Tried to fix ukf
This commit is contained in:
		@ -33,9 +33,17 @@ if(BUILD_TESTING)
 | 
			
		||||
endif()
 | 
			
		||||
 | 
			
		||||
install(
 | 
			
		||||
  DIRECTORY config description launch worlds
 | 
			
		||||
  DIRECTORY config description launch worlds src
 | 
			
		||||
  DESTINATION share/${PROJECT_NAME}
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
ament_python_install_package(${PROJECT_NAME})
 | 
			
		||||
 
 | 
			
		||||
# Install Python executables
 | 
			
		||||
install(PROGRAMS
 | 
			
		||||
  src/imu_covariance_adder.py
 | 
			
		||||
  DESTINATION lib/${PROJECT_NAME}
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
ament_environment_hooks("${CMAKE_CURRENT_SOURCE_DIR}/env-hooks/${PROJECT_NAME}.dsv.in")
 | 
			
		||||
ament_package()
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										217
									
								
								src/dcaiti_control/config/ukf.yml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										217
									
								
								src/dcaiti_control/config/ukf.yml
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,217 @@
 | 
			
		||||
### ukf config file ###
 | 
			
		||||
ukf_filter_node:
 | 
			
		||||
    ros__parameters:
 | 
			
		||||
        # The frequency, in Hz, at which the filter will output a position estimate. Note that the filter will not begin
 | 
			
		||||
        # computation until it receives at least one message from one of the inputs. It will then run continuously at the
 | 
			
		||||
        # frequency specified here, regardless of whether it receives more measurements. Defaults to 30 if unspecified.
 | 
			
		||||
        frequency: 30.0
 | 
			
		||||
 | 
			
		||||
        # The period, in seconds, after which we consider a sensor to have timed out. In this event, we carry out a predict
 | 
			
		||||
        # cycle on the EKF without correcting it. This parameter can be thought of as the minimum frequency with which the
 | 
			
		||||
        # filter will generate new output. Defaults to 1 / frequency if not specified.
 | 
			
		||||
        sensor_timeout: 0.1
 | 
			
		||||
 | 
			
		||||
        # ekf_localization_node and ukf_localization_node both use a 3D omnidirectional motion model. If this parameter is
 | 
			
		||||
        # set to true, no 3D information will be used in your state estimate. Use this if you are operating in a planar
 | 
			
		||||
        # environment and want to ignore the effect of small variations in the ground plane that might otherwise be detected
 | 
			
		||||
        # by, for example, an IMU. Defaults to false if unspecified.
 | 
			
		||||
        two_d_mode: True
 | 
			
		||||
 | 
			
		||||
        # Use this parameter to provide an offset to the transform generated by ekf_localization_node. This can be used for
 | 
			
		||||
        # future dating the transform, which is required for interaction with some other packages. Defaults to 0.0 if
 | 
			
		||||
        # unspecified.
 | 
			
		||||
        transform_time_offset: 0.0
 | 
			
		||||
 | 
			
		||||
        # Use this parameter to provide specify how long the tf listener should wait for a transform to become available. 
 | 
			
		||||
        # Defaults to 0.0 if unspecified.
 | 
			
		||||
        transform_timeout: 0.0
 | 
			
		||||
 | 
			
		||||
        # If you're having trouble, try setting this to true, and then echo the /diagnostics_agg topic to see if the node is
 | 
			
		||||
        # unhappy with any settings or data.
 | 
			
		||||
        print_diagnostics: true
 | 
			
		||||
 | 
			
		||||
        # Debug settings. Not for the faint of heart. Outputs a ludicrous amount of information to the file specified by
 | 
			
		||||
        # debug_out_file. I hope you like matrices! Please note that setting this to true will have strongly deleterious
 | 
			
		||||
        # effects on the performance of the node. Defaults to false if unspecified.
 | 
			
		||||
        debug: false
 | 
			
		||||
 | 
			
		||||
        # Whether we'll allow old measurements to cause a re-publication of the updated state
 | 
			
