
/* USER CODE BEGIN I2C2_Init 0 */
/* USER CODE END I2C2_Init 0 */
/* USER CODE BEGIN I2C2_Init 1 */
/* USER CODE END I2C2_Init 1 */
hi2c2.Instance = I2C2;
hi2c2.Init.Timing = 0x2000090E;
hi2c2.Init.OwnAddress1 = 0;
hi2c2.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c2.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c2.Init.OwnAddress2 = 0;
hi2c2.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
hi2c2.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c2.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c2) != HAL_OK)
{
Error_Handler();
}
/** Configure Analogue filter
*/
if (HAL_I2CEx_ConfigAnalogFilter(&hi2c2, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
{
Error_Handler();
}
/** Configure Digital filter
*/
if (HAL_I2CEx_ConfigDigitalFilter(&hi2c2, 0) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C2_Init 2 */
/* USER CODE END I2C2_Init 2 */
}
/**
* @brief SPI1 Initialization Function
* @param None
@ -314,76 +370,6 @@ static void MX_SPI1_Init(void)
}
/**
* @brief TIM1 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM1_Init(void)
{
/* USER CODE BEGIN TIM1_Init 0 */
/* USER CODE END TIM1_Init 0 */
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
/* USER CODE BEGIN TIM1_Init 1 */
/* USER CODE END TIM1_Init 1 */
htim1.Instance = TIM1;
htim1.Init.Prescaler = 0;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 65535;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
{
Error_Handler();
}
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = 0;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
sBreakDeadTimeConfig.BreakFilter = 0;
sBreakDeadTimeConfig.Break2State = TIM_BREAK2_DISABLE;
sBreakDeadTimeConfig.Break2Polarity = TIM_BREAK2POLARITY_HIGH;
sBreakDeadTimeConfig.Break2Filter = 0;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM1_Init 2 */
/* USER CODE END TIM1_Init 2 */
HAL_TIM_MspPostInit(&htim1);
}
/**
* @brief TIM2 Initialization Function
* @param None
@ -401,15 +387,14 @@ static void MX_TIM2_Init(void)
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM15_Init 1 */
htim15.Instance = TIM15;
htim15.Init.Prescaler = 7;
htim15.Init.CounterMode = TIM_COUNTERMODE_UP;
htim15.Init.Period = 39999;
htim15.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim15.Init.RepetitionCounter = 0;
htim15.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&htim15) != HAL_OK)
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 4294967295;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
@ -435,37 +420,182 @@ static void MX_TIM2_Init(void)
}
/**
* @brief USART1 Initialization Function
* @brief TIM3 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void)
static void MX_TIM3_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE END TIM3_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 38400;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart1) != HAL_OK)
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 0;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 65535;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_4) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */
/* USER CODE END USART1_Init 2 */
/* USER CODE END TIM3_Init 2 */
HAL_TIM_MspPostInit(&htim3);
}
/**
* @brief TIM4 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM4_Init(void)
{
/* USER CODE BEGIN TIM4_Init 0 */
/* USER CODE END TIM4_Init 0 */
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM4_Init 1 */
/* USER CODE END TIM4_Init 1 */
htim4.Instance = TIM4;
htim4.Init.Prescaler = 0;
htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
htim4.Init.Period = 65535;
htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&htim4) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM4_Init 2 */
/* USER CODE END TIM4_Init 2 */
HAL_TIM_MspPostInit(&htim4);
}
/**
* @brief TIM15 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM15_Init(void)
{
/* USER CODE BEGIN TIM15_Init 0 */
/* USER CODE END TIM15_Init 0 */
