Initial commit
This commit is contained in:
		@ -0,0 +1,221 @@
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
* Copyright (C) 2010-2018 Arm Limited. All rights reserved.
 | 
			
		||||
*
 | 
			
		||||
*
 | 
			
		||||
* Project:       CMSIS NN Library
 | 
			
		||||
* Title:         arm_nnexamples_gru.cpp
 | 
			
		||||
*
 | 
			
		||||
* Description:   Gated Recurrent Unit Example
 | 
			
		||||
*
 | 
			
		||||
* Target Processor: Cortex-M4/Cortex-M7
 | 
			
		||||
*
 | 
			
		||||
* Redistribution and use in source and binary forms, with or without
 | 
			
		||||
* modification, are permitted provided that the following conditions
 | 
			
		||||
* are met:
 | 
			
		||||
*   - Redistributions of source code must retain the above copyright
 | 
			
		||||
*     notice, this list of conditions and the following disclaimer.
 | 
			
		||||
*   - Redistributions in binary form must reproduce the above copyright
 | 
			
		||||
*     notice, this list of conditions and the following disclaimer in
 | 
			
		||||
*     the documentation and/or other materials provided with the
 | 
			
		||||
*     distribution.
 | 
			
		||||
*   - Neither the name of Arm LIMITED nor the names of its contributors
 | 
			
		||||
*     may be used to endorse or promote products derived from this
 | 
			
		||||
*     software without specific prior written permission.
 | 
			
		||||
*
 | 
			
		||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
			
		||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
			
		||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 | 
			
		||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 | 
			
		||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 | 
			
		||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 | 
			
		||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 | 
			
		||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | 
			
		||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | 
			
		||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 | 
			
