This commit is contained in:
Hamza Tamim 2024-07-02 23:01:26 +03:00
parent 9e80b90fd4
commit dae660d8f2
20 changed files with 591 additions and 11288 deletions

File diff suppressed because one or more lines are too long

3
CHANGELOG Normal file
View File

@ -0,0 +1,3 @@
V1.0
- merged mvbms-test to main
- made the changes needed for the project to compile

View File

@ -1,9 +0,0 @@
#ifndef INC_PWM_CONTROL_H_
#define INC_PWM_CONTROL_H_
#include "stm32f3xx_hal_conf.h"
void PWMControl_UpdatePWMs(uint8_t pwrgndfans );
void PWMControl_init(TIM_HandleTypeDef* timer3);
#endif /* INC_CHANNEL_CONTROL_H_ */

View File

@ -25,9 +25,9 @@ CCR: 1/20 -> 500, 2/20 -> 1000
//#define BATTERY_COOLING_FREQ 20000
void PWM_control_init(TIM_HandleTypeDef* powerground, TIM_HandleTypeDef* battery_cooling);
void PWM_control_init(TIM_HandleTypeDef* pg, TIM_HandleTypeDef* bat_cool, TIM_HandleTypeDef* esc_cool);
void PWM_powerground_control(uint8_t percent);
void PWM_battery_cooling_control(uint8_t percent);
void PWM_esc_cooling(uint8_t percent);
#endif /* INC_CHANNEL_CONTROL_H */

View File

@ -1,64 +0,0 @@
#ifndef CAN_HALAL_H
#define CAN_HALAL_H
// Define family macros if none are defined and we recognize a chip macro
#if !defined(STM32F3) && !defined(STM32H7)
#if defined(STM32F302x6) || defined(STM32F302x8) || defined(STM32F302xB) || \
defined(STM32F302xC)
#define STM32F3
#endif
#if defined(STM32H7A3xx)
#define STM32H7
#endif
#endif
#if defined(STM32F3)
#include "stm32f3xx_hal.h"
#define FTCAN_IS_BXCAN
#define FTCAN_NUM_FILTERS 13
#elif defined(STM32H7)
#include "stm32h7xx_hal.h"
#define FTCAN_IS_FDCAN
#ifndef FTCAN_NUM_FILTERS
#error "Please configure the number of filters in CubeMX, and then add a compiler define for FTCAN_NUM_FILTERS"
#endif
#else
#error "Couldn't detect STM family"
#endif
#if defined(FTCAN_IS_BXCAN)
HAL_StatusTypeDef ftcan_init(CAN_HandleTypeDef *handle);
#elif defined(FTCAN_IS_FDCAN)
HAL_StatusTypeDef ftcan_init(FDCAN_HandleTypeDef *handle);
#else
#error "Unknown CAN peripheral"
#endif
HAL_StatusTypeDef ftcan_transmit(uint16_t id, const uint8_t *data,
size_t datalen);
HAL_StatusTypeDef ftcan_add_filter(uint16_t id, uint16_t mask);
/**
* Define this function to be notified of incoming CAN messages
*/
void ftcan_msg_received_cb(uint16_t id, size_t datalen, const uint8_t *data);
/**
* Read num_bytes bytes from a message (unmarshalled network byte order). The
* msg pointer is advanced by the corresponding number of bytes.
*
* Both methods return a 64-bit integer, but you can safely cast it to a smaller
* integer type.
*/
uint64_t ftcan_unmarshal_unsigned(const uint8_t **data, size_t num_bytes);
int64_t ftcan_unmarshal_signed(const uint8_t **data, size_t num_bytes);
/**
* Write num_bytes to a message (marshalled in network byte order). The pointer
* is advanced by the corresponding number of bytes and returned.
*/
uint8_t *ftcan_marshal_unsigned(uint8_t *data, uint64_t val, size_t num_bytes);
uint8_t *ftcan_marshal_signed(uint8_t *data, int64_t val, size_t num_bytes);
#endif // CAN_HALAL_H

View File

@ -59,28 +59,40 @@ void Error_Handler(void);
/* USER CODE END EFP */
/* Private defines -----------------------------------------------------------*/
#define RELAY_EN_Pin GPIO_PIN_0
#define RELAY_EN_GPIO_Port GPIOA
#define _60V_EN_Pin GPIO_PIN_1
#define _60V_EN_GPIO_Port GPIOA
#define CSB_Pin GPIO_PIN_4
#define CSB_GPIO_Port GPIOA
#define STATUS_LED_R_Pin GPIO_PIN_0
#define ESC_L_PWM_Pin GPIO_PIN_0
#define ESC_L_PWM_GPIO_Port GPIOB
#define ESC_R_PWM_Pin GPIO_PIN_1
#define ESC_R_PWM_GPIO_Port GPIOB
#define BAT_COOLING_PWM_Pin GPIO_PIN_10
#define BAT_COOLING_PWM_GPIO_Port GPIOB
#define BAT_COOLING_ENABLE_Pin GPIO_PIN_11
#define BAT_COOLING_ENABLE_GPIO_Port GPIOB
#define ESC_COOLING_ENABLE_Pin GPIO_PIN_14
#define ESC_COOLING_ENABLE_GPIO_Port GPIOB
#define ESC_COOLING_PWM_Pin GPIO_PIN_15
#define ESC_COOLING_PWM_GPIO_Port GPIOB
#define EEPROM___WC__Pin GPIO_PIN_8
#define EEPROM___WC__GPIO_Port GPIOA
#define EEPROM_SCL_Pin GPIO_PIN_9
#define EEPROM_SCL_GPIO_Port GPIOA
#define EEPROM_SDA_Pin GPIO_PIN_10
#define EEPROM_SDA_GPIO_Port GPIOA
#define TMP_SCL_Pin GPIO_PIN_15
#define TMP_SCL_GPIO_Port GPIOA
#define RELAY_ENABLE_Pin GPIO_PIN_4
#define RELAY_ENABLE_GPIO_Port GPIOB
#define PRECHARGE_ENABLE_Pin GPIO_PIN_5
#define PRECHARGE_ENABLE_GPIO_Port GPIOB
#define STATUS_LED_R_Pin GPIO_PIN_6
#define STATUS_LED_R_GPIO_Port GPIOB
#define STATUS_LED_B_Pin GPIO_PIN_1
#define STATUS_LED_B_GPIO_Port GPIOB
#define STATUS_LED_G_Pin GPIO_PIN_2
#define STATUS_LED_G_Pin GPIO_PIN_7
#define STATUS_LED_G_GPIO_Port GPIOB
#define PRECHARGE_EN_Pin GPIO_PIN_11
#define PRECHARGE_EN_GPIO_Port GPIOB
#define PWM_Battery_Cooling_Pin GPIO_PIN_15
#define PWM_Battery_Cooling_GPIO_Port GPIOB
#define RELAY_BATT_SIDE_ON_Pin GPIO_PIN_8
#define RELAY_BATT_SIDE_ON_GPIO_Port GPIOA
#define RELAY_ESC_SIDE_ON_Pin GPIO_PIN_9
#define RELAY_ESC_SIDE_ON_GPIO_Port GPIOA
#define CURRENT_SENSOR_ON_Pin GPIO_PIN_10
#define CURRENT_SENSOR_ON_GPIO_Port GPIOA
#define STATUS_LED_B_Pin GPIO_PIN_8
#define STATUS_LED_B_GPIO_Port GPIOB
#define TMP_SDA_Pin GPIO_PIN_9
#define TMP_SDA_GPIO_Port GPIOB
/* USER CODE BEGIN Private defines */

View File

@ -58,7 +58,7 @@
/*#define HAL_RTC_MODULE_ENABLED */
#define HAL_SPI_MODULE_ENABLED
#define HAL_TIM_MODULE_ENABLED
#define HAL_UART_MODULE_ENABLED
/*#define HAL_UART_MODULE_ENABLED */
/*#define HAL_USART_MODULE_ENABLED */
/*#define HAL_IRDA_MODULE_ENABLED */
/*#define HAL_SMARTCARD_MODULE_ENABLED */

View File

@ -1,31 +0,0 @@
#include "PWM_Control.h"
uint8_t timer2_running = 0;
TIM_HandleTypeDef* pwmtimer2;
void PWMControl_init( TIM_HandleTypeDef* timer2)
{
pwmtimer2 = timer2;
PWMControl_UpdatePWMs(0);
}
void PWMControl_UpdatePWMs(uint8_t pwrgndfans)
{
pwmtimer2->Instance->CCR3 = pwrgndfans << 8;
if (timer2_running) {
if ((pwrgndfans == 0)) {
timer2_running = 0;
HAL_TIM_PWM_Stop(pwmtimer2, TIM_CHANNEL_3);
}
} else {
if ( (pwrgndfans != 0)) {
timer2_running = 1;
HAL_TIM_PWM_Start(pwmtimer2, TIM_CHANNEL_3);
}
}
}

View File

@ -1,18 +1,16 @@
#include "PWM_control.h"
uint8_t battery_cooling_status;
//uint32_t powerground1_CCR, powerground2_CCR, battery_cooling_CCR;
TIM_HandleTypeDef* powerground, *battery_cooling;
TIM_HandleTypeDef *powerground, *battery_cooling, *esc_cooling;
/*
Pulse width modulation mode allows for generating a signal with a frequency determined by
the value of the TIMx_ARR register and a duty cycle determined by the value of the TIMx_CCRx register.
*/
void PWM_control_init(TIM_HandleTypeDef* pg, TIM_HandleTypeDef* bat_cool){
void PWM_control_init(TIM_HandleTypeDef* pg, TIM_HandleTypeDef* bat_cool, TIM_HandleTypeDef* esc_cool){
powerground_status = 0;
battery_cooling_status = 0;
HAL_TIM_PWM_Start(pg, TIM_CHANNEL_1); //TIM15CH1
HAL_TIM_PWM_Start(pg, TIM_CHANNEL_2); //TIM15CH2
@ -20,6 +18,8 @@ void PWM_control_init(TIM_HandleTypeDef* pg, TIM_HandleTypeDef* bat_cool){
powerground = pg;
battery_cooling = bat_cool;
esc_cooling = esc_cool;
__HAL_TIM_SET_COMPARE(powerground, TIM_CHANNEL_1, 2000);
__HAL_TIM_SET_COMPARE(powerground, TIM_CHANNEL_2, 2000);
//__HAL_TIM_SET_COMPARE(battery_cooling, TIM_CHANNEL_3, 2000);
@ -38,4 +38,5 @@ void PWM_powerground_control(uint8_t percent){
//TIM15->CCR1 = (TIM15->ARR*POWERGROUND_MAX_DUTY_CYCLE-TIM15->ARR*POWERGROUND_MIN_DUTY_CYCLE) * (percent/100.0) + TIM15->ARR*POWERGROUND_MIN_DUTY_CYCLE;
}
void PWM_battery_cooling_control(uint8_t percent){}
void PWM_battery_cooling_control(uint8_t percent){}
void PWM_esc_cooling(uint8_t percent){}