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
/* USER CODE BEGIN TIM15_Init 1 */
/* USER CODE END TIM15_Init 1 */
htim15.Instance = TIM15;
htim15.Init.Prescaler = 0;
htim15.Init.CounterMode = TIM_COUNTERMODE_UP;
htim15.Init.Period = 65535;
htim15.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim15.Init.RepetitionCounter = 0;
htim15.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&htim15) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim15, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
if (HAL_TIM_PWM_ConfigChannel(&htim15, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim15, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = 0;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
sBreakDeadTimeConfig.BreakFilter = 0;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
if (HAL_TIMEx_ConfigBreakDeadTime(&htim15, &sBreakDeadTimeConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM15_Init 2 */
/* USER CODE END TIM15_Init 2 */
HAL_TIM_MspPostInit(&htim15);
}
@ -487,13 +617,10 @@ static void MX_GPIO_Init(void)
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, RELAY_EN_Pin|_60V_EN_Pin|CSB_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOA, CSB_Pin|EEPROM___WC__Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, STATUS_LED_R_Pin|STATUS_LED_B_Pin|STATUS_LED_G_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(PRECHARGE_EN_GPIO_Port, PRECHARGE_EN_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOB, BAT_COOLING_ENABLE_Pin|RELAY_ENABLE_Pin|PRECHARGE_ENABLE_Pin, GPIO_PIN_RESET);
/*Configure GPIO pins : PC13 PC14 PC15 */
GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15;
@ -501,33 +628,31 @@ static void MX_GPIO_Init(void)
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pins : RELAY_EN_Pin _60V_EN_Pin CSB_Pin */
GPIO_InitStruct.Pin = RELAY_EN_Pin|_60V_EN_Pin|CSB_Pin;
/*Configure GPIO pins : PA0 PA1 PA2 PA3 */
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : CSB_Pin EEPROM___WC__Pin */
GPIO_InitStruct.Pin = CSB_Pin|EEPROM___WC__Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : STATUS_LED_R_Pin STATUS_LED_B_Pin STATUS_LED_G_Pin PRECHARGE_EN_Pin */
GPIO_InitStruct.Pin = STATUS_LED_R_Pin|STATUS_LED_B_Pin|STATUS_LED_G_Pin|PRECHARGE_EN_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : PB10 PB12 PB13 PB14
PB4 PB5 PB8 */
GPIO_InitStruct.Pin = GPIO_PIN_10|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14
|GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_8;
/*Configure GPIO pins : PB2 PB12 PB13 */
GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_12|GPIO_PIN_13;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : RELAY_BATT_SIDE_ON_Pin RELAY_ESC_SIDE_ON_Pin CURRENT_SENSOR_ON_Pin */
GPIO_InitStruct.Pin = RELAY_BATT_SIDE_ON_Pin|RELAY_ESC_SIDE_ON_Pin|CURRENT_SENSOR_ON_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
/*Configure GPIO pins : BAT_COOLING_ENABLE_Pin RELAY_ENABLE_Pin PRECHARGE_ENABLE_Pin */
GPIO_InitStruct.Pin = BAT_COOLING_ENABLE_Pin|RELAY_ENABLE_Pin|PRECHARGE_ENABLE_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */

View File

@ -2,6 +2,7 @@
#include "AMS_HighLevel.h"
#include "TMP1075.h"
#include "errors.h"
#include "main.h"
#include "stm32f3xx_hal.h"
#include <stdint.h>
#include <stdio.h>
@ -189,11 +190,11 @@ void sm_set_relay(Relay relay, bool closed){
GPIO_PinState state = closed ? GPIO_PIN_SET : GPIO_PIN_RESET;
switch (relay) {
case RELAY_MAIN:
HAL_GPIO_WritePin(RELAY_EN_GPIO_Port, RELAY_EN_Pin, state);
HAL_GPIO_WritePin(RELAY_ENABLE_GPIO_Port, RELAY_ENABLE_Pin, state);
relay_closed = closed;
break;
case RELAY_PRECHARGE:
HAL_GPIO_WritePin(PRECHARGE_EN_GPIO_Port, PRECHARGE_EN_Pin, state);
HAL_GPIO_WritePin(PRECHARGE_ENABLE_GPIO_Port, PRECHARGE_ENABLE_Pin, state);
precharge_closed = closed;
break;
}

View File

@ -59,7 +59,7 @@
/* USER CODE END 0 */
void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim);
/**
/**
* Initializes the Global MSP.