		||||
        permit_corrected_publication: false
 | 
			
		||||
 | 
			
		||||
        # Whether to publish the acceleration state. Defaults to false if unspecified.
 | 
			
		||||
        publish_acceleration: false
 | 
			
		||||
 | 
			
		||||
        # Whether to broadcast the transformation over the /tf topic. Defaults to true if unspecified.
 | 
			
		||||
        publish_tf: true
 | 
			
		||||
 | 
			
		||||
        # REP-105 (http://www.ros.org/reps/rep-0105.html) specifies four principal coordinate frames: base_link, odom, map, and
 | 
			
		||||
        # earth. base_link is the coordinate frame that is affixed to the robot. Both odom and map are world-fixed frames.
 | 
			
		||||
        # The robot's position in the odom frame will drift over time, but is accurate in the short term and should be
 | 
			
		||||
        # continuous. The odom frame is therefore the best frame for executing local motion plans. The map frame, like the odom
 | 
			
		||||
        # frame, is a world-fixed coordinate frame, and while it contains the most globally accurate position estimate for your
 | 
			
		||||
        # robot, it is subject to discrete jumps, e.g., due to the fusion of GPS data or a correction from a map-based
 | 
			
		||||
        # localization node. The earth frame is used to relate multiple map frames by giving them a common reference frame.
 | 
			
		||||
        # ekf_localization_node and ukf_localization_node are not concerned with the earth frame.
 | 
			
		||||
        # Here is how to use the following settings:
 | 
			
		||||
        # 1. Set the map_frame, odom_frame, and base_link frames to the appropriate frame names for your system.
 | 
			
		||||
        #     1a. If your system does not have a map_frame, just remove it, and make sure "world_frame" is set to the value of
 | 
			
		||||
        #         odom_frame.
 | 
			
		||||
        # 2. If you are fusing continuous position data such as wheel encoder odometry, visual odometry, or IMU data, set
 | 
			
		||||
        #   "world_frame" to your odom_frame value. This is the default behavior for robot_localization's state estimation nodes.
 | 
			
		||||
        # 3. If you are fusing global absolute position data that is subject to discrete jumps (e.g., GPS or position updates
 | 
			
		||||
        # from landmark observations) then:
 | 
			
		||||
        #     3a. Set your "world_frame" to your map_frame value
 | 
			
		||||
        #     3b. MAKE SURE something else is generating the odom->base_link transform. Note that this can even be another state
 | 
			
		||||
        #         estimation node from robot_localization! However, that instance should *not* fuse the global data.
 | 
			
		||||
        map_frame: map              # Defaults to "map" if unspecified
 | 
			
		||||
        odom_frame: odom            # Defaults to "odom" if unspecified
 | 
			
		||||
        base_link_frame: base_link  # Defaults to "base_link" if unspecified
 | 
			
		||||
        world_frame: odom           # Defaults to the value of odom_frame if unspecified
 | 
			
		||||
 | 
			
		||||
        # The filter accepts an arbitrary number of inputs from each input message type (nav_msgs/Odometry,
 | 
			
		||||
        # geometry_msgs/PoseWithCovarianceStamped, geometry_msgs/TwistWithCovarianceStamped,
 | 
			
		||||
        # sensor_msgs/Imu). To add an input, simply append the next number in the sequence to its "base" name, e.g., odom0,
 | 
			
		||||
        # odom1, twist0, twist1, imu0, imu1, imu2, etc. The value should be the topic name. These parameters obviously have no
 | 
			
		||||
        # default values, and must be specified.
 | 
			
		||||
        odom0: /ackermann_steering_controller/odometry
 | 
			
		||||
 | 
			
		||||
        # Each sensor reading updates some or all of the filter's state. These options give you greater control over which
 | 
			
		||||
        # values from each measurement are fed to the filter. For example, if you have an odometry message as input, but only
 | 
			
		||||
        # want to use its Z position value, then set the entire vector to false, except for the third entry. The order of the
 | 
			