View File

@ -1,273 +0,0 @@
#include "can-halal.h"
#include <string.h>
#if defined(FTCAN_IS_BXCAN)
static CAN_HandleTypeDef *hcan;
HAL_StatusTypeDef ftcan_init(CAN_HandleTypeDef *handle) {
hcan = handle;
HAL_StatusTypeDef status =
HAL_CAN_ActivateNotification(hcan, CAN_IT_RX_FIFO0_MSG_PENDING);
if (status != HAL_OK) {
return status;
}
return HAL_CAN_Start(hcan);
}
HAL_StatusTypeDef ftcan_transmit(uint16_t id, const uint8_t *data,
size_t datalen) {
static CAN_TxHeaderTypeDef header;
header.StdId = id;
header.IDE = CAN_ID_STD;
header.RTR = CAN_RTR_DATA;
header.DLC = datalen;
uint32_t mailbox;
return HAL_CAN_AddTxMessage(hcan, &header, data, &mailbox);
}
HAL_StatusTypeDef ftcan_add_filter(uint16_t id, uint16_t mask) {
static uint32_t next_filter_no = 0;
static CAN_FilterTypeDef filter;
if (next_filter_no % 2 == 0) {
filter.FilterIdHigh = id << 5;
filter.FilterMaskIdHigh = mask << 5;
filter.FilterIdLow = id << 5;
filter.FilterMaskIdLow = mask << 5;
} else {
// Leave high filter untouched from the last configuration
filter.FilterIdLow = id << 5;
filter.FilterMaskIdLow = mask << 5;
}
filter.FilterFIFOAssignment = CAN_FILTER_FIFO0;
filter.FilterBank = next_filter_no / 2;
if (filter.FilterBank > FTCAN_NUM_FILTERS + 1) {
return HAL_ERROR;
}
filter.FilterMode = CAN_FILTERMODE_IDMASK;
filter.FilterScale = CAN_FILTERSCALE_16BIT;
filter.FilterActivation = CAN_FILTER_ENABLE;
// Disable slave filters
// TODO: Some STM32 have multiple CAN peripherals, and one uses the slave
// filter bank
filter.SlaveStartFilterBank = FTCAN_NUM_FILTERS;
HAL_StatusTypeDef status = HAL_CAN_ConfigFilter(hcan, &filter);
if (status == HAL_OK) {
next_filter_no++;
}
return status;
}
void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *handle) {
if (handle != hcan) {
return;
}
CAN_RxHeaderTypeDef header;
uint8_t data[8];
if (HAL_CAN_GetRxMessage(hcan, CAN_RX_FIFO0, &header, data) != HAL_OK) {
return;
}
if (header.IDE != CAN_ID_STD) {
return;
}
ftcan_msg_received_cb(header.StdId, header.DLC, data);
}
#elif defined(FTCAN_IS_FDCAN)
static FDCAN_HandleTypeDef *hcan;
HAL_StatusTypeDef ftcan_init(FDCAN_HandleTypeDef *handle) {
hcan = handle;
HAL_StatusTypeDef status =
HAL_FDCAN_ActivateNotification(hcan, FDCAN_IT_RX_FIFO0_NEW_MESSAGE, 0);
if (status != HAL_OK) {
return status;
}
// Reject non-matching messages
status =
HAL_FDCAN_ConfigGlobalFilter(hcan, FDCAN_REJECT, FDCAN_REJECT,
FDCAN_REJECT_REMOTE, FDCAN_REJECT_REMOTE);
if (status != HAL_OK) {
return status;
}
return HAL_FDCAN_Start(hcan);
}
HAL_StatusTypeDef ftcan_transmit(uint16_t id, const uint8_t *data,
size_t datalen) {
static FDCAN_TxHeaderTypeDef header;
header.Identifier = id;
header.IdType = FDCAN_STANDARD_ID;
header.TxFrameType = FDCAN_DATA_FRAME;
switch (datalen) {
case 0:
header.DataLength = FDCAN_DLC_BYTES_0;
break;
case 1:
header.DataLength = FDCAN_DLC_BYTES_1;
break;
case 2:
header.DataLength = FDCAN_DLC_BYTES_2;
break;
case 3:
header.DataLength = FDCAN_DLC_BYTES_3;
break;
case 4:
header.DataLength = FDCAN_DLC_BYTES_4;
break;
case 5:
header.DataLength = FDCAN_DLC_BYTES_5;
break;
case 6:
header.DataLength = FDCAN_DLC_BYTES_6;
break;
case 7:
header.DataLength = FDCAN_DLC_BYTES_7;
break;
case 8:
default:
header.DataLength = FDCAN_DLC_BYTES_8;
break;
}
header.ErrorStateIndicator = FDCAN_ESI_PASSIVE;
header.BitRateSwitch = FDCAN_BRS_OFF;
header.FDFormat = FDCAN_CLASSIC_CAN;
header.TxEventFifoControl = FDCAN_NO_TX_EVENTS;
// HAL_FDCAN_AddMessageToTxFifoQ doesn't modify the data, but it's not marked
// as const for some reason.
uint8_t *data_nonconst = (uint8_t *)data;
return HAL_FDCAN_AddMessageToTxFifoQ(hcan, &header, data_nonconst);
}
HAL_StatusTypeDef ftcan_add_filter(uint16_t id, uint16_t mask) {
static uint32_t next_filter_no = 0;
static FDCAN_FilterTypeDef filter;
filter.IdType = FDCAN_STANDARD_ID;
filter.FilterIndex = next_filter_no;
if (filter.FilterIndex > FTCAN_NUM_FILTERS + 1) {
return HAL_ERROR;
}
filter.FilterType = FDCAN_FILTER_MASK;
filter.FilterConfig = FDCAN_FILTER_TO_RXFIFO0;
filter.FilterID1 = id;
filter.FilterID2 = mask;
HAL_StatusTypeDef status = HAL_FDCAN_ConfigFilter(hcan, &filter);
if (status == HAL_OK) {
next_filter_no++;
}
return status;
}
void HAL_FDCAN_RxFifo0Callback(FDCAN_HandleTypeDef *handle,
uint32_t RxFifo0ITs) {
if (handle != hcan || (RxFifo0ITs & FDCAN_IT_RX_FIFO0_NEW_MESSAGE) == RESET) {
return;
}
static FDCAN_RxHeaderTypeDef header;
static uint8_t data[8];
if (HAL_FDCAN_GetRxMessage(hcan, FDCAN_RX_FIFO0, &header, data) != HAL_OK) {
return;
}
if (header.FDFormat != FDCAN_CLASSIC_CAN ||
header.RxFrameType != FDCAN_DATA_FRAME ||
header.IdType != FDCAN_STANDARD_ID) {
return;
}
size_t datalen;
switch (header.DataLength) {
case FDCAN_DLC_BYTES_0:
datalen = 0;
break;
case FDCAN_DLC_BYTES_1:
datalen = 1;
break;
case FDCAN_DLC_BYTES_2:
datalen = 2;
break;
case FDCAN_DLC_BYTES_3:
datalen = 3;
break;
case FDCAN_DLC_BYTES_4:
datalen = 4;
break;
case FDCAN_DLC_BYTES_5:
datalen = 5;
break;
case FDCAN_DLC_BYTES_6:
datalen = 6;
break;
case FDCAN_DLC_BYTES_7:
datalen = 7;
break;
case FDCAN_DLC_BYTES_8:
datalen = 8;
break;
default:
return;
}
ftcan_msg_received_cb(header.Identifier, datalen, data);
}
#endif
__weak void ftcan_msg_received_cb(uint16_t id, size_t datalen,
const uint8_t *data) {}
uint64_t ftcan_unmarshal_unsigned(const uint8_t **data_ptr, size_t num_bytes) {
if (num_bytes > 8) {
num_bytes = 8;
}
const uint8_t *data = *data_ptr;
uint64_t result = 0;
for (size_t i = 0; i < num_bytes; i++) {
result <<= 8;
result |= data[i];
}
*data_ptr += num_bytes;
return result;
}
int64_t ftcan_unmarshal_signed(const uint8_t **data_ptr, size_t num_bytes) {
if (num_bytes > 8) {
num_bytes = 8;
}
uint64_t result_unsigned = ftcan_unmarshal_unsigned(data_ptr, num_bytes);
// Sign extend by shifting left, then copying to a signed int and shifting
// back to the right
size_t diff_to_64 = 64 - num_bytes * 8;
result_unsigned <<= diff_to_64;
int64_t result;
memcpy(&result, &result_unsigned, 8);
return result >> diff_to_64;
}
uint8_t *ftcan_marshal_unsigned(uint8_t *data, uint64_t val, size_t num_bytes) {
if (num_bytes > 8) {
num_bytes = 8;
}
for (int i = num_bytes - 1; i >= 0; i--) {
data[i] = val & 0xFF;
val >>= 8;
}
return data + num_bytes;
}
uint8_t *ftcan_marshal_signed(uint8_t *data, int64_t val, size_t num_bytes) {
return ftcan_marshal_unsigned(data, val, num_bytes);
}

