based on FT23-Ultra script. fixed for FT24 and FT25

This commit is contained in:
v.chau 2025-05-15 19:59:14 +02:00
commit a81abc2695
25 changed files with 1195 additions and 0 deletions

BIN
assets/FT_icon.png Normal file

Binary file not shown.

After

(image error) Size: 2.1 KiB

BIN
assets/FT_logo.png Normal file

Binary file not shown.

After

(image error) Size: 128 KiB

79
assets/loadvector.m Normal file

@ -0,0 +1,79 @@
function [pltData,laps_strArray] = loadvector(filepath)
% Load dataset:
fprintf("Loading: %s\n",filepath)
data = vector2timetable(filepath,"ABX*","Shunt*","AMS_Status*","INV*","XSens*");
fprintf("Finished loading\n------------------------\n")
% get date / time
date = dateshift(data.Time(1),'start','day');
fprintf("Date: %s\n",date)
fprintf("Start: %d:%d:%02.0f\n",hour(data.Time(1)),minute(data.Time(1)),second(data.Time(1)))
fprintf("End: %d:%d:%02.0f\n",hour(data.Time(end)),minute(data.Time(end)),second(data.Time(end)))
fprintf("------------------------\n")
% get lapcounter / laptrigger
laps_counter = data.ABX_Driver_ABX_Lapcounter;
timestamp_hms(1) = data.Time(1) - date;
timestamp_index(1) = 1;
j = 2;
for i = 2:length(laps_counter)
if laps_counter(i) ~= laps_counter(i-1)
timestamp_hms(j) = data.Time(i) - date;
timestamp_index(j) = i;
j = j + 1;
end
end
% calculate laptimes
timestamp_s = seconds(timestamp_hms);
for i = 1:length(timestamp_s)-1
laps_s(i) = timestamp_s(i+1) - timestamp_s(i);
end
% if laps could be detected find fastest lap and create list of
% laptimes, otherwise only "Entire stint" will be selectable
laps_strArray(1) = sprintf("Entire stint");
if (exist("laps_s","var") == true)
% create list of laptimes
for i = 1:length(laps_s)
if laps_s(i) == min(laps_s)
laps_strArray(i+1) = sprintf("Lap %d: %.3fs (best)",i,laps_s(i));
else
laps_strArray(i+1) = sprintf("Lap %d: %.3fs",i,laps_s(i));
end
end
% display fastest lap
[laps_best_time, laps_best] = min(laps_s);
fprintf("Fastest lap: %.2fs (%d)\n",laps_best_time,laps_best)
end
% create time arrays in hh:mm:ss and just seconds
time_hms = data.Time-date;
time_s = seconds(time_hms);
time_s = time_s - time_s(1); % set beginning of session to 0
% calcualte energy consumption and total distance
power_kw = data.Shunt_Voltage1_Shunt_Voltage1.*data.Shunt_Current_Shunt_Current/1000;
power_regen_kw = power_kw;
power_regen_kw(power_regen_kw > 0) = 0;
power_used_kw = power_kw;
power_used_kw(power_used_kw < 0) = 0;
energy_kwh = trapz(time_s, power_kw)/3600;
energy_regen_kwh = trapz(time_s, power_regen_kw)/3600;
energy_used_kwh = trapz(time_s, power_used_kw)/3600;
fprintf("Energy used: %.2fkWh\n",energy_used_kwh)
fprintf("Energy regen: %.2fkWh\n",energy_regen_kwh)
fprintf("Energy total: %.2fkWh\n",energy_kwh)
distance_km = trapz(time_s, movmean(data.ABX_Driver_ABX_Speed,10))/1000;
fprintf("Distance driven: %.2fkm\n",distance_km)
fprintf("------------------------\n")
pltData(1) = sortdata(data,1,length(data.Time));
% sort data for plotting:
for i = 1:length(timestamp_index)-1
pltData(i+1) = sortdata(data,timestamp_index(i),timestamp_index(i+1));
end
end

21
assets/savePlot.m Normal file

@ -0,0 +1,21 @@
function [outputArg] = savePlot(figure,path,format)
switch format
case "png"
savepath = sprintf("%s.png",path);
exportgraphics(figure,savepath);
case "pdf"
savepath = sprintf("%s.pdf",path);
exportgraphics(figure,savepath,'ContentType','vector');
case "fig"
saveas(figure,path,"fig");
case "m"
saveas(figure,path,"m");
otherwise
error("invalid filetype");
end
% return null (not relevant for plots!)
outputArg = [];
end

