V1.0
This commit is contained in:
parent
9e80b90fd4
commit
dae660d8f2
File diff suppressed because one or more lines are too long
3
CHANGELOG
Normal file
3
CHANGELOG
Normal file
@ -0,0 +1,3 @@
|
||||
V1.0
|
||||
- merged mvbms-test to main
|
||||
- made the changes needed for the project to compile
|
@ -1,9 +0,0 @@
|
||||
#ifndef INC_PWM_CONTROL_H_
|
||||
#define INC_PWM_CONTROL_H_
|
||||
|
||||
#include "stm32f3xx_hal_conf.h"
|
||||
|
||||
void PWMControl_UpdatePWMs(uint8_t pwrgndfans );
|
||||
void PWMControl_init(TIM_HandleTypeDef* timer3);
|
||||
|
||||
#endif /* INC_CHANNEL_CONTROL_H_ */
|
@ -25,9 +25,9 @@ CCR: 1/20 -> 500, 2/20 -> 1000
|
||||
|
||||
//#define BATTERY_COOLING_FREQ 20000
|
||||
|
||||
void PWM_control_init(TIM_HandleTypeDef* powerground, TIM_HandleTypeDef* battery_cooling);
|
||||
|
||||
void PWM_control_init(TIM_HandleTypeDef* pg, TIM_HandleTypeDef* bat_cool, TIM_HandleTypeDef* esc_cool);
|
||||
void PWM_powerground_control(uint8_t percent);
|
||||
void PWM_battery_cooling_control(uint8_t percent);
|
||||
void PWM_esc_cooling(uint8_t percent);
|
||||
|
||||
#endif /* INC_CHANNEL_CONTROL_H */
|
||||
|
@ -1,64 +0,0 @@
|
||||
#ifndef CAN_HALAL_H
|
||||
#define CAN_HALAL_H
|
||||
|
||||
// Define family macros if none are defined and we recognize a chip macro
|
||||
#if !defined(STM32F3) && !defined(STM32H7)
|
||||
#if defined(STM32F302x6) || defined(STM32F302x8) || defined(STM32F302xB) || \
|
||||
defined(STM32F302xC)
|
||||
#define STM32F3
|
||||
#endif
|
||||
#if defined(STM32H7A3xx)
|
||||
#define STM32H7
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(STM32F3)
|
||||
#include "stm32f3xx_hal.h"
|
||||
#define FTCAN_IS_BXCAN
|
||||
#define FTCAN_NUM_FILTERS 13
|
||||
#elif defined(STM32H7)
|
||||
#include "stm32h7xx_hal.h"
|
||||
#define FTCAN_IS_FDCAN
|
||||
#ifndef FTCAN_NUM_FILTERS
|
||||
#error "Please configure the number of filters in CubeMX, and then add a compiler define for FTCAN_NUM_FILTERS"
|
||||
#endif
|
||||
#else
|
||||
#error "Couldn't detect STM family"
|
||||
#endif
|
||||
|
||||
#if defined(FTCAN_IS_BXCAN)
|
||||
HAL_StatusTypeDef ftcan_init(CAN_HandleTypeDef *handle);
|
||||
#elif defined(FTCAN_IS_FDCAN)
|
||||
HAL_StatusTypeDef ftcan_init(FDCAN_HandleTypeDef *handle);
|
||||
#else
|
||||
#error "Unknown CAN peripheral"
|
||||
#endif
|
||||
|
||||
HAL_StatusTypeDef ftcan_transmit(uint16_t id, const uint8_t *data,
|
||||
size_t datalen);
|
||||
|
||||
HAL_StatusTypeDef ftcan_add_filter(uint16_t id, uint16_t mask);
|
||||
|
||||
/**
|
||||
* Define this function to be notified of incoming CAN messages
|
||||
*/
|
||||
void ftcan_msg_received_cb(uint16_t id, size_t datalen, const uint8_t *data);
|
||||
|
||||
/**
|
||||
* Read num_bytes bytes from a message (unmarshalled network byte order). The
|
||||
* msg pointer is advanced by the corresponding number of bytes.
|
||||
*
|
||||
* Both methods return a 64-bit integer, but you can safely cast it to a smaller
|
||||
* integer type.
|
||||
*/
|
||||
uint64_t ftcan_unmarshal_unsigned(const uint8_t **data, size_t num_bytes);
|
||||
int64_t ftcan_unmarshal_signed(const uint8_t **data, size_t num_bytes);
|
||||
|
||||
/**
|
||||
* Write num_bytes to a message (marshalled in network byte order). The pointer
|
||||
* is advanced by the corresponding number of bytes and returned.
|
||||
*/
|
||||
uint8_t *ftcan_marshal_unsigned(uint8_t *data, uint64_t val, size_t num_bytes);
|
||||
uint8_t *ftcan_marshal_signed(uint8_t *data, int64_t val, size_t num_bytes);
|
||||
|
||||
#endif // CAN_HALAL_H
|
@ -59,28 +59,40 @@ void Error_Handler(void);
|
||||
/* USER CODE END EFP */
|
||||
|
||||
/* Private defines -----------------------------------------------------------*/
|
||||
#define RELAY_EN_Pin GPIO_PIN_0
|
||||
#define RELAY_EN_GPIO_Port GPIOA
|
||||
#define _60V_EN_Pin GPIO_PIN_1
|
||||
#define _60V_EN_GPIO_Port GPIOA
|
||||
#define CSB_Pin GPIO_PIN_4
|
||||
#define CSB_GPIO_Port GPIOA
|
||||
#define STATUS_LED_R_Pin GPIO_PIN_0
|
||||
#define ESC_L_PWM_Pin GPIO_PIN_0
|
||||
#define ESC_L_PWM_GPIO_Port GPIOB
|
||||
#define ESC_R_PWM_Pin GPIO_PIN_1
|
||||
#define ESC_R_PWM_GPIO_Port GPIOB
|
||||
#define BAT_COOLING_PWM_Pin GPIO_PIN_10
|
||||
#define BAT_COOLING_PWM_GPIO_Port GPIOB
|
||||
#define BAT_COOLING_ENABLE_Pin GPIO_PIN_11
|
||||
#define BAT_COOLING_ENABLE_GPIO_Port GPIOB
|
||||
#define ESC_COOLING_ENABLE_Pin GPIO_PIN_14
|
||||
#define ESC_COOLING_ENABLE_GPIO_Port GPIOB
|
||||
#define ESC_COOLING_PWM_Pin GPIO_PIN_15
|
||||
#define ESC_COOLING_PWM_GPIO_Port GPIOB
|
||||
#define EEPROM___WC__Pin GPIO_PIN_8
|
||||
#define EEPROM___WC__GPIO_Port GPIOA
|
||||
#define EEPROM_SCL_Pin GPIO_PIN_9
|
||||
#define EEPROM_SCL_GPIO_Port GPIOA
|
||||
#define EEPROM_SDA_Pin GPIO_PIN_10
|
||||
#define EEPROM_SDA_GPIO_Port GPIOA
|
||||
#define TMP_SCL_Pin GPIO_PIN_15
|
||||
#define TMP_SCL_GPIO_Port GPIOA
|
||||
#define RELAY_ENABLE_Pin GPIO_PIN_4
|
||||
#define RELAY_ENABLE_GPIO_Port GPIOB
|
||||
#define PRECHARGE_ENABLE_Pin GPIO_PIN_5
|
||||
#define PRECHARGE_ENABLE_GPIO_Port GPIOB
|
||||
#define STATUS_LED_R_Pin GPIO_PIN_6
|
||||
#define STATUS_LED_R_GPIO_Port GPIOB
|
||||
#define STATUS_LED_B_Pin GPIO_PIN_1
|
||||
#define STATUS_LED_B_GPIO_Port GPIOB
|
||||
#define STATUS_LED_G_Pin GPIO_PIN_2
|
||||
#define STATUS_LED_G_Pin GPIO_PIN_7
|
||||
#define STATUS_LED_G_GPIO_Port GPIOB
|
||||
#define PRECHARGE_EN_Pin GPIO_PIN_11
|
||||
#define PRECHARGE_EN_GPIO_Port GPIOB
|
||||
#define PWM_Battery_Cooling_Pin GPIO_PIN_15
|
||||
#define PWM_Battery_Cooling_GPIO_Port GPIOB
|
||||
#define RELAY_BATT_SIDE_ON_Pin GPIO_PIN_8
|
||||
#define RELAY_BATT_SIDE_ON_GPIO_Port GPIOA
|
||||
#define RELAY_ESC_SIDE_ON_Pin GPIO_PIN_9
|
||||
#define RELAY_ESC_SIDE_ON_GPIO_Port GPIOA
|
||||
#define CURRENT_SENSOR_ON_Pin GPIO_PIN_10
|
||||
#define CURRENT_SENSOR_ON_GPIO_Port GPIOA
|
||||
#define STATUS_LED_B_Pin GPIO_PIN_8
|
||||
#define STATUS_LED_B_GPIO_Port GPIOB
|
||||
#define TMP_SDA_Pin GPIO_PIN_9
|
||||
#define TMP_SDA_GPIO_Port GPIOB
|
||||
|
||||
/* USER CODE BEGIN Private defines */
|
||||
|
||||
|
@ -58,7 +58,7 @@
|
||||
/*#define HAL_RTC_MODULE_ENABLED */
|
||||
#define HAL_SPI_MODULE_ENABLED
|
||||
#define HAL_TIM_MODULE_ENABLED
|
||||
#define HAL_UART_MODULE_ENABLED
|
||||
/*#define HAL_UART_MODULE_ENABLED */
|
||||
/*#define HAL_USART_MODULE_ENABLED */
|
||||
/*#define HAL_IRDA_MODULE_ENABLED */
|
||||
/*#define HAL_SMARTCARD_MODULE_ENABLED */
|
||||
|
@ -1,31 +0,0 @@
|
||||
#include "PWM_Control.h"
|
||||
|
||||
|
||||
uint8_t timer2_running = 0;
|
||||
TIM_HandleTypeDef* pwmtimer2;
|
||||
|
||||
void PWMControl_init( TIM_HandleTypeDef* timer2)
|
||||
{
|
||||
pwmtimer2 = timer2;
|
||||
PWMControl_UpdatePWMs(0);
|
||||
}
|
||||
|
||||
|
||||
void PWMControl_UpdatePWMs(uint8_t pwrgndfans)
|
||||
|
||||
{
|
||||
|
||||
pwmtimer2->Instance->CCR3 = pwrgndfans << 8;
|
||||
|
||||
if (timer2_running) {
|
||||
if ((pwrgndfans == 0)) {
|
||||
timer2_running = 0;
|
||||
HAL_TIM_PWM_Stop(pwmtimer2, TIM_CHANNEL_3);
|
||||
}
|
||||
} else {
|
||||
if ( (pwrgndfans != 0)) {
|
||||
timer2_running = 1;
|
||||
HAL_TIM_PWM_Start(pwmtimer2, TIM_CHANNEL_3);
|
||||
}
|
||||
}
|
||||
}
|
@ -1,18 +1,16 @@
|
||||
#include "PWM_control.h"
|
||||
|
||||
uint8_t battery_cooling_status;
|
||||
//uint32_t powerground1_CCR, powerground2_CCR, battery_cooling_CCR;
|
||||
|
||||
TIM_HandleTypeDef* powerground, *battery_cooling;
|
||||
TIM_HandleTypeDef *powerground, *battery_cooling, *esc_cooling;
|
||||
|
||||
/*
|
||||
Pulse width modulation mode allows for generating a signal with a frequency determined by
|
||||
the value of the TIMx_ARR register and a duty cycle determined by the value of the TIMx_CCRx register.