View File

@ -47,19 +47,25 @@
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
// htim2 CH3,4 BAT_COOLING_PWM,ENABLE
// htim3 CH3,4 ESC_L_PWM,R_PWM
// htim4 CH1,2,3 LED R,G,B
// htim15 CH1,2 ESC_COOLING_ENABLE,PWM
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
CAN_HandleTypeDef hcan;
I2C_HandleTypeDef hi2c1;
I2C_HandleTypeDef hi2c2;
SPI_HandleTypeDef hspi1;
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim2;
UART_HandleTypeDef huart1;
TIM_HandleTypeDef htim3;
TIM_HandleTypeDef htim4;
TIM_HandleTypeDef htim15;
/* USER CODE BEGIN PV */
@ -71,9 +77,11 @@ static void MX_GPIO_Init(void);
static void MX_CAN_Init(void);
static void MX_I2C1_Init(void);
static void MX_SPI1_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_TIM1_Init(void);
static void MX_TIM15_Init(void);
static void MX_I2C2_Init(void);
static void MX_TIM2_Init(void);
static void MX_TIM3_Init(void);
static void MX_TIM4_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
@ -115,15 +123,17 @@ int main(void)
MX_CAN_Init();
MX_I2C1_Init();
MX_SPI1_Init();
MX_USART1_UART_Init();
MX_TIM1_Init();
MX_TIM15_Init();
MX_I2C2_Init();
MX_TIM2_Init();
MX_TIM3_Init();
MX_TIM4_Init();
/* USER CODE BEGIN 2 */
sm_init();
tmp1075_init(&hi2c1);
AMS_Init(&hspi1);
can_init(&hcan);
PWM_control_init(&htim15, &htim1);
PWM_control_init(&htim3, &htim2, &htim15);
HAL_Delay(10);
/* USER CODE END 2 */
@ -178,11 +188,9 @@ void SystemClock_Config(void)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1|RCC_PERIPHCLK_I2C1
|RCC_PERIPHCLK_TIM1;
PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2;
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_I2C1|RCC_PERIPHCLK_I2C2;
PeriphClkInit.I2c1ClockSelection = RCC_I2C1CLKSOURCE_HSI;
PeriphClkInit.Tim1ClockSelection = RCC_TIM1CLK_HCLK;
PeriphClkInit.I2c2ClockSelection = RCC_I2C2CLKSOURCE_HSI;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
@ -274,6 +282,54 @@ static void MX_I2C1_Init(void)
}
/**
* @brief I2C2 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C2_Init(void)
{
/* USER CODE BEGIN I2C2_Init 0 */
/* USER CODE END I2C2_Init 0 */
/* USER CODE BEGIN I2C2_Init 1 */
/* USER CODE END I2C2_Init 1 */
hi2c2.Instance = I2C2;
hi2c2.Init.Timing = 0x2000090E;
hi2c2.Init.OwnAddress1 = 0;
hi2c2.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c2.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c2.Init.OwnAddress2 = 0;
hi2c2.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
hi2c2.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c2.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c2) != HAL_OK)
{
Error_Handler();
}
/** Configure Analogue filter
*/
if (HAL_I2CEx_ConfigAnalogFilter(&hi2c2, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
{
Error_Handler();
}
/** Configure Digital filter
*/
if (HAL_I2CEx_ConfigDigitalFilter(&hi2c2, 0) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C2_Init 2 */
/* USER CODE END I2C2_Init 2 */
}
/**
* @brief SPI1 Initialization Function
* @param None
@ -314,76 +370,6 @@ static void MX_SPI1_Init(void)
}
/**
* @brief TIM1 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM1_Init(void)
{
/* USER CODE BEGIN TIM1_Init 0 */
/* USER CODE END TIM1_Init 0 */
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
/* USER CODE BEGIN TIM1_Init 1 */
/* USER CODE END TIM1_Init 1 */
htim1.Instance = TIM1;
htim1.Init.Prescaler = 0;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 65535;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
{
Error_Handler();
}
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = 0;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
sBreakDeadTimeConfig.BreakFilter = 0;
sBreakDeadTimeConfig.Break2State = TIM_BREAK2_DISABLE;
sBreakDeadTimeConfig.Break2Polarity = TIM_BREAK2POLARITY_HIGH;
sBreakDeadTimeConfig.Break2Filter = 0;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM1_Init 2 */
/* USER CODE END TIM1_Init 2 */
HAL_TIM_MspPostInit(&htim1);
}
/**
* @brief TIM2 Initialization Function
* @param None
@ -401,15 +387,14 @@ static void MX_TIM2_Init(void)
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM15_Init 1 */
htim15.Instance = TIM15;
htim15.Init.Prescaler = 7;
htim15.Init.CounterMode = TIM_COUNTERMODE_UP;
htim15.Init.Period = 39999;
htim15.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim15.Init.RepetitionCounter = 0;
htim15.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&htim15) != HAL_OK)
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 4294967295;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
@ -435,37 +420,182 @@ static void MX_TIM2_Init(void)
}
/**
* @brief USART1 Initialization Function
* @brief TIM3 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void)
static void MX_TIM3_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE END TIM3_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 38400;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart1) != HAL_OK)
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 0;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 65535;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_4) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */
/* USER CODE END USART1_Init 2 */
/* USER CODE END TIM3_Init 2 */
HAL_TIM_MspPostInit(&htim3);
}
/**
* @brief TIM4 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM4_Init(void)
{
/* USER CODE BEGIN TIM4_Init 0 */
/* USER CODE END TIM4_Init 0 */
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM4_Init 1 */
/* USER CODE END TIM4_Init 1 */
htim4.Instance = TIM4;
htim4.Init.Prescaler = 0;
htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
htim4.Init.Period = 65535;
htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&htim4) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM4_Init 2 */
/* USER CODE END TIM4_Init 2 */
HAL_TIM_MspPostInit(&htim4);
}
/**
* @brief TIM15 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM15_Init(void)
{
/* USER CODE BEGIN TIM15_Init 0 */
/* USER CODE END TIM15_Init 0 */
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
/* USER CODE BEGIN TIM15_Init 1 */
/* USER CODE END TIM15_Init 1 */
htim15.Instance = TIM15;
htim15.Init.Prescaler = 0;
htim15.Init.CounterMode = TIM_COUNTERMODE_UP;
htim15.Init.Period = 65535;
htim15.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim15.Init.RepetitionCounter = 0;
htim15.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&htim15) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim15, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
if (HAL_TIM_PWM_ConfigChannel(&htim15, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim15, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = 0;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
sBreakDeadTimeConfig.BreakFilter = 0;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
if (HAL_TIMEx_ConfigBreakDeadTime(&htim15, &sBreakDeadTimeConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM15_Init 2 */
/* USER CODE END TIM15_Init 2 */
HAL_TIM_MspPostInit(&htim15);
}
@ -487,13 +617,10 @@ static void MX_GPIO_Init(void)
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, RELAY_EN_Pin|_60V_EN_Pin|CSB_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOA, CSB_Pin|EEPROM___WC__Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, STATUS_LED_R_Pin|STATUS_LED_B_Pin|STATUS_LED_G_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(PRECHARGE_EN_GPIO_Port, PRECHARGE_EN_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOB, BAT_COOLING_ENABLE_Pin|RELAY_ENABLE_Pin|PRECHARGE_ENABLE_Pin, GPIO_PIN_RESET);
/*Configure GPIO pins : PC13 PC14 PC15 */
GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15;
@ -501,33 +628,31 @@ static void MX_GPIO_Init(void)
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pins : RELAY_EN_Pin _60V_EN_Pin CSB_Pin */
GPIO_InitStruct.Pin = RELAY_EN_Pin|_60V_EN_Pin|CSB_Pin;
/*Configure GPIO pins : PA0 PA1 PA2 PA3 */
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : CSB_Pin EEPROM___WC__Pin */
GPIO_InitStruct.Pin = CSB_Pin|EEPROM___WC__Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : STATUS_LED_R_Pin STATUS_LED_B_Pin STATUS_LED_G_Pin PRECHARGE_EN_Pin */
GPIO_InitStruct.Pin = STATUS_LED_R_Pin|STATUS_LED_B_Pin|STATUS_LED_G_Pin|PRECHARGE_EN_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : PB10 PB12 PB13 PB14
PB4 PB5 PB8 */
GPIO_InitStruct.Pin = GPIO_PIN_10|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14
|GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_8;
/*Configure GPIO pins : PB2 PB12 PB13 */
GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_12|GPIO_PIN_13;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : RELAY_BATT_SIDE_ON_Pin RELAY_ESC_SIDE_ON_Pin CURRENT_SENSOR_ON_Pin */
GPIO_InitStruct.Pin = RELAY_BATT_SIDE_ON_Pin|RELAY_ESC_SIDE_ON_Pin|CURRENT_SENSOR_ON_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
/*Configure GPIO pins : BAT_COOLING_ENABLE_Pin RELAY_ENABLE_Pin PRECHARGE_ENABLE_Pin */
GPIO_InitStruct.Pin = BAT_COOLING_ENABLE_Pin|RELAY_ENABLE_Pin|PRECHARGE_ENABLE_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */

View File

@ -2,6 +2,7 @@
#include "AMS_HighLevel.h"
#include "TMP1075.h"
#include "errors.h"
#include "main.h"
#include "stm32f3xx_hal.h"
#include <stdint.h>
#include <stdio.h>
@ -189,11 +190,11 @@ void sm_set_relay(Relay relay, bool closed){
GPIO_PinState state = closed ? GPIO_PIN_SET : GPIO_PIN_RESET;
switch (relay) {
case RELAY_MAIN:
HAL_GPIO_WritePin(RELAY_EN_GPIO_Port, RELAY_EN_Pin, state);
HAL_GPIO_WritePin(RELAY_ENABLE_GPIO_Port, RELAY_ENABLE_Pin, state);
relay_closed = closed;
break;
case RELAY_PRECHARGE:
HAL_GPIO_WritePin(PRECHARGE_EN_GPIO_Port, PRECHARGE_EN_Pin, state);
HAL_GPIO_WritePin(PRECHARGE_ENABLE_GPIO_Port, PRECHARGE_ENABLE_Pin, state);
precharge_closed = closed;
break;
}