122
assets/sortdata.m Normal file

@ -0,0 +1,122 @@
function [pltData] = sortdata(data,start,stop)
date = dateshift(data.Time(1),'start','day');
time_hms = data.Time-date;
time_s = seconds(time_hms);
time_s = time_s - time_s(1); % set beginning of session to 0
% x-Axis:
pltData.time_s = time_s(start:stop)-time_s(start);
pltData.time_hms = time_hms(start:stop);
% distance calculation
speed_mps = movmean(data.ABX_Driver_ABX_Speed(start:stop),50); % TODO: test different speed filters for distance calculation
pltData.distance(1) = 0;
for i = 2:length(speed_mps)
pltData.distance(i) = speed_mps(i)*(pltData.time_s(i)-pltData.time_s(i-1)) + pltData.distance(i-1);
end
pltData.xAxis = pltData.time_s; % set time as default x-Axis for plotting
%% Misc
pltData.app_percent = data.ABX_Driver_ABX_APPS_percent(start:stop);
pltData.speed_kph = 3.6*movmean(data.ABX_Driver_ABX_Speed(start:stop),50); % same filter as for distance calculation ???
pltData.steering_deg = data.ABX_Driver_ABX_Steering_Angle(start:stop);
%% AMS:
pltData.ams_soc = data.AMS_Status_SOC(start:stop);
pltData.ams_tmax = data.AMS_Status_Max_cell_temp(start:stop);
pltData.ams_utot = data.Shunt_Voltage1_Shunt_Voltage1(start:stop);
pltData.ams_itot = data.Shunt_Current_Shunt_Current(start:stop);
% calculations:
pltData.ams_ptot = pltData.ams_utot.*pltData.ams_itot/1000;
%% Brakes
% brake pressure
pltData.brakePFront_bar = data.ABX_Driver_ABX_BrakeP_F(start:stop);
pltData.brakePRear_bar = data.ABX_Driver_ABX_BrakeP_R(start:stop);
% brake disc temperatures
pltData.brakeTFrontLeft_degC = data.ABX_BrakeT_ABX_BrakeT_FL(start:stop);
pltData.brakeTFrontRight_degC = data.ABX_BrakeT_ABX_BrakeT_FR(start:stop);
pltData.brakeTRearLeft_degC = data.ABX_BrakeT_ABX_BrakeT_RL(start:stop);
pltData.brakeTRearRight_degC = data.ABX_BrakeT_ABX_BrakeT_RR(start:stop);
% calculate brake bias [%]
minBrakeP = 5; % minimum brake pressure to avoid artifacts due to sensor noise near 0 bar
brakePFront = pltData.brakePFront_bar;
brakePFront(brakePFront < minBrakeP) = minBrakeP;
brakePRear = pltData.brakePRear_bar;
brakePRear(brakePRear < minBrakeP) = minBrakeP;
pltData.brakeBias_perc = 100*brakePFront./brakePRear; % check calculation!
%% Cooling system
%% Dampers
% damper positions
pltData.damper_FL_mm = data.ABX_Dampers_ABX_Damper_FL(start:stop); %Heave_F
pltData.damper_FR_mm = data.ABX_Dampers_ABX_Damper_FR(start:stop); %Roll_F
pltData.damper_RL_mm = data.ABX_Dampers_ABX_Damper_RL(start:stop); %Heave_R
pltData.damper_RR_mm = data.ABX_Dampers_ABX_Damper_RR(start:stop); %Roll_R
% calculate damper velocities
pltData.velocity_FL_mmps(1) = 0;
pltData.velocity_FR_mmps(1) = 0;
pltData.velocity_RL_mmps(1) = 0;
pltData.velocity_RR_mmps(1) = 0;
for i = 2:length(pltData.time_s)
timestep = pltData.time_s(i)-pltData.time_s(i-1);
pltData.velocity_FL_mmps(i) = pltData.damper_FL_mm(i)-pltData.damper_FL_mm(i-1)/timestep;
pltData.velocity_FR_mmps(i) = pltData.damper_FR_mm(i)-pltData.damper_FR_mm(i-1)/timestep;
pltData.velocity_RL_mmps(i) = pltData.damper_RL_mm(i)-pltData.damper_RL_mm(i-1)/timestep;
pltData.velocity_RR_mmps(i) = pltData.damper_RR_mm(i)-pltData.damper_RR_mm(i-1)/timestep;
end
% filter damper velocities ??? bessere Berechnung über mittelwert aus mehreren werten? Vorfilterung?
pltData.velocity_FL_mmps = movmean(pltData.velocity_FL_mmps,100);
pltData.velocity_FR_mmps = movmean(pltData.velocity_FR_mmps,100);
pltData.velocity_RL_mmps = movmean(pltData.velocity_RL_mmps,100);
pltData.velocity_RR_mmps = movmean(pltData.velocity_RR_mmps,100);
%% IMU
% Acceleration
% pltData.acc_long_g = movmean(data.XSens_Acceleration_XSens_accX(start:stop),100)/9.81;
% pltData.acc_lat_g = movmean(data.XSens_Acceleration_XSens_accY(start:stop),100)/9.81;
% Rate of turn
% pltData.rot_roll_degps = movmean(data.XSens_RateOfTurn_XSens_gyrX(start:stop),100);
% pltData.rot_pitch_degps = movmean(data.XSens_RateOfTurn_XSens_gyrY(start:stop),100);
% pltData.rot_yaw_degps = movmean(data.XSens_RateOfTurn_XSens_gyrZ(start:stop),100);
%% Inverters
% inverter temperatures
pltData.invL_temp = data.INV_L_TxPDO_1_T_Inv_L(start:stop);
pltData.invR_temp = data.INV_R_TxPDO_1_T_Inv_R(start:stop);
% motor temperatures
pltData.motL_temp = data.INV_L_TxPDO_1_T_Mot_L(start:stop);
pltData.motR_temp = data.INV_R_TxPDO_1_T_Mot_R(start:stop);
% motor velocities
pltData.motL_vel_rpm = 60*data.INV_L_TxPDO_4_Velocity_L(start:stop);
pltData.motR_vel_rpm = 60*data.INV_R_TxPDO_4_Velocity_R(start:stop);
% inverter torque demand
pltData.invL_torqueDemand = data.INV_L_TxPDO_3_DemandedTorque_L(start:stop)/10; % /10 to match autobox torque
pltData.invR_torqueDemand = data.INV_R_TxPDO_3_DemandedTorque_R(start:stop)/10;
% inverter actual torque
pltData.invL_torqueActual = data.INV_L_TxPDO_3_ActualTorque_L(start:stop)/10;
pltData.invR_torqueActual = data.INV_R_TxPDO_3_ActualTorque_R(start:stop)/10;
%% Wheelspeed
%% Statistics:
power_regen_kw = pltData.ams_ptot;
power_regen_kw(power_regen_kw > 0) = 0;
power_used_kw = pltData.ams_ptot;
power_used_kw(power_used_kw < 0) = 0;
pltData.energy_kwh = trapz(pltData.time_s, pltData.ams_ptot)/3600;
pltData.energy_regen_kwh = trapz(pltData.time_s, power_regen_kw)/3600;
pltData.energy_used_kwh = trapz(pltData.time_s, power_used_kw)/3600;
pltData.distanceTotal_km = trapz(pltData.time_s, pltData.speed_kph./3.6)/1000; % 1/3.6 for km/h to m/s and /1000 for km output
pltData.peakPower_kw = max(pltData.ams_ptot);
pltData.peakPowerMean_kw = max(movmean(pltData.ams_ptot,500));
pltData.maxSpeed_kph = max(pltData.speed_kph);
pltData.startTime = time_hms(start);
pltData.stopTime = time_hms(stop);
end