|
||||
*/
|
||||
|
||||
void PWM_control_init(TIM_HandleTypeDef* pg, TIM_HandleTypeDef* bat_cool){
|
||||
void PWM_control_init(TIM_HandleTypeDef* pg, TIM_HandleTypeDef* bat_cool, TIM_HandleTypeDef* esc_cool){
|
||||
powerground_status = 0;
|
||||
battery_cooling_status = 0;
|
||||
|
||||
HAL_TIM_PWM_Start(pg, TIM_CHANNEL_1); //TIM15CH1
|
||||
HAL_TIM_PWM_Start(pg, TIM_CHANNEL_2); //TIM15CH2
|
||||
@ -20,6 +18,8 @@ void PWM_control_init(TIM_HandleTypeDef* pg, TIM_HandleTypeDef* bat_cool){
|
||||
|
||||
powerground = pg;
|
||||
battery_cooling = bat_cool;
|
||||
esc_cooling = esc_cool;
|
||||
|
||||
__HAL_TIM_SET_COMPARE(powerground, TIM_CHANNEL_1, 2000);
|
||||
__HAL_TIM_SET_COMPARE(powerground, TIM_CHANNEL_2, 2000);
|
||||
//__HAL_TIM_SET_COMPARE(battery_cooling, TIM_CHANNEL_3, 2000);
|
||||
@ -38,4 +38,5 @@ void PWM_powerground_control(uint8_t percent){
|
||||
//TIM15->CCR1 = (TIM15->ARR*POWERGROUND_MAX_DUTY_CYCLE-TIM15->ARR*POWERGROUND_MIN_DUTY_CYCLE) * (percent/100.0) + TIM15->ARR*POWERGROUND_MIN_DUTY_CYCLE;
|
||||
}
|
||||
|
||||
void PWM_battery_cooling_control(uint8_t percent){}
|
||||
void PWM_battery_cooling_control(uint8_t percent){}
|
||||
void PWM_esc_cooling(uint8_t percent){}
|
||||
|
@ -1,273 +0,0 @@
|
||||
#include "can-halal.h"
|
||||
|
||||
#include <string.h>
|
||||
|
||||
#if defined(FTCAN_IS_BXCAN)
|
||||
static CAN_HandleTypeDef *hcan;
|
||||
|
||||
HAL_StatusTypeDef ftcan_init(CAN_HandleTypeDef *handle) {
|
||||
hcan = handle;
|
||||
|
||||
HAL_StatusTypeDef status =
|
||||
HAL_CAN_ActivateNotification(hcan, CAN_IT_RX_FIFO0_MSG_PENDING);
|
||||
if (status != HAL_OK) {
|
||||
return status;
|
||||
}
|
||||
|
||||
return HAL_CAN_Start(hcan);
|
||||
}
|
||||
|
||||
HAL_StatusTypeDef ftcan_transmit(uint16_t id, const uint8_t *data,
|
||||
size_t datalen) {
|
||||
static CAN_TxHeaderTypeDef header;
|
||||
header.StdId = id;
|
||||
header.IDE = CAN_ID_STD;
|
||||
header.RTR = CAN_RTR_DATA;
|
||||
header.DLC = datalen;
|
||||
uint32_t mailbox;
|
||||
return HAL_CAN_AddTxMessage(hcan, &header, data, &mailbox);
|
||||
}
|
||||
|
||||
HAL_StatusTypeDef ftcan_add_filter(uint16_t id, uint16_t mask) {
|
||||
static uint32_t next_filter_no = 0;
|
||||
static CAN_FilterTypeDef filter;
|
||||
if (next_filter_no % 2 == 0) {
|
||||
filter.FilterIdHigh = id << 5;
|
||||
filter.FilterMaskIdHigh = mask << 5;
|
||||
filter.FilterIdLow = id << 5;
|
||||
filter.FilterMaskIdLow = mask << 5;
|
||||
} else {
|
||||
// Leave high filter untouched from the last configuration
|
||||
filter.FilterIdLow = id << 5;
|
||||
filter.FilterMaskIdLow = mask << 5;
|
||||
}
|
||||
filter.FilterFIFOAssignment = CAN_FILTER_FIFO0;
|
||||
filter.FilterBank = next_filter_no / 2;
|
||||
if (filter.FilterBank > FTCAN_NUM_FILTERS + 1) {
|
||||
return HAL_ERROR;
|
||||
}
|
||||
filter.FilterMode = CAN_FILTERMODE_IDMASK;
|
||||
filter.FilterScale = CAN_FILTERSCALE_16BIT;
|
||||
filter.FilterActivation = CAN_FILTER_ENABLE;
|
||||
|
||||
// Disable slave filters
|
||||
// TODO: Some STM32 have multiple CAN peripherals, and one uses the slave
|
||||
// filter bank
|
||||
filter.SlaveStartFilterBank = FTCAN_NUM_FILTERS;
|
||||
|
||||
HAL_StatusTypeDef status = HAL_CAN_ConfigFilter(hcan, &filter);
|
||||
if (status == HAL_OK) {
|
||||
next_filter_no++;
|
||||
}
|
||||
return status;
|
||||
}
|
||||
|
||||
void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *handle) {
|
||||
if (handle != hcan) {
|
||||
return;
|
||||
}
|
||||
CAN_RxHeaderTypeDef header;
|
||||
uint8_t data[8];
|
||||
if (HAL_CAN_GetRxMessage(hcan, CAN_RX_FIFO0, &header, data) != HAL_OK) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (header.IDE != CAN_ID_STD) {
|
||||
return;
|
||||
}
|
||||
|
||||
ftcan_msg_received_cb(header.StdId, header.DLC, data);
|
||||
}
|
||||
#elif defined(FTCAN_IS_FDCAN)
|
||||
static FDCAN_HandleTypeDef *hcan;
|
||||
|
||||
HAL_StatusTypeDef ftcan_init(FDCAN_HandleTypeDef *handle) {
|
||||
hcan = handle;
|
||||
|
||||
HAL_StatusTypeDef status =
|
||||
HAL_FDCAN_ActivateNotification(hcan, FDCAN_IT_RX_FIFO0_NEW_MESSAGE, 0);
|
||||
if (status != HAL_OK) {
|
||||
return status;
|
||||
}
|
||||
// Reject non-matching messages
|
||||
status =
|
||||
HAL_FDCAN_ConfigGlobalFilter(hcan, FDCAN_REJECT, FDCAN_REJECT,
|
||||
FDCAN_REJECT_REMOTE, FDCAN_REJECT_REMOTE);
|
||||
if (status != HAL_OK) {
|
||||
return status;
|
||||
}
|
||||
|
||||
return HAL_FDCAN_Start(hcan);
|
||||
}
|
||||
|
||||
HAL_StatusTypeDef ftcan_transmit(uint16_t id, const uint8_t *data,
|
||||
size_t datalen) {
|
||||
static FDCAN_TxHeaderTypeDef header;
|
||||
header.Identifier = id;
|
||||
header.IdType = FDCAN_STANDARD_ID;
|
||||
header.TxFrameType = FDCAN_DATA_FRAME;
|
||||
switch (datalen) {
|
||||
case 0:
|
||||
header.DataLength = FDCAN_DLC_BYTES_0;
|
||||
break;
|
||||
case 1:
|
||||
header.DataLength = FDCAN_DLC_BYTES_1;
|
||||
break;
|
||||
case 2:
|
||||
header.DataLength = FDCAN_DLC_BYTES_2;
|
||||
break;
|
||||
case 3:
|
||||
header.DataLength = FDCAN_DLC_BYTES_3;
|
||||
break;
|
||||
case 4:
|
||||
header.DataLength = FDCAN_DLC_BYTES_4;
|
||||
break;
|
||||
case 5:
|
||||
header.DataLength = FDCAN_DLC_BYTES_5;
|
||||
break;
|
||||
case 6:
|
||||
header.DataLength = FDCAN_DLC_BYTES_6;
|
||||
break;
|
||||
case 7:
|
||||
header.DataLength = FDCAN_DLC_BYTES_7;
|
||||
break;
|
||||
case 8:
|
||||
default:
|
||||
header.DataLength = FDCAN_DLC_BYTES_8;
|
||||
break;
|
||||
}
|
||||
header.ErrorStateIndicator = FDCAN_ESI_PASSIVE;
|
||||
header.BitRateSwitch = FDCAN_BRS_OFF;
|
||||
header.FDFormat = FDCAN_CLASSIC_CAN;
|
||||
header.TxEventFifoControl = FDCAN_NO_TX_EVENTS;
|
||||
|
||||
// HAL_FDCAN_AddMessageToTxFifoQ doesn't modify the data, but it's not marked
|
||||
// as const for some reason.
|
||||
uint8_t *data_nonconst = (uint8_t *)data;
|
||||
return HAL_FDCAN_AddMessageToTxFifoQ(hcan, &header, data_nonconst);
|
||||
}
|
||||
|
||||
HAL_StatusTypeDef ftcan_add_filter(uint16_t id, uint16_t mask) {
|
||||
static uint32_t next_filter_no = 0;
|
||||
static FDCAN_FilterTypeDef filter;
|
||||
filter.IdType = FDCAN_STANDARD_ID;
|
||||
filter.FilterIndex = next_filter_no;
|
||||
if (filter.FilterIndex > FTCAN_NUM_FILTERS + 1) {
|
||||
return HAL_ERROR;
|
||||
}
|
||||
filter.FilterType = FDCAN_FILTER_MASK;
|
||||
filter.FilterConfig = FDCAN_FILTER_TO_RXFIFO0;
|
||||
filter.FilterID1 = id;
|
||||
filter.FilterID2 = mask;
|
||||
|
||||
HAL_StatusTypeDef status = HAL_FDCAN_ConfigFilter(hcan, &filter);
|
||||
if (status == HAL_OK) {
|
||||
next_filter_no++;
|
||||
}
|
||||
return status;
|
||||
}
|
||||
|
||||
void HAL_FDCAN_RxFifo0Callback(FDCAN_HandleTypeDef *handle,
|
||||
uint32_t RxFifo0ITs) {
|
||||
if (handle != hcan || (RxFifo0ITs & FDCAN_IT_RX_FIFO0_NEW_MESSAGE) == RESET) {
|
||||
return;
|
||||
}
|
||||
|
||||
static FDCAN_RxHeaderTypeDef header;
|
||||
static uint8_t data[8];
|
||||
if (HAL_FDCAN_GetRxMessage(hcan, FDCAN_RX_FIFO0, &header, data) != HAL_OK) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (header.FDFormat != FDCAN_CLASSIC_CAN ||
|
||||
header.RxFrameType != FDCAN_DATA_FRAME ||
|
||||
header.IdType != FDCAN_STANDARD_ID) {
|
||||
return;
|
||||
}
|
||||
|
||||
size_t datalen;
|
||||
switch (header.DataLength) {
|
||||
case FDCAN_DLC_BYTES_0:
|
||||
datalen = 0;
|
||||
break;
|
||||
case FDCAN_DLC_BYTES_1:
|
||||
datalen = 1;
|
||||
break;
|
||||
case FDCAN_DLC_BYTES_2:
|
||||
datalen = 2;
|
||||
break;
|
||||
case FDCAN_DLC_BYTES_3:
|
||||
datalen = 3;
|
||||
break;
|
||||
case FDCAN_DLC_BYTES_4:
|
||||
datalen = 4;
|
||||
break;
|
||||
case FDCAN_DLC_BYTES_5:
|
||||
datalen = 5;
|
||||
break;
|
||||
case FDCAN_DLC_BYTES_6:
|
||||
datalen = 6;
|
||||
break;
|
||||
case FDCAN_DLC_BYTES_7:
|
||||
datalen = 7;
|
||||
break;
|
||||
case FDCAN_DLC_BYTES_8:
|
||||
datalen = 8;
|
||||
break;
|
||||
default:
|
||||
return;
|
||||
}
|
||||
|
||||
ftcan_msg_received_cb(header.Identifier, datalen, data);
|
||||
}
|
||||
#endif
|
||||
|
||||
__weak void ftcan_msg_received_cb(uint16_t id, size_t datalen,
|
||||
const uint8_t *data) {}
|
||||
|
||||
uint64_t ftcan_unmarshal_unsigned(const uint8_t **data_ptr, size_t num_bytes) {
|
||||
if (num_bytes > 8) {
|
||||
num_bytes = 8;
|
||||
}
|
||||
|
||||
const uint8_t *data = *data_ptr;
|
||||
uint64_t result = 0;
|
||||
for (size_t i = 0; i < num_bytes; i++) {
|
||||
result <<= 8;
|
||||
result |= data[i];
|
||||
}
|
||||
*data_ptr += num_bytes;
|
||||
return result;
|
||||
}
|
||||
|
||||
int64_t ftcan_unmarshal_signed(const uint8_t **data_ptr, size_t num_bytes) {
|
||||
if (num_bytes > 8) {
|
||||
num_bytes = 8;
|
||||
}
|
||||
|
||||
uint64_t result_unsigned = ftcan_unmarshal_unsigned(data_ptr, num_bytes);
|
||||
// Sign extend by shifting left, then copying to a signed int and shifting
|
||||
// back to the right
|
||||
size_t diff_to_64 = 64 - num_bytes * 8;
|
||||
result_unsigned <<= diff_to_64;
|
||||
int64_t result;
|
||||
memcpy(&result, &result_unsigned, 8);
|
||||
return result >> diff_to_64;
|
||||
}
|
||||
|
||||
uint8_t *ftcan_marshal_unsigned(uint8_t *data, uint64_t val, size_t num_bytes) {
|
||||
if (num_bytes > 8) {
|
||||
num_bytes = 8;
|
||||
}
|
||||
|
||||
for (int i = num_bytes - 1; i >= 0; i--) {
|
||||
data[i] = val & 0xFF;
|
||||
val >>= 8;
|
||||
}
|
||||
|
||||
return data + num_bytes;
|
||||
}
|
||||
|
||||
uint8_t *ftcan_marshal_signed(uint8_t *data, int64_t val, size_t num_bytes) {
|
||||
return ftcan_marshal_unsigned(data, val, num_bytes);
|
||||
}
|
389
Core/Src/main.c
389
Core/Src/main.c
@ -47,19 +47,25 @@
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/* USER CODE BEGIN PM */
|
||||
|
||||
// htim2 CH3,4 BAT_COOLING_PWM,ENABLE
|
||||
// htim3 CH3,4 ESC_L_PWM,R_PWM
|
||||
// htim4 CH1,2,3 LED R,G,B
|
||||
// htim15 CH1,2 ESC_COOLING_ENABLE,PWM
|
||||
|
||||
/* USER CODE END PM */
|
||||
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
CAN_HandleTypeDef hcan;
|
||||
|
||||
I2C_HandleTypeDef hi2c1;
|
||||
I2C_HandleTypeDef hi2c2;
|
||||
|
||||
SPI_HandleTypeDef hspi1;
|
||||
|
||||
TIM_HandleTypeDef htim1;
|
||||
TIM_HandleTypeDef htim2;
|
||||
|
||||
UART_HandleTypeDef huart1;
|
||||
TIM_HandleTypeDef htim3;
|
||||
TIM_HandleTypeDef htim4;
|
||||
TIM_HandleTypeDef htim15;
|
||||
|
||||
/* USER CODE BEGIN PV */
|
||||
|
||||
@ -71,9 +77,11 @@ static void MX_GPIO_Init(void);
|
||||
static void MX_CAN_Init(void);
|
||||
static void MX_I2C1_Init(void);
|
||||
static void MX_SPI1_Init(void);
|
||||
static void MX_USART1_UART_Init(void);
|
||||
static void MX_TIM1_Init(void);
|
||||
static void MX_TIM15_Init(void);
|
||||
static void MX_I2C2_Init(void);
|
||||
static void MX_TIM2_Init(void);
|
||||
static void MX_TIM3_Init(void);
|
||||
static void MX_TIM4_Init(void);
|
||||
/* USER CODE BEGIN PFP */
|
||||
|
||||
/* USER CODE END PFP */
|
||||
@ -115,15 +123,17 @@ int main(void)
|
||||
MX_CAN_Init();
|
||||
MX_I2C1_Init();
|
||||
MX_SPI1_Init();
|
||||
MX_USART1_UART_Init();
|
||||
MX_TIM1_Init();
|
||||
MX_TIM15_Init();
|
||||
MX_I2C2_Init();
|
||||
MX_TIM2_Init();
|
||||
MX_TIM3_Init();
|
||||
MX_TIM4_Init();
|
||||
/* USER CODE BEGIN 2 */
|
||||
sm_init();
|
||||
tmp1075_init(&hi2c1);
|
||||
AMS_Init(&hspi1);
|
||||
can_init(&hcan);
|
||||
PWM_control_init(&htim15, &htim1);
|
||||
PWM_control_init(&htim3, &htim2, &htim15);
|
||||
HAL_Delay(10);
|
||||
/* USER CODE END 2 */
|
||||
|
||||
@ -178,11 +188,9 @@ void SystemClock_Config(void)
|
||||
{
|
||||
Error_Handler();
|
||||
}
|
||||
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1|RCC_PERIPHCLK_I2C1
|
||||
|RCC_PERIPHCLK_TIM1;
|
||||
PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2;
|
||||
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_I2C1|RCC_PERIPHCLK_I2C2;
|
||||
PeriphClkInit.I2c1ClockSelection = RCC_I2C1CLKSOURCE_HSI;
|
||||
PeriphClkInit.Tim1ClockSelection = RCC_TIM1CLK_HCLK;
|
||||
PeriphClkInit.I2c2ClockSelection = RCC_I2C2CLKSOURCE_HSI;
|
||||
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
|
||||
{
|
||||
Error_Handler();
|
||||
@ -274,6 +282,54 @@ static void MX_I2C1_Init(void)
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief I2C2 Initialization Function
|
||||
* @param None
|
||||
* @retval None
|
||||
*/
|
||||
static void MX_I2C2_Init(void)
|
||||
{
|
||||
|
||||
/* USER CODE BEGIN I2C2_Init 0 */
|
||||
|
||||
/* USER CODE END I2C2_Init 0 */
|
||||
|
||||
/* USER CODE BEGIN I2C2_Init 1 */
|
||||
|
||||
/* USER CODE END I2C2_Init 1 */
|
||||
hi2c2.Instance = I2C2;
|
||||
hi2c2.Init.Timing = 0x2000090E;
|
||||
hi2c2.Init.OwnAddress1 = 0;
|
||||
hi2c2.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
|
||||
hi2c2.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
|
||||
hi2c2.Init.OwnAddress2 = 0;
|
||||
hi2c2.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
|
||||
hi2c2.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
|
||||
hi2c2.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
|
||||
if (HAL_I2C_Init(&hi2c2) != HAL_OK)
|
||||
{
|
||||
Error_Handler();
|
||||
}
|
||||
|
||||
/** Configure Analogue filter
|
||||
*/
|
||||
if (HAL_I2CEx_ConfigAnalogFilter(&hi2c2, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
|
||||
{
|
||||
Error_Handler();
|
||||
}
|
||||
|
||||
/** Configure Digital filter
|
||||
*/
|
||||
if (HAL_I2CEx_ConfigDigitalFilter(&hi2c2, 0) != HAL_OK)
|
||||
{
|
||||
Error_Handler();
|
||||
}
|
||||
/* USER CODE BEGIN I2C2_Init 2 */
|
||||
|
||||
/* USER CODE END I2C2_Init 2 */
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief SPI1 Initialization Function
|
||||
* @param None
|
||||
@ -314,76 +370,6 @@ static void MX_SPI1_Init(void)
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief TIM1 Initialization Function
|
||||
* @param None
|
||||
* @retval None
|
||||
*/
|
||||
static void MX_TIM1_Init(void)
|
||||
{
|
||||
|
||||
/* USER CODE BEGIN TIM1_Init 0 */
|
||||
|
||||
/* USER CODE END TIM1_Init 0 */
|
||||
|
||||
TIM_MasterConfigTypeDef sMasterConfig = {0};
|
||||
TIM_OC_InitTypeDef sConfigOC = {0};
|
||||
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
|
||||
|
||||
/* USER CODE BEGIN TIM1_Init 1 */
|
||||
|
||||
/* USER CODE END TIM1_Init 1 */
|
||||
htim1.Instance = TIM1;
|
||||
htim1.Init.Prescaler = 0;
|
||||
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
|
||||