*/
void HAL_MspInit(void)
@ -173,19 +173,19 @@ void HAL_I2C_MspInit(I2C_HandleTypeDef* hi2c)
PA15 ------> I2C1_SCL
PB9 ------> I2C1_SDA
*/
GPIO_InitStruct.Pin = GPIO_PIN_15;
GPIO_InitStruct.Pin = TMP_SCL_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF4_I2C1;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
HAL_GPIO_Init(TMP_SCL_GPIO_Port, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_9;
GPIO_InitStruct.Pin = TMP_SDA_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF4_I2C1;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
HAL_GPIO_Init(TMP_SDA_GPIO_Port, &GPIO_InitStruct);
/* Peripheral clock enable */
__HAL_RCC_I2C1_CLK_ENABLE();
@ -193,6 +193,30 @@ void HAL_I2C_MspInit(I2C_HandleTypeDef* hi2c)
/* USER CODE END I2C1_MspInit 1 */
}
else if(hi2c->Instance==I2C2)
{
/* USER CODE BEGIN I2C2_MspInit 0 */
/* USER CODE END I2C2_MspInit 0 */
__HAL_RCC_GPIOA_CLK_ENABLE();
/**I2C2 GPIO Configuration
PA9 ------> I2C2_SCL
PA10 ------> I2C2_SDA
*/
GPIO_InitStruct.Pin = EEPROM_SCL_Pin|EEPROM_SDA_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF4_I2C2;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* Peripheral clock enable */
__HAL_RCC_I2C2_CLK_ENABLE();
/* USER CODE BEGIN I2C2_MspInit 1 */
/* USER CODE END I2C2_MspInit 1 */
}
}
@ -216,14 +240,34 @@ void HAL_I2C_MspDeInit(I2C_HandleTypeDef* hi2c)
PA15 ------> I2C1_SCL
PB9 ------> I2C1_SDA
*/
HAL_GPIO_DeInit(GPIOA, GPIO_PIN_15);
HAL_GPIO_DeInit(TMP_SCL_GPIO_Port, TMP_SCL_Pin);
HAL_GPIO_DeInit(GPIOB, GPIO_PIN_9);
HAL_GPIO_DeInit(TMP_SDA_GPIO_Port, TMP_SDA_Pin);
/* USER CODE BEGIN I2C1_MspDeInit 1 */
/* USER CODE END I2C1_MspDeInit 1 */
}
else if(hi2c->Instance==I2C2)
{
/* USER CODE BEGIN I2C2_MspDeInit 0 */
/* USER CODE END I2C2_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_I2C2_CLK_DISABLE();
/**I2C2 GPIO Configuration
PA9 ------> I2C2_SCL
PA10 ------> I2C2_SDA
*/
HAL_GPIO_DeInit(EEPROM_SCL_GPIO_Port, EEPROM_SCL_Pin);
HAL_GPIO_DeInit(EEPROM_SDA_GPIO_Port, EEPROM_SDA_Pin);
/* USER CODE BEGIN I2C2_MspDeInit 1 */
/* USER CODE END I2C2_MspDeInit 1 */
}
}
@ -302,18 +346,7 @@ void HAL_SPI_MspDeInit(SPI_HandleTypeDef* hspi)
*/
void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef* htim_pwm)
{
if(htim_pwm->Instance==TIM1)
{
/* USER CODE BEGIN TIM1_MspInit 0 */
/* USER CODE END TIM1_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_TIM1_CLK_ENABLE();
/* USER CODE BEGIN TIM1_MspInit 1 */
/* USER CODE END TIM1_MspInit 1 */
}
else if(htim_pwm->Instance==TIM2)
if(htim_pwm->Instance==TIM2)
{
/* USER CODE BEGIN TIM2_MspInit 0 */
@ -324,53 +357,132 @@ void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef* htim_pwm)
/* USER CODE END TIM2_MspInit 1 */
}
else if(htim_pwm->Instance==TIM3)
{
/* USER CODE BEGIN TIM3_MspInit 0 */
/* USER CODE END TIM3_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_TIM3_CLK_ENABLE();
/* USER CODE BEGIN TIM3_MspInit 1 */