122
assets/sortdata_XSens.m Normal file

@ -0,0 +1,122 @@
function [pltData] = sortdata(data,start,stop)
date = dateshift(data.Time(1),'start','day');
time_hms = data.Time-date;
time_s = seconds(time_hms);
time_s = time_s - time_s(1); % set beginning of session to 0
% x-Axis:
pltData.time_s = time_s(start:stop)-time_s(start);
pltData.time_hms = time_hms(start:stop);
% distance calculation
speed_mps = movmean(data.ABX_Driver_ABX_Speed(start:stop),50); % TODO: test different speed filters for distance calculation
pltData.distance(1) = 0;
for i = 2:length(speed_mps)
pltData.distance(i) = speed_mps(i)*(pltData.time_s(i)-pltData.time_s(i-1)) + pltData.distance(i-1);
end
pltData.xAxis = pltData.time_s; % set time as default x-Axis for plotting
%% Misc
pltData.app_percent = data.ABX_Driver_ABX_APPS_percent(start:stop);
pltData.speed_kph = 3.6*movmean(data.ABX_Driver_ABX_Speed(start:stop),50); % same filter as for distance calculation ???
pltData.steering_deg = data.ABX_Driver_ABX_Steering_Angle(start:stop);
%% AMS:
pltData.ams_soc = data.AMS_Status_SOC(start:stop);
pltData.ams_tmax = data.AMS_Status_Max_cell_temp(start:stop);
pltData.ams_utot = data.Shunt_Voltage1_Shunt_Voltage1(start:stop);
pltData.ams_itot = data.Shunt_Current_Shunt_Current(start:stop);
% calculations:
pltData.ams_ptot = pltData.ams_utot.*pltData.ams_itot/1000;
%% Brakes
% brake pressure
pltData.brakePFront_bar = data.ABX_Driver_ABX_BrakeP_F(start:stop);
pltData.brakePRear_bar = data.ABX_Driver_ABX_BrakeP_R(start:stop);
% brake disc temperatures
pltData.brakeTFrontLeft_degC = data.ABX_BrakeT_ABX_BrakeT_FL(start:stop);
pltData.brakeTFrontRight_degC = data.ABX_BrakeT_ABX_BrakeT_FR(start:stop);
pltData.brakeTRearLeft_degC = data.ABX_BrakeT_ABX_BrakeT_RL(start:stop);
pltData.brakeTRearRight_degC = data.ABX_BrakeT_ABX_BrakeT_RR(start:stop);
% calculate brake bias [%]
minBrakeP = 5; % minimum brake pressure to avoid artifacts due to sensor noise near 0 bar
brakePFront = pltData.brakePFront_bar;
brakePFront(brakePFront < minBrakeP) = minBrakeP;
brakePRear = pltData.brakePRear_bar;
brakePRear(brakePRear < minBrakeP) = minBrakeP;
pltData.brakeBias_perc = 100*brakePFront./brakePRear; % check calculation!
%% Cooling system
%% Dampers
% damper positions
pltData.damperHeaveFront_mm = data.ABX_Dampers_ABX_DamperHeave_F(start:stop);
pltData.damperRollFront_mm = data.ABX_Dampers_ABX_DamperRoll_F(start:stop);
pltData.damperHeaveRear_mm = data.ABX_Dampers_ABX_DamperHeave_R(start:stop);
pltData.damperRollRear_mm = data.ABX_Dampers_ABX_DamperRoll_R(start:stop);
% calculate damper velocities
pltData.velocityHeaveFront_mmps(1) = 0;
pltData.velocityRollFront_mmps(1) = 0;
pltData.velocityHeaveRear_mmps(1) = 0;
pltData.velocityRollRear_mmps(1) = 0;
for i = 2:length(pltData.time_s)
timestep = pltData.time_s(i)-pltData.time_s(i-1);
pltData.velocityHeaveFront_mmps(i) = pltData.damperHeaveFront_mm(i)-pltData.damperHeaveFront_mm(i-1)/timestep;
pltData.velocityRollFront_mmps(i) = pltData.damperRollFront_mm(i)-pltData.damperRollFront_mm(i-1)/timestep;
pltData.velocityHeaveRear_mmps(i) = pltData.damperHeaveRear_mm(i)-pltData.damperHeaveRear_mm(i-1)/timestep;
pltData.velocityRollRear_mmps(i) = pltData.damperRollRear_mm(i)-pltData.damperRollRear_mm(i-1)/timestep;
end
% filter damper velocities ??? bessere Berechnung über mittelwert aus mehreren werten? Vorfilterung?
pltData.velocityHeaveFront_mmps = movmean(pltData.velocityHeaveFront_mmps,100);
pltData.velocityRollFront_mmps = movmean(pltData.velocityRollFront_mmps,100);
pltData.velocityHeaveRear_mmps = movmean(pltData.velocityHeaveRear_mmps,100);
pltData.velocityRollRear_mmps = movmean(pltData.velocityRollRear_mmps,100);
%% IMU
% Acceleration
pltData.acc_long_g = movmean(data.XSens_Acceleration_XSens_accX(start:stop),100)/9.81;
pltData.acc_lat_g = movmean(data.XSens_Acceleration_XSens_accY(start:stop),100)/9.81;
% Rate of turn
pltData.rot_roll_degps = movmean(data.XSens_RateOfTurn_XSens_gyrX(start:stop),100);
pltData.rot_pitch_degps = movmean(data.XSens_RateOfTurn_XSens_gyrY(start:stop),100);
pltData.rot_yaw_degps = movmean(data.XSens_RateOfTurn_XSens_gyrZ(start:stop),100);
%% Inverters
% inverter temperatures
pltData.invL_temp = data.INV_L_TxPDO_1_T_Inv_L(start:stop);
pltData.invR_temp = data.INV_R_TxPDO_1_T_Inv_R(start:stop);
% motor temperatures
pltData.motL_temp = data.INV_L_TxPDO_1_T_Mot_L(start:stop);
pltData.motR_temp = data.INV_R_TxPDO_1_T_Mot_R(start:stop);
% motor velocities
pltData.motL_vel_rpm = 60*data.INV_L_TxPDO_4_Velocity_L(start:stop);
pltData.motR_vel_rpm = 60*data.INV_R_TxPDO_4_Velocity_R(start:stop);
% inverter torque demand
pltData.invL_torqueDemand = data.INV_L_TxPDO_3_DemandedTorque_L(start:stop)/10; % /10 to match autobox torque
pltData.invR_torqueDemand = data.INV_R_TxPDO_3_DemandedTorque_R(start:stop)/10;
% inverter actual torque
pltData.invL_torqueActual = data.INV_L_TxPDO_3_ActualTorque_L(start:stop)/10;
pltData.invR_torqueActual = data.INV_R_TxPDO_3_ActualTorque_R(start:stop)/10;
%% Wheelspeed
%% Statistics:
power_regen_kw = pltData.ams_ptot;
power_regen_kw(power_regen_kw > 0) = 0;
power_used_kw = pltData.ams_ptot;
power_used_kw(power_used_kw < 0) = 0;
pltData.energy_kwh = trapz(pltData.time_s, pltData.ams_ptot)/3600;
pltData.energy_regen_kwh = trapz(pltData.time_s, power_regen_kw)/3600;
pltData.energy_used_kwh = trapz(pltData.time_s, power_used_kw)/3600;
pltData.distanceTotal_km = trapz(pltData.time_s, pltData.speed_kph./3.6)/1000; % 1/3.6 for km/h to m/s and /1000 for km output
pltData.peakPower_kw = max(pltData.ams_ptot);
pltData.peakPowerMean_kw = max(movmean(pltData.ams_ptot,500));
pltData.maxSpeed_kph = max(pltData.speed_kph);
pltData.startTime = time_hms(start);
pltData.stopTime = time_hms(stop);
end