htim1.Init.Period = 65535;
|
||||
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
|
||||
htim1.Init.RepetitionCounter = 0;
|
||||
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
|
||||
if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
|
||||
{
|
||||
Error_Handler();
|
||||
}
|
||||
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
|
||||
sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
|
||||
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
|
||||
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
|
||||
{
|
||||
Error_Handler();
|
||||
}
|
||||
sConfigOC.OCMode = TIM_OCMODE_PWM1;
|
||||
sConfigOC.Pulse = 0;
|
||||
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
|
||||
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
|
||||
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
|
||||
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
|
||||
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
|
||||
if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
|
||||
{
|
||||
Error_Handler();
|
||||
}
|
||||
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
|
||||
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
|
||||
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
|
||||
sBreakDeadTimeConfig.DeadTime = 0;
|
||||
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
|
||||
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
|
||||
sBreakDeadTimeConfig.BreakFilter = 0;
|
||||
sBreakDeadTimeConfig.Break2State = TIM_BREAK2_DISABLE;
|
||||
sBreakDeadTimeConfig.Break2Polarity = TIM_BREAK2POLARITY_HIGH;
|
||||
sBreakDeadTimeConfig.Break2Filter = 0;
|
||||
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
|
||||
if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
|
||||
{
|
||||
Error_Handler();
|
||||
}
|
||||
/* USER CODE BEGIN TIM1_Init 2 */
|
||||
|
||||
/* USER CODE END TIM1_Init 2 */
|
||||
HAL_TIM_MspPostInit(&htim1);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief TIM2 Initialization Function
|
||||
* @param None
|
||||
@ -401,15 +387,14 @@ static void MX_TIM2_Init(void)
|
||||
|
||||
/* USER CODE BEGIN TIM2_Init 1 */
|
||||
|
||||
/* USER CODE END TIM15_Init 1 */
|
||||
htim15.Instance = TIM15;
|
||||
htim15.Init.Prescaler = 7;
|
||||
htim15.Init.CounterMode = TIM_COUNTERMODE_UP;
|
||||
htim15.Init.Period = 39999;
|
||||
htim15.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
|
||||
htim15.Init.RepetitionCounter = 0;
|
||||
htim15.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
|
||||
if (HAL_TIM_PWM_Init(&htim15) != HAL_OK)
|
||||
/* USER CODE END TIM2_Init 1 */
|
||||
htim2.Instance = TIM2;
|
||||
htim2.Init.Prescaler = 0;
|
||||
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
|
||||
htim2.Init.Period = 4294967295;
|
||||
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
|
||||
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
|
||||
if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
|
||||
{
|
||||
Error_Handler();
|
||||
}
|
||||
@ -435,37 +420,182 @@ static void MX_TIM2_Init(void)
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief USART1 Initialization Function
|
||||
* @brief TIM3 Initialization Function
|
||||
* @param None
|
||||
* @retval None
|
||||
*/
|
||||
static void MX_USART1_UART_Init(void)
|
||||
static void MX_TIM3_Init(void)
|
||||
{
|
||||
|
||||
/* USER CODE BEGIN USART1_Init 0 */
|
||||
/* USER CODE BEGIN TIM3_Init 0 */
|
||||
|
||||
/* USER CODE END USART1_Init 0 */
|
||||
/* USER CODE END TIM3_Init 0 */
|
||||
|
||||
/* USER CODE BEGIN USART1_Init 1 */
|
||||
TIM_MasterConfigTypeDef sMasterConfig = {0};
|
||||
TIM_OC_InitTypeDef sConfigOC = {0};
|
||||
|
||||
/* USER CODE END USART1_Init 1 */
|
||||
huart1.Instance = USART1;
|
||||
huart1.Init.BaudRate = 38400;
|
||||
huart1.Init.WordLength = UART_WORDLENGTH_8B;
|
||||
huart1.Init.StopBits = UART_STOPBITS_1;
|
||||
huart1.Init.Parity = UART_PARITY_NONE;
|
||||
huart1.Init.Mode = UART_MODE_TX_RX;
|
||||
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
|
||||
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
|
||||
huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
|
||||
huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
|
||||
if (HAL_UART_Init(&huart1) != HAL_OK)
|
||||
/* USER CODE BEGIN TIM3_Init 1 */
|
||||
|
||||
/* USER CODE END TIM3_Init 1 */
|
||||
htim3.Instance = TIM3;
|
||||
htim3.Init.Prescaler = 0;
|
||||
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
|
||||
htim3.Init.Period = 65535;
|
||||
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
|
||||
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
|
||||
if (HAL_TIM_PWM_Init(&htim3) != HAL_OK)
|
||||
{
|
||||
Error_Handler();
|
||||
}
|
||||
/* USER CODE BEGIN USART1_Init 2 */
|
||||
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
|
||||
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
|
||||
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
|
||||
{
|
||||
Error_Handler();
|
||||
}
|
||||
sConfigOC.OCMode = TIM_OCMODE_PWM1;
|
||||
sConfigOC.Pulse = 0;
|
||||
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
|
||||
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
|
||||
if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
|
||||
{
|
||||
Error_Handler();
|
||||
}
|
||||
if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_4) != HAL_OK)
|
||||
{
|
||||
Error_Handler();
|
||||
}
|
||||
/* USER CODE BEGIN TIM3_Init 2 */
|
||||
|
||||
/* USER CODE END USART1_Init 2 */
|
||||
/* USER CODE END TIM3_Init 2 */
|
||||
HAL_TIM_MspPostInit(&htim3);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief TIM4 Initialization Function
|
||||
* @param None
|
||||
* @retval None
|
||||
*/
|
||||
static void MX_TIM4_Init(void)
|
||||
{
|
||||
|
||||
/* USER CODE BEGIN TIM4_Init 0 */
|
||||
|
||||
/* USER CODE END TIM4_Init 0 */
|
||||
|
||||
TIM_MasterConfigTypeDef sMasterConfig = {0};
|
||||
TIM_OC_InitTypeDef sConfigOC = {0};
|
||||
|
||||
/* USER CODE BEGIN TIM4_Init 1 */
|
||||
|
||||
/* USER CODE END TIM4_Init 1 */
|
||||
htim4.Instance = TIM4;
|
||||
htim4.Init.Prescaler = 0;
|
||||
htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
|
||||
htim4.Init.Period = 65535;
|
||||
htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
|
||||
htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
|
||||
if (HAL_TIM_PWM_Init(&htim4) != HAL_OK)
|
||||
{
|
||||
Error_Handler();
|
||||
}
|
||||
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
|
||||
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
|
||||
if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
|
||||
{
|
||||
Error_Handler();
|
||||
}
|
||||
sConfigOC.OCMode = TIM_OCMODE_PWM1;
|
||||
sConfigOC.Pulse = 0;
|
||||
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
|
||||
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
|
||||
if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
|
||||
{
|
||||
Error_Handler();
|
||||
}
|
||||
if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
|
||||
{
|
||||
Error_Handler();
|
||||
}
|
||||
if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
|
||||
{
|
||||
Error_Handler();
|
||||
}
|
||||
/* USER CODE BEGIN TIM4_Init 2 */
|
||||
|
||||
/* USER CODE END TIM4_Init 2 */
|
||||
HAL_TIM_MspPostInit(&htim4);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief TIM15 Initialization Function
|
||||
* @param None
|
||||
* @retval None
|
||||
*/
|
||||
static void MX_TIM15_Init(void)
|
||||
{
|
||||
|
||||
/* USER CODE BEGIN TIM15_Init 0 */
|
||||
|
||||
/* USER CODE END TIM15_Init 0 */
|
||||
|
||||
TIM_MasterConfigTypeDef sMasterConfig = {0};
|
||||
TIM_OC_InitTypeDef sConfigOC = {0};
|
||||
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
|
||||
|
||||
/* USER CODE BEGIN TIM15_Init 1 */
|
||||
|
||||
/* USER CODE END TIM15_Init 1 */
|
||||
htim15.Instance = TIM15;
|
||||
htim15.Init.Prescaler = 0;
|
||||
htim15.Init.CounterMode = TIM_COUNTERMODE_UP;
|
||||
htim15.Init.Period = 65535;
|
||||
htim15.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
|
||||
htim15.Init.RepetitionCounter = 0;
|
||||
htim15.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
|
||||
if (HAL_TIM_PWM_Init(&htim15) != HAL_OK)
|
||||
{
|
||||
Error_Handler();
|
||||
}
|
||||
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
|
||||
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
|
||||
if (HAL_TIMEx_MasterConfigSynchronization(&htim15, &sMasterConfig) != HAL_OK)
|
||||
{
|
||||
Error_Handler();
|
||||
}
|
||||
sConfigOC.OCMode = TIM_OCMODE_PWM1;
|
||||
sConfigOC.Pulse = 0;
|
||||
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
|
||||
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
|
||||
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
|
||||
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
|
||||
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
|
||||
if (HAL_TIM_PWM_ConfigChannel(&htim15, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
|
||||
{
|
||||
Error_Handler();
|
||||
}
|
||||
if (HAL_TIM_PWM_ConfigChannel(&htim15, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
|
||||
{
|
||||
Error_Handler();
|
||||
}
|
||||
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
|
||||
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
|
||||
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
|
||||
sBreakDeadTimeConfig.DeadTime = 0;
|
||||
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
|
||||
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
|
||||
sBreakDeadTimeConfig.BreakFilter = 0;
|
||||
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
|
||||
if (HAL_TIMEx_ConfigBreakDeadTime(&htim15, &sBreakDeadTimeConfig) != HAL_OK)
|
||||
{
|
||||
Error_Handler();
|
||||
}
|
||||
/* USER CODE BEGIN TIM15_Init 2 */
|
||||
|
||||
/* USER CODE END TIM15_Init 2 */
|
||||
HAL_TIM_MspPostInit(&htim15);
|
||||
|
||||
}
|
||||
|
||||
@ -487,13 +617,10 @@ static void MX_GPIO_Init(void)
|
||||
__HAL_RCC_GPIOB_CLK_ENABLE();
|
||||
|
||||
/*Configure GPIO pin Output Level */
|
||||
HAL_GPIO_WritePin(GPIOA, RELAY_EN_Pin|_60V_EN_Pin|CSB_Pin, GPIO_PIN_RESET);
|
||||
HAL_GPIO_WritePin(GPIOA, CSB_Pin|EEPROM___WC__Pin, GPIO_PIN_RESET);
|
||||
|
||||
/*Configure GPIO pin Output Level */
|
||||
HAL_GPIO_WritePin(GPIOB, STATUS_LED_R_Pin|STATUS_LED_B_Pin|STATUS_LED_G_Pin, GPIO_PIN_SET);
|
||||
|
||||
/*Configure GPIO pin Output Level */
|
||||
HAL_GPIO_WritePin(PRECHARGE_EN_GPIO_Port, PRECHARGE_EN_Pin, GPIO_PIN_RESET);
|
||||
HAL_GPIO_WritePin(GPIOB, BAT_COOLING_ENABLE_Pin|RELAY_ENABLE_Pin|PRECHARGE_ENABLE_Pin, GPIO_PIN_RESET);
|
||||
|
||||
/*Configure GPIO pins : PC13 PC14 PC15 */
|
||||
GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15;
|
||||
@ -501,33 +628,31 @@ static void MX_GPIO_Init(void)
|
||||
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
||||
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
|
||||
|
||||
/*Configure GPIO pins : RELAY_EN_Pin _60V_EN_Pin CSB_Pin */
|
||||
GPIO_InitStruct.Pin = RELAY_EN_Pin|_60V_EN_Pin|CSB_Pin;
|
||||
/*Configure GPIO pins : PA0 PA1 PA2 PA3 */
|
||||
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
|
||||
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
||||
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
|
||||
|
||||
/*Configure GPIO pins : CSB_Pin EEPROM___WC__Pin */
|
||||
GPIO_InitStruct.Pin = CSB_Pin|EEPROM___WC__Pin;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
|
||||
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
||||
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
|
||||
|
||||
/*Configure GPIO pins : STATUS_LED_R_Pin STATUS_LED_B_Pin STATUS_LED_G_Pin PRECHARGE_EN_Pin */
|
||||
GPIO_InitStruct.Pin = STATUS_LED_R_Pin|STATUS_LED_B_Pin|STATUS_LED_G_Pin|PRECHARGE_EN_Pin;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
|
||||
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
||||
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
|
||||
|
||||
/*Configure GPIO pins : PB10 PB12 PB13 PB14
|
||||
PB4 PB5 PB8 */
|
||||
GPIO_InitStruct.Pin = GPIO_PIN_10|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14
|
||||
|GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_8;
|
||||
/*Configure GPIO pins : PB2 PB12 PB13 */
|
||||
GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_12|GPIO_PIN_13;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
|
||||
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
||||
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
|
||||
|
||||
/*Configure GPIO pins : RELAY_BATT_SIDE_ON_Pin RELAY_ESC_SIDE_ON_Pin CURRENT_SENSOR_ON_Pin */
|
||||
GPIO_InitStruct.Pin = RELAY_BATT_SIDE_ON_Pin|RELAY_ESC_SIDE_ON_Pin|CURRENT_SENSOR_ON_Pin;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
|
||||
/*Configure GPIO pins : BAT_COOLING_ENABLE_Pin RELAY_ENABLE_Pin PRECHARGE_ENABLE_Pin */
|
||||
GPIO_InitStruct.Pin = BAT_COOLING_ENABLE_Pin|RELAY_ENABLE_Pin|PRECHARGE_ENABLE_Pin;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
|
||||
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
||||
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
||||
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
|
||||
|
||||
/* USER CODE BEGIN MX_GPIO_Init_2 */
|
||||
/* USER CODE END MX_GPIO_Init_2 */
|
||||
|
@ -2,6 +2,7 @@
|
||||
#include "AMS_HighLevel.h"
|
||||
#include "TMP1075.h"
|
||||
#include "errors.h"
|
||||
#include "main.h"
|
||||
#include "stm32f3xx_hal.h"
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
@ -189,11 +190,11 @@ void sm_set_relay(Relay relay, bool closed){
|
||||
GPIO_PinState state = closed ? GPIO_PIN_SET : GPIO_PIN_RESET;
|
||||
switch (relay) {
|
||||
case RELAY_MAIN:
|
||||
HAL_GPIO_WritePin(RELAY_EN_GPIO_Port, RELAY_EN_Pin, state);
|
||||
HAL_GPIO_WritePin(RELAY_ENABLE_GPIO_Port, RELAY_ENABLE_Pin, state);
|
||||
relay_closed = closed;
|
||||
break;
|
||||
case RELAY_PRECHARGE:
|
||||
HAL_GPIO_WritePin(PRECHARGE_EN_GPIO_Port, PRECHARGE_EN_Pin, state);
|
||||
HAL_GPIO_WritePin(PRECHARGE_ENABLE_GPIO_Port, PRECHARGE_ENABLE_Pin, state);
|
||||
precharge_closed = closed;
|
||||
break;
|
||||
}
|
||||
|
@ -59,7 +59,7 @@
|
||||
/* USER CODE END 0 */
|
||||
|
||||
void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim);
|
||||
/**
|
||||
/**
|
||||
* Initializes the Global MSP.