		||||
        # values is x, y, z, roll, pitch, yaw, vx, vy, vz, vroll, vpitch, vyaw, ax, ay, az. Note that not some message types
 | 
			
		||||
        # do not provide some of the state variables estimated by the filter. For example, a TwistWithCovarianceStamped message
 | 
			
		||||
        # has no pose information, so the first six values would be meaningless in that case. Each vector defaults to all false
 | 
			
		||||
        # if unspecified, effectively making this parameter required for each sensor.
 | 
			
		||||
        odom0_config: [false,  false,  false,
 | 
			
		||||
                       false, false, false,
 | 
			
		||||
                       true, false, false,
 | 
			
		||||
                       false, false, true,
 | 
			
		||||
                       false, false, false]
 | 
			
		||||
 | 
			
		||||
        # If you have high-frequency data or are running with a low frequency parameter value, then you may want to increase
 | 
			
		||||
        # the size of the subscription queue so that more measurements are fused.
 | 
			
		||||
        odom0_queue_size: 2
 | 
			
		||||
 | 
			
		||||
        # [ADVANCED] When measuring one pose variable with two sensors, a situation can arise in which both sensors under-
 | 
			
		||||
        # report their covariances. This can lead to the filter rapidly jumping back and forth between each measurement as they
 | 
			
		||||
        # arrive. In these cases, it often makes sense to (a) correct the measurement covariances, or (b) if velocity is also
 | 
			
		||||
        # measured by one of the sensors, let one sensor measure pose, and the other velocity. However, doing (a) or (b) isn't
 | 
			
		||||
        # always feasible, and so we expose the differential parameter. When differential mode is enabled, all absolute pose
 | 
			
		||||
        # data is converted to velocity data by differentiating the absolute pose measurements. These velocities are then
 | 
			
		||||
        # integrated as usual. NOTE: this only applies to sensors that provide pose measurements; setting differential to true
 | 
			
		||||
        # for twist measurements has no effect.
 | 
			
		||||
        odom0_differential: false
 | 
			
		||||
 | 
			
		||||
        # [ADVANCED] When the node starts, if this parameter is true, then the first measurement is treated as a "zero point"
 | 
			
		||||
        # for all future measurements. While you can achieve the same effect with the differential paremeter, the key
 | 
			
		||||
        # difference is that the relative parameter doesn't cause the measurement to be converted to a velocity before
 | 
			
		||||
        # integrating it. If you simply want your measurements to start at 0 for a given sensor, set this to true.
 | 
			
		||||
        odom0_relative: false
 | 
			
		||||
 | 
			
		||||
        # [ADVANCED] If your data is subject to outliers, use these threshold settings, expressed as Mahalanobis distances, to
 | 
			
		||||
        # control how far away from the current vehicle state a sensor measurement is permitted to be. Each defaults to
 | 
			
		||||
        # numeric_limits<double>::max() if unspecified. It is strongly recommended that these parameters be removed if not
 | 
			
		||||
        # required. Data is specified at the level of pose and twist variables, rather than for each variable in isolation.
 | 
			
		||||
        # For messages that have both pose and twist data, the parameter specifies to which part of the message we are applying
 | 
			
		||||
        # the thresholds.
 | 
			
		||||
        odom0_pose_rejection_threshold: 5.0
 | 
			
		||||
        odom0_twist_rejection_threshold: 1.0
 | 
			
		||||
 | 
			
		||||
        #imu0: lidar/imu_covariance
 | 
			
		||||
        #imu0_config: [false, false, false,
 | 
			
		||||
        #              true,  true,  true,
 | 
			
		||||
        #              false, false, false,
 | 
			
		||||
        #              true,  true,  true,
 | 
			
		||||
        #              true,  true,  true]
 | 
			
		||||
        #imu0_differential: false
 | 
			
		||||
        #imu0_relative: true
 | 
			
		||||
        #imu0_queue_size: 5
 | 
			
		||||
        #imu0_pose_rejection_threshold: 0.8                 # Note the difference in parameter names
 | 
			