21
assets/vector2timetable.m Normal file

@ -0,0 +1,21 @@
function [data] = vector2timetable(data_path, varargin)
%VECTOR2TIMETABLE Load vector datalogger data and convert it to a timetable
% Specify the path to the data in DATA_PATH, and optionally specify names
% of signals to load.
raw_data = load(data_path, varargin{:});
fn = fieldnames(raw_data);
base_ts = datetime(0, 1, 0);
for i=1:numel(fn)
var = raw_data.(fn{i});
timestamps = days(var(:,1)) + base_ts;
tt{i} = array2timetable( ...
var(:,2), ...
"RowTimes",timestamps, ...
"VariableNames",{fn{i}} ...
);
end
data = synchronize(tt{:},"union","nearest");
% union -> union of the row times
% method -> fill gaps in output with nearest neighbor in the input timetable
end

39
cut_data.m Normal file

@ -0,0 +1,39 @@
close all
clear all
% user input:
input_path = "data\TriggerF.mat";
output_path = "data\TriggerF_cut.mat";
startTime = [10, 15, 00];
stopTime = [17, 34, 00];
% load data
data_in = load(input_path);
% get time
time = days(data_in.ABX_Driver_ABX_Speed(:,1)) + datetime(0,1,0);
% plot speed for visualization
plot(time,data_in.ABX_Driver_ABX_Speed(:,2))
grid on
% set start/stop timestamps
date = dateshift(time(1),'start','day');
date_d = datenum(date)+1;
startTime_d = date_d + convertHMStoDays(startTime);
stopTime_d = date_d + convertHMStoDays(stopTime);
fn = fieldnames(data_in);
for i=1:numel(fn)
clear var_out
var = data_in.(fn{i});
index1 = find(var(:,1)>startTime_d,1);
index2 = find(var(:,1)>stopTime_d,1);
var_out(:,1) = var(index1:index2,1);
var_out(:,2) = var(index1:index2,2);
data_out.(fn{i}) = var_out;
end
save(output_path,"-struct","data_out")
%% Functions
function time_d = convertHMStoDays(hmsArray)
time_d = hmsArray(1)/24 + hmsArray(2)/(24*60) + hmsArray(3)/(24*60*60);
end

BIN
data/VL_2024_07_18.mat Normal file

Binary file not shown.