View File

@ -59,7 +59,7 @@
/* USER CODE END 0 */
void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim);
/**
/**
* Initializes the Global MSP.
*/
void HAL_MspInit(void)
@ -173,19 +173,19 @@ void HAL_I2C_MspInit(I2C_HandleTypeDef* hi2c)
PA15 ------> I2C1_SCL
PB9 ------> I2C1_SDA
*/
GPIO_InitStruct.Pin = GPIO_PIN_15;
GPIO_InitStruct.Pin = TMP_SCL_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF4_I2C1;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
HAL_GPIO_Init(TMP_SCL_GPIO_Port, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_9;
GPIO_InitStruct.Pin = TMP_SDA_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF4_I2C1;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
HAL_GPIO_Init(TMP_SDA_GPIO_Port, &GPIO_InitStruct);
/* Peripheral clock enable */
__HAL_RCC_I2C1_CLK_ENABLE();
@ -193,6 +193,30 @@ void HAL_I2C_MspInit(I2C_HandleTypeDef* hi2c)
/* USER CODE END I2C1_MspInit 1 */
}
else if(hi2c->Instance==I2C2)
{
/* USER CODE BEGIN I2C2_MspInit 0 */
/* USER CODE END I2C2_MspInit 0 */
__HAL_RCC_GPIOA_CLK_ENABLE();
/**I2C2 GPIO Configuration
PA9 ------> I2C2_SCL
PA10 ------> I2C2_SDA
*/
GPIO_InitStruct.Pin = EEPROM_SCL_Pin|EEPROM_SDA_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF4_I2C2;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* Peripheral clock enable */
__HAL_RCC_I2C2_CLK_ENABLE();
/* USER CODE BEGIN I2C2_MspInit 1 */
/* USER CODE END I2C2_MspInit 1 */
}
}
@ -216,14 +240,34 @@ void HAL_I2C_MspDeInit(I2C_HandleTypeDef* hi2c)
PA15 ------> I2C1_SCL
PB9 ------> I2C1_SDA
*/
HAL_GPIO_DeInit(GPIOA, GPIO_PIN_15);
HAL_GPIO_DeInit(TMP_SCL_GPIO_Port, TMP_SCL_Pin);
HAL_GPIO_DeInit(GPIOB, GPIO_PIN_9);
HAL_GPIO_DeInit(TMP_SDA_GPIO_Port, TMP_SDA_Pin);
/* USER CODE BEGIN I2C1_MspDeInit 1 */
/* USER CODE END I2C1_MspDeInit 1 */
}
else if(hi2c->Instance==I2C2)
{
/* USER CODE BEGIN I2C2_MspDeInit 0 */
/* USER CODE END I2C2_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_I2C2_CLK_DISABLE();
/**I2C2 GPIO Configuration
PA9 ------> I2C2_SCL
PA10 ------> I2C2_SDA
*/
HAL_GPIO_DeInit(EEPROM_SCL_GPIO_Port, EEPROM_SCL_Pin);
HAL_GPIO_DeInit(EEPROM_SDA_GPIO_Port, EEPROM_SDA_Pin);
/* USER CODE BEGIN I2C2_MspDeInit 1 */
/* USER CODE END I2C2_MspDeInit 1 */
}
}
@ -302,18 +346,7 @@ void HAL_SPI_MspDeInit(SPI_HandleTypeDef* hspi)
*/
void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef* htim_pwm)
{
if(htim_pwm->Instance==TIM1)
{
/* USER CODE BEGIN TIM1_MspInit 0 */
/* USER CODE END TIM1_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_TIM1_CLK_ENABLE();
/* USER CODE BEGIN TIM1_MspInit 1 */
/* USER CODE END TIM1_MspInit 1 */
}
else if(htim_pwm->Instance==TIM2)
if(htim_pwm->Instance==TIM2)
{
/* USER CODE BEGIN TIM2_MspInit 0 */
@ -324,53 +357,132 @@ void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef* htim_pwm)
/* USER CODE END TIM2_MspInit 1 */
}
else if(htim_pwm->Instance==TIM3)
{
/* USER CODE BEGIN TIM3_MspInit 0 */
/* USER CODE END TIM3_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_TIM3_CLK_ENABLE();
/* USER CODE BEGIN TIM3_MspInit 1 */
/* USER CODE END TIM3_MspInit 1 */
}
else if(htim_pwm->Instance==TIM4)
{
/* USER CODE BEGIN TIM4_MspInit 0 */
/* USER CODE END TIM4_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_TIM4_CLK_ENABLE();
/* USER CODE BEGIN TIM4_MspInit 1 */
/* USER CODE END TIM4_MspInit 1 */
}
else if(htim_pwm->Instance==TIM15)
{
/* USER CODE BEGIN TIM15_MspInit 0 */
/* USER CODE END TIM15_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_TIM15_CLK_ENABLE();
/* USER CODE BEGIN TIM15_MspInit 1 */
/* USER CODE END TIM15_MspInit 1 */
}
}
void HAL_TIM_MspPostInit(TIM_HandleTypeDef* htim)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
if(htim->Instance==TIM1)
{
/* USER CODE BEGIN TIM1_MspPostInit 0 */
/* USER CODE END TIM1_MspPostInit 0 */
__HAL_RCC_GPIOB_CLK_ENABLE();
/**TIM1 GPIO Configuration
PB15 ------> TIM1_CH3N
*/
GPIO_InitStruct.Pin = PWM_Battery_Cooling_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF4_TIM1;
HAL_GPIO_Init(PWM_Battery_Cooling_GPIO_Port, &GPIO_InitStruct);
/* USER CODE BEGIN TIM1_MspPostInit 1 */
/* USER CODE END TIM1_MspPostInit 1 */
}
else if(htim->Instance==TIM2)
if(htim->Instance==TIM2)
{
/* USER CODE BEGIN TIM2_MspPostInit 0 */
/* USER CODE END TIM2_MspPostInit 0 */
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/**TIM2 GPIO Configuration
PA2 ------> TIM2_CH3
PB10 ------> TIM2_CH3
*/
GPIO_InitStruct.Pin = GPIO_PIN_2;
GPIO_InitStruct.Pin = BAT_COOLING_PWM_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF1_TIM2;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
HAL_GPIO_Init(BAT_COOLING_PWM_GPIO_Port, &GPIO_InitStruct);
/* USER CODE BEGIN TIM2_MspPostInit 1 */
/* USER CODE END TIM2_MspPostInit 1 */
}
else if(htim->Instance==TIM3)
{
/* USER CODE BEGIN TIM3_MspPostInit 0 */
/* USER CODE END TIM3_MspPostInit 0 */
__HAL_RCC_GPIOB_CLK_ENABLE();
/**TIM3 GPIO Configuration
PB0 ------> TIM3_CH3
PB1 ------> TIM3_CH4
*/
GPIO_InitStruct.Pin = ESC_L_PWM_Pin|ESC_R_PWM_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF2_TIM3;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* USER CODE BEGIN TIM3_MspPostInit 1 */
/* USER CODE END TIM3_MspPostInit 1 */
}
else if(htim->Instance==TIM4)
{
/* USER CODE BEGIN TIM4_MspPostInit 0 */
/* USER CODE END TIM4_MspPostInit 0 */
__HAL_RCC_GPIOB_CLK_ENABLE();
/**TIM4 GPIO Configuration
PB6 ------> TIM4_CH1
PB7 ------> TIM4_CH2
PB8 ------> TIM4_CH3
*/
GPIO_InitStruct.Pin = STATUS_LED_R_Pin|STATUS_LED_G_Pin|STATUS_LED_B_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF2_TIM4;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* USER CODE BEGIN TIM4_MspPostInit 1 */
/* USER CODE END TIM4_MspPostInit 1 */
}
else if(htim->Instance==TIM15)
{
/* USER CODE BEGIN TIM15_MspPostInit 0 */
/* USER CODE END TIM15_MspPostInit 0 */
__HAL_RCC_GPIOB_CLK_ENABLE();
/**TIM15 GPIO Configuration
PB14 ------> TIM15_CH1
PB15 ------> TIM15_CH2
*/
GPIO_InitStruct.Pin = ESC_COOLING_ENABLE_Pin|ESC_COOLING_PWM_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF1_TIM15;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* USER CODE BEGIN TIM15_MspPostInit 1 */
/* USER CODE END TIM15_MspPostInit 1 */
}
}
/**
@ -381,18 +493,7 @@ void HAL_TIM_MspPostInit(TIM_HandleTypeDef* htim)
*/
void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef* htim_pwm)
{
if(htim_pwm->Instance==TIM1)
{
/* USER CODE BEGIN TIM1_MspDeInit 0 */
/* USER CODE END TIM1_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_TIM1_CLK_DISABLE();
/* USER CODE BEGIN TIM1_MspDeInit 1 */
/* USER CODE END TIM1_MspDeInit 1 */
}
else if(htim_pwm->Instance==TIM2)
if(htim_pwm->Instance==TIM2)
{
/* USER CODE BEGIN TIM2_MspDeInit 0 */
@ -403,70 +504,38 @@ void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef* htim_pwm)
/* USER CODE END TIM2_MspDeInit 1 */
}
}
/**
* @brief UART MSP Initialization
* This function configures the hardware resources used in this example
* @param huart: UART handle pointer
* @retval None
*/
void HAL_UART_MspInit(UART_HandleTypeDef* huart)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
if(huart->Instance==USART1)
else if(htim_pwm->Instance==TIM3)
{
/* USER CODE BEGIN USART1_MspInit 0 */
/* USER CODE BEGIN TIM3_MspDeInit 0 */
/* USER CODE END USART1_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_USART1_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/**USART1 GPIO Configuration
PB6 ------> USART1_TX
PB7 ------> USART1_RX
*/
GPIO_InitStruct.Pin = GPIO_PIN_6|GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF7_USART1;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* USER CODE BEGIN USART1_MspInit 1 */
/* USER CODE END USART1_MspInit 1 */
}
}
/**
* @brief UART MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param huart: UART handle pointer
* @retval None
*/
void HAL_UART_MspDeInit(UART_HandleTypeDef* huart)
{
if(huart->Instance==USART1)
{
/* USER CODE BEGIN USART1_MspDeInit 0 */
/* USER CODE END USART1_MspDeInit 0 */
/* USER CODE END TIM3_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_USART1_CLK_DISABLE();
__HAL_RCC_TIM3_CLK_DISABLE();
/* USER CODE BEGIN TIM3_MspDeInit 1 */
/**USART1 GPIO Configuration
PB6 ------> USART1_TX
PB7 ------> USART1_RX
*/
HAL_GPIO_DeInit(GPIOB, GPIO_PIN_6|GPIO_PIN_7);
/* USER CODE END TIM3_MspDeInit 1 */
}
else if(htim_pwm->Instance==TIM4)
{
/* USER CODE BEGIN TIM4_MspDeInit 0 */
/* USER CODE BEGIN USART1_MspDeInit 1 */
/* USER CODE END TIM4_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_TIM4_CLK_DISABLE();
/* USER CODE BEGIN TIM4_MspDeInit 1 */
/* USER CODE END USART1_MspDeInit 1 */
/* USER CODE END TIM4_MspDeInit 1 */
}
else if(htim_pwm->Instance==TIM15)
{
/* USER CODE BEGIN TIM15_MspDeInit 0 */
/* USER CODE END TIM15_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_TIM15_CLK_DISABLE();
/* USER CODE BEGIN TIM15_MspDeInit 1 */
/* USER CODE END TIM15_MspDeInit 1 */
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,513 +0,0 @@
/**
******************************************************************************
* @file stm32f3xx_hal_uart_ex.h
* @author MCD Application Team
* @brief Header file of UART HAL Extended module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32F3xx_HAL_UART_EX_H
#define STM32F3xx_HAL_UART_EX_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f3xx_hal_def.h"
/** @addtogroup STM32F3xx_HAL_Driver
* @{
*/
/** @addtogroup UARTEx
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup UARTEx_Exported_Types UARTEx Exported Types
* @{
*/
/**
* @brief UART wake up from stop mode parameters
*/
typedef struct
{
uint32_t WakeUpEvent; /*!< Specifies which event will activate the Wakeup from Stop mode flag (WUF).
This parameter can be a value of @ref UART_WakeUp_from_Stop_Selection.
If set to UART_WAKEUP_ON_ADDRESS, the two other fields below must
be filled up. */
uint16_t AddressLength; /*!< Specifies whether the address is 4 or 7-bit long.
This parameter can be a value of @ref UARTEx_WakeUp_Address_Length. */
uint8_t Address; /*!< UART/USART node address (7-bit long max). */
} UART_WakeUpTypeDef;
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup UARTEx_Exported_Constants UARTEx Exported Constants
* @{
*/
/** @defgroup UARTEx_Word_Length UARTEx Word Length
* @{
*/
#if defined(USART_CR1_M1)
#define UART_WORDLENGTH_7B USART_CR1_M1 /*!< 7-bit long UART frame */
#endif /* USART_CR1_M1 */
#define UART_WORDLENGTH_8B 0x00000000U /*!< 8-bit long UART frame */
#if defined (USART_CR1_M0)
#define UART_WORDLENGTH_9B USART_CR1_M0 /*!< 9-bit long UART frame */
#else
#define UART_WORDLENGTH_9B USART_CR1_M /*!< 9-bit long UART frame */
#endif /* USART_CR1_M0 */
/**
* @}
*/
/** @defgroup UARTEx_WakeUp_Address_Length UARTEx WakeUp Address Length
* @{
*/
#define UART_ADDRESS_DETECT_4B 0x00000000U /*!< 4-bit long wake-up address */
#define UART_ADDRESS_DETECT_7B USART_CR2_ADDM7 /*!< 7-bit long wake-up address */
/**
* @}
*/
/**
* @}
*/
/* Exported macros -----------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup UARTEx_Exported_Functions
* @{
*/
/** @addtogroup UARTEx_Exported_Functions_Group1
* @{
*/
/* Initialization and de-initialization functions ****************************/
HAL_StatusTypeDef HAL_RS485Ex_Init(UART_HandleTypeDef *huart, uint32_t Polarity, uint32_t AssertionTime,