		||||
        #imu0_twist_rejection_threshold: 0.8                #
 | 
			
		||||
        #imu0_linear_acceleration_rejection_threshold: 0.8  #
 | 
			
		||||
 | 
			
		||||
        # [ADVANCED] Some IMUs automatically remove acceleration due to gravity, and others don't. If yours doesn't, please set
 | 
			
		||||
        # this to true, and *make sure* your data conforms to REP-103, specifically, that the data is in ENU frame.
 | 
			
		||||
        #imu0_remove_gravitational_acceleration: true
 | 
			
		||||
 | 
			
		||||
        # [ADVANCED]  The EKF and UKF models follow a standard predict/correct cycle. During prediction, if there is no
 | 
			
		||||
        # acceleration reference, the velocity at time t+1 is simply predicted to be the same as the velocity at time t. During
 | 
			
		||||
        # correction, this predicted value is fused with the measured value to produce the new velocity estimate. This can be
 | 
			
		||||
        # problematic, as the final velocity will effectively be a weighted average of the old velocity and the new one. When
 | 
			
		||||
        # this velocity is the integrated into a new pose, the result can be sluggish covergence. This effect is especially
 | 
			
		||||
        # noticeable with LIDAR data during rotations. To get around it, users can try inflating the process_noise_covariance
 | 
			
		||||
        # for the velocity variable in question, or decrease the  variance of the variable in question in the measurement
 | 
			
		||||
        # itself. In addition, users can also take advantage of the control command being issued to the robot at the time we
 | 
			
		||||
        # make the prediction. If control is used, it will get converted into an acceleration term, which will be used during
 | 
			
		||||
        # predicition. Note that if an acceleration measurement for the variable in question is available from one of the
 | 
			
		||||
        # inputs, the control term will be ignored.
 | 
			
		||||
        # Whether or not we use the control input during predicition. Defaults to false.
 | 
			
		||||
        use_control: false
 | 
			
		||||
 | 
			
		||||
        # Whether the input (assumed to be cmd_vel) is a geometry_msgs/Twist or geometry_msgs/TwistStamped message. Defaults to
 | 
			
		||||
        # false.
 | 
			
		||||
        stamped_control: false
 | 
			
		||||
 | 
			
		||||
        # The last issued control command will be used in prediction for this period. Defaults to 0.2.
 | 
			
		||||
        control_timeout: 0.2
 | 
			
		||||
 | 
			
		||||
        # Which velocities are being controlled. Order is vx, vy, vz, vroll, vpitch, vyaw.
 | 
			
		||||
        control_config: [true, false, false, false, false, true]
 | 
			
		||||
 | 
			
		||||
        # Places limits on how large the acceleration term will be. Should match your robot's kinematics.
 | 
			
		||||
        acceleration_limits: [1.3, 0.0, 0.0, 0.0, 0.0, 3.4]
 | 
			
		||||
 | 
			
		||||
        # Acceleration and deceleration limits are not always the same for robots.
 | 
			
		||||
        deceleration_limits: [1.3, 0.0, 0.0, 0.0, 0.0, 4.5]
 | 
			
		||||
 | 
			
		||||
        # If your robot cannot instantaneously reach its acceleration limit, the permitted change can be controlled with these
 | 
			
		||||
        # gains
 | 
			
		||||
        acceleration_gains: [0.8, 0.0, 0.0, 0.0, 0.0, 0.9]
 | 
			
		||||
 | 
			
		||||
        # If your robot cannot instantaneously reach its deceleration limit, the permitted change can be controlled with these
 | 
			
		||||
        # gains
 | 
			
		||||
        deceleration_gains: [1.0, 0.0, 0.0, 0.0, 0.0, 1.0]
 | 
			
		||||
 | 
			
		||||
        # [ADVANCED] The process noise covariance matrix can be difficult to tune, and can vary for each application, so it is
 | 
			