229
lap_analysis.m Normal file

@ -0,0 +1,229 @@
% Lap analysis script based on vector CAN Data
% ToDo:
% - add Driver - Steering -> Oversteer calculation (steering/acc_lat)
% - fix Driver - Statistics -> Braking distribution to start at >1 bar
% - calculation damper velocities!!
% - add size selection for output graphics
% - add legend for multiple laps selection (instead of statistics?)
% - automatic plot_settings detection??
close all
clear all
format shortEng
%% Add required paths
addpath("assets\");
addpath("plot_settings\");
save_path = "plots\";
% intital variables:
global pltData;
pltData = 0;
global filepath_last;
filepath_last = "none";
%% create uifigure
fig = uifigure;
fig.Position = [100 100 800 600];
fig.Name = "FT23-Ultra Data Analysis Tool";
fig.Icon = "assets/FT_icon.png";
% create 5x3 grid layout (row,column)
g = uigridlayout(fig);
g.RowHeight = {22, 22,'1x',22,22};
g.ColumnWidth = {150,'1x',200};
% (1,2) Load path
filepathField = uieditfield(g);
filepathField.Value = "data/";
filepathField.Layout.Row = 1;
filepathField.Layout.Column = 2;
% (2,1) label "Plot type:"
labelPlot = uilabel(g);
labelPlot.Text = "Plot type:";
labelPlot.Layout.Row = 2;
labelPlot.Layout.Column = 1;
labelPlot.HorizontalAlignment = "right";
% (2,2) create dropdown selection for plot type
dd = uidropdown(g);
dd.Items = ["Driver - General", "Driver - Steering", "Driver - Braking", "Driver - Statistics" ...
"Powertrain", "Brakes", "Accumulator", "Inverter", ...
"Suspension - Positions", "Suspension - Velocities", "Suspension - Histogram", ...
"Tires - Temperatures", "Tires - Friction Circle"];
dd.Layout.Row = 2;
dd.Layout.Column = 2;
% ([3 4],1) create list box with laptimes and multiselection
lb = uilistbox(g);
lb.Multiselect = "on";
lb.Items = "No data loaded!";
lb.ItemsData = 1;
lb.Layout.Row = [3 4];
lb.Layout.Column = 1;
% (3,2) create plot window
pltpanel = uipanel(g);
pltpanel.Layout.Row = 3;
pltpanel.Layout.Column = 2;
% (3,3) lap/stint statistics (peak power, max speed, engergy used)
labelStats = uilabel(g);
labelStats.Text = "Statistics:";
labelStats.Layout.Row = 3;
labelStats.Layout.Column = 3;
labelStats.VerticalAlignment = "top";
% (4,2) create dropdown selection for x-Axis (time/distance)
ddAxis = uidropdown(g);
ddAxis.Items = ["Time [s]", "Distance [m]", "Time [h:m:s]"];
ddAxis.ItemsData = linspace(1,3,3);
ddAxis.Layout.Row = 4;
ddAxis.Layout.Column = 2;
% (4,3) ???
% (5,1) dropdown selection for plot output format
ddFormat = uidropdown(g);
ddFormat.Items = ["png", "pdf", "fig", "m"];
ddFormat.ItemsData = ddFormat.Items;
ddFormat.Layout.Row = 5;
ddFormat.Layout.Column = 1;
% (5,2) edit field for output plot name
editPlotName = uieditfield(g);
editPlotName.Value = "plot";
editPlotName.Layout.Row = 5;
editPlotName.Layout.Column = 2;
% (1,1) browse button
btnbrowse = uibutton(g,"ButtonPushedFcn", @(src,event) browseButtonPushed(filepathField));
btnbrowse.Text = "Browse";
btnbrowse.Layout.Row = 1;
btnbrowse.Layout.Column = 1;
% (1,3) Load button
btnLoad = uibutton(g,"ButtonPushedFcn", @(src,event) loadButtonPushed(lb, filepathField.Value));
btnLoad.Text = "Load";
btnLoad.Layout.Row = 1;
btnLoad.Layout.Column = 3;
% (2,3) create button for plotting new selection
btnPlot = uibutton(g,"ButtonPushedFcn", @(src,event) plotButtonPushed(pltpanel, labelStats, lb.Value, dd.Value, ddAxis.Value));
btnPlot.Text = "Plot";
btnPlot.Layout.Row = 2;
btnPlot.Layout.Column = 3;
% (5,3) create button for saving displayed plot
btnSave = uibutton(g,"ButtonPushedFcn", @(src,event) saveButtonPushed(pltpanel, append(save_path, editPlotName.Value), ddFormat.Value));
btnSave.Text = "Save";
btnSave.Layout.Row = 5;
btnSave.Layout.Column = 3;
% Plot window FT Logo for style points (and placeholder)
tl = tiledlayout(pltpanel,"vertical");
pltpanelDefault = nexttile(tl);
[imageData,~,imageAlpha] = imread("assets\FT_logo.png");
image(imageData, "Parent",pltpanelDefault, "alphadata", imageAlpha);
pltpanelDefault.Visible = "off";
pltpanelDefault.DataAspectRatio = [1,1,1];
pltpanelDefault.Toolbar.Visible = "off";
%% Functions
function plotButtonPushed(panel, labelStats, selected_laps, plottype, xplot)
global pltData;
% If complete stint selected -> disable plotting multiple laps
if ismember(1, selected_laps)
selected_laps = 1;
% xplot = 3; % select hh:mm:ss format automatically??
end
if size(selected_laps) == 1
% update statistics
sidebarLabel = sidebar_stats(pltData(selected_laps));
else
% clear stats
sidebarLabel = "not available in multiselection (yet)";
end
labelStats.Text = sidebarLabel;
% change x-Axis based on drop-down selection:
switch xplot
case 2
for i = 1:length(pltData)
pltData(i).xAxis = pltData(i).distance;
end
case 3
for i = 1:length(pltData)
pltData(i).xAxis = pltData(i).time_hms;
end
otherwise
for i = 1:length(pltData)
pltData(i).xAxis = pltData(i).time_s;
end
end
switch plottype
case "Accumulator"
plot_accumulator(panel, selected_laps, pltData);
case "Brakes"
plot_brakes(panel, selected_laps, pltData);
case "Driver - Braking"
plot_driver_braking(panel, selected_laps, pltData);
case "Driver - General"
plot_driver_general(panel, selected_laps, pltData);
case "Driver - Statistics"
plot_driver_statistics(panel, selected_laps, pltData);
case "Driver - Steering"
plot_driver_steering(panel, selected_laps, pltData);
case "Inverter"
plot_inverter(panel, selected_laps, pltData);
case "Powertrain"
plot_powertrain(panel, selected_laps, pltData);
case "Suspension - Histogram"
plot_suspension_histogram(panel, selected_laps, pltData);
case "Suspension - Positions"
plot_suspension_positions(panel, selected_laps, pltData);
case "Suspension - Velocities"
plot_suspension_velocities(panel, selected_laps, pltData);
case "Tires - Friction Circle"
plot_tires_firctionCircle(panel, selected_laps, pltData);
case "Tires - Temperatures"
% plot_tires_temperatures(panel, selected_laps, pltData);
otherwise
error("Error plotting")
end
% legend(ax1,string(selected_laps),'Location','northeastoutside');
end
function loadButtonPushed(listbox, filepath)
global pltData;
global filepath_last;
% check if data is already loaded
if strcmp(filepath,filepath_last) == false
[pltData,laps_strArray] = loadvector(filepath);
% update UI elements
listbox.Items = laps_strArray;
listbox.ItemsData = linspace(1,length(laps_strArray),length(laps_strArray));
else
msgbox("Data already loaded!");
end
filepath_last = filepath;
end
function browseButtonPushed(filepathField)
[name, location] = uigetfile(...
{'*.m;*.mat',...
'MATLAB Files (*.m,*.mat)';
'*.*', 'All Files (*.*)'}, ...
"Select File","data\");
filepath = append(location,name);
filepathField.Value = filepath;
end
function saveButtonPushed(panel, savepath, format)
try
figure = panel.Children;
savePlot(figure,savepath,format);
fprintf("Plot saved to: %s.%s\n",savepath,format);
catch
msgbox("No plot available!")
end
end

BIN
lap_analysis_guide.pdf Normal file

Binary file not shown.