uint32_t DeassertionTime);
/**
* @}
*/
/** @addtogroup UARTEx_Exported_Functions_Group2
* @{
*/
void HAL_UARTEx_WakeupCallback(UART_HandleTypeDef *huart);
/**
* @}
*/
/** @addtogroup UARTEx_Exported_Functions_Group3
* @{
*/
/* Peripheral Control functions **********************************************/
HAL_StatusTypeDef HAL_UARTEx_StopModeWakeUpSourceConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection);
HAL_StatusTypeDef HAL_UARTEx_EnableStopMode(UART_HandleTypeDef *huart);
HAL_StatusTypeDef HAL_UARTEx_DisableStopMode(UART_HandleTypeDef *huart);
HAL_StatusTypeDef HAL_MultiProcessorEx_AddressLength_Set(UART_HandleTypeDef *huart, uint32_t AddressLength);
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint16_t *RxLen,
uint32_t Timeout);
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
HAL_UART_RxEventTypeTypeDef HAL_UARTEx_GetRxEventType(UART_HandleTypeDef *huart);
/**
* @}
*/
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup UARTEx_Private_Macros UARTEx Private Macros
* @{
*/
/** @brief Report the UART clock source.
* @param __HANDLE__ specifies the UART Handle.
* @param __CLOCKSOURCE__ output variable.
* @retval UART clocking source, written in __CLOCKSOURCE__.
*/
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || defined(STM32F302xC) \
|| defined(STM32F303xC) || defined(STM32F358xx)
#define UART_GETCLOCKSOURCE(__HANDLE__,__CLOCKSOURCE__) \
do { \
if((__HANDLE__)->Instance == USART1) \
{ \
switch(__HAL_RCC_GET_USART1_SOURCE()) \
{ \
case RCC_USART1CLKSOURCE_PCLK2: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK2; \
break; \
case RCC_USART1CLKSOURCE_HSI: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI; \
break; \
case RCC_USART1CLKSOURCE_SYSCLK: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK; \
break; \
case RCC_USART1CLKSOURCE_LSE: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE; \
break; \
default: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED; \
break; \
} \
} \
else if((__HANDLE__)->Instance == USART2) \
{ \
switch(__HAL_RCC_GET_USART2_SOURCE()) \
{ \
case RCC_USART2CLKSOURCE_PCLK1: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1; \
break; \
case RCC_USART2CLKSOURCE_HSI: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI; \
break; \
case RCC_USART2CLKSOURCE_SYSCLK: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK; \
break; \
case RCC_USART2CLKSOURCE_LSE: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE; \
break; \
default: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED; \
break; \
} \
} \
else if((__HANDLE__)->Instance == USART3) \
{ \
switch(__HAL_RCC_GET_USART3_SOURCE()) \
{ \
case RCC_USART3CLKSOURCE_PCLK1: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1; \
break; \
case RCC_USART3CLKSOURCE_HSI: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI; \
break; \
case RCC_USART3CLKSOURCE_SYSCLK: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK; \
break; \
case RCC_USART3CLKSOURCE_LSE: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE; \
break; \
default: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED; \
break; \
} \
} \
else if((__HANDLE__)->Instance == UART4) \
{ \
switch(__HAL_RCC_GET_UART4_SOURCE()) \
{ \
case RCC_UART4CLKSOURCE_PCLK1: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1; \
break; \
case RCC_UART4CLKSOURCE_HSI: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI; \
break; \
case RCC_UART4CLKSOURCE_SYSCLK: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK; \
break; \
case RCC_UART4CLKSOURCE_LSE: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE; \
break; \
default: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED; \
break; \
} \
} \
else if ((__HANDLE__)->Instance == UART5) \
{ \
switch(__HAL_RCC_GET_UART5_SOURCE()) \
{ \
case RCC_UART5CLKSOURCE_PCLK1: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1; \
break; \
case RCC_UART5CLKSOURCE_HSI: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI; \
break; \
case RCC_UART5CLKSOURCE_SYSCLK: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK; \
break; \
case RCC_UART5CLKSOURCE_LSE: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE; \
break; \
default: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED; \
break; \
} \
} \
else \
{ \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED; \
} \
} while(0U)
#elif defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || defined(STM32F301x8) \
|| defined(STM32F302x8) || defined(STM32F318xx)
#define UART_GETCLOCKSOURCE(__HANDLE__,__CLOCKSOURCE__) \
do { \
if((__HANDLE__)->Instance == USART1) \
{ \
switch(__HAL_RCC_GET_USART1_SOURCE()) \
{ \
case RCC_USART1CLKSOURCE_PCLK1: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1; \
break; \
case RCC_USART1CLKSOURCE_HSI: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI; \
break; \
case RCC_USART1CLKSOURCE_SYSCLK: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK; \
break; \
case RCC_USART1CLKSOURCE_LSE: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE; \
break; \
default: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED; \
break; \
} \
} \
else if((__HANDLE__)->Instance == USART2) \
{ \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1; \
} \
else if((__HANDLE__)->Instance == USART3) \
{ \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1; \
} \
else \
{ \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED; \
} \
} while(0U)
#else
#define UART_GETCLOCKSOURCE(__HANDLE__,__CLOCKSOURCE__) \
do { \
if((__HANDLE__)->Instance == USART1) \
{ \
switch(__HAL_RCC_GET_USART1_SOURCE()) \
{ \
case RCC_USART1CLKSOURCE_PCLK2: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK2; \
break; \
case RCC_USART1CLKSOURCE_HSI: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI; \
break; \
case RCC_USART1CLKSOURCE_SYSCLK: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK; \
break; \
case RCC_USART1CLKSOURCE_LSE: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE; \
break; \
default: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED; \
break; \
} \
} \
else if((__HANDLE__)->Instance == USART2) \
{ \
switch(__HAL_RCC_GET_USART2_SOURCE()) \
{ \
case RCC_USART2CLKSOURCE_PCLK1: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1; \
break; \
case RCC_USART2CLKSOURCE_HSI: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI; \
break; \
case RCC_USART2CLKSOURCE_SYSCLK: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK; \
break; \
case RCC_USART2CLKSOURCE_LSE: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE; \
break; \
default: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED; \
break; \
} \
} \
else if((__HANDLE__)->Instance == USART3) \
{ \
switch(__HAL_RCC_GET_USART3_SOURCE()) \
{ \
case RCC_USART3CLKSOURCE_PCLK1: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1; \
break; \
case RCC_USART3CLKSOURCE_HSI: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI; \
break; \
case RCC_USART3CLKSOURCE_SYSCLK: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK; \
break; \
case RCC_USART3CLKSOURCE_LSE: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE; \
break; \
default: \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED; \
break; \
} \
} \
else \
{ \
(__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED; \
} \
} while(0U)
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || STM32F302xC || STM32F303xC || STM32F358xx */
/** @brief Report the UART mask to apply to retrieve the received data
* according to the word length and to the parity bits activation.
* @note If PCE = 1, the parity bit is not included in the data extracted
* by the reception API().
* This masking operation is not carried out in the case of
* DMA transfers.
* @param __HANDLE__ specifies the UART Handle.
* @retval None, the mask to apply to UART RDR register is stored in (__HANDLE__)->Mask field.
*/
#if defined (USART_CR1_M1)
#define UART_MASK_COMPUTATION(__HANDLE__) \
do { \
if ((__HANDLE__)->Init.WordLength == UART_WORDLENGTH_9B) \
{ \
if ((__HANDLE__)->Init.Parity == UART_PARITY_NONE) \
{ \
(__HANDLE__)->Mask = 0x01FFU ; \
} \
else \
{ \
(__HANDLE__)->Mask = 0x00FFU ; \
} \
} \
else if ((__HANDLE__)->Init.WordLength == UART_WORDLENGTH_8B) \
{ \
if ((__HANDLE__)->Init.Parity == UART_PARITY_NONE) \
{ \
(__HANDLE__)->Mask = 0x00FFU ; \
} \
else \
{ \
(__HANDLE__)->Mask = 0x007FU ; \
} \
} \
else if ((__HANDLE__)->Init.WordLength == UART_WORDLENGTH_7B) \
{ \
if ((__HANDLE__)->Init.Parity == UART_PARITY_NONE) \
{ \
(__HANDLE__)->Mask = 0x007FU ; \
} \
else \
{ \
(__HANDLE__)->Mask = 0x003FU ; \
} \
} \
else \
{ \
(__HANDLE__)->Mask = 0x0000U; \
} \
} while(0U)
#else
#define UART_MASK_COMPUTATION(__HANDLE__) \
do { \
if ((__HANDLE__)->Init.WordLength == UART_WORDLENGTH_9B) \
{ \
if ((__HANDLE__)->Init.Parity == UART_PARITY_NONE) \
{ \
(__HANDLE__)->Mask = 0x01FFU ; \
} \
else \
{ \
(__HANDLE__)->Mask = 0x00FFU ; \
} \
} \
else if ((__HANDLE__)->Init.WordLength == UART_WORDLENGTH_8B) \
{ \
if ((__HANDLE__)->Init.Parity == UART_PARITY_NONE) \
{ \
(__HANDLE__)->Mask = 0x00FFU ; \
} \
else \
{ \
(__HANDLE__)->Mask = 0x007FU ; \
} \
} \
else \
{ \
(__HANDLE__)->Mask = 0x0000U; \
} \
} while(0U)
#endif /* USART_CR1_M1 */
/**
* @brief Ensure that UART frame length is valid.
* @param __LENGTH__ UART frame length.
* @retval SET (__LENGTH__ is valid) or RESET (__LENGTH__ is invalid)
*/
#if defined (USART_CR1_M1)
#define IS_UART_WORD_LENGTH(__LENGTH__) (((__LENGTH__) == UART_WORDLENGTH_7B) || \
((__LENGTH__) == UART_WORDLENGTH_8B) || \
((__LENGTH__) == UART_WORDLENGTH_9B))
#else
#define IS_UART_WORD_LENGTH(__LENGTH__) (((__LENGTH__) == UART_WORDLENGTH_8B) || \
((__LENGTH__) == UART_WORDLENGTH_9B))
#endif /* USART_CR1_M1 */
/**
* @brief Ensure that UART wake-up address length is valid.
* @param __ADDRESS__ UART wake-up address length.
* @retval SET (__ADDRESS__ is valid) or RESET (__ADDRESS__ is invalid)
*/
#define IS_UART_ADDRESSLENGTH_DETECT(__ADDRESS__) (((__ADDRESS__) == UART_ADDRESS_DETECT_4B) || \
((__ADDRESS__) == UART_ADDRESS_DETECT_7B))
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32F3xx_HAL_UART_EX_H */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,775 +0,0 @@
/**
******************************************************************************
* @file stm32f3xx_hal_uart_ex.c
* @author MCD Application Team
* @brief Extended UART HAL module driver.
* This file provides firmware functions to manage the following extended
* functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART).
* + Initialization and de-initialization functions
* + Peripheral Control functions
*
*
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### UART peripheral extended features #####
==============================================================================
(#) Declare a UART_HandleTypeDef handle structure.
(#) For the UART RS485 Driver Enable mode, initialize the UART registers
by calling the HAL_RS485Ex_Init() API.
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f3xx_hal.h"
/** @addtogroup STM32F3xx_HAL_Driver
* @{
*/
/** @defgroup UARTEx UARTEx
* @brief UART Extended HAL module driver
* @{
*/
#ifdef HAL_UART_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup UARTEx_Private_Functions UARTEx Private Functions