/* USER CODE END TIM3_MspInit 1 */
}
else if(htim_pwm->Instance==TIM4)
{
/* USER CODE BEGIN TIM4_MspInit 0 */
/* USER CODE END TIM4_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_TIM4_CLK_ENABLE();
/* USER CODE BEGIN TIM4_MspInit 1 */
/* USER CODE END TIM4_MspInit 1 */
}
else if(htim_pwm->Instance==TIM15)
{
/* USER CODE BEGIN TIM15_MspInit 0 */
/* USER CODE END TIM15_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_TIM15_CLK_ENABLE();
/* USER CODE BEGIN TIM15_MspInit 1 */
/* USER CODE END TIM15_MspInit 1 */
}
}
void HAL_TIM_MspPostInit(TIM_HandleTypeDef* htim)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
if(htim->Instance==TIM1)
{
/* USER CODE BEGIN TIM1_MspPostInit 0 */
/* USER CODE END TIM1_MspPostInit 0 */
__HAL_RCC_GPIOB_CLK_ENABLE();
/**TIM1 GPIO Configuration
PB15 ------> TIM1_CH3N
*/
GPIO_InitStruct.Pin = PWM_Battery_Cooling_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF4_TIM1;
HAL_GPIO_Init(PWM_Battery_Cooling_GPIO_Port, &GPIO_InitStruct);
/* USER CODE BEGIN TIM1_MspPostInit 1 */
/* USER CODE END TIM1_MspPostInit 1 */
}
else if(htim->Instance==TIM2)
if(htim->Instance==TIM2)
{
/* USER CODE BEGIN TIM2_MspPostInit 0 */
/* USER CODE END TIM2_MspPostInit 0 */
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/**TIM2 GPIO Configuration
PA2 ------> TIM2_CH3
PB10 ------> TIM2_CH3
*/
GPIO_InitStruct.Pin = GPIO_PIN_2;
GPIO_InitStruct.Pin = BAT_COOLING_PWM_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF1_TIM2;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
HAL_GPIO_Init(BAT_COOLING_PWM_GPIO_Port, &GPIO_InitStruct);
/* USER CODE BEGIN TIM2_MspPostInit 1 */
/* USER CODE END TIM2_MspPostInit 1 */
}
else if(htim->Instance==TIM3)
{
/* USER CODE BEGIN TIM3_MspPostInit 0 */
/* USER CODE END TIM3_MspPostInit 0 */
__HAL_RCC_GPIOB_CLK_ENABLE();
/**TIM3 GPIO Configuration
PB0 ------> TIM3_CH3
PB1 ------> TIM3_CH4
*/
GPIO_InitStruct.Pin = ESC_L_PWM_Pin|ESC_R_PWM_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF2_TIM3;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* USER CODE BEGIN TIM3_MspPostInit 1 */
/* USER CODE END TIM3_MspPostInit 1 */
}
else if(htim->Instance==TIM4)
{
/* USER CODE BEGIN TIM4_MspPostInit 0 */
/* USER CODE END TIM4_MspPostInit 0 */
__HAL_RCC_GPIOB_CLK_ENABLE();
/**TIM4 GPIO Configuration
PB6 ------> TIM4_CH1
PB7 ------> TIM4_CH2
PB8 ------> TIM4_CH3
*/
GPIO_InitStruct.Pin = STATUS_LED_R_Pin|STATUS_LED_G_Pin|STATUS_LED_B_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF2_TIM4;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* USER CODE BEGIN TIM4_MspPostInit 1 */
/* USER CODE END TIM4_MspPostInit 1 */
}
else if(htim->Instance==TIM15)
{
/* USER CODE BEGIN TIM15_MspPostInit 0 */
/* USER CODE END TIM15_MspPostInit 0 */
__HAL_RCC_GPIOB_CLK_ENABLE();
/**TIM15 GPIO Configuration
PB14 ------> TIM15_CH1
PB15 ------> TIM15_CH2
*/