@ -0,0 +1,43 @@
function [outputArg] = plot_accumulator(panel, selected_laps, pltData)
% create tiledlayout (R2023a and newer)
tl = tiledlayout(panel,"vertical");
% plot 1: speed [km/h]
ax1 = nexttile(tl);
hold(ax1, "on")
grid(ax1, "on")
title(ax1, "Speed [km/h]")
for i = 1:length(selected_laps)
plot(ax1,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).speed_kph)
end
% plot 2: power [kW]
ax2 = nexttile(tl);
hold(ax2, "on")
grid(ax2, "on")
title(ax2, "Power [kW]")
for i = 1:length(selected_laps)
plot(ax2,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).ams_ptot)
end
% plot 3: Max Cell Temp [°C]
ax3 = nexttile(tl);
hold(ax3, "on")
grid(ax3, "on")
title(ax3, "Max Cell Temp [°C]")
for i = 1:length(selected_laps)
plot(ax3,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).ams_tmax)
end
% plot 4: State of charge [%]
ax4 = nexttile(tl);
hold(ax4, "on")
grid(ax4, "on")
title(ax4, "SOC")
for i = 1:length(selected_laps)
plot(ax4,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).ams_soc)
end
% link all x axes
linkaxes([ax1, ax2, ax3, ax4],"x")
% return null (not relevant for plots!)
outputArg = [];
end

@ -0,0 +1,59 @@
function [outputArg] = plot_brakes(panel, selected_laps, pltData)
% create tiledlayout (R2023a and newer)
tl = tiledlayout(panel,"vertical");
% plot 1: speed
ax1 = nexttile(tl);
hold(ax1, "on")
grid(ax1, "on")
title(ax1, "Speed [km/h]")
for i = 1:length(selected_laps)
plot(ax1,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).speed_kph)
end
% plot 2: brake pressure front/rear [bar]
ax2 = nexttile(tl);
hold(ax2, "on")
grid(ax2, "on")
title(ax2, "Brake Pressure F/R [bar]")
for i = 1:length(selected_laps)
plot(ax2,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).brakePFront_bar)
plot(ax2,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).brakePRear_bar)
end
legend(ax2, "Front", "Rear")
% plot 3: longitudinal acceleration [g]
ax3 = nexttile(tl);
hold(ax3, "on")
grid(ax3, "on")
title(ax3, "Long Acc [g]")
for i = 1:length(selected_laps)
plot(ax3,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).acc_long_g)
end
% plot 4: Brake Temp [°C]
ax4 = nexttile(tl);
hold(ax4, "on")
grid(ax4, "on")
title(ax4, "Brake Temp [°C]")
for i = 1:length(selected_laps)
plot(ax4,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).brakeTFrontLeft_degC)
plot(ax4,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).brakeTFrontRight_degC)
plot(ax4,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).brakeTRearLeft_degC)
plot(ax4,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).brakeTRearRight_degC)
end
legend(ax4, "FL", "FR", "RL", "RR")
% plot 5: brake bias [%]
ax5 = nexttile(tl);
hold(ax5, "on")
grid(ax5, "on")
title(ax5, "Brake Bias [%]")
for i = 1:length(selected_laps)
plot(ax5,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).brakeBias_perc)
end
% link all x axes
linkaxes([ax1, ax2, ax3, ax4, ax5],"x")
% return null (not relevant for plots!)
outputArg = [];
end

@ -0,0 +1,43 @@
function [outputArg] = plot_driver_braking(panel, selected_laps, pltData)
% create tiledlayout (R2023a and newer)
tl = tiledlayout(panel,"vertical");
% plot 1: speed
ax1 = nexttile(tl);
hold(ax1, "on")
grid(ax1, "on")
title(ax1, "Speed [km/h]")
for i = 1:length(selected_laps)
plot(ax1,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).speed_kph)
end
% plot 2: accelerator pedal position [%]
ax2 = nexttile(tl);
hold(ax2, "on")
grid(ax2, "on")
title(ax2, "APP [%]")
for i = 1:length(selected_laps)
plot(ax2,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).app_percent)
end
% plot 3: brake pressure front [bar]
ax3 = nexttile(tl);
hold(ax3, "on")
grid(ax3, "on")
title(ax3, "Brake Pressure Front [bar]")
for i = 1:length(selected_laps)
plot(ax3,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).brakePFront_bar)
end
% plot 4: longitudinal acceleration [g]
ax4 = nexttile(tl);
hold(ax4, "on")
grid(ax4, "on")
title(ax4, "Long Acc [g]")
for i = 1:length(selected_laps)
plot(ax4,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).acc_long_g)
end
% link all x axes
linkaxes([ax1, ax2, ax3, ax4],"x")
% return null (not relevant for plots!)
outputArg = [];
end

@ -0,0 +1,43 @@
function [outputArg] = plot_driver_general(panel, selected_laps, pltData)
% create tiledlayout (R2023a and newer)
tl = tiledlayout(panel,"vertical");
% plot 1: speed
ax1 = nexttile(tl);
hold(ax1, "on")
grid(ax1, "on")
title(ax1, "Speed [km/h]")
for i = 1:length(selected_laps)
plot(ax1,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).speed_kph)
end
% plot 2: accelerator pedal position [%]
ax2 = nexttile(tl);
hold(ax2, "on")
grid(ax2, "on")
title(ax2, "APP [%]")
for i = 1:length(selected_laps)
plot(ax2,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).app_percent)
end
% plot 3: brake pressure front [bar]
ax3 = nexttile(tl);
hold(ax3, "on")
grid(ax3, "on")
title(ax3, "Brake Pressure Front [bar]")
for i = 1:length(selected_laps)
plot(ax3,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).brakePFront_bar)
end
% plot 4: steering angle [°]
ax4 = nexttile(tl);
hold(ax4, "on")
grid(ax4, "on")
title(ax4, "Steering Angle [°]")
for i = 1:length(selected_laps)
plot(ax4,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).steering_deg)
end
% link all x axes
linkaxes([ax1, ax2, ax3, ax4],"x")
% return null (not relevant for plots!)
outputArg = [];
end

@ -0,0 +1,46 @@
function [outputArg] = plot_driver_statistics(panel, selected_laps, pltData)
% create tiledlayout (R2023a and newer)
tl = tiledlayout(panel,"vertical");
% plot 1: speed
ax1 = nexttile(tl);
hold(ax1, "on")
grid(ax1, "on")
title(ax1, "speed [km/h]")
for i = 1:length(selected_laps)
plot(ax1,pltData(selected_laps(i)).xAxis,pltData(selected_laps(i)).speed_kph)
end
% plot 2: accelerator pedal position [%]
ax2 = nexttile(tl);
hold(ax2, "on")
grid(ax2, "on")
title(ax2, "APP [%]")
for i = 1:length(selected_laps)
plot(ax2,pltData(selected_laps(i)).xAxis,pltData(selected_laps(i)).app_percent)
end
linkaxes([ax1, ax2],"x")
% plot 3: accelerator pedal position histogram
ax3 = nexttile(tl);
hold(ax3, "on")
grid(ax3, "on")
title(ax3, "APP distribution")
ylabel(ax3, "\sigma [%]")
xlabel(ax3, "APP [%]")
for i = 1:length(selected_laps)
histogram(ax3,pltData(selected_laps(i)).app_percent,"Normalization","percentage")
end
% plot 4: brake pressure histogram
ax4 = nexttile(tl);
hold(ax4, "on")
grid(ax4, "on")
title(ax4, "BrakeP distribution")
ylabel(ax4, "\sigma [%]")
xlabel(ax4, "Brake Pressure Front [bar]")
for i = 1:length(selected_laps)
histogram(ax4,pltData(selected_laps(i)).brakePFront_bar,"Normalization","percentage")
end
% return null (not relevant for plots!)
outputArg = [];
end