|
||||
*/
|
||||
void HAL_MspInit(void)
|
||||
@ -173,19 +173,19 @@ void HAL_I2C_MspInit(I2C_HandleTypeDef* hi2c)
|
||||
PA15 ------> I2C1_SCL
|
||||
PB9 ------> I2C1_SDA
|
||||
*/
|
||||
GPIO_InitStruct.Pin = GPIO_PIN_15;
|
||||
GPIO_InitStruct.Pin = TMP_SCL_Pin;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
|
||||
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
|
||||
GPIO_InitStruct.Alternate = GPIO_AF4_I2C1;
|
||||
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
|
||||
HAL_GPIO_Init(TMP_SCL_GPIO_Port, &GPIO_InitStruct);
|
||||
|
||||
GPIO_InitStruct.Pin = GPIO_PIN_9;
|
||||
GPIO_InitStruct.Pin = TMP_SDA_Pin;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
|
||||
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
|
||||
GPIO_InitStruct.Alternate = GPIO_AF4_I2C1;
|
||||
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
|
||||
HAL_GPIO_Init(TMP_SDA_GPIO_Port, &GPIO_InitStruct);
|
||||
|
||||
/* Peripheral clock enable */
|
||||
__HAL_RCC_I2C1_CLK_ENABLE();
|
||||
@ -193,6 +193,30 @@ void HAL_I2C_MspInit(I2C_HandleTypeDef* hi2c)
|
||||
|
||||
/* USER CODE END I2C1_MspInit 1 */
|
||||
}
|
||||
else if(hi2c->Instance==I2C2)
|
||||
{
|
||||
/* USER CODE BEGIN I2C2_MspInit 0 */
|
||||
|
||||
/* USER CODE END I2C2_MspInit 0 */
|
||||
|
||||
__HAL_RCC_GPIOA_CLK_ENABLE();
|
||||
/**I2C2 GPIO Configuration
|
||||
PA9 ------> I2C2_SCL
|
||||
PA10 ------> I2C2_SDA
|
||||
*/
|
||||
GPIO_InitStruct.Pin = EEPROM_SCL_Pin|EEPROM_SDA_Pin;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
|
||||
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
|
||||
GPIO_InitStruct.Alternate = GPIO_AF4_I2C2;
|
||||
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
|
||||
|
||||
/* Peripheral clock enable */
|
||||
__HAL_RCC_I2C2_CLK_ENABLE();
|
||||
/* USER CODE BEGIN I2C2_MspInit 1 */
|
||||
|
||||
/* USER CODE END I2C2_MspInit 1 */
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@ -216,14 +240,34 @@ void HAL_I2C_MspDeInit(I2C_HandleTypeDef* hi2c)
|
||||
PA15 ------> I2C1_SCL
|
||||
PB9 ------> I2C1_SDA
|
||||
*/
|
||||
HAL_GPIO_DeInit(GPIOA, GPIO_PIN_15);
|
||||
HAL_GPIO_DeInit(TMP_SCL_GPIO_Port, TMP_SCL_Pin);
|
||||
|
||||
HAL_GPIO_DeInit(GPIOB, GPIO_PIN_9);
|
||||
HAL_GPIO_DeInit(TMP_SDA_GPIO_Port, TMP_SDA_Pin);
|
||||
|
||||
/* USER CODE BEGIN I2C1_MspDeInit 1 */
|
||||
|
||||
/* USER CODE END I2C1_MspDeInit 1 */
|
||||
}
|
||||
else if(hi2c->Instance==I2C2)
|
||||
{
|
||||
/* USER CODE BEGIN I2C2_MspDeInit 0 */
|
||||
|
||||
/* USER CODE END I2C2_MspDeInit 0 */
|
||||
/* Peripheral clock disable */
|
||||
__HAL_RCC_I2C2_CLK_DISABLE();
|
||||
|
||||
/**I2C2 GPIO Configuration
|
||||
PA9 ------> I2C2_SCL
|
||||
PA10 ------> I2C2_SDA
|
||||
*/
|
||||
HAL_GPIO_DeInit(EEPROM_SCL_GPIO_Port, EEPROM_SCL_Pin);
|
||||
|
||||
HAL_GPIO_DeInit(EEPROM_SDA_GPIO_Port, EEPROM_SDA_Pin);
|
||||
|
||||
/* USER CODE BEGIN I2C2_MspDeInit 1 */
|
||||
|
||||
/* USER CODE END I2C2_MspDeInit 1 */
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@ -302,18 +346,7 @@ void HAL_SPI_MspDeInit(SPI_HandleTypeDef* hspi)
|
||||
*/
|
||||
void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef* htim_pwm)
|
||||
{
|
||||
if(htim_pwm->Instance==TIM1)
|
||||
{
|
||||
/* USER CODE BEGIN TIM1_MspInit 0 */
|
||||
|
||||
/* USER CODE END TIM1_MspInit 0 */
|
||||
/* Peripheral clock enable */
|
||||
__HAL_RCC_TIM1_CLK_ENABLE();
|
||||
/* USER CODE BEGIN TIM1_MspInit 1 */
|
||||
|
||||
/* USER CODE END TIM1_MspInit 1 */
|
||||
}
|
||||
else if(htim_pwm->Instance==TIM2)
|
||||
if(htim_pwm->Instance==TIM2)
|
||||
{
|
||||
/* USER CODE BEGIN TIM2_MspInit 0 */
|
||||
|
||||
@ -324,53 +357,132 @@ void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef* htim_pwm)
|
||||
|
||||
/* USER CODE END TIM2_MspInit 1 */
|
||||
}
|
||||
else if(htim_pwm->Instance==TIM3)
|
||||
{
|
||||
/* USER CODE BEGIN TIM3_MspInit 0 */
|
||||
|
||||
/* USER CODE END TIM3_MspInit 0 */
|
||||
/* Peripheral clock enable */
|
||||
__HAL_RCC_TIM3_CLK_ENABLE();
|
||||
/* USER CODE BEGIN TIM3_MspInit 1 */
|
||||
|
||||
/* USER CODE END TIM3_MspInit 1 */
|
||||
}
|
||||
else if(htim_pwm->Instance==TIM4)
|
||||
{
|
||||
/* USER CODE BEGIN TIM4_MspInit 0 */
|
||||
|
||||
/* USER CODE END TIM4_MspInit 0 */
|
||||
/* Peripheral clock enable */
|
||||
__HAL_RCC_TIM4_CLK_ENABLE();
|
||||
/* USER CODE BEGIN TIM4_MspInit 1 */
|
||||
|
||||
/* USER CODE END TIM4_MspInit 1 */
|
||||
}
|
||||
else if(htim_pwm->Instance==TIM15)
|
||||
{
|
||||
/* USER CODE BEGIN TIM15_MspInit 0 */
|
||||
|
||||
/* USER CODE END TIM15_MspInit 0 */
|
||||
/* Peripheral clock enable */
|
||||
__HAL_RCC_TIM15_CLK_ENABLE();
|
||||
/* USER CODE BEGIN TIM15_MspInit 1 */
|
||||
|
||||
/* USER CODE END TIM15_MspInit 1 */
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void HAL_TIM_MspPostInit(TIM_HandleTypeDef* htim)
|
||||
{
|
||||
GPIO_InitTypeDef GPIO_InitStruct = {0};
|
||||
if(htim->Instance==TIM1)
|
||||
{
|
||||
/* USER CODE BEGIN TIM1_MspPostInit 0 */
|
||||
|
||||
/* USER CODE END TIM1_MspPostInit 0 */
|
||||
__HAL_RCC_GPIOB_CLK_ENABLE();
|
||||
/**TIM1 GPIO Configuration
|
||||
PB15 ------> TIM1_CH3N
|
||||
*/
|
||||
GPIO_InitStruct.Pin = PWM_Battery_Cooling_Pin;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
|
||||
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
||||
GPIO_InitStruct.Alternate = GPIO_AF4_TIM1;
|
||||
HAL_GPIO_Init(PWM_Battery_Cooling_GPIO_Port, &GPIO_InitStruct);
|
||||
|
||||
/* USER CODE BEGIN TIM1_MspPostInit 1 */
|
||||
|
||||
/* USER CODE END TIM1_MspPostInit 1 */
|
||||
}
|
||||
else if(htim->Instance==TIM2)
|
||||
if(htim->Instance==TIM2)
|
||||
{
|
||||
/* USER CODE BEGIN TIM2_MspPostInit 0 */
|
||||
|
||||
/* USER CODE END TIM2_MspPostInit 0 */
|
||||
|
||||
__HAL_RCC_GPIOA_CLK_ENABLE();
|
||||
__HAL_RCC_GPIOB_CLK_ENABLE();
|
||||
/**TIM2 GPIO Configuration
|
||||
PA2 ------> TIM2_CH3
|
||||
PB10 ------> TIM2_CH3
|
||||
*/
|
||||
GPIO_InitStruct.Pin = GPIO_PIN_2;
|
||||
GPIO_InitStruct.Pin = BAT_COOLING_PWM_Pin;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
|
||||
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
||||
GPIO_InitStruct.Alternate = GPIO_AF1_TIM2;
|
||||
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
|
||||
HAL_GPIO_Init(BAT_COOLING_PWM_GPIO_Port, &GPIO_InitStruct);
|
||||
|
||||
/* USER CODE BEGIN TIM2_MspPostInit 1 */
|
||||
|
||||
/* USER CODE END TIM2_MspPostInit 1 */
|
||||
}
|
||||
else if(htim->Instance==TIM3)
|
||||
{
|
||||
/* USER CODE BEGIN TIM3_MspPostInit 0 */
|
||||
|
||||
/* USER CODE END TIM3_MspPostInit 0 */
|
||||
|
||||
__HAL_RCC_GPIOB_CLK_ENABLE();
|
||||
/**TIM3 GPIO Configuration
|
||||
PB0 ------> TIM3_CH3
|
||||
PB1 ------> TIM3_CH4
|
||||
*/
|
||||
GPIO_InitStruct.Pin = ESC_L_PWM_Pin|ESC_R_PWM_Pin;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
|
||||
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
||||
GPIO_InitStruct.Alternate = GPIO_AF2_TIM3;
|
||||
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
|
||||
|
||||
/* USER CODE BEGIN TIM3_MspPostInit 1 */
|
||||
|
||||
/* USER CODE END TIM3_MspPostInit 1 */
|
||||
}
|
||||
else if(htim->Instance==TIM4)
|
||||
{
|
||||
/* USER CODE BEGIN TIM4_MspPostInit 0 */
|
||||
|
||||
/* USER CODE END TIM4_MspPostInit 0 */
|
||||
|
||||
__HAL_RCC_GPIOB_CLK_ENABLE();
|
||||
/**TIM4 GPIO Configuration
|
||||
PB6 ------> TIM4_CH1
|
||||
PB7 ------> TIM4_CH2
|
||||
PB8 ------> TIM4_CH3
|
||||
*/
|
||||
GPIO_InitStruct.Pin = STATUS_LED_R_Pin|STATUS_LED_G_Pin|STATUS_LED_B_Pin;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
|
||||
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
||||
GPIO_InitStruct.Alternate = GPIO_AF2_TIM4;
|
||||
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
|
||||
|
||||
/* USER CODE BEGIN TIM4_MspPostInit 1 */
|
||||
|
||||
/* USER CODE END TIM4_MspPostInit 1 */
|
||||
}
|
||||
else if(htim->Instance==TIM15)
|
||||
{
|
||||
/* USER CODE BEGIN TIM15_MspPostInit 0 */
|
||||
|
||||
/* USER CODE END TIM15_MspPostInit 0 */
|
||||
|
||||
__HAL_RCC_GPIOB_CLK_ENABLE();
|
||||
/**TIM15 GPIO Configuration
|
||||
PB14 ------> TIM15_CH1
|
||||
PB15 ------> TIM15_CH2
|
||||
*/
|
||||
GPIO_InitStruct.Pin = ESC_COOLING_ENABLE_Pin|ESC_COOLING_PWM_Pin;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
|
||||
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
||||
GPIO_InitStruct.Alternate = GPIO_AF1_TIM15;
|
||||
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
|
||||
|
||||
/* USER CODE BEGIN TIM15_MspPostInit 1 */
|
||||
|
||||
/* USER CODE END TIM15_MspPostInit 1 */
|
||||
}
|
||||
|
||||
}
|
||||
/**
|
||||
@ -381,18 +493,7 @@ void HAL_TIM_MspPostInit(TIM_HandleTypeDef* htim)
|
||||
*/
|
||||
void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef* htim_pwm)
|
||||
{
|
||||
if(htim_pwm->Instance==TIM1)
|
||||
{
|
||||
/* USER CODE BEGIN TIM1_MspDeInit 0 */
|
||||
|
||||
/* USER CODE END TIM1_MspDeInit 0 */
|
||||
/* Peripheral clock disable */
|
||||
__HAL_RCC_TIM1_CLK_DISABLE();
|
||||
/* USER CODE BEGIN TIM1_MspDeInit 1 */
|
||||
|
||||
/* USER CODE END TIM1_MspDeInit 1 */
|
||||
}
|
||||
else if(htim_pwm->Instance==TIM2)
|
||||
if(htim_pwm->Instance==TIM2)
|
||||
{
|
||||
/* USER CODE BEGIN TIM2_MspDeInit 0 */
|
||||
|
||||
@ -403,70 +504,38 @@ void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef* htim_pwm)
|
||||
|
||||
/* USER CODE END TIM2_MspDeInit 1 */
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief UART MSP Initialization
|
||||
* This function configures the hardware resources used in this example
|
||||
* @param huart: UART handle pointer
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_UART_MspInit(UART_HandleTypeDef* huart)
|
||||
{
|
||||
GPIO_InitTypeDef GPIO_InitStruct = {0};
|
||||
if(huart->Instance==USART1)
|
||||
else if(htim_pwm->Instance==TIM3)
|
||||
{
|
||||
/* USER CODE BEGIN USART1_MspInit 0 */
|
||||
/* USER CODE BEGIN TIM3_MspDeInit 0 */
|
||||
|
||||
/* USER CODE END USART1_MspInit 0 */
|
||||
/* Peripheral clock enable */
|
||||
__HAL_RCC_USART1_CLK_ENABLE();
|
||||
|
||||
__HAL_RCC_GPIOB_CLK_ENABLE();
|
||||
/**USART1 GPIO Configuration
|
||||
PB6 ------> USART1_TX
|
||||
PB7 ------> USART1_RX
|
||||
*/
|
||||
GPIO_InitStruct.Pin = GPIO_PIN_6|GPIO_PIN_7;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
|
||||
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
|
||||
GPIO_InitStruct.Alternate = GPIO_AF7_USART1;
|
||||
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
|
||||
|
||||
/* USER CODE BEGIN USART1_MspInit 1 */
|
||||
|
||||
/* USER CODE END USART1_MspInit 1 */
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief UART MSP De-Initialization
|
||||
* This function freeze the hardware resources used in this example
|
||||
* @param huart: UART handle pointer
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_UART_MspDeInit(UART_HandleTypeDef* huart)
|
||||
{
|
||||
if(huart->Instance==USART1)
|
||||
{
|
||||
/* USER CODE BEGIN USART1_MspDeInit 0 */
|
||||
|
||||
/* USER CODE END USART1_MspDeInit 0 */
|
||||
/* USER CODE END TIM3_MspDeInit 0 */
|
||||
/* Peripheral clock disable */
|
||||
__HAL_RCC_USART1_CLK_DISABLE();
|
||||
__HAL_RCC_TIM3_CLK_DISABLE();
|
||||
/* USER CODE BEGIN TIM3_MspDeInit 1 */
|
||||
|
||||
/**USART1 GPIO Configuration
|
||||
PB6 ------> USART1_TX
|
||||
PB7 ------> USART1_RX
|
||||
*/
|
||||
HAL_GPIO_DeInit(GPIOB, GPIO_PIN_6|GPIO_PIN_7);
|
||||
/* USER CODE END TIM3_MspDeInit 1 */
|
||||
}
|
||||
else if(htim_pwm->Instance==TIM4)
|
||||
{
|
||||
/* USER CODE BEGIN TIM4_MspDeInit 0 */
|
||||
|
||||
/* USER CODE BEGIN USART1_MspDeInit 1 */
|
||||
/* USER CODE END TIM4_MspDeInit 0 */
|
||||
/* Peripheral clock disable */
|
||||
__HAL_RCC_TIM4_CLK_DISABLE();
|
||||
/* USER CODE BEGIN TIM4_MspDeInit 1 */
|
||||
|
||||
/* USER CODE END USART1_MspDeInit 1 */
|
||||
/* USER CODE END TIM4_MspDeInit 1 */
|
||||
}
|
||||
else if(htim_pwm->Instance==TIM15)
|
||||
{
|
||||
/* USER CODE BEGIN TIM15_MspDeInit 0 */
|
||||
|
||||
/* USER CODE END TIM15_MspDeInit 0 */
|
||||
/* Peripheral clock disable */
|
||||
__HAL_RCC_TIM15_CLK_DISABLE();
|
||||
/* USER CODE BEGIN TIM15_MspDeInit 1 */
|
||||
|
||||
/* USER CODE END TIM15_MspDeInit 1 */
|
||||
}
|
||||
|
||||
}
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,513 +0,0 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f3xx_hal_uart_ex.h
|
||||
* @author MCD Application Team
|
||||
* @brief Header file of UART HAL Extended module.