		||||
        # exposed as a configuration parameter. This matrix represents the noise we add to the total error after each
 | 
			
		||||
        # prediction step. The better the omnidirectional motion model matches your system, the smaller these values can be.
 | 
			
		||||
        # However, if users find that a given variable is slow to converge, one approach is to increase the
 | 
			
		||||
        # process_noise_covariance diagonal value for the variable in question, which will cause the filter's predicted error
 | 
			
		||||
        # to be larger, which will cause the filter to trust the incoming measurement more during correction. The values are
 | 
			
		||||
        # ordered as x, y, z, roll, pitch, yaw, vx, vy, vz, vroll, vpitch, vyaw, ax, ay, az. Defaults to the matrix below if
 | 
			
		||||
        # unspecified.
 | 
			
		||||
        # Note: the specification of covariance matrices can be cumbersome, so all matrix parameters in this package support
 | 
			
		||||
        # both full specification or specification of only the diagonal values.
 | 
			
		||||
        process_noise_covariance: [0.05, 0.0,    0.0,    0.0,    0.0,    0.0,    0.0,     0.0,     0.0,    0.0,    0.0,    0.0,    0.0,    0.0,    0.0,
 | 
			
		||||
                                   0.0,    0.05, 0.0,    0.0,    0.0,    0.0,    0.0,     0.0,     0.0,    0.0,    0.0,    0.0,    0.0,    0.0,    0.0,
 | 
			
		||||
                                   0.0,    0.0,    0.06, 0.0,    0.0,    0.0,    0.0,     0.0,     0.0,    0.0,    0.0,    0.0,    0.0,    0.0,    0.0,
 | 
			
		||||
                                   0.0,    0.0,    0.0,    0.03, 0.0,    0.0,    0.0,     0.0,     0.0,    0.0,    0.0,    0.0,    0.0,    0.0,    0.0,
 | 
			
		||||
                                   0.0,    0.0,    0.0,    0.0,    0.03, 0.0,    0.0,     0.0,     0.0,    0.0,    0.0,    0.0,    0.0,    0.0,    0.0,
 | 
			
		||||
                                   0.0,    0.0,    0.0,    0.0,    0.0,    0.06, 0.0,     0.0,     0.0,    0.0,    0.0,    0.0,    0.0,    0.0,    0.0,
 | 
			
		||||
                                   0.0,    0.0,    0.0,    0.0,    0.0,    0.0,    0.025, 0.0,     0.0,    0.0,    0.0,    0.0,    0.0,    0.0,    0.0,
 | 
			
		||||
                                   0.0,    0.0,    0.0,    0.0,    0.0,    0.0,    0.0,     0.025, 0.0,    0.0,    0.0,    0.0,    0.0,    0.0,    0.0,
 | 
			
		||||
                                   0.0,    0.0,    0.0,    0.0,    0.0,    0.0,    0.0,     0.0,     0.04, 0.0,    0.0,    0.0,    0.0,    0.0,    0.0,
 | 
			
		||||
                                   0.0,    0.0,    0.0,    0.0,    0.0,    0.0,    0.0,     0.0,     0.0,    0.01, 0.0,    0.0,    0.0,    0.0,    0.0,
 | 
			
		||||
                                   0.0,    0.0,    0.0,    0.0,    0.0,    0.0,    0.0,     0.0,     0.0,    0.0,    0.01, 0.0,    0.0,    0.0,    0.0,
 | 
			
		||||
                                   0.0,    0.0,    0.0,    0.0,    0.0,    0.0,    0.0,     0.0,     0.0,    0.0,    0.0,    0.02, 0.0,    0.0,    0.0,
 | 
			
		||||
                                   0.0,    0.0,    0.0,    0.0,    0.0,    0.0,    0.0,     0.0,     0.0,    0.0,    0.0,    0.0,    0.01, 0.0,    0.0,
 | 
			