* @{
*/
static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection);
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup UARTEx_Exported_Functions UARTEx Exported Functions
* @{
*/
/** @defgroup UARTEx_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Extended Initialization and Configuration Functions
*
@verbatim
===============================================================================
##### Initialization and Configuration functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to initialize the USARTx or the UARTy
in asynchronous mode.
(+) For the asynchronous mode the parameters below can be configured:
(++) Baud Rate
(++) Word Length
(++) Stop Bit
(++) Parity: If the parity is enabled, then the MSB bit of the data written
in the data register is transmitted but is changed by the parity bit.
(++) Hardware flow control
(++) Receiver/transmitter modes
(++) Over Sampling Method
(++) One-Bit Sampling Method
(+) For the asynchronous mode, the following advanced features can be configured as well:
(++) TX and/or RX pin level inversion
(++) data logical level inversion
(++) RX and TX pins swap
(++) RX overrun detection disabling
(++) DMA disabling on RX error
(++) MSB first on communication line
(++) auto Baud rate detection
[..]
The HAL_RS485Ex_Init() API follows the UART RS485 mode configuration
procedures (details for the procedures are available in reference manual).
@endverbatim
Depending on the frame length defined by the M1 and M0 bits (7-bit,
8-bit or 9-bit), the possible UART formats are listed in the
following table.
Table 1. UART frame format.
+-----------------------------------------------------------------------+
| M1 bit | M0 bit | PCE bit | UART frame |
|---------|---------|-----------|---------------------------------------|
| 0 | 0 | 0 | | SB | 8 bit data | STB | |
|---------|---------|-----------|---------------------------------------|
| 0 | 0 | 1 | | SB | 7 bit data | PB | STB | |
|---------|---------|-----------|---------------------------------------|
| 0 | 1 | 0 | | SB | 9 bit data | STB | |
|---------|---------|-----------|---------------------------------------|
| 0 | 1 | 1 | | SB | 8 bit data | PB | STB | |
|---------|---------|-----------|---------------------------------------|
| 1 | 0 | 0 | | SB | 7 bit data | STB | |
|---------|---------|-----------|---------------------------------------|
| 1 | 0 | 1 | | SB | 6 bit data | PB | STB | |
+-----------------------------------------------------------------------+
* @{
*/
/**
* @brief Initialize the RS485 Driver enable feature according to the specified
* parameters in the UART_InitTypeDef and creates the associated handle.
* @param huart UART handle.
* @param Polarity Select the driver enable polarity.
* This parameter can be one of the following values:
* @arg @ref UART_DE_POLARITY_HIGH DE signal is active high
* @arg @ref UART_DE_POLARITY_LOW DE signal is active low
* @param AssertionTime Driver Enable assertion time:
* 5-bit value defining the time between the activation of the DE (Driver Enable)
* signal and the beginning of the start bit. It is expressed in sample time
* units (1/8 or 1/16 bit time, depending on the oversampling rate)
* @param DeassertionTime Driver Enable deassertion time:
* 5-bit value defining the time between the end of the last stop bit, in a
* transmitted message, and the de-activation of the DE (Driver Enable) signal.
* It is expressed in sample time units (1/8 or 1/16 bit time, depending on the
* oversampling rate).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RS485Ex_Init(UART_HandleTypeDef *huart, uint32_t Polarity, uint32_t AssertionTime,
uint32_t DeassertionTime)
{
uint32_t temp;
/* Check the UART handle allocation */
if (huart == NULL)
{
return HAL_ERROR;
}
/* Check the Driver Enable UART instance */
assert_param(IS_UART_DRIVER_ENABLE_INSTANCE(huart->Instance));
/* Check the Driver Enable polarity */
assert_param(IS_UART_DE_POLARITY(Polarity));
/* Check the Driver Enable assertion time */
assert_param(IS_UART_ASSERTIONTIME(AssertionTime));
/* Check the Driver Enable deassertion time */
assert_param(IS_UART_DEASSERTIONTIME(DeassertionTime));
if (huart->gState == HAL_UART_STATE_RESET)
{
/* Allocate lock resource and initialize it */
huart->Lock = HAL_UNLOCKED;
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
UART_InitCallbacksToDefault(huart);
if (huart->MspInitCallback == NULL)
{
huart->MspInitCallback = HAL_UART_MspInit;
}
/* Init the low level hardware */
huart->MspInitCallback(huart);
#else
/* Init the low level hardware : GPIO, CLOCK, CORTEX */
HAL_UART_MspInit(huart);
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
}
huart->gState = HAL_UART_STATE_BUSY;
/* Disable the Peripheral */
__HAL_UART_DISABLE(huart);
/* Set the UART Communication parameters */
if (UART_SetConfig(huart) == HAL_ERROR)
{
return HAL_ERROR;
}
if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
{
UART_AdvFeatureConfig(huart);
}
/* Enable the Driver Enable mode by setting the DEM bit in the CR3 register */
SET_BIT(huart->Instance->CR3, USART_CR3_DEM);
/* Set the Driver Enable polarity */
MODIFY_REG(huart->Instance->CR3, USART_CR3_DEP, Polarity);
/* Set the Driver Enable assertion and deassertion times */
temp = (AssertionTime << UART_CR1_DEAT_ADDRESS_LSB_POS);
temp |= (DeassertionTime << UART_CR1_DEDT_ADDRESS_LSB_POS);
MODIFY_REG(huart->Instance->CR1, (USART_CR1_DEDT | USART_CR1_DEAT), temp);
/* Enable the Peripheral */
__HAL_UART_ENABLE(huart);
/* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
return (UART_CheckIdleState(huart));
}
/**
* @}
*/
/** @defgroup UARTEx_Exported_Functions_Group2 IO operation functions
* @brief Extended functions
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
This subsection provides a set of Wakeup and FIFO mode related callback functions.
(#) Wakeup from Stop mode Callback:
(+) HAL_UARTEx_WakeupCallback()
@endverbatim
* @{
*/
/**
* @brief UART wakeup from Stop mode callback.
* @param huart UART handle.
* @retval None
*/
__weak void HAL_UARTEx_WakeupCallback(UART_HandleTypeDef *huart)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(huart);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_UARTEx_WakeupCallback can be implemented in the user file.
*/
}
/**
* @}
*/
/** @defgroup UARTEx_Exported_Functions_Group3 Peripheral Control functions
* @brief Extended Peripheral Control functions
*
@verbatim
===============================================================================
##### Peripheral Control functions #####
===============================================================================
[..] This section provides the following functions:
(+) HAL_MultiProcessorEx_AddressLength_Set() API optionally sets the UART node address
detection length to more than 4 bits for multiprocessor address mark wake up.
(+) HAL_UARTEx_StopModeWakeUpSourceConfig() API defines the wake-up from stop mode
trigger: address match, Start Bit detection or RXNE bit status.
(+) HAL_UARTEx_EnableStopMode() API enables the UART to wake up the MCU from stop mode
(+) HAL_UARTEx_DisableStopMode() API disables the above functionality
[..] This subsection also provides a set of additional functions providing enhanced reception
services to user. (For example, these functions allow application to handle use cases
where number of data to be received is unknown).
(#) Compared to standard reception services which only consider number of received
data elements as reception completion criteria, these functions also consider additional events
as triggers for updating reception status to caller :
(+) Detection of inactivity period (RX line has not been active for a given period).
(++) RX inactivity detected by IDLE event, i.e. RX line has been in idle state (normally high state)
for 1 frame time, after last received byte.
(++) RX inactivity detected by RTO, i.e. line has been in idle state
for a programmable time, after last received byte.
(+) Detection that a specific character has been received.
(#) There are two mode of transfer:
(+) Blocking mode: The reception is performed in polling mode, until either expected number of data is received,
or till IDLE event occurs. Reception is handled only during function execution.
When function exits, no data reception could occur. HAL status and number of actually received data elements,
are returned by function after finishing transfer.
(+) Non-Blocking mode: The reception is performed using Interrupts or DMA.
These API's return the HAL status.
The end of the data processing will be indicated through the
dedicated UART IRQ when using Interrupt mode or the DMA IRQ when using DMA mode.
The HAL_UARTEx_RxEventCallback() user callback will be executed during Receive process
The HAL_UART_ErrorCallback()user callback will be executed when a reception error is detected.
(#) Blocking mode API:
(+) HAL_UARTEx_ReceiveToIdle()
(#) Non-Blocking mode API with Interrupt:
(+) HAL_UARTEx_ReceiveToIdle_IT()
(#) Non-Blocking mode API with DMA:
(+) HAL_UARTEx_ReceiveToIdle_DMA()
@endverbatim
* @{
*/
/**
* @brief By default in multiprocessor mode, when the wake up method is set
* to address mark, the UART handles only 4-bit long addresses detection;
* this API allows to enable longer addresses detection (6-, 7- or 8-bit
* long).
* @note Addresses detection lengths are: 6-bit address detection in 7-bit data mode,
* 7-bit address detection in 8-bit data mode, 8-bit address detection in 9-bit data mode.
* @param huart UART handle.
* @param AddressLength This parameter can be one of the following values:
* @arg @ref UART_ADDRESS_DETECT_4B 4-bit long address
* @arg @ref UART_ADDRESS_DETECT_7B 6-, 7- or 8-bit long address
* @retval HAL status
*/
HAL_StatusTypeDef HAL_MultiProcessorEx_AddressLength_Set(UART_HandleTypeDef *huart, uint32_t AddressLength)
{
/* Check the UART handle allocation */
if (huart == NULL)
{
return HAL_ERROR;
}
/* Check the address length parameter */
assert_param(IS_UART_ADDRESSLENGTH_DETECT(AddressLength));
huart->gState = HAL_UART_STATE_BUSY;
/* Disable the Peripheral */
__HAL_UART_DISABLE(huart);
/* Set the address length */
MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, AddressLength);
/* Enable the Peripheral */
__HAL_UART_ENABLE(huart);
/* TEACK and/or REACK to check before moving huart->gState to Ready */
return (UART_CheckIdleState(huart));
}
/**
* @brief Set Wakeup from Stop mode interrupt flag selection.
* @note It is the application responsibility to enable the interrupt used as
* usart_wkup interrupt source before entering low-power mode.
* @param huart UART handle.
* @param WakeUpSelection Address match, Start Bit detection or RXNE/RXFNE bit status.
* This parameter can be one of the following values:
* @arg @ref UART_WAKEUP_ON_ADDRESS
* @arg @ref UART_WAKEUP_ON_STARTBIT
* @arg @ref UART_WAKEUP_ON_READDATA_NONEMPTY
* @retval HAL status
*/
HAL_StatusTypeDef HAL_UARTEx_StopModeWakeUpSourceConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t tickstart;
/* check the wake-up from stop mode UART instance */
assert_param(IS_UART_WAKEUP_FROMSTOP_INSTANCE(huart->Instance));
/* check the wake-up selection parameter */
assert_param(IS_UART_WAKEUP_SELECTION(WakeUpSelection.WakeUpEvent));