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* Copyright (c) 2016 STMicroelectronics.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This software is licensed under terms that can be found in the LICENSE file
|
||||
* in the root directory of this software component.
|
||||
* If no LICENSE file comes with this software, it is provided AS-IS.
|
||||
*
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Define to prevent recursive inclusion -------------------------------------*/
|
||||
#ifndef STM32F3xx_HAL_UART_EX_H
|
||||
#define STM32F3xx_HAL_UART_EX_H
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f3xx_hal_def.h"
|
||||
|
||||
/** @addtogroup STM32F3xx_HAL_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @addtogroup UARTEx
|
||||
* @{
|
||||
*/
|
||||
|
||||
/* Exported types ------------------------------------------------------------*/
|
||||
/** @defgroup UARTEx_Exported_Types UARTEx Exported Types
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief UART wake up from stop mode parameters
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint32_t WakeUpEvent; /*!< Specifies which event will activate the Wakeup from Stop mode flag (WUF).
|
||||
This parameter can be a value of @ref UART_WakeUp_from_Stop_Selection.
|
||||
If set to UART_WAKEUP_ON_ADDRESS, the two other fields below must
|
||||
be filled up. */
|
||||
|
||||
uint16_t AddressLength; /*!< Specifies whether the address is 4 or 7-bit long.
|
||||
This parameter can be a value of @ref UARTEx_WakeUp_Address_Length. */
|
||||
|
||||
uint8_t Address; /*!< UART/USART node address (7-bit long max). */
|
||||
} UART_WakeUpTypeDef;
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/* Exported constants --------------------------------------------------------*/
|
||||
/** @defgroup UARTEx_Exported_Constants UARTEx Exported Constants
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup UARTEx_Word_Length UARTEx Word Length
|
||||
* @{
|
||||
*/
|
||||
#if defined(USART_CR1_M1)
|
||||
#define UART_WORDLENGTH_7B USART_CR1_M1 /*!< 7-bit long UART frame */
|
||||
#endif /* USART_CR1_M1 */
|
||||
#define UART_WORDLENGTH_8B 0x00000000U /*!< 8-bit long UART frame */
|
||||
#if defined (USART_CR1_M0)
|
||||
#define UART_WORDLENGTH_9B USART_CR1_M0 /*!< 9-bit long UART frame */
|
||||
#else
|
||||
#define UART_WORDLENGTH_9B USART_CR1_M /*!< 9-bit long UART frame */
|
||||
#endif /* USART_CR1_M0 */
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup UARTEx_WakeUp_Address_Length UARTEx WakeUp Address Length
|
||||
* @{
|
||||
*/
|
||||
#define UART_ADDRESS_DETECT_4B 0x00000000U /*!< 4-bit long wake-up address */
|
||||
#define UART_ADDRESS_DETECT_7B USART_CR2_ADDM7 /*!< 7-bit long wake-up address */
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/* Exported macros -----------------------------------------------------------*/
|
||||
/* Exported functions --------------------------------------------------------*/
|
||||
/** @addtogroup UARTEx_Exported_Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @addtogroup UARTEx_Exported_Functions_Group1
|
||||
* @{
|
||||
*/
|
||||
|
||||
/* Initialization and de-initialization functions ****************************/
|
||||
HAL_StatusTypeDef HAL_RS485Ex_Init(UART_HandleTypeDef *huart, uint32_t Polarity, uint32_t AssertionTime,
|
||||
uint32_t DeassertionTime);
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @addtogroup UARTEx_Exported_Functions_Group2
|
||||
* @{
|
||||
*/
|
||||
|
||||
void HAL_UARTEx_WakeupCallback(UART_HandleTypeDef *huart);
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @addtogroup UARTEx_Exported_Functions_Group3
|
||||
* @{
|
||||
*/
|
||||
|
||||
/* Peripheral Control functions **********************************************/
|
||||
HAL_StatusTypeDef HAL_UARTEx_StopModeWakeUpSourceConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection);
|
||||
HAL_StatusTypeDef HAL_UARTEx_EnableStopMode(UART_HandleTypeDef *huart);
|
||||
HAL_StatusTypeDef HAL_UARTEx_DisableStopMode(UART_HandleTypeDef *huart);
|
||||
|
||||
HAL_StatusTypeDef HAL_MultiProcessorEx_AddressLength_Set(UART_HandleTypeDef *huart, uint32_t AddressLength);
|
||||
|
||||
|
||||
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint16_t *RxLen,
|
||||
uint32_t Timeout);
|
||||
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
|
||||
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
|
||||
|
||||
HAL_UART_RxEventTypeTypeDef HAL_UARTEx_GetRxEventType(UART_HandleTypeDef *huart);
|
||||
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/* Private macros ------------------------------------------------------------*/
|
||||
/** @defgroup UARTEx_Private_Macros UARTEx Private Macros
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @brief Report the UART clock source.
|
||||
* @param __HANDLE__ specifies the UART Handle.
|
||||
* @param __CLOCKSOURCE__ output variable.
|
||||
* @retval UART clocking source, written in __CLOCKSOURCE__.
|
||||
*/
|
||||
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || defined(STM32F302xC) \
|
||||
|| defined(STM32F303xC) || defined(STM32F358xx)
|
||||
#define UART_GETCLOCKSOURCE(__HANDLE__,__CLOCKSOURCE__) \
|
||||
do { \
|
||||
if((__HANDLE__)->Instance == USART1) \
|
||||
{ \
|
||||
switch(__HAL_RCC_GET_USART1_SOURCE()) \
|
||||
{ \
|
||||
case RCC_USART1CLKSOURCE_PCLK2: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK2; \
|
||||
break; \
|
||||
case RCC_USART1CLKSOURCE_HSI: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI; \
|
||||
break; \
|
||||
case RCC_USART1CLKSOURCE_SYSCLK: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK; \
|
||||
break; \
|
||||
case RCC_USART1CLKSOURCE_LSE: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE; \
|
||||
break; \
|
||||
default: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED; \
|
||||
break; \
|
||||
} \
|
||||
} \
|
||||
else if((__HANDLE__)->Instance == USART2) \
|
||||
{ \
|
||||
switch(__HAL_RCC_GET_USART2_SOURCE()) \
|
||||
{ \
|
||||
case RCC_USART2CLKSOURCE_PCLK1: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1; \
|
||||
break; \
|
||||
case RCC_USART2CLKSOURCE_HSI: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI; \
|
||||
break; \
|
||||
case RCC_USART2CLKSOURCE_SYSCLK: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK; \
|
||||
break; \
|
||||
case RCC_USART2CLKSOURCE_LSE: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE; \
|
||||
break; \
|
||||
default: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED; \
|
||||
break; \
|
||||
} \
|
||||
} \
|
||||
else if((__HANDLE__)->Instance == USART3) \
|
||||
{ \
|
||||
switch(__HAL_RCC_GET_USART3_SOURCE()) \
|
||||
{ \
|
||||
case RCC_USART3CLKSOURCE_PCLK1: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1; \
|
||||
break; \
|
||||
case RCC_USART3CLKSOURCE_HSI: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI; \
|
||||
break; \
|
||||
case RCC_USART3CLKSOURCE_SYSCLK: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK; \
|
||||
break; \
|
||||
case RCC_USART3CLKSOURCE_LSE: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE; \
|
||||
break; \
|
||||
default: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED; \
|
||||
break; \
|
||||
} \
|
||||
} \
|
||||
else if((__HANDLE__)->Instance == UART4) \
|
||||
{ \
|
||||
switch(__HAL_RCC_GET_UART4_SOURCE()) \
|
||||
{ \
|
||||
case RCC_UART4CLKSOURCE_PCLK1: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1; \
|
||||
break; \
|
||||
case RCC_UART4CLKSOURCE_HSI: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI; \
|
||||
break; \
|
||||
case RCC_UART4CLKSOURCE_SYSCLK: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK; \
|
||||
break; \
|
||||
case RCC_UART4CLKSOURCE_LSE: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE; \
|
||||
break; \
|
||||
default: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED; \
|
||||
break; \
|
||||
} \
|
||||
} \
|
||||
else if ((__HANDLE__)->Instance == UART5) \
|
||||
{ \
|
||||
switch(__HAL_RCC_GET_UART5_SOURCE()) \
|
||||
{ \
|
||||
case RCC_UART5CLKSOURCE_PCLK1: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1; \
|
||||
break; \
|
||||
case RCC_UART5CLKSOURCE_HSI: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI; \
|
||||
break; \
|
||||
case RCC_UART5CLKSOURCE_SYSCLK: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK; \
|
||||
break; \
|
||||
case RCC_UART5CLKSOURCE_LSE: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE; \
|
||||
break; \
|
||||
default: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED; \
|
||||
break; \
|
||||
} \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED; \
|
||||
} \
|
||||
} while(0U)
|
||||
#elif defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || defined(STM32F301x8) \
|
||||
|| defined(STM32F302x8) || defined(STM32F318xx)
|
||||
#define UART_GETCLOCKSOURCE(__HANDLE__,__CLOCKSOURCE__) \
|
||||
do { \
|
||||
if((__HANDLE__)->Instance == USART1) \
|
||||
{ \
|
||||
switch(__HAL_RCC_GET_USART1_SOURCE()) \
|
||||
{ \
|
||||
case RCC_USART1CLKSOURCE_PCLK1: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1; \
|
||||
break; \
|
||||
case RCC_USART1CLKSOURCE_HSI: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI; \
|
||||
break; \
|
||||
case RCC_USART1CLKSOURCE_SYSCLK: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK; \
|
||||
break; \
|
||||
case RCC_USART1CLKSOURCE_LSE: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE; \
|
||||
break; \
|
||||
default: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED; \
|
||||
break; \
|
||||
} \
|
||||
} \
|
||||
else if((__HANDLE__)->Instance == USART2) \
|
||||
{ \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1; \
|
||||
} \
|
||||
else if((__HANDLE__)->Instance == USART3) \
|
||||
{ \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1; \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED; \
|
||||
} \
|
||||
} while(0U)
|
||||
#else
|
||||
#define UART_GETCLOCKSOURCE(__HANDLE__,__CLOCKSOURCE__) \
|
||||
do { \
|
||||
if((__HANDLE__)->Instance == USART1) \
|
||||
{ \
|
||||
switch(__HAL_RCC_GET_USART1_SOURCE()) \
|
||||
{ \
|
||||
case RCC_USART1CLKSOURCE_PCLK2: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK2; \
|
||||
break; \
|
||||
case RCC_USART1CLKSOURCE_HSI: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI; \
|
||||
break; \
|
||||
case RCC_USART1CLKSOURCE_SYSCLK: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK; \
|
||||
break; \
|
||||
case RCC_USART1CLKSOURCE_LSE: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE; \
|
||||
break; \
|
||||
default: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED; \
|
||||
break; \
|
||||
} \
|
||||
} \
|
||||
else if((__HANDLE__)->Instance == USART2) \
|
||||
{ \
|
||||
switch(__HAL_RCC_GET_USART2_SOURCE()) \
|
||||
{ \
|
||||
case RCC_USART2CLKSOURCE_PCLK1: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1; \
|
||||
break; \
|
||||
case RCC_USART2CLKSOURCE_HSI: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI; \
|
||||
break; \
|
||||
case RCC_USART2CLKSOURCE_SYSCLK: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK; \
|
||||
break; \
|
||||
case RCC_USART2CLKSOURCE_LSE: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE; \
|
||||
break; \
|
||||
default: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED; \
|
||||
break; \
|
||||
} \
|
||||
} \
|
||||
else if((__HANDLE__)->Instance == USART3) \
|
||||
{ \
|
||||
switch(__HAL_RCC_GET_USART3_SOURCE()) \
|
||||
{ \
|
||||
case RCC_USART3CLKSOURCE_PCLK1: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1; \
|
||||
break; \
|
||||
case RCC_USART3CLKSOURCE_HSI: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI; \
|
||||
break; \
|
||||
case RCC_USART3CLKSOURCE_SYSCLK: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK; \
|
||||
break; \
|
||||
case RCC_USART3CLKSOURCE_LSE: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE; \
|
||||
break; \
|
||||
default: \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED; \
|
||||
break; \
|
||||
} \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED; \
|
||||
} \
|
||||
} while(0U)
|
||||
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || STM32F302xC || STM32F303xC || STM32F358xx */
|
||||
|
||||
/** @brief Report the UART mask to apply to retrieve the received data
|
||||
* according to the word length and to the parity bits activation.
|
||||
* @note If PCE = 1, the parity bit is not included in the data extracted
|
||||
* by the reception API().
|
||||
* This masking operation is not carried out in the case of
|
||||
* DMA transfers.
|
||||
* @param __HANDLE__ specifies the UART Handle.
|
||||
* @retval None, the mask to apply to UART RDR register is stored in (__HANDLE__)->Mask field.