		||||
                                   0.0,    0.0,    0.0,    0.0,    0.0,    0.0,    0.0,     0.0,     0.0,    0.0,    0.0,    0.0,    0.0,    0.01, 0.0,
 | 
			
		||||
                                   0.0,    0.0,    0.0,    0.0,    0.0,    0.0,    0.0,     0.0,     0.0,    0.0,    0.0,    0.0,    0.0,    0.0,    0.015]
 | 
			
		||||
 | 
			
		||||
        # [ADVANCED] This represents the initial value for the state estimate error covariance matrix. Setting a diagonal
 | 
			
		||||
        # value (variance) to a large value will result in rapid convergence for initial measurements of the variable in
 | 
			
		||||
        # question. Users should take care not to use large values for variables that will not be measured directly. The values
 | 
			
		||||
        # are ordered as x, y, z, roll, pitch, yaw, vx, vy, vz, vroll, vpitch, vyaw, ax, ay, az. Defaults to the diagonal values below
 | 
			
		||||
        # if unspecified. In this example, we specify only the diagonal of the matrix.
 | 
			
		||||
        initial_estimate_covariance: [1e-9, 1e-9, 1e-9, 1e-9, 1e-9, 1e-9, 1e-9, 1e-9, 1e-9, 1e-9, 1e-9, 1e-9, 1e-9, 1e-9, 1e-9]
 | 
			
		||||
 | 
			
		||||
        # [ADVANCED, UKF ONLY] The alpha and kappa variables control the spread of the sigma points. Unless you are familiar
 | 
			
		||||
        # with UKFs, it's probably a good idea to leave these alone.
 | 
			
		||||
        # Defaults to 0.001 if unspecified.
 | 
			
		||||
        alpha: 0.001
 | 
			
		||||
        # Defaults to 0 if unspecified.
 | 
			
		||||
        kappa: 0.0
 | 
			
		||||
 | 
			
		||||
        # [ADVANCED, UKF ONLY] The beta variable relates to the distribution of the state vector. Again, it's probably best to
 | 
			
		||||
        # leave this alone if you're uncertain. Defaults to 2 if unspecified.
 | 
			
		||||
        beta: 2.0
 | 
			
		||||
							
								
								
									
										0
									
								
								src/dcaiti_control/dcaiti_control/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										0
									
								
								src/dcaiti_control/dcaiti_control/__init__.py
									
									
									
									
									