/* Process Locked */
__HAL_LOCK(huart);
huart->gState = HAL_UART_STATE_BUSY;
/* Disable the Peripheral */
__HAL_UART_DISABLE(huart);
/* Set the wake-up selection scheme */
MODIFY_REG(huart->Instance->CR3, USART_CR3_WUS, WakeUpSelection.WakeUpEvent);
if (WakeUpSelection.WakeUpEvent == UART_WAKEUP_ON_ADDRESS)
{
UARTEx_Wakeup_AddressConfig(huart, WakeUpSelection);
}
/* Enable the Peripheral */
__HAL_UART_ENABLE(huart);
/* Init tickstart for timeout management */
tickstart = HAL_GetTick();
/* Wait until REACK flag is set */
if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_REACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK)
{
status = HAL_TIMEOUT;
}
else
{
/* Initialize the UART State */
huart->gState = HAL_UART_STATE_READY;
}
/* Process Unlocked */
__HAL_UNLOCK(huart);
return status;
}
/**
* @brief Enable UART Stop Mode.
* @note The UART is able to wake up the MCU from Stop 1 mode as long as UART clock is HSI or LSE.
* @param huart UART handle.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_UARTEx_EnableStopMode(UART_HandleTypeDef *huart)
{
/* Process Locked */
__HAL_LOCK(huart);
/* Set UESM bit */
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_UESM);
/* Process Unlocked */
__HAL_UNLOCK(huart);
return HAL_OK;
}
/**
* @brief Disable UART Stop Mode.
* @param huart UART handle.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_UARTEx_DisableStopMode(UART_HandleTypeDef *huart)
{
/* Process Locked */
__HAL_LOCK(huart);
/* Clear UESM bit */
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_UESM);
/* Process Unlocked */
__HAL_UNLOCK(huart);
return HAL_OK;
}
/**
* @brief Receive an amount of data in blocking mode till either the expected number of data
* is received or an IDLE event occurs.
* @note HAL_OK is returned if reception is completed (expected number of data has been received)
* or if reception is stopped after IDLE event (less than the expected number of data has been received)
* In this case, RxLen output parameter indicates number of data available in reception buffer.
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
* the received data is handled as a set of uint16_t. In this case, Size must indicate the number
* of uint16_t available through pData.
* @param huart UART handle.
* @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
* @param Size Amount of data elements (uint8_t or uint16_t) to be received.
* @param RxLen Number of data elements finally received
* (could be lower than Size, in case reception ends on IDLE event)
* @param Timeout Timeout duration expressed in ms (covers the whole reception sequence).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint16_t *RxLen,
uint32_t Timeout)
{
uint8_t *pdata8bits;
uint16_t *pdata16bits;
uint16_t uhMask;
uint32_t tickstart;
/* Check that a Rx process is not already ongoing */
if (huart->RxState == HAL_UART_STATE_READY)
{
if ((pData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
huart->ErrorCode = HAL_UART_ERROR_NONE;
huart->RxState = HAL_UART_STATE_BUSY_RX;
huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
huart->RxEventType = HAL_UART_RXEVENT_TC;
/* Init tickstart for timeout management */
tickstart = HAL_GetTick();
huart->RxXferSize = Size;
huart->RxXferCount = Size;
/* Computation of UART mask to apply to RDR register */
UART_MASK_COMPUTATION(huart);
uhMask = huart->Mask;
/* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
{
pdata8bits = NULL;
pdata16bits = (uint16_t *) pData;
}
else
{
pdata8bits = pData;
pdata16bits = NULL;
}
/* Initialize output number of received elements */
*RxLen = 0U;
/* as long as data have to be received */
while (huart->RxXferCount > 0U)
{
/* Check if IDLE flag is set */
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE))
{
/* Clear IDLE flag in ISR */
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
/* If Set, but no data ever received, clear flag without exiting loop */
/* If Set, and data has already been received, this means Idle Event is valid : End reception */
if (*RxLen > 0U)
{
huart->RxEventType = HAL_UART_RXEVENT_IDLE;
huart->RxState = HAL_UART_STATE_READY;
return HAL_OK;
}
}
/* Check if RXNE flag is set */
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE))
{
if (pdata8bits == NULL)
{
*pdata16bits = (uint16_t)(huart->Instance->RDR & uhMask);
pdata16bits++;
}
else
{
*pdata8bits = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask);
pdata8bits++;
}
/* Increment number of received elements */
*RxLen += 1U;
huart->RxXferCount--;
}
/* Check for the Timeout */
if (Timeout != HAL_MAX_DELAY)
{
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
{
huart->RxState = HAL_UART_STATE_READY;
return HAL_TIMEOUT;
}
}
}
/* Set number of received elements in output parameter : RxLen */
*RxLen = huart->RxXferSize - huart->RxXferCount;
/* At end of Rx process, restore huart->RxState to Ready */
huart->RxState = HAL_UART_STATE_READY;
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Receive an amount of data in interrupt mode till either the expected number of data
* is received or an IDLE event occurs.
* @note Reception is initiated by this function call. Further progress of reception is achieved thanks
* to UART interrupts raised by RXNE and IDLE events. Callback is called at end of reception indicating
* number of received data elements.
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
* the received data is handled as a set of uint16_t. In this case, Size must indicate the number
* of uint16_t available through pData.
* @param huart UART handle.
* @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
* @param Size Amount of data elements (uint8_t or uint16_t) to be received.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
{
HAL_StatusTypeDef status;
/* Check that a Rx process is not already ongoing */
if (huart->RxState == HAL_UART_STATE_READY)
{
if ((pData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
/* Set Reception type to reception till IDLE Event*/
huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
huart->RxEventType = HAL_UART_RXEVENT_TC;
status = UART_Start_Receive_IT(huart, pData, Size);
/* Check Rx process has been successfully started */
if (status == HAL_OK)
{
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
{
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
}
else
{
/* In case of errors already pending when reception is started,
Interrupts may have already been raised and lead to reception abortion.
(Overrun error for instance).
In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
status = HAL_ERROR;
}
}
return status;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Receive an amount of data in DMA mode till either the expected number
* of data is received or an IDLE event occurs.
* @note Reception is initiated by this function call. Further progress of reception is achieved thanks
* to DMA services, transferring automatically received data elements in user reception buffer and
* calling registered callbacks at half/end of reception. UART IDLE events are also used to consider
* reception phase as ended. In all cases, callback execution will indicate number of received data elements.
* @note When the UART parity is enabled (PCE = 1), the received data contain
* the parity bit (MSB position).
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
* the received data is handled as a set of uint16_t. In this case, Size must indicate the number
* of uint16_t available through pData.
* @param huart UART handle.
* @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
* @param Size Amount of data elements (uint8_t or uint16_t) to be received.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
{
HAL_StatusTypeDef status;
/* Check that a Rx process is not already ongoing */
if (huart->RxState == HAL_UART_STATE_READY)
{
if ((pData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
/* Set Reception type to reception till IDLE Event*/
huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
huart->RxEventType = HAL_UART_RXEVENT_TC;
status = UART_Start_Receive_DMA(huart, pData, Size);
/* Check Rx process has been successfully started */
if (status == HAL_OK)
{
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
{
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
}
else
{
/* In case of errors already pending when reception is started,
Interrupts may have already been raised and lead to reception abortion.
(Overrun error for instance).
In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
status = HAL_ERROR;
}
}
return status;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Provide Rx Event type that has lead to RxEvent callback execution.
* @note When HAL_UARTEx_ReceiveToIdle_IT() or HAL_UARTEx_ReceiveToIdle_DMA() API are called, progress
* of reception process is provided to application through calls of Rx Event callback (either default one
* HAL_UARTEx_RxEventCallback() or user registered one). As several types of events could occur (IDLE event,
* Half Transfer, or Transfer Complete), this function allows to retrieve the Rx Event type that has lead
* to Rx Event callback execution.
* @note This function is expected to be called within the user implementation of Rx Event Callback,
* in order to provide the accurate value :
* In Interrupt Mode :
* - HAL_UART_RXEVENT_TC : when Reception has been completed (expected nb of data has been received)
* - HAL_UART_RXEVENT_IDLE : when Idle event occurred prior reception has been completed (nb of
* received data is lower than expected one)
* In DMA Mode :
* - HAL_UART_RXEVENT_TC : when Reception has been completed (expected nb of data has been received)
* - HAL_UART_RXEVENT_HT : when half of expected nb of data has been received
* - HAL_UART_RXEVENT_IDLE : when Idle event occurred prior reception has been completed (nb of
* received data is lower than expected one).
* In DMA mode, RxEvent callback could be called several times;
* When DMA is configured in Normal Mode, HT event does not stop Reception process;
* When DMA is configured in Circular Mode, HT, TC or IDLE events don't stop Reception process;
* @param huart UART handle.
* @retval Rx Event Type (return vale will be a value of @ref UART_RxEvent_Type_Values)
*/
HAL_UART_RxEventTypeTypeDef HAL_UARTEx_GetRxEventType(UART_HandleTypeDef *huart)
{
/* Return Rx Event type value, as stored in UART handle */
return (huart->RxEventType);
}
/**
* @}
*/
/**
* @}
*/
/** @addtogroup UARTEx_Private_Functions
* @{
*/
/**
* @brief Initialize the UART wake-up from stop mode parameters when triggered by address detection.
* @param huart UART handle.
* @param WakeUpSelection UART wake up from stop mode parameters.
* @retval None
*/
static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection)
{
assert_param(IS_UART_ADDRESSLENGTH_DETECT(WakeUpSelection.AddressLength));
/* Set the USART address length */
MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, WakeUpSelection.AddressLength);
/* Set the USART address node */
MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, ((uint32_t)WakeUpSelection.Address << UART_CR2_ADDRESS_LSB_POS));
}
/**
* @}
*/
#endif /* HAL_UART_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