|
||||
*/
|
||||
#if defined (USART_CR1_M1)
|
||||
#define UART_MASK_COMPUTATION(__HANDLE__) \
|
||||
do { \
|
||||
if ((__HANDLE__)->Init.WordLength == UART_WORDLENGTH_9B) \
|
||||
{ \
|
||||
if ((__HANDLE__)->Init.Parity == UART_PARITY_NONE) \
|
||||
{ \
|
||||
(__HANDLE__)->Mask = 0x01FFU ; \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
(__HANDLE__)->Mask = 0x00FFU ; \
|
||||
} \
|
||||
} \
|
||||
else if ((__HANDLE__)->Init.WordLength == UART_WORDLENGTH_8B) \
|
||||
{ \
|
||||
if ((__HANDLE__)->Init.Parity == UART_PARITY_NONE) \
|
||||
{ \
|
||||
(__HANDLE__)->Mask = 0x00FFU ; \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
(__HANDLE__)->Mask = 0x007FU ; \
|
||||
} \
|
||||
} \
|
||||
else if ((__HANDLE__)->Init.WordLength == UART_WORDLENGTH_7B) \
|
||||
{ \
|
||||
if ((__HANDLE__)->Init.Parity == UART_PARITY_NONE) \
|
||||
{ \
|
||||
(__HANDLE__)->Mask = 0x007FU ; \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
(__HANDLE__)->Mask = 0x003FU ; \
|
||||
} \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
(__HANDLE__)->Mask = 0x0000U; \
|
||||
} \
|
||||
} while(0U)
|
||||
|
||||
#else
|
||||
#define UART_MASK_COMPUTATION(__HANDLE__) \
|
||||
do { \
|
||||
if ((__HANDLE__)->Init.WordLength == UART_WORDLENGTH_9B) \
|
||||
{ \
|
||||
if ((__HANDLE__)->Init.Parity == UART_PARITY_NONE) \
|
||||
{ \
|
||||
(__HANDLE__)->Mask = 0x01FFU ; \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
(__HANDLE__)->Mask = 0x00FFU ; \
|
||||
} \
|
||||
} \
|
||||
else if ((__HANDLE__)->Init.WordLength == UART_WORDLENGTH_8B) \
|
||||
{ \
|
||||
if ((__HANDLE__)->Init.Parity == UART_PARITY_NONE) \
|
||||
{ \
|
||||
(__HANDLE__)->Mask = 0x00FFU ; \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
(__HANDLE__)->Mask = 0x007FU ; \
|
||||
} \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
(__HANDLE__)->Mask = 0x0000U; \
|
||||
} \
|
||||
} while(0U)
|
||||
|
||||
#endif /* USART_CR1_M1 */
|
||||
|
||||
/**
|
||||
* @brief Ensure that UART frame length is valid.
|
||||
* @param __LENGTH__ UART frame length.
|
||||
* @retval SET (__LENGTH__ is valid) or RESET (__LENGTH__ is invalid)
|
||||
*/
|
||||
#if defined (USART_CR1_M1)
|
||||
#define IS_UART_WORD_LENGTH(__LENGTH__) (((__LENGTH__) == UART_WORDLENGTH_7B) || \
|
||||
((__LENGTH__) == UART_WORDLENGTH_8B) || \
|
||||
((__LENGTH__) == UART_WORDLENGTH_9B))
|
||||
#else
|
||||
#define IS_UART_WORD_LENGTH(__LENGTH__) (((__LENGTH__) == UART_WORDLENGTH_8B) || \
|
||||
((__LENGTH__) == UART_WORDLENGTH_9B))
|
||||
#endif /* USART_CR1_M1 */
|
||||
|
||||
/**
|
||||
* @brief Ensure that UART wake-up address length is valid.
|
||||
* @param __ADDRESS__ UART wake-up address length.
|
||||
* @retval SET (__ADDRESS__ is valid) or RESET (__ADDRESS__ is invalid)
|
||||
*/
|
||||
#define IS_UART_ADDRESSLENGTH_DETECT(__ADDRESS__) (((__ADDRESS__) == UART_ADDRESS_DETECT_4B) || \
|
||||
((__ADDRESS__) == UART_ADDRESS_DETECT_7B))
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/* Private functions ---------------------------------------------------------*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* STM32F3xx_HAL_UART_EX_H */
|
||||
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -1,775 +0,0 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f3xx_hal_uart_ex.c
|
||||
* @author MCD Application Team
|
||||
* @brief Extended UART HAL module driver.
|
||||
* This file provides firmware functions to manage the following extended
|
||||
* functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART).
|
||||
* + Initialization and de-initialization functions
|
||||
* + Peripheral Control functions
|
||||
*
|
||||
*
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* Copyright (c) 2016 STMicroelectronics.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This software is licensed under terms that can be found in the LICENSE file
|
||||
* in the root directory of this software component.
|
||||
* If no LICENSE file comes with this software, it is provided AS-IS.
|
||||
*
|
||||
******************************************************************************
|
||||
@verbatim
|
||||
==============================================================================
|
||||
##### UART peripheral extended features #####
|
||||
==============================================================================
|
||||
|
||||
(#) Declare a UART_HandleTypeDef handle structure.
|
||||
|
||||
(#) For the UART RS485 Driver Enable mode, initialize the UART registers
|
||||
by calling the HAL_RS485Ex_Init() API.
|
||||
|
||||
@endverbatim
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f3xx_hal.h"
|
||||
|
||||
/** @addtogroup STM32F3xx_HAL_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup UARTEx UARTEx
|
||||
* @brief UART Extended HAL module driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
#ifdef HAL_UART_MODULE_ENABLED
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
|
||||
/* Private macros ------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/** @defgroup UARTEx_Private_Functions UARTEx Private Functions
|
||||
* @{
|
||||
*/
|
||||
static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection);
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/* Exported functions --------------------------------------------------------*/
|
||||
|
||||
/** @defgroup UARTEx_Exported_Functions UARTEx Exported Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup UARTEx_Exported_Functions_Group1 Initialization and de-initialization functions
|
||||
* @brief Extended Initialization and Configuration Functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### Initialization and Configuration functions #####
|
||||
===============================================================================
|
||||
[..]
|
||||
This subsection provides a set of functions allowing to initialize the USARTx or the UARTy
|
||||
in asynchronous mode.
|
||||
(+) For the asynchronous mode the parameters below can be configured:
|
||||
(++) Baud Rate
|
||||
(++) Word Length
|
||||
(++) Stop Bit
|
||||
(++) Parity: If the parity is enabled, then the MSB bit of the data written
|
||||
in the data register is transmitted but is changed by the parity bit.
|
||||
(++) Hardware flow control
|
||||
(++) Receiver/transmitter modes
|
||||
(++) Over Sampling Method
|
||||
(++) One-Bit Sampling Method
|
||||
(+) For the asynchronous mode, the following advanced features can be configured as well:
|
||||
(++) TX and/or RX pin level inversion
|
||||
(++) data logical level inversion
|
||||
(++) RX and TX pins swap
|
||||
(++) RX overrun detection disabling
|
||||
(++) DMA disabling on RX error
|
||||
(++) MSB first on communication line
|
||||
(++) auto Baud rate detection
|
||||
[..]
|
||||
The HAL_RS485Ex_Init() API follows the UART RS485 mode configuration
|
||||
procedures (details for the procedures are available in reference manual).
|
||||
|
||||
@endverbatim
|
||||
|
||||
Depending on the frame length defined by the M1 and M0 bits (7-bit,
|
||||
8-bit or 9-bit), the possible UART formats are listed in the
|
||||
following table.
|
||||
|
||||
Table 1. UART frame format.
|
||||
+-----------------------------------------------------------------------+
|
||||
| M1 bit | M0 bit | PCE bit | UART frame |
|
||||
|---------|---------|-----------|---------------------------------------|
|
||||
| 0 | 0 | 0 | | SB | 8 bit data | STB | |
|
||||
|---------|---------|-----------|---------------------------------------|
|
||||
| 0 | 0 | 1 | | SB | 7 bit data | PB | STB | |
|
||||
|---------|---------|-----------|---------------------------------------|
|
||||
| 0 | 1 | 0 | | SB | 9 bit data | STB | |
|
||||
|---------|---------|-----------|---------------------------------------|
|
||||
| 0 | 1 | 1 | | SB | 8 bit data | PB | STB | |
|
||||
|---------|---------|-----------|---------------------------------------|
|
||||
| 1 | 0 | 0 | | SB | 7 bit data | STB | |
|
||||
|---------|---------|-----------|---------------------------------------|
|
||||
| 1 | 0 | 1 | | SB | 6 bit data | PB | STB | |
|
||||
+-----------------------------------------------------------------------+
|
||||
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Initialize the RS485 Driver enable feature according to the specified
|
||||
* parameters in the UART_InitTypeDef and creates the associated handle.
|
||||
* @param huart UART handle.
|
||||
* @param Polarity Select the driver enable polarity.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg @ref UART_DE_POLARITY_HIGH DE signal is active high
|
||||
* @arg @ref UART_DE_POLARITY_LOW DE signal is active low
|
||||
* @param AssertionTime Driver Enable assertion time:
|
||||
* 5-bit value defining the time between the activation of the DE (Driver Enable)
|
||||
* signal and the beginning of the start bit. It is expressed in sample time
|
||||
* units (1/8 or 1/16 bit time, depending on the oversampling rate)
|
||||
* @param DeassertionTime Driver Enable deassertion time:
|
||||
* 5-bit value defining the time between the end of the last stop bit, in a
|
||||
* transmitted message, and the de-activation of the DE (Driver Enable) signal.
|
||||
* It is expressed in sample time units (1/8 or 1/16 bit time, depending on the
|
||||
* oversampling rate).
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_RS485Ex_Init(UART_HandleTypeDef *huart, uint32_t Polarity, uint32_t AssertionTime,
|
||||
uint32_t DeassertionTime)
|
||||
{
|
||||
uint32_t temp;
|
||||
|
||||
/* Check the UART handle allocation */
|
||||
if (huart == NULL)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
/* Check the Driver Enable UART instance */
|
||||
assert_param(IS_UART_DRIVER_ENABLE_INSTANCE(huart->Instance));
|
||||
|
||||
/* Check the Driver Enable polarity */
|
||||
assert_param(IS_UART_DE_POLARITY(Polarity));
|
||||
|
||||
/* Check the Driver Enable assertion time */
|
||||
assert_param(IS_UART_ASSERTIONTIME(AssertionTime));
|
||||
|
||||
/* Check the Driver Enable deassertion time */
|
||||
assert_param(IS_UART_DEASSERTIONTIME(DeassertionTime));
|
||||
|
||||
if (huart->gState == HAL_UART_STATE_RESET)
|
||||
{
|
||||
/* Allocate lock resource and initialize it */
|
||||
huart->Lock = HAL_UNLOCKED;
|
||||
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
UART_InitCallbacksToDefault(huart);
|
||||
|
||||
if (huart->MspInitCallback == NULL)
|
||||
{
|
||||
huart->MspInitCallback = HAL_UART_MspInit;
|
||||
}
|
||||
|
||||
/* Init the low level hardware */
|
||||
huart->MspInitCallback(huart);
|
||||
#else
|
||||
/* Init the low level hardware : GPIO, CLOCK, CORTEX */
|
||||
HAL_UART_MspInit(huart);
|
||||
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
|
||||
}
|
||||
|
||||
huart->gState = HAL_UART_STATE_BUSY;
|
||||
|
||||
/* Disable the Peripheral */
|
||||
__HAL_UART_DISABLE(huart);
|
||||
|
||||
/* Set the UART Communication parameters */
|
||||
if (UART_SetConfig(huart) == HAL_ERROR)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
|
||||
{
|
||||
UART_AdvFeatureConfig(huart);
|
||||
}
|
||||
|
||||
/* Enable the Driver Enable mode by setting the DEM bit in the CR3 register */
|
||||
SET_BIT(huart->Instance->CR3, USART_CR3_DEM);
|
||||
|
||||
/* Set the Driver Enable polarity */
|
||||
MODIFY_REG(huart->Instance->CR3, USART_CR3_DEP, Polarity);
|
||||
|
||||
/* Set the Driver Enable assertion and deassertion times */
|
||||
temp = (AssertionTime << UART_CR1_DEAT_ADDRESS_LSB_POS);
|
||||
temp |= (DeassertionTime << UART_CR1_DEDT_ADDRESS_LSB_POS);
|
||||
MODIFY_REG(huart->Instance->CR1, (USART_CR1_DEDT | USART_CR1_DEAT), temp);
|
||||
|
||||
/* Enable the Peripheral */
|
||||
__HAL_UART_ENABLE(huart);
|
||||
|
||||
/* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
|
||||
return (UART_CheckIdleState(huart));
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup UARTEx_Exported_Functions_Group2 IO operation functions
|
||||
* @brief Extended functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### IO operation functions #####
|
||||
===============================================================================
|
||||
This subsection provides a set of Wakeup and FIFO mode related callback functions.
|
||||
|
||||
(#) Wakeup from Stop mode Callback:
|
||||
(+) HAL_UARTEx_WakeupCallback()
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief UART wakeup from Stop mode callback.
|
||||
* @param huart UART handle.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_UARTEx_WakeupCallback(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(huart);
|
||||
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the HAL_UARTEx_WakeupCallback can be implemented in the user file.
|
||||
*/
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup UARTEx_Exported_Functions_Group3 Peripheral Control functions
|
||||
* @brief Extended Peripheral Control functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### Peripheral Control functions #####
|
||||
===============================================================================
|
||||
[..] This section provides the following functions:
|
||||
(+) HAL_MultiProcessorEx_AddressLength_Set() API optionally sets the UART node address
|
||||
detection length to more than 4 bits for multiprocessor address mark wake up.
|
||||
(+) HAL_UARTEx_StopModeWakeUpSourceConfig() API defines the wake-up from stop mode
|
||||
trigger: address match, Start Bit detection or RXNE bit status.
|
||||
(+) HAL_UARTEx_EnableStopMode() API enables the UART to wake up the MCU from stop mode
|
||||
(+) HAL_UARTEx_DisableStopMode() API disables the above functionality
|
||||
|
||||
[..] This subsection also provides a set of additional functions providing enhanced reception
|
||||
services to user. (For example, these functions allow application to handle use cases
|
||||
where number of data to be received is unknown).
|
||||
|
||||
(#) Compared to standard reception services which only consider number of received
|
||||
data elements as reception completion criteria, these functions also consider additional events
|
||||
as triggers for updating reception status to caller :
|
||||
(+) Detection of inactivity period (RX line has not been active for a given period).
|
||||
(++) RX inactivity detected by IDLE event, i.e. RX line has been in idle state (normally high state)
|
||||
for 1 frame time, after last received byte.
|
||||
(++) RX inactivity detected by RTO, i.e. line has been in idle state
|
||||
for a programmable time, after last received byte.
|
||||
(+) Detection that a specific character has been received.
|
||||
|
||||
(#) There are two mode of transfer:
|
||||
(+) Blocking mode: The reception is performed in polling mode, until either expected number of data is received,
|
||||
or till IDLE event occurs. Reception is handled only during function execution.
|
||||
When function exits, no data reception could occur. HAL status and number of actually received data elements,
|
||||
are returned by function after finishing transfer.
|
||||
(+) Non-Blocking mode: The reception is performed using Interrupts or DMA.
|
||||
These API's return the HAL status.
|
||||
The end of the data processing will be indicated through the
|
||||
dedicated UART IRQ when using Interrupt mode or the DMA IRQ when using DMA mode.
|
||||
The HAL_UARTEx_RxEventCallback() user callback will be executed during Receive process
|
||||
The HAL_UART_ErrorCallback()user callback will be executed when a reception error is detected.
|
||||
|
||||
(#) Blocking mode API:
|
||||
(+) HAL_UARTEx_ReceiveToIdle()
|
||||
|
||||
(#) Non-Blocking mode API with Interrupt:
|
||||
(+) HAL_UARTEx_ReceiveToIdle_IT()
|
||||
|
||||
(#) Non-Blocking mode API with DMA:
|
||||
(+) HAL_UARTEx_ReceiveToIdle_DMA()
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief By default in multiprocessor mode, when the wake up method is set
|
||||
* to address mark, the UART handles only 4-bit long addresses detection;
|
||||
* this API allows to enable longer addresses detection (6-, 7- or 8-bit
|
||||
* long).
|
||||
* @note Addresses detection lengths are: 6-bit address detection in 7-bit data mode,
|
||||
* 7-bit address detection in 8-bit data mode, 8-bit address detection in 9-bit data mode.