@ -0,0 +1,42 @@
function [outputArg] = plot_driver_steering(panel, selected_laps, pltData)
% create tiledlayout (R2023a and newer)
tl = tiledlayout(panel,"vertical");
% plot 1: speed
ax1 = nexttile(tl);
hold(ax1, "on")
grid(ax1, "on")
title(ax1, "Speed [km/h]")
for i = 1:length(selected_laps)
plot(ax1,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).speed_kph)
end
% plot 2: steering angle [°]
ax2 = nexttile(tl);
hold(ax2, "on")
grid(ax2, "on")
title(ax2, "Steering Angle [°]")
for i = 1:length(selected_laps)
plot(ax2,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).steering_deg)
end
% plot 3: oversteer
ax3 = nexttile(tl);
hold(ax3, "on")
grid(ax3, "on")
title(ax3, "Oversteer")
% TODO!!
% plot 4: lateral acceleration [g]
ax4 = nexttile(tl);
hold(ax4, "on")
grid(ax4, "on")
title(ax4, "Lateral Acc [g]")
for i = 1:length(selected_laps)
plot(ax4,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).acc_lat_g)
end
% link all x axes
linkaxes([ax1, ax2, ax3, ax4],"x")
% return null (not relevant for plots!)
outputArg = [];
end

@ -0,0 +1,60 @@
function [outputArg] = plot_inverter(panel, selected_laps, pltData)
% create tiledlayout (R2023a and newer)
tl = tiledlayout(panel,"vertical");
% plot 1: speed [km/h]
ax1 = nexttile(tl);
hold(ax1, "on")
grid(ax1, "on")
title(ax1, "Speed [km/h]")
for i = 1:length(selected_laps)
plot(ax1,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).speed_kph)
end
% plot 2: Inverter Temps [°C]
ax2 = nexttile(tl);
hold(ax2, "on")
grid(ax2, "on")
title(ax2, "Inverter Temp [°C]")
for i = 1:length(selected_laps)
plot(ax2,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).invL_temp)
plot(ax2,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).invR_temp)
end
legend(ax2, "Left", "Right")
% plot 3: Torque request / actual inverter left
ax3 = nexttile(tl);
hold(ax3, "on")
grid(ax3, "on")
title(ax3, "Left Torque")
for i = 1:length(selected_laps)
plot(ax3,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).invL_torqueDemand)
plot(ax3,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).invL_torqueActual)
end
legend(ax3, "Demand", "Actual")
% plot 4: Torque request / actual inverter right
ax4 = nexttile(tl);
hold(ax4, "on")
grid(ax4, "on")
title(ax4, "Right Torque")
for i = 1:length(selected_laps)
plot(ax4,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).invR_torqueDemand)
plot(ax4,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).invR_torqueActual)
end
legend(ax4, "Demand", "Actual")
% plot 5: Motor velocities
ax5 = nexttile(tl);
hold(ax5, "on")
grid(ax5, "on")
title(ax5, "Motor Velocities [1/min]")
for i = 1:length(selected_laps)
plot(ax5,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).motL_vel_rpm)
plot(ax5,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).motR_vel_rpm)
end
legend(ax5, "Left", "Right")
% link all x axes
linkaxes([ax1, ax2, ax3, ax4, ax5],"x")
% return null (not relevant for plots!)
outputArg = [];
end

@ -0,0 +1,58 @@
function [outputArg] = plot_powertrain(panel, selected_laps, pltData)
% create tiledlayout (R2023a and newer)
tl = tiledlayout(panel,"vertical");
% plot 1: speed [km/h]
ax1 = nexttile(tl);
hold(ax1, "on")
grid(ax1, "on")
title(ax1, "Speed [km/h]")
for i = 1:length(selected_laps)
plot(ax1,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).speed_kph)
end
% plot 2: power [kW]
ax2 = nexttile(tl);
hold(ax2, "on")
grid(ax2, "on")
title(ax2, "Power [kW]")
for i = 1:length(selected_laps)
plot(ax2,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).ams_ptot)
end
% plot 3: Inverter Temps [°C]
ax3 = nexttile(tl);
hold(ax3, "on")
grid(ax3, "on")
title(ax3, "Inverter Temp [°C]")
for i = 1:length(selected_laps)
plot(ax3,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).invL_temp)
plot(ax3,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).invR_temp)
end
legend(ax3, "Left", "Right")
% plot 4: Motor Temps
ax4 = nexttile(tl);
hold(ax4, "on")
grid(ax4, "on")
title(ax4, "Motor Temp [°C]")
for i = 1:length(selected_laps)
plot(ax4,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).motL_temp)
plot(ax4,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).motR_temp)
end
legend(ax4, "Left", "Right")
% plot 5: Motor velocities
ax5 = nexttile(tl);
hold(ax5, "on")
grid(ax5, "on")
title(ax5, "Motor Velocities [1/min]")
for i = 1:length(selected_laps)
plot(ax5,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).motL_vel_rpm)
plot(ax5,pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).motR_vel_rpm)
end
legend(ax5, "Left", "Right")
% link all x axes
linkaxes([ax1, ax2, ax3, ax4, ax5],"x")
% return null (not relevant for plots!)
outputArg = [];
end