View File

@ -1,5 +1,5 @@
##########################################################################################################################
# File automatically-generated by tool: [projectgenerator] version: [4.3.0-B58] date: [Mon Jun 03 16:11:34 EEST 2024]
# File automatically-generated by tool: [projectgenerator] version: [4.3.0-B58] date: [Tue Jul 02 18:11:07 GMT 2024]
##########################################################################################################################
# ------------------------------------------------
@ -59,8 +59,6 @@ Drivers/STM32F3xx_HAL_Driver/Src/stm32f3xx_hal_spi.c \
Drivers/STM32F3xx_HAL_Driver/Src/stm32f3xx_hal_spi_ex.c \
Drivers/STM32F3xx_HAL_Driver/Src/stm32f3xx_hal_tim.c \
Drivers/STM32F3xx_HAL_Driver/Src/stm32f3xx_hal_tim_ex.c \
Drivers/STM32F3xx_HAL_Driver/Src/stm32f3xx_hal_uart.c \
Drivers/STM32F3xx_HAL_Driver/Src/stm32f3xx_hal_uart_ex.c \
Core/Src/system_stm32f3xx.c
# ASM sources

192
mvbms.ioc
View File

@ -18,44 +18,46 @@ Mcu.CPN=STM32F302CBT6
Mcu.Family=STM32F3
Mcu.IP0=CAN
Mcu.IP1=I2C1
Mcu.IP2=NVIC
Mcu.IP3=RCC
Mcu.IP4=SPI1
Mcu.IP5=SYS
Mcu.IP6=TIM1
Mcu.IP7=TIM15
Mcu.IP8=USART1
Mcu.IPNb=9
Mcu.IP10=TIM15
Mcu.IP2=I2C2
Mcu.IP3=NVIC
Mcu.IP4=RCC
Mcu.IP5=SPI1
Mcu.IP6=SYS
Mcu.IP7=TIM2
Mcu.IP8=TIM3
Mcu.IP9=TIM4
Mcu.IPNb=11
Mcu.Name=STM32F302C(B-C)Tx
Mcu.Package=LQFP48
Mcu.Pin0=PF0-OSC_IN
Mcu.Pin1=PF1-OSC_OUT
Mcu.Pin10=PB0
Mcu.Pin11=PB1
Mcu.Pin12=PB2
Mcu.Pin13=PB11
Mcu.Pin14=PB15
Mcu.Pin15=PA8
Mcu.Pin16=PA9
Mcu.Pin17=PA10
Mcu.Pin18=PA11
Mcu.Pin19=PA12
Mcu.Pin2=PA0
Mcu.Pin20=PA13
Mcu.Pin21=PA14
Mcu.Pin22=PA15
Mcu.Pin23=PB3
Mcu.Pin24=PB6
Mcu.Pin25=PB7
Mcu.Pin10=PB14
Mcu.Pin11=PB15
Mcu.Pin12=PA8
Mcu.Pin13=PA9
Mcu.Pin14=PA10
Mcu.Pin15=PA11
Mcu.Pin16=PA12
Mcu.Pin17=PA13
Mcu.Pin18=PA14
Mcu.Pin19=PA15
Mcu.Pin2=PA4
Mcu.Pin20=PB3
Mcu.Pin21=PB4
Mcu.Pin22=PB5
Mcu.Pin23=PB6
Mcu.Pin24=PB7
Mcu.Pin25=PB8
Mcu.Pin26=PB9
Mcu.Pin27=VP_SYS_VS_Systick
Mcu.Pin3=PA1
Mcu.Pin4=PA2
Mcu.Pin5=PA3
Mcu.Pin6=PA4
Mcu.Pin7=PA5
Mcu.Pin8=PA6
Mcu.Pin9=PA7
Mcu.Pin3=PA5
Mcu.Pin4=PA6
Mcu.Pin5=PA7
Mcu.Pin6=PB0
Mcu.Pin7=PB1
Mcu.Pin8=PB10
Mcu.Pin9=PB11
Mcu.PinsNb=28
Mcu.ThirdPartyNb=0
Mcu.UserConstants=
@ -75,20 +77,10 @@ NVIC.SVCall_IRQn=true\:0\:0\:false\:false\:true\:false\:false\:false
NVIC.SysTick_IRQn=true\:15\:0\:false\:false\:true\:false\:true\:false
NVIC.USB_LP_CAN_RX0_IRQn=true\:0\:0\:false\:false\:true\:true\:true\:true
NVIC.UsageFault_IRQn=true\:0\:0\:false\:false\:true\:false\:false\:false
PA0.GPIOParameters=PinState,GPIO_Label
PA0.GPIO_Label=RELAY_EN
PA0.Locked=true
PA0.PinState=GPIO_PIN_RESET
PA0.Signal=GPIO_Output
PA1.GPIOParameters=PinState,GPIO_Label
PA1.GPIO_Label=_60V_EN
PA1.Locked=true
PA1.PinState=GPIO_PIN_RESET
PA1.Signal=GPIO_Output
PA10.GPIOParameters=GPIO_Label
PA10.GPIO_Label=CURRENT_SENSOR_ON
PA10.Locked=true
PA10.Signal=GPIO_Input
PA10.GPIO_Label=EEPROM_SDA
PA10.Mode=I2C
PA10.Signal=I2C2_SDA
PA11.Locked=true
PA11.Mode=CAN_Activate
PA11.Signal=CAN_RX
@ -101,17 +93,11 @@ PA13.Signal=SYS_JTMS-SWDIO
PA14.Locked=true
PA14.Mode=Trace_Asynchronous_SW
PA14.Signal=SYS_JTCK-SWCLK
PA15.GPIOParameters=GPIO_Label
PA15.GPIO_Label=TMP_SCL
PA15.Locked=true
PA15.Mode=I2C
PA15.Signal=I2C1_SCL
PA2.GPIOParameters=GPIO_Label
PA2.GPIO_Label=PWM_PG_FAN1
PA2.Locked=true
PA2.Signal=S_TIM15_CH1
PA3.GPIOParameters=GPIO_Label
PA3.GPIO_Label=PWM_PG_FAN2
PA3.Locked=true
PA3.Signal=S_TIM15_CH2
PA4.GPIOParameters=GPIO_Label
PA4.GPIO_Label=CSB
PA4.Locked=true
@ -126,47 +112,59 @@ PA7.Locked=true
PA7.Mode=Full_Duplex_Master
PA7.Signal=SPI1_MOSI
PA8.GPIOParameters=GPIO_Label
PA8.GPIO_Label=RELAY_BATT_SIDE_ON
PA8.GPIO_Label=EEPROM_~{WC}
PA8.Locked=true
PA8.Signal=GPIO_Input
PA8.Signal=GPIO_Output
PA9.GPIOParameters=GPIO_Label
PA9.GPIO_Label=RELAY_ESC_SIDE_ON
PA9.Locked=true
PA9.Signal=GPIO_Input
PB0.GPIOParameters=PinState,GPIO_Label
PB0.GPIO_Label=STATUS_LED_R
PA9.GPIO_Label=EEPROM_SCL
PA9.Mode=I2C
PA9.Signal=I2C2_SCL
PB0.GPIOParameters=GPIO_Label
PB0.GPIO_Label=ESC_L_PWM
PB0.Locked=true
PB0.PinState=GPIO_PIN_SET
PB0.Signal=GPIO_Output
PB1.GPIOParameters=PinState,GPIO_Label
PB1.GPIO_Label=STATUS_LED_B
PB0.Signal=S_TIM3_CH3
PB1.GPIOParameters=GPIO_Label
PB1.GPIO_Label=ESC_R_PWM
PB1.Locked=true
PB1.PinState=GPIO_PIN_SET
PB1.Signal=GPIO_Output
PB1.Signal=S_TIM3_CH4
PB10.GPIOParameters=GPIO_Label
PB10.GPIO_Label=BAT_COOLING_PWM
PB10.Locked=true
PB10.Signal=S_TIM2_CH3
PB11.GPIOParameters=PinState,GPIO_Label
PB11.GPIO_Label=PRECHARGE_EN
PB11.GPIO_Label=BAT_COOLING_ENABLE
PB11.Locked=true
PB11.PinState=GPIO_PIN_RESET
PB11.Signal=GPIO_Output
PB14.GPIOParameters=GPIO_Label
PB14.GPIO_Label=ESC_COOLING_ENABLE
PB14.Locked=true
PB14.Signal=S_TIM15_CH1
PB15.GPIOParameters=GPIO_Label
PB15.GPIO_Label=PWM_Battery_Cooling
PB15.Locked=true
PB15.Mode=PWM Generation3 CH3N
PB15.Signal=TIM1_CH3N
PB2.GPIOParameters=PinState,GPIO_Label
PB2.GPIO_Label=STATUS_LED_G
PB2.Locked=true
PB2.PinState=GPIO_PIN_SET
PB2.Signal=GPIO_Output
PB15.GPIO_Label=ESC_COOLING_PWM
PB15.Signal=S_TIM15_CH2
PB3.Locked=true
PB3.Mode=Trace_Asynchronous_SW
PB3.Signal=SYS_JTDO-TRACESWO
PB6.Locked=true
PB6.Mode=Asynchronous
PB6.Signal=USART1_TX
PB7.Locked=true
PB7.Mode=Asynchronous
PB7.Signal=USART1_RX
PB4.GPIOParameters=GPIO_Label
PB4.GPIO_Label=RELAY_ENABLE
PB4.Locked=true
PB4.Signal=GPIO_Output
PB5.GPIOParameters=GPIO_Label
PB5.GPIO_Label=PRECHARGE_ENABLE
PB5.Locked=true
PB5.Signal=GPIO_Output
PB6.GPIOParameters=GPIO_Label
PB6.GPIO_Label=STATUS_LED_R
PB6.Signal=S_TIM4_CH1
PB7.GPIOParameters=GPIO_Label
PB7.GPIO_Label=STATUS_LED_G
PB7.Signal=S_TIM4_CH2
PB8.GPIOParameters=GPIO_Label
PB8.GPIO_Label=STATUS_LED_B
PB8.Signal=S_TIM4_CH3
PB9.GPIOParameters=GPIO_Label
PB9.GPIO_Label=TMP_SDA
PB9.Locked=true
PB9.Mode=I2C
PB9.Signal=I2C1_SDA
@ -246,6 +244,18 @@ SH.S_TIM15_CH1.0=TIM15_CH1,PWM Generation1 CH1
SH.S_TIM15_CH1.ConfNb=1
SH.S_TIM15_CH2.0=TIM15_CH2,PWM Generation2 CH2
SH.S_TIM15_CH2.ConfNb=1
SH.S_TIM2_CH3.0=TIM2_CH3,PWM Generation3 CH3
SH.S_TIM2_CH3.ConfNb=1
SH.S_TIM3_CH3.0=TIM3_CH3,PWM Generation3 CH3
SH.S_TIM3_CH3.ConfNb=1
SH.S_TIM3_CH4.0=TIM3_CH4,PWM Generation4 CH4
SH.S_TIM3_CH4.ConfNb=1
SH.S_TIM4_CH1.0=TIM4_CH1,PWM Generation1 CH1
SH.S_TIM4_CH1.ConfNb=1
SH.S_TIM4_CH2.0=TIM4_CH2,PWM Generation2 CH2
SH.S_TIM4_CH2.ConfNb=1
SH.S_TIM4_CH3.0=TIM4_CH3,PWM Generation3 CH3
SH.S_TIM4_CH3.ConfNb=1
SPI1.BaudRatePrescaler=SPI_BAUDRATEPRESCALER_32
SPI1.CalculateBaudRate=500.0 KBits/s
SPI1.DataSize=SPI_DATASIZE_8BIT
@ -253,16 +263,18 @@ SPI1.Direction=SPI_DIRECTION_2LINES
SPI1.IPParameters=VirtualType,Mode,Direction,CalculateBaudRate,DataSize,BaudRatePrescaler
SPI1.Mode=SPI_MODE_MASTER
SPI1.VirtualType=VM_MASTER
TIM1.Channel-PWM\ Generation3\ CH3N=TIM_CHANNEL_3
TIM1.IPParameters=Channel-PWM Generation3 CH3N
TIM15.Channel-PWM\ Generation1\ CH1=TIM_CHANNEL_1
TIM15.Channel-PWM\ Generation2\ CH2=TIM_CHANNEL_2
TIM15.IPParameters=Channel-PWM Generation1 CH1,Channel-PWM Generation2 CH2,Prescaler,Period,Pulse-PWM Generation1 CH1
TIM15.Period=39999
TIM15.Prescaler=7
TIM15.Pulse-PWM\ Generation1\ CH1=0
USART1.IPParameters=VirtualMode-Asynchronous
USART1.VirtualMode-Asynchronous=VM_ASYNC
TIM15.IPParameters=Channel-PWM Generation1 CH1,Channel-PWM Generation2 CH2
TIM2.Channel-PWM\ Generation3\ CH3=TIM_CHANNEL_3
TIM2.IPParameters=Channel-PWM Generation3 CH3
TIM3.Channel-PWM\ Generation3\ CH3=TIM_CHANNEL_3
TIM3.Channel-PWM\ Generation4\ CH4=TIM_CHANNEL_4
TIM3.IPParameters=Channel-PWM Generation3 CH3,Channel-PWM Generation4 CH4
TIM4.Channel-PWM\ Generation1\ CH1=TIM_CHANNEL_1
TIM4.Channel-PWM\ Generation2\ CH2=TIM_CHANNEL_2
TIM4.Channel-PWM\ Generation3\ CH3=TIM_CHANNEL_3
TIM4.IPParameters=Channel-PWM Generation1 CH1,Channel-PWM Generation2 CH2,Channel-PWM Generation3 CH3
VP_SYS_VS_Systick.Mode=SysTick
VP_SYS_VS_Systick.Signal=SYS_VS_Systick
board=custom