|
||||
* @param huart UART handle.
|
||||
* @param AddressLength This parameter can be one of the following values:
|
||||
* @arg @ref UART_ADDRESS_DETECT_4B 4-bit long address
|
||||
* @arg @ref UART_ADDRESS_DETECT_7B 6-, 7- or 8-bit long address
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_MultiProcessorEx_AddressLength_Set(UART_HandleTypeDef *huart, uint32_t AddressLength)
|
||||
{
|
||||
/* Check the UART handle allocation */
|
||||
if (huart == NULL)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
/* Check the address length parameter */
|
||||
assert_param(IS_UART_ADDRESSLENGTH_DETECT(AddressLength));
|
||||
|
||||
huart->gState = HAL_UART_STATE_BUSY;
|
||||
|
||||
/* Disable the Peripheral */
|
||||
__HAL_UART_DISABLE(huart);
|
||||
|
||||
/* Set the address length */
|
||||
MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, AddressLength);
|
||||
|
||||
/* Enable the Peripheral */
|
||||
__HAL_UART_ENABLE(huart);
|
||||
|
||||
/* TEACK and/or REACK to check before moving huart->gState to Ready */
|
||||
return (UART_CheckIdleState(huart));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Set Wakeup from Stop mode interrupt flag selection.
|
||||
* @note It is the application responsibility to enable the interrupt used as
|
||||
* usart_wkup interrupt source before entering low-power mode.
|
||||
* @param huart UART handle.
|
||||
* @param WakeUpSelection Address match, Start Bit detection or RXNE/RXFNE bit status.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg @ref UART_WAKEUP_ON_ADDRESS
|
||||
* @arg @ref UART_WAKEUP_ON_STARTBIT
|
||||
* @arg @ref UART_WAKEUP_ON_READDATA_NONEMPTY
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UARTEx_StopModeWakeUpSourceConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection)
|
||||
{
|
||||
HAL_StatusTypeDef status = HAL_OK;
|
||||
uint32_t tickstart;
|
||||
|
||||
/* check the wake-up from stop mode UART instance */
|
||||
assert_param(IS_UART_WAKEUP_FROMSTOP_INSTANCE(huart->Instance));
|
||||
/* check the wake-up selection parameter */
|
||||
assert_param(IS_UART_WAKEUP_SELECTION(WakeUpSelection.WakeUpEvent));
|
||||
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
huart->gState = HAL_UART_STATE_BUSY;
|
||||
|
||||
/* Disable the Peripheral */
|
||||
__HAL_UART_DISABLE(huart);
|
||||
|
||||
/* Set the wake-up selection scheme */
|
||||
MODIFY_REG(huart->Instance->CR3, USART_CR3_WUS, WakeUpSelection.WakeUpEvent);
|
||||
|
||||
if (WakeUpSelection.WakeUpEvent == UART_WAKEUP_ON_ADDRESS)
|
||||
{
|
||||
UARTEx_Wakeup_AddressConfig(huart, WakeUpSelection);
|
||||
}
|
||||
|
||||
/* Enable the Peripheral */
|
||||
__HAL_UART_ENABLE(huart);
|
||||
|
||||
/* Init tickstart for timeout management */
|
||||
tickstart = HAL_GetTick();
|
||||
|
||||
/* Wait until REACK flag is set */
|
||||
if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_REACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK)
|
||||
{
|
||||
status = HAL_TIMEOUT;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Initialize the UART State */
|
||||
huart->gState = HAL_UART_STATE_READY;
|
||||
}
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enable UART Stop Mode.
|
||||
* @note The UART is able to wake up the MCU from Stop 1 mode as long as UART clock is HSI or LSE.
|
||||
* @param huart UART handle.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UARTEx_EnableStopMode(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
/* Set UESM bit */
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_UESM);
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Disable UART Stop Mode.
|
||||
* @param huart UART handle.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UARTEx_DisableStopMode(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
/* Clear UESM bit */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_UESM);
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Receive an amount of data in blocking mode till either the expected number of data
|
||||
* is received or an IDLE event occurs.
|
||||
* @note HAL_OK is returned if reception is completed (expected number of data has been received)
|
||||
* or if reception is stopped after IDLE event (less than the expected number of data has been received)
|
||||
* In this case, RxLen output parameter indicates number of data available in reception buffer.
|
||||
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
|
||||
* the received data is handled as a set of uint16_t. In this case, Size must indicate the number
|
||||
* of uint16_t available through pData.
|
||||
* @param huart UART handle.
|
||||
* @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
|
||||
* @param Size Amount of data elements (uint8_t or uint16_t) to be received.
|
||||
* @param RxLen Number of data elements finally received
|
||||
* (could be lower than Size, in case reception ends on IDLE event)
|
||||
* @param Timeout Timeout duration expressed in ms (covers the whole reception sequence).
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint16_t *RxLen,
|
||||
uint32_t Timeout)
|
||||
{
|
||||
uint8_t *pdata8bits;
|
||||
uint16_t *pdata16bits;
|
||||
uint16_t uhMask;
|
||||
uint32_t tickstart;
|
||||
|
||||
/* Check that a Rx process is not already ongoing */
|
||||
if (huart->RxState == HAL_UART_STATE_READY)
|
||||
{
|
||||
if ((pData == NULL) || (Size == 0U))
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
||||
huart->RxState = HAL_UART_STATE_BUSY_RX;
|
||||
huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
|
||||
huart->RxEventType = HAL_UART_RXEVENT_TC;
|
||||
|
||||
/* Init tickstart for timeout management */
|
||||
tickstart = HAL_GetTick();
|
||||
|
||||
huart->RxXferSize = Size;
|
||||
huart->RxXferCount = Size;
|
||||
|
||||
/* Computation of UART mask to apply to RDR register */
|
||||
UART_MASK_COMPUTATION(huart);
|
||||
uhMask = huart->Mask;
|
||||
|
||||
/* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
|
||||
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
|
||||
{
|
||||
pdata8bits = NULL;
|
||||
pdata16bits = (uint16_t *) pData;
|
||||
}
|
||||
else
|
||||
{
|
||||
pdata8bits = pData;
|
||||
pdata16bits = NULL;
|
||||
}
|
||||
|
||||
/* Initialize output number of received elements */
|
||||
*RxLen = 0U;
|
||||
|
||||
/* as long as data have to be received */
|
||||
while (huart->RxXferCount > 0U)
|
||||
{
|
||||
/* Check if IDLE flag is set */
|
||||
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE))
|
||||
{
|
||||
/* Clear IDLE flag in ISR */
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
|
||||
|
||||
/* If Set, but no data ever received, clear flag without exiting loop */
|
||||
/* If Set, and data has already been received, this means Idle Event is valid : End reception */
|
||||
if (*RxLen > 0U)
|
||||
{
|
||||
huart->RxEventType = HAL_UART_RXEVENT_IDLE;
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
}
|
||||
|
||||
/* Check if RXNE flag is set */
|
||||
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE))
|
||||
{
|
||||
if (pdata8bits == NULL)
|
||||
{
|
||||
*pdata16bits = (uint16_t)(huart->Instance->RDR & uhMask);
|
||||
pdata16bits++;
|
||||
}
|
||||
else
|
||||
{
|
||||
*pdata8bits = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask);
|
||||
pdata8bits++;
|
||||
}
|
||||
/* Increment number of received elements */
|
||||
*RxLen += 1U;
|
||||
huart->RxXferCount--;
|
||||
}
|
||||
|
||||
/* Check for the Timeout */
|
||||
if (Timeout != HAL_MAX_DELAY)
|
||||
{
|
||||
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
|
||||
{
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
|
||||
return HAL_TIMEOUT;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Set number of received elements in output parameter : RxLen */
|
||||
*RxLen = huart->RxXferSize - huart->RxXferCount;
|
||||
/* At end of Rx process, restore huart->RxState to Ready */
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
else
|
||||
{
|
||||
return HAL_BUSY;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Receive an amount of data in interrupt mode till either the expected number of data
|
||||
* is received or an IDLE event occurs.
|
||||
* @note Reception is initiated by this function call. Further progress of reception is achieved thanks
|
||||
* to UART interrupts raised by RXNE and IDLE events. Callback is called at end of reception indicating
|
||||
* number of received data elements.
|
||||
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
|
||||
* the received data is handled as a set of uint16_t. In this case, Size must indicate the number
|
||||
* of uint16_t available through pData.
|
||||
* @param huart UART handle.
|
||||
* @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
|
||||
* @param Size Amount of data elements (uint8_t or uint16_t) to be received.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
|
||||
{
|
||||
HAL_StatusTypeDef status;
|
||||
|
||||
/* Check that a Rx process is not already ongoing */
|
||||
if (huart->RxState == HAL_UART_STATE_READY)
|
||||
{
|
||||
if ((pData == NULL) || (Size == 0U))
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
/* Set Reception type to reception till IDLE Event*/
|
||||
huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
|
||||
huart->RxEventType = HAL_UART_RXEVENT_TC;
|
||||
|
||||
status = UART_Start_Receive_IT(huart, pData, Size);
|
||||
|
||||
/* Check Rx process has been successfully started */
|
||||
if (status == HAL_OK)
|
||||
{
|
||||
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
||||
{
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* In case of errors already pending when reception is started,
|
||||
Interrupts may have already been raised and lead to reception abortion.
|
||||
(Overrun error for instance).
|
||||
In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
|
||||
status = HAL_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
return status;
|
||||
}
|
||||
else
|
||||
{
|
||||
return HAL_BUSY;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Receive an amount of data in DMA mode till either the expected number
|
||||
* of data is received or an IDLE event occurs.
|
||||
* @note Reception is initiated by this function call. Further progress of reception is achieved thanks
|
||||
* to DMA services, transferring automatically received data elements in user reception buffer and
|
||||
* calling registered callbacks at half/end of reception. UART IDLE events are also used to consider
|
||||
* reception phase as ended. In all cases, callback execution will indicate number of received data elements.
|
||||
* @note When the UART parity is enabled (PCE = 1), the received data contain
|
||||
* the parity bit (MSB position).
|
||||
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
|
||||
* the received data is handled as a set of uint16_t. In this case, Size must indicate the number
|
||||
* of uint16_t available through pData.
|
||||
* @param huart UART handle.
|
||||
* @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
|
||||
* @param Size Amount of data elements (uint8_t or uint16_t) to be received.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
|
||||
{
|
||||
HAL_StatusTypeDef status;
|
||||
|
||||
/* Check that a Rx process is not already ongoing */
|
||||
if (huart->RxState == HAL_UART_STATE_READY)
|
||||
{
|
||||
if ((pData == NULL) || (Size == 0U))
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
/* Set Reception type to reception till IDLE Event*/
|
||||
huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
|
||||
huart->RxEventType = HAL_UART_RXEVENT_TC;
|
||||
|
||||
status = UART_Start_Receive_DMA(huart, pData, Size);
|
||||
|
||||
/* Check Rx process has been successfully started */
|
||||
if (status == HAL_OK)
|
||||
{
|
||||
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
||||
{
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* In case of errors already pending when reception is started,
|
||||
Interrupts may have already been raised and lead to reception abortion.
|
||||
(Overrun error for instance).
|
||||
In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
|
||||
status = HAL_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
return status;
|
||||
}
|
||||
else
|
||||
{
|
||||
return HAL_BUSY;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Provide Rx Event type that has lead to RxEvent callback execution.
|
||||
* @note When HAL_UARTEx_ReceiveToIdle_IT() or HAL_UARTEx_ReceiveToIdle_DMA() API are called, progress
|
||||
* of reception process is provided to application through calls of Rx Event callback (either default one
|
||||
* HAL_UARTEx_RxEventCallback() or user registered one). As several types of events could occur (IDLE event,
|
||||
* Half Transfer, or Transfer Complete), this function allows to retrieve the Rx Event type that has lead
|
||||
* to Rx Event callback execution.
|
||||
* @note This function is expected to be called within the user implementation of Rx Event Callback,
|
||||
* in order to provide the accurate value :
|
||||
* In Interrupt Mode :
|
||||
* - HAL_UART_RXEVENT_TC : when Reception has been completed (expected nb of data has been received)
|
||||
* - HAL_UART_RXEVENT_IDLE : when Idle event occurred prior reception has been completed (nb of
|
||||
* received data is lower than expected one)
|
||||
* In DMA Mode :
|
||||
* - HAL_UART_RXEVENT_TC : when Reception has been completed (expected nb of data has been received)
|
||||
* - HAL_UART_RXEVENT_HT : when half of expected nb of data has been received
|
||||
* - HAL_UART_RXEVENT_IDLE : when Idle event occurred prior reception has been completed (nb of
|
||||
* received data is lower than expected one).
|
||||
* In DMA mode, RxEvent callback could be called several times;
|
||||
* When DMA is configured in Normal Mode, HT event does not stop Reception process;
|
||||
* When DMA is configured in Circular Mode, HT, TC or IDLE events don't stop Reception process;
|
||||
* @param huart UART handle.
|
||||
* @retval Rx Event Type (return vale will be a value of @ref UART_RxEvent_Type_Values)
|
||||
*/
|
||||
HAL_UART_RxEventTypeTypeDef HAL_UARTEx_GetRxEventType(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Return Rx Event type value, as stored in UART handle */
|
||||
return (huart->RxEventType);
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @addtogroup UARTEx_Private_Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Initialize the UART wake-up from stop mode parameters when triggered by address detection.
|
||||
* @param huart UART handle.
|
||||
* @param WakeUpSelection UART wake up from stop mode parameters.