										Normal file
									
								
							@ -3,10 +3,57 @@
 | 
			
		||||
    <gazebo reference="laser_frame">
 | 
			
		||||
        <material>Gazebo/Red</material>
 | 
			
		||||
        <sensor name="imu_sensor" type="imu">
 | 
			
		||||
          <ignition_frame_id>laser_frame</ignition_frame_id>
 | 
			
		||||
          <always_on>1</always_on>
 | 
			
		||||
          <update_rate>50</update_rate>
 | 
			
		||||
          <visualize>false</visualize>
 | 
			
		||||
          <topic>/lidar/imu</topic>
 | 
			
		||||
          <angular_velocity>
 | 
			
		||||
            <x>
 | 
			
		||||
              <noise>
 | 
			
		||||
                <type>gaussian</type>
 | 
			
		||||
                <mean>0.0</mean>
 | 
			
		||||
                <stddev>0.01</stddev>
 | 
			
		||||
              </noise>
 | 
			
		||||
            </x> 
 | 
			
		||||
            <y>
 | 
			
		||||
              <noise>
 | 
			
		||||
                <type>gaussian</type>
 | 
			
		||||
                <mean>0.0</mean>
 | 
			
		||||
                <stddev>0.01</stddev>
 | 
			
		||||
              </noise>
 | 
			
		||||
            </y>
 | 
			
		||||
            <z>
 | 
			
		||||
              <noise>
 | 
			
		||||
                <type>gaussian</type>
 | 
			
		||||
                <mean>0.0</mean>
 | 
			
		||||
                <stddev>0.01</stddev>
 | 
			
		||||
              </noise>
 | 
			
		||||
            </z> 
 | 
			
		||||
          </angular_velocity>
 | 
			
		||||
          <linear_acceleration>
 | 
			
		||||
            <x>
 | 
			
		||||
              <noise>
 | 
			
		||||
                <type>gaussian</type>
 | 
			
		||||
                <mean>0.0</mean>
 | 
			
		||||
                <stddev>0.01</stddev>
 | 
			
		||||
              </noise>
 | 
			
		||||
            </x> 
 | 
			
		||||
            <y>
 | 
			
		||||
              <noise>
 | 
			
		||||
                <type>gaussian</type>
 | 
			
		||||
                <mean>0.0</mean>
 | 
			
		||||
                <stddev>0.01</stddev>
 | 
			
		||||
              </noise>
 | 
			
		||||
            </y>
 | 
			
		||||
            <z>
 | 
			
		||||
              <noise>
 | 
			
		||||
                <type>gaussian</type>
 | 
			
		||||
                <mean>0.0</mean>
 | 
			
		||||
                <stddev>0.01</stddev>
 | 
			
		||||
              </noise>
 | 
			
		||||
            </z>
 | 
			
		||||
          </linear_acceleration>
 | 
			
		||||
      </sensor>
 | 
			
		||||
    </gazebo>  
 | 
			
		||||
</robot>
 | 
			
		||||
@ -41,7 +41,7 @@ def generate_launch_description():
 | 
			
		||||
    gazebo = IncludeLaunchDescription(
 | 
			
		||||
                PythonLaunchDescriptionSource([os.path.join(
 | 
			
		||||
                    get_package_share_directory('ros_gz_sim'), 'launch', 'gz_sim.launch.py')]),
 | 
			
		||||
                    launch_arguments=[('gz_args', [f" -r -v 1 {world_path}/generated_worlds/AU2_skidpad.sdf"])],
 | 
			
		||||
                    launch_arguments=[('gz_args', [f" -r -v 0 {world_path}/generated_worlds/AU2_skidpad.sdf"])],
 | 
			
		||||
             )
 | 
			
		||||
 | 
			
		||||
    # Run the spawner node from the gazebo_ros package. The entity name doesn't really matter if you only have a single robot.
 | 
			
		||||
@ -94,6 +94,29 @@ def generate_launch_description():
 | 
			
		||||
        on_exit=[diff_drive_spawner],
 | 
			
		||||
      )
 | 
			
		||||
    )
 | 
			
		||||
    
 | 
			
		||||
    imu_covariance_adder = Node(
 | 
			
		||||
        package='dcaiti_control',
 | 
			
		||||
        executable='imu_covariance_adder.py',
 | 
			
		||||
        name='imu_covariance_adder',
 | 
			
		||||
        output='screen',
 | 
			
		||||
        parameters=[
 | 
			
		||||
            {'orientation_covariance': [1e-3]*9},
 | 
			
		||||
            {'linear_acceleration_covariance': [1e-3]*9},
 | 
			
		||||
            {'angular_velocity_covariance': [1e-3]*9},
 | 
			
		||||
            {'subscribe_topic': '/lidar/imu'},
 | 
			
		||||
            {'publish_topic': '/lidar/imu_covariance'}
 | 
			
		||||
        ]
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    #ukf_node = Node(
 | 
			
		||||
    #        package='robot_localization', 
 | 
			
		||||
    #        executable='ukf_node', 
 | 
			
		||||
    #        name='ukf_filter_node',
 | 
			
		||||
	#        output='screen',
 | 
			
		||||
    #        parameters=[str(base_path / 'config' / 'ukf.yml')],
 | 
			
		||||
    #        remappings=[('odometry/filtered', 'odometry/local')]           
 | 
			
		||||
    #       )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    # Launch them all!
 | 
			