@ -0,0 +1,41 @@
function [outputArg] = plot_suspension_histogram(panel, selected_laps, pltData)
% create tiledlayout (R2023a and newer)
tl = tiledlayout(panel,"vertical");
% plot 1: position heave front [mm/s]
ax1 = nexttile(tl);
hold(ax1, "on")
grid(ax1, "on")
title(ax1, "Heave Front [mm/s]")
for i = 1:length(selected_laps)
histogram(ax1, pltData(selected_laps(i)).velocityHeaveFront_mmps,"Normalization","percentage")
end
% plot 2: position roll front [mm/s]
ax2 = nexttile(tl);
hold(ax2, "on")
grid(ax2, "on")
title(ax2, "Roll Front [mm/s]")
for i = 1:length(selected_laps)
histogram(ax2, pltData(selected_laps(i)).velocityHeaveFront_mmps,"Normalization","percentage")
end
% plot 3: position heave front [mm/s]
ax3 = nexttile(tl);
hold(ax3, "on")
grid(ax3, "on")
title(ax3, "Heave Rear [mm/s]")
for i = 1:length(selected_laps)
histogram(ax3, pltData(selected_laps(i)).velocityHeaveFront_mmps,"Normalization","percentage")
end
% plot 4: position roll front [mm/s]
ax4 = nexttile(tl);
hold(ax4, "on")
grid(ax4, "on")
title(ax4, "Roll Rear [mm/s]")
for i = 1:length(selected_laps)
histogram(ax4, pltData(selected_laps(i)).velocityHeaveFront_mmps,"Normalization","percentage")
end
linkaxes([ax1, ax2, ax3, ax4],"x")
% return null (not relevant for plots!)
outputArg = [];
end

@ -0,0 +1,41 @@
function [outputArg] = plot_suspension_positions(panel, selected_laps, pltData)
% create tiledlayout (R2023a and newer)
tl = tiledlayout(panel,"vertical");
% plot 1: position heave front [mm]
ax1 = nexttile(tl);
hold(ax1, "on")
grid(ax1, "on")
title(ax1, "Heave Front [mm]")
for i = 1:length(selected_laps)
plot(ax1, pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).damperHeaveFront_mm)
end
% plot 2: position roll front [mm]
ax2 = nexttile(tl);
hold(ax2, "on")
grid(ax2, "on")
title(ax2, "Roll Front [mm]")
for i = 1:length(selected_laps)
plot(ax2, pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).damperRollFront_mm)
end
% plot 3: position heave front [mm]
ax3 = nexttile(tl);
hold(ax3, "on")
grid(ax3, "on")
title(ax3, "Heave Rear [mm]")
for i = 1:length(selected_laps)
plot(ax3, pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).damperHeaveRear_mm)
end
% plot 4: position roll front [mm]
ax4 = nexttile(tl);
hold(ax4, "on")
grid(ax4, "on")
title(ax4, "Roll Rear [mm]")
for i = 1:length(selected_laps)
plot(ax4, pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).damperRollRear_mm)
end
linkaxes([ax1, ax2, ax3, ax4],"x")
% return null (not relevant for plots!)
outputArg = [];
end

@ -0,0 +1,41 @@
function [outputArg] = plot_suspension_velocities(panel, selected_laps, pltData)
% create tiledlayout (R2023a and newer)
tl = tiledlayout(panel,"vertical");
% plot 1: velocity heave front [mm/s]
ax1 = nexttile(tl);
hold(ax1, "on")
grid(ax1, "on")
title(ax1, "Heave Front [mm/s]")
for i = 1:length(selected_laps)
plot(ax1, pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).velocityHeaveFront_mmps)
end
% plot 2: velocity roll front [mm/s]
ax2 = nexttile(tl);
hold(ax2, "on")
grid(ax2, "on")
title(ax2, "Roll Front [mm/s]")
for i = 1:length(selected_laps)
plot(ax2, pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).velocityRollFront_mmps)
end
% plot 3: velocity heave front [mm/s]
ax3 = nexttile(tl);
hold(ax3, "on")
grid(ax3, "on")
title(ax3, "Heave Rear [mm/s]")
for i = 1:length(selected_laps)
plot(ax3, pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).velocityHeaveRear_mmps)
end
% plot 4: velocity roll front [mm/s]
ax4 = nexttile(tl);
hold(ax4, "on")
grid(ax4, "on")
title(ax4, "Roll Rear [mm/s]")
for i = 1:length(selected_laps)
plot(ax4, pltData(selected_laps(i)).xAxis, pltData(selected_laps(i)).velocityRollRear_mmps)
end
linkaxes([ax1, ax2, ax3, ax4],"x")
% return null (not relevant for plots!)
outputArg = [];
end

@ -0,0 +1,24 @@
function [outputArg] = plot_tires_firctionCircle(panel, selected_laps, pltData)
% create tiledlayout (R2023a and newer)
tl = tiledlayout(panel,"flow");
ax1 = nexttile(tl);
hold(ax1, "on")
grid(ax1, "on")
title(ax1, "Friction Circle")
ylabel(ax1, "Longitudinal Acc [g]")
xlabel(ax1, "Lateral Acc [g]")
colors = colororder(ax1);
for i = 1:length(selected_laps)
plot(ax1,pltData(selected_laps(i)).acc_lat_g, ...
pltData(selected_laps(i)).acc_long_g,"Color",colors(i,:))
K = convhull(pltData(selected_laps(i)).acc_lat_g, pltData(selected_laps(i)).acc_long_g);
plot(ax1,pltData(selected_laps(i)).acc_lat_g(K), ...
pltData(selected_laps(i)).acc_long_g(K),"Color",colors(i,:),"LineStyle","--","LineWidth",2)
end
% return null (not relevant for plots!)
outputArg = [];
end

@ -0,0 +1,21 @@
function [sidebarLabel] = sidebar_stats(pltData)
%SIDEBAR_STATS Summary of this function goes here
% Detailed explanation goes here
sidebarLabel = sprintf(...
"Statistics:\nEnergy\n Used: %.2f kWh\n" + ...
" Regen: %.2f kWh\n" + ...
" Total: %.2f kWh\n" + ...
"\nPower\n Peak: %.1f kW\n" + ...
" Peak (mean): %1.f kW\n" + ...
"\nDistance: %.2f km\n" + ...
"\nTopspeed: %.1f km/h\n", ...
pltData.energy_used_kwh, ...
pltData.energy_regen_kwh, ...
pltData.energy_kwh, ...
pltData.peakPower_kw, ...
pltData.peakPowerMean_kw, ...
pltData.distanceTotal_km, ...
pltData.maxSpeed_kph ...
);
end

0
set_timestamps.m Normal file