|
||||
* @retval None
|
||||
*/
|
||||
static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection)
|
||||
{
|
||||
assert_param(IS_UART_ADDRESSLENGTH_DETECT(WakeUpSelection.AddressLength));
|
||||
|
||||
/* Set the USART address length */
|
||||
MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, WakeUpSelection.AddressLength);
|
||||
|
||||
/* Set the USART address node */
|
||||
MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, ((uint32_t)WakeUpSelection.Address << UART_CR2_ADDRESS_LSB_POS));
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
#endif /* HAL_UART_MODULE_ENABLED */
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
4
Makefile
4
Makefile
@ -1,5 +1,5 @@
|
||||
##########################################################################################################################
|
||||
# File automatically-generated by tool: [projectgenerator] version: [4.3.0-B58] date: [Mon Jun 03 16:11:34 EEST 2024]
|
||||
# File automatically-generated by tool: [projectgenerator] version: [4.3.0-B58] date: [Tue Jul 02 18:11:07 GMT 2024]
|
||||
##########################################################################################################################
|
||||
|
||||
# ------------------------------------------------
|
||||
@ -59,8 +59,6 @@ Drivers/STM32F3xx_HAL_Driver/Src/stm32f3xx_hal_spi.c \
|
||||
Drivers/STM32F3xx_HAL_Driver/Src/stm32f3xx_hal_spi_ex.c \
|
||||
Drivers/STM32F3xx_HAL_Driver/Src/stm32f3xx_hal_tim.c \
|
||||
Drivers/STM32F3xx_HAL_Driver/Src/stm32f3xx_hal_tim_ex.c \
|
||||
Drivers/STM32F3xx_HAL_Driver/Src/stm32f3xx_hal_uart.c \
|
||||
Drivers/STM32F3xx_HAL_Driver/Src/stm32f3xx_hal_uart_ex.c \
|
||||
Core/Src/system_stm32f3xx.c
|
||||
|
||||
# ASM sources
|
||||
|
192
mvbms.ioc
192
mvbms.ioc
@ -18,44 +18,46 @@ Mcu.CPN=STM32F302CBT6
|
||||
Mcu.Family=STM32F3
|
||||
Mcu.IP0=CAN
|
||||
Mcu.IP1=I2C1
|
||||
Mcu.IP2=NVIC
|
||||
Mcu.IP3=RCC
|
||||
Mcu.IP4=SPI1
|
||||
Mcu.IP5=SYS
|
||||
Mcu.IP6=TIM1
|
||||
Mcu.IP7=TIM15
|
||||
Mcu.IP8=USART1
|
||||
Mcu.IPNb=9
|
||||
Mcu.IP10=TIM15
|
||||
Mcu.IP2=I2C2
|
||||
Mcu.IP3=NVIC
|
||||
Mcu.IP4=RCC
|
||||
Mcu.IP5=SPI1
|
||||
Mcu.IP6=SYS
|
||||
Mcu.IP7=TIM2
|
||||
Mcu.IP8=TIM3
|
||||
Mcu.IP9=TIM4
|
||||
Mcu.IPNb=11
|
||||
Mcu.Name=STM32F302C(B-C)Tx
|
||||
Mcu.Package=LQFP48
|
||||
Mcu.Pin0=PF0-OSC_IN
|
||||
Mcu.Pin1=PF1-OSC_OUT
|
||||
Mcu.Pin10=PB0
|
||||
Mcu.Pin11=PB1
|
||||
Mcu.Pin12=PB2
|
||||
Mcu.Pin13=PB11
|
||||
Mcu.Pin14=PB15
|
||||
Mcu.Pin15=PA8
|
||||
Mcu.Pin16=PA9
|
||||
Mcu.Pin17=PA10
|
||||
Mcu.Pin18=PA11
|
||||
Mcu.Pin19=PA12
|
||||
Mcu.Pin2=PA0
|
||||
Mcu.Pin20=PA13
|
||||
Mcu.Pin21=PA14
|
||||
Mcu.Pin22=PA15
|
||||
Mcu.Pin23=PB3
|
||||
Mcu.Pin24=PB6
|
||||
Mcu.Pin25=PB7
|
||||
Mcu.Pin10=PB14
|
||||
Mcu.Pin11=PB15
|
||||
Mcu.Pin12=PA8
|
||||
Mcu.Pin13=PA9
|
||||
Mcu.Pin14=PA10
|
||||
Mcu.Pin15=PA11
|
||||
Mcu.Pin16=PA12
|
||||
Mcu.Pin17=PA13
|
||||
Mcu.Pin18=PA14
|
||||
Mcu.Pin19=PA15
|
||||
Mcu.Pin2=PA4
|
||||
Mcu.Pin20=PB3
|
||||
Mcu.Pin21=PB4
|
||||
Mcu.Pin22=PB5
|
||||
Mcu.Pin23=PB6
|
||||
Mcu.Pin24=PB7
|
||||
Mcu.Pin25=PB8
|
||||
Mcu.Pin26=PB9
|
||||
Mcu.Pin27=VP_SYS_VS_Systick
|
||||
Mcu.Pin3=PA1
|
||||
Mcu.Pin4=PA2
|
||||
Mcu.Pin5=PA3
|
||||
Mcu.Pin6=PA4
|
||||
Mcu.Pin7=PA5
|
||||
Mcu.Pin8=PA6
|
||||
Mcu.Pin9=PA7
|
||||
Mcu.Pin3=PA5
|
||||
Mcu.Pin4=PA6
|
||||
Mcu.Pin5=PA7
|
||||
Mcu.Pin6=PB0
|
||||
Mcu.Pin7=PB1
|
||||
Mcu.Pin8=PB10
|
||||
Mcu.Pin9=PB11
|
||||
Mcu.PinsNb=28
|
||||
Mcu.ThirdPartyNb=0
|
||||
Mcu.UserConstants=
|
||||
@ -75,20 +77,10 @@ NVIC.SVCall_IRQn=true\:0\:0\:false\:false\:true\:false\:false\:false
|
||||
NVIC.SysTick_IRQn=true\:15\:0\:false\:false\:true\:false\:true\:false
|
||||
NVIC.USB_LP_CAN_RX0_IRQn=true\:0\:0\:false\:false\:true\:true\:true\:true
|
||||
NVIC.UsageFault_IRQn=true\:0\:0\:false\:false\:true\:false\:false\:false
|
||||
PA0.GPIOParameters=PinState,GPIO_Label
|
||||
PA0.GPIO_Label=RELAY_EN
|
||||
PA0.Locked=true
|
||||
PA0.PinState=GPIO_PIN_RESET
|
||||
PA0.Signal=GPIO_Output
|
||||
PA1.GPIOParameters=PinState,GPIO_Label
|
||||
PA1.GPIO_Label=_60V_EN
|
||||
PA1.Locked=true
|
||||
PA1.PinState=GPIO_PIN_RESET
|
||||
PA1.Signal=GPIO_Output
|
||||
PA10.GPIOParameters=GPIO_Label
|
||||
PA10.GPIO_Label=CURRENT_SENSOR_ON
|
||||
PA10.Locked=true
|
||||
PA10.Signal=GPIO_Input
|
||||
PA10.GPIO_Label=EEPROM_SDA
|
||||
PA10.Mode=I2C
|
||||
PA10.Signal=I2C2_SDA
|
||||
PA11.Locked=true
|
||||
PA11.Mode=CAN_Activate
|
||||
PA11.Signal=CAN_RX
|
||||
@ -101,17 +93,11 @@ PA13.Signal=SYS_JTMS-SWDIO
|
||||
PA14.Locked=true
|
||||
PA14.Mode=Trace_Asynchronous_SW
|
||||
PA14.Signal=SYS_JTCK-SWCLK
|
||||
PA15.GPIOParameters=GPIO_Label
|
||||
PA15.GPIO_Label=TMP_SCL
|
||||
PA15.Locked=true
|
||||
PA15.Mode=I2C
|
||||
PA15.Signal=I2C1_SCL
|
||||
PA2.GPIOParameters=GPIO_Label
|
||||
PA2.GPIO_Label=PWM_PG_FAN1
|
||||
PA2.Locked=true
|
||||
PA2.Signal=S_TIM15_CH1
|
||||
PA3.GPIOParameters=GPIO_Label
|
||||
PA3.GPIO_Label=PWM_PG_FAN2
|
||||
PA3.Locked=true
|
||||
PA3.Signal=S_TIM15_CH2
|
||||
PA4.GPIOParameters=GPIO_Label
|
||||
PA4.GPIO_Label=CSB
|
||||
PA4.Locked=true
|
||||
@ -126,47 +112,59 @@ PA7.Locked=true
|
||||
PA7.Mode=Full_Duplex_Master
|
||||
PA7.Signal=SPI1_MOSI
|
||||
PA8.GPIOParameters=GPIO_Label
|
||||
PA8.GPIO_Label=RELAY_BATT_SIDE_ON
|
||||
PA8.GPIO_Label=EEPROM_~{WC}
|
||||
PA8.Locked=true
|
||||
PA8.Signal=GPIO_Input
|
||||
PA8.Signal=GPIO_Output
|
||||
PA9.GPIOParameters=GPIO_Label
|
||||
PA9.GPIO_Label=RELAY_ESC_SIDE_ON
|
||||
PA9.Locked=true
|
||||
PA9.Signal=GPIO_Input
|
||||
PB0.GPIOParameters=PinState,GPIO_Label
|
||||
PB0.GPIO_Label=STATUS_LED_R
|
||||
PA9.GPIO_Label=EEPROM_SCL
|
||||
PA9.Mode=I2C
|
||||
PA9.Signal=I2C2_SCL
|
||||
PB0.GPIOParameters=GPIO_Label
|
||||
PB0.GPIO_Label=ESC_L_PWM
|
||||
PB0.Locked=true
|
||||
PB0.PinState=GPIO_PIN_SET
|
||||
PB0.Signal=GPIO_Output
|
||||
PB1.GPIOParameters=PinState,GPIO_Label
|
||||
PB1.GPIO_Label=STATUS_LED_B
|
||||
PB0.Signal=S_TIM3_CH3
|
||||
PB1.GPIOParameters=GPIO_Label
|
||||
PB1.GPIO_Label=ESC_R_PWM
|
||||
PB1.Locked=true
|
||||
PB1.PinState=GPIO_PIN_SET
|
||||
PB1.Signal=GPIO_Output
|
||||
PB1.Signal=S_TIM3_CH4
|
||||
PB10.GPIOParameters=GPIO_Label
|
||||
PB10.GPIO_Label=BAT_COOLING_PWM
|
||||
PB10.Locked=true
|
||||
PB10.Signal=S_TIM2_CH3
|
||||
PB11.GPIOParameters=PinState,GPIO_Label
|
||||
PB11.GPIO_Label=PRECHARGE_EN
|
||||
PB11.GPIO_Label=BAT_COOLING_ENABLE
|
||||
PB11.Locked=true
|
||||
PB11.PinState=GPIO_PIN_RESET
|
||||
PB11.Signal=GPIO_Output
|
||||
PB14.GPIOParameters=GPIO_Label
|
||||
PB14.GPIO_Label=ESC_COOLING_ENABLE
|
||||
PB14.Locked=true
|
||||
PB14.Signal=S_TIM15_CH1
|
||||
PB15.GPIOParameters=GPIO_Label
|
||||
PB15.GPIO_Label=PWM_Battery_Cooling
|
||||
PB15.Locked=true
|
||||
PB15.Mode=PWM Generation3 CH3N
|
||||
PB15.Signal=TIM1_CH3N
|
||||
PB2.GPIOParameters=PinState,GPIO_Label
|
||||
PB2.GPIO_Label=STATUS_LED_G
|
||||
PB2.Locked=true
|
||||
PB2.PinState=GPIO_PIN_SET
|
||||
PB2.Signal=GPIO_Output
|
||||
PB15.GPIO_Label=ESC_COOLING_PWM
|
||||
PB15.Signal=S_TIM15_CH2
|
||||
PB3.Locked=true
|
||||
PB3.Mode=Trace_Asynchronous_SW
|
||||
PB3.Signal=SYS_JTDO-TRACESWO
|
||||
PB6.Locked=true
|
||||
PB6.Mode=Asynchronous
|
||||
PB6.Signal=USART1_TX
|
||||
PB7.Locked=true
|
||||
PB7.Mode=Asynchronous
|
||||
PB7.Signal=USART1_RX
|
||||
PB4.GPIOParameters=GPIO_Label
|
||||
PB4.GPIO_Label=RELAY_ENABLE
|
||||
PB4.Locked=true
|
||||
PB4.Signal=GPIO_Output
|
||||
PB5.GPIOParameters=GPIO_Label
|
||||
PB5.GPIO_Label=PRECHARGE_ENABLE
|
||||
PB5.Locked=true
|
||||
PB5.Signal=GPIO_Output
|
||||
PB6.GPIOParameters=GPIO_Label
|
||||
PB6.GPIO_Label=STATUS_LED_R
|
||||
PB6.Signal=S_TIM4_CH1
|
||||
PB7.GPIOParameters=GPIO_Label
|
||||
PB7.GPIO_Label=STATUS_LED_G
|
||||
PB7.Signal=S_TIM4_CH2
|
||||
PB8.GPIOParameters=GPIO_Label
|
||||
PB8.GPIO_Label=STATUS_LED_B
|
||||
PB8.Signal=S_TIM4_CH3
|
||||
PB9.GPIOParameters=GPIO_Label
|
||||
PB9.GPIO_Label=TMP_SDA
|
||||
PB9.Locked=true
|
||||
PB9.Mode=I2C
|
||||
PB9.Signal=I2C1_SDA
|
||||
@ -246,6 +244,18 @@ SH.S_TIM15_CH1.0=TIM15_CH1,PWM Generation1 CH1
|
||||
SH.S_TIM15_CH1.ConfNb=1
|
||||
SH.S_TIM15_CH2.0=TIM15_CH2,PWM Generation2 CH2
|
||||
SH.S_TIM15_CH2.ConfNb=1
|
||||
SH.S_TIM2_CH3.0=TIM2_CH3,PWM Generation3 CH3
|
||||
SH.S_TIM2_CH3.ConfNb=1
|
||||
SH.S_TIM3_CH3.0=TIM3_CH3,PWM Generation3 CH3
|
||||
SH.S_TIM3_CH3.ConfNb=1
|
||||
SH.S_TIM3_CH4.0=TIM3_CH4,PWM Generation4 CH4
|
||||
SH.S_TIM3_CH4.ConfNb=1
|
||||
SH.S_TIM4_CH1.0=TIM4_CH1,PWM Generation1 CH1
|
||||
SH.S_TIM4_CH1.ConfNb=1
|
||||
SH.S_TIM4_CH2.0=TIM4_CH2,PWM Generation2 CH2
|
||||
SH.S_TIM4_CH2.ConfNb=1
|
||||
SH.S_TIM4_CH3.0=TIM4_CH3,PWM Generation3 CH3
|
||||
SH.S_TIM4_CH3.ConfNb=1
|
||||
SPI1.BaudRatePrescaler=SPI_BAUDRATEPRESCALER_32
|
||||
SPI1.CalculateBaudRate=500.0 KBits/s
|
||||
SPI1.DataSize=SPI_DATASIZE_8BIT
|
||||
@ -253,16 +263,18 @@ SPI1.Direction=SPI_DIRECTION_2LINES
|
||||
SPI1.IPParameters=VirtualType,Mode,Direction,CalculateBaudRate,DataSize,BaudRatePrescaler
|
||||
SPI1.Mode=SPI_MODE_MASTER
|
||||
SPI1.VirtualType=VM_MASTER
|
||||
TIM1.Channel-PWM\ Generation3\ CH3N=TIM_CHANNEL_3
|
||||
TIM1.IPParameters=Channel-PWM Generation3 CH3N
|
||||
TIM15.Channel-PWM\ Generation1\ CH1=TIM_CHANNEL_1
|
||||
TIM15.Channel-PWM\ Generation2\ CH2=TIM_CHANNEL_2
|
||||
TIM15.IPParameters=Channel-PWM Generation1 CH1,Channel-PWM Generation2 CH2,Prescaler,Period,Pulse-PWM Generation1 CH1
|
||||
TIM15.Period=39999
|
||||
TIM15.Prescaler=7
|
||||
TIM15.Pulse-PWM\ Generation1\ CH1=0
|
||||
USART1.IPParameters=VirtualMode-Asynchronous
|
||||
USART1.VirtualMode-Asynchronous=VM_ASYNC
|
||||
TIM15.IPParameters=Channel-PWM Generation1 CH1,Channel-PWM Generation2 CH2
|
||||
TIM2.Channel-PWM\ Generation3\ CH3=TIM_CHANNEL_3
|
||||
TIM2.IPParameters=Channel-PWM Generation3 CH3
|
||||
TIM3.Channel-PWM\ Generation3\ CH3=TIM_CHANNEL_3
|
||||
TIM3.Channel-PWM\ Generation4\ CH4=TIM_CHANNEL_4
|
||||
TIM3.IPParameters=Channel-PWM Generation3 CH3,Channel-PWM Generation4 CH4
|
||||
TIM4.Channel-PWM\ Generation1\ CH1=TIM_CHANNEL_1
|
||||
TIM4.Channel-PWM\ Generation2\ CH2=TIM_CHANNEL_2
|
||||
TIM4.Channel-PWM\ Generation3\ CH3=TIM_CHANNEL_3
|
||||
TIM4.IPParameters=Channel-PWM Generation1 CH1,Channel-PWM Generation2 CH2,Channel-PWM Generation3 CH3
|
||||
VP_SYS_VS_Systick.Mode=SysTick
|
||||
VP_SYS_VS_Systick.Signal=SYS_VS_Systick
|
||||
board=custom
|
||||
|
Loading…
x
Reference in New Issue
Block a user