		||||
@ -112,4 +135,6 @@ def generate_launch_description():
 | 
			
		||||
        spawn_entity,
 | 
			
		||||
        delayed_diff_drive_spawner,
 | 
			
		||||
        delayed_joint_broad_spawner,
 | 
			
		||||
        imu_covariance_adder,
 | 
			
		||||
        #ukf_node
 | 
			
		||||
    ]) 
 | 
			
		||||
 | 
			
		||||
@ -67,5 +67,5 @@ def generate_launch_description():
 | 
			
		||||
 | 
			
		||||
        node_robot_state_publisher,
 | 
			
		||||
        node_joint_state_publisher,
 | 
			
		||||
        twist_mux,
 | 
			
		||||
        #twist_mux,
 | 
			
		||||
    ])
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										0
									
								
								src/dcaiti_control/src/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										0
									
								
								src/dcaiti_control/src/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
								
								
									
										51
									
								
								src/dcaiti_control/src/imu_covariance_adder.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										51
									
								
								src/dcaiti_control/src/imu_covariance_adder.py
									
									
									
									
									
										Executable file
									
								
							@ -0,0 +1,51 @@
 | 
			
		||||
#!/usr/bin/env python3
 | 
			
		||||
 | 
			
		||||
import rclpy
 | 
			
		||||
from rclpy.node import Node
 | 
			
		||||
from sensor_msgs.msg import Imu
 | 
			
		||||
 | 
			
		||||
class ImuCovarianceNode(Node):
 | 
			
		||||
    def __init__(self):
 | 
			
		||||
        super().__init__('imu_covariance_node')
 | 
			
		||||
        
 | 
			
		||||
        self.declare_parameter('publish_topic', '/lidar/imu_covariance').value
 | 
			
		||||
        self.declare_parameter('subscribe_topic', '/lidar/imu').value
 | 
			
		||||
        self.declare_parameter('linear_acceleration_covariance', [0.0] * 9)
 | 
			
		||||
        self.declare_parameter('angular_velocity_covariance', [0.0] * 9)
 | 
			
		||||
        self.declare_parameter('orientation_covariance', [0.0] * 9)
 | 
			
		||||
 | 
			
		||||
        self.orientation_covariance = self.get_parameter('orientation_covariance').value
 | 
			
		||||
        self.linear_acceleration_covariance = self.get_parameter('linear_acceleration_covariance').value
 | 
			
		||||
        self.angular_velocity_covariance = self.get_parameter('angular_velocity_covariance').value
 | 
			
		||||
        self.publish_topic = self.get_parameter('publish_topic').value
 | 
			
		||||
        self.subscribe_topic = self.get_parameter('subscribe_topic').value
 | 
			
		||||
 | 
			
		||||
        self.publisher = self.create_publisher(Imu, self.publish_topic, 10)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        self.subscription = self.create_subscription(
 | 
			
		||||
            Imu,
 | 
			
		||||
            self.subscribe_topic,
 | 
			
		||||
            self.imu_callback,
 | 
			
		||||
            10)
 | 
			
		||||
 | 
			
		||||
    def imu_callback(self, msg):
 | 
			
		||||
        # Update covariances in-place
 | 
			
		||||
        msg.orientation_covariance = self.orientation_covariance
 | 
			
		||||
        msg.linear_acceleration_covariance = self.linear_acceleration_covariance
 | 
			
		||||
        msg.angular_velocity_covariance = self.angular_velocity_covariance
 | 
			
		||||
 | 
			
		||||
        self.publisher.publish(msg)
 | 
			
		||||
 | 
			
		||||
def main(args=None):
 | 
			
		||||
    rclpy.init(args=args)
 | 
			
		||||
 | 
			
		||||
    imu_covariance_node = ImuCovarianceNode()
 | 
			
		||||
 | 
			
		||||
    rclpy.spin(imu_covariance_node)
 | 
			
		||||
 | 
			
		||||
    imu_covariance_node.destroy_node()
 | 
			
		||||
    rclpy.shutdown()
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    main()
 | 
			
		||||
		Reference in New Issue
	
	Block a user