GPIO_InitStruct.Pin = ESC_COOLING_ENABLE_Pin|ESC_COOLING_PWM_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF1_TIM15;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* USER CODE BEGIN TIM15_MspPostInit 1 */
/* USER CODE END TIM15_MspPostInit 1 */
}
}
/**
@ -381,18 +493,7 @@ void HAL_TIM_MspPostInit(TIM_HandleTypeDef* htim)
*/
void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef* htim_pwm)
{
if(htim_pwm->Instance==TIM1)
{
/* USER CODE BEGIN TIM1_MspDeInit 0 */
/* USER CODE END TIM1_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_TIM1_CLK_DISABLE();
/* USER CODE BEGIN TIM1_MspDeInit 1 */
/* USER CODE END TIM1_MspDeInit 1 */
}
else if(htim_pwm->Instance==TIM2)
if(htim_pwm->Instance==TIM2)
{
/* USER CODE BEGIN TIM2_MspDeInit 0 */
@ -403,70 +504,38 @@ void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef* htim_pwm)
/* USER CODE END TIM2_MspDeInit 1 */
}
}
/**
* @brief UART MSP Initialization
* This function configures the hardware resources used in this example
* @param huart: UART handle pointer
* @retval None
*/
void HAL_UART_MspInit(UART_HandleTypeDef* huart)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
if(huart->Instance==USART1)
else if(htim_pwm->Instance==TIM3)
{
/* USER CODE BEGIN USART1_MspInit 0 */
/* USER CODE BEGIN TIM3_MspDeInit 0 */
/* USER CODE END USART1_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_USART1_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/**USART1 GPIO Configuration
PB6 ------> USART1_TX
PB7 ------> USART1_RX
*/
GPIO_InitStruct.Pin = GPIO_PIN_6|GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF7_USART1;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* USER CODE BEGIN USART1_MspInit 1 */
/* USER CODE END USART1_MspInit 1 */
}
}
/**
* @brief UART MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param huart: UART handle pointer
* @retval None
*/
void HAL_UART_MspDeInit(UART_HandleTypeDef* huart)
{
if(huart->Instance==USART1)
{
/* USER CODE BEGIN USART1_MspDeInit 0 */
/* USER CODE END USART1_MspDeInit 0 */
/* USER CODE END TIM3_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_USART1_CLK_DISABLE();
__HAL_RCC_TIM3_CLK_DISABLE();
/* USER CODE BEGIN TIM3_MspDeInit 1 */
/**USART1 GPIO Configuration
PB6 ------> USART1_TX
PB7 ------> USART1_RX
*/
HAL_GPIO_DeInit(GPIOB, GPIO_PIN_6|GPIO_PIN_7);
/* USER CODE END TIM3_MspDeInit 1 */
}
else if(htim_pwm->Instance==TIM4)
{
/* USER CODE BEGIN TIM4_MspDeInit 0 */
/* USER CODE BEGIN USART1_MspDeInit 1 */
/* USER CODE END TIM4_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_TIM4_CLK_DISABLE();
/* USER CODE BEGIN TIM4_MspDeInit 1 */
/* USER CODE END USART1_MspDeInit 1 */
/* USER CODE END TIM4_MspDeInit 1 */
}
else if(htim_pwm->Instance==TIM15)
{
/* USER CODE BEGIN TIM15_MspDeInit 0 */
/* USER CODE END TIM15_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_TIM15_CLK_DISABLE();
/* USER CODE BEGIN TIM15_MspDeInit 1 */
/* USER CODE END TIM15_MspDeInit 1 */
}
}