stw24/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7.c

199 lines
5.5 KiB
C

/*
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* ----------------------------------------------------------------------
* Project: CMSIS NN Library
* Title: arm_fully_connected_q7.c
* Description: Q7 basic fully-connected layer function
*
* $Date: 17. January 2018
* $Revision: V.1.0.0
*
* Target Processor: Cortex-M cores
*
* -------------------------------------------------------------------- */
#include "arm_math.h"
#include "arm_nnfunctions.h"
/**
* @ingroup groupNN
*/
/**
* @addtogroup FC
* @{
*/
/**
* @brief Q7 basic fully-connected layer function
* @param[in] pV pointer to input vector
* @param[in] pM pointer to matrix weights
* @param[in] dim_vec length of the vector
* @param[in] num_of_rows number of rows in weight matrix
* @param[in] bias_shift amount of left-shift for bias
* @param[in] out_shift amount of right-shift for output
* @param[in] bias pointer to bias
* @param[in,out] pOut pointer to output vector
* @param[in,out] vec_buffer pointer to buffer space for input
* @return The function returns <code>ARM_MATH_SUCCESS</code>
*
* @details
*
* <b>Buffer size:</b>
*
* vec_buffer size: dim_vec
*
* This basic function is designed to work with regular weight
* matrix without interleaving.
*
*/
arm_status
arm_fully_connected_q7(const q7_t * pV,
const q7_t * pM,
const uint16_t dim_vec,
const uint16_t num_of_rows,
const uint16_t bias_shift,
const uint16_t out_shift, const q7_t * bias, q7_t * pOut, q15_t * vec_buffer)
{
#if defined (ARM_MATH_DSP)
/* Run the following code for Cortex-M4 and Cortex-M7 */
const q7_t *pB = pM;
const q7_t *pB2;
q7_t *pO = pOut;
const q7_t *pBias = bias;
q15_t *pA;
uint16_t rowCnt = num_of_rows >> 1;
/* expand the vector into the buffer */
arm_q7_to_q15_reordered_no_shift(pV, vec_buffer, dim_vec);
while (rowCnt)
{
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
uint16_t colCnt = dim_vec >> 2;
pA = vec_buffer;
pB2 = pB + dim_vec;
while (colCnt)
{
q31_t inV, inM11, inM12, inM21, inM22;
pB = (q7_t *) read_and_pad_reordered((void *)pB, &inM11, &inM12);
pB2 = (q7_t *) read_and_pad_reordered((void *)pB2, &inM21, &inM22);
inV = *__SIMD32(pA)++;
sum = __SMLAD(inV, inM11, sum);
sum2 = __SMLAD(inV, inM21, sum2);
inV = *__SIMD32(pA)++;
sum = __SMLAD(inV, inM12, sum);
sum2 = __SMLAD(inV, inM22, sum2);
colCnt--;
}
colCnt = dim_vec & 0x3;
while (colCnt)
{
q7_t inV = *pA++;
q15_t inM = *pB++;
q15_t inM2 = *pB2++;
sum += inV * inM;
sum2 += inV * inM2;
colCnt--;
} /* while over colCnt */
*pO++ = (q7_t) (__SSAT((sum >> out_shift), 8));
*pO++ = (q7_t) (__SSAT((sum2 >> out_shift), 8));
/* adjust the pointers and counters */
pB += dim_vec;
rowCnt--;
}
/* left-over part of the rows */
rowCnt = num_of_rows & 0x1;
while (rowCnt)
{
uint16_t colCnt = dim_vec >> 2;
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
pA = vec_buffer;
while (colCnt)
{
q31_t inV1, inV2, inM11, inM12;
pB = (q7_t *) read_and_pad_reordered((void *)pB, &inM11, &inM12);
inV1 = *__SIMD32(pA)++;
sum = __SMLAD(inV1, inM11, sum);
inV2 = *__SIMD32(pA)++;
sum = __SMLAD(inV2, inM12, sum);
colCnt--;
}
/* left-over of the vector */
colCnt = dim_vec & 0x3;
while (colCnt)
{
q7_t inV = *pA++;
q15_t inM = *pB++;
sum += inV * inM;
colCnt--;
}
*pO++ = (q7_t) (__SSAT((sum >> out_shift), 8));
rowCnt--;
}
#else
int i, j;
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
for (i = 0; i < num_of_rows; i++)
{
int ip_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
for (j = 0; j < dim_vec; j++)
{
ip_out += pV[j] * pM[i * dim_vec + j];
}
pOut[i] = (q7_t) __SSAT((ip_out >> out_shift), 8);
}
#endif /* ARM_MATH_DSP */
/* Return to ARM_MATH_SUCCESS */
return (ARM_MATH_SUCCESS);
}
/**
* @} end of FC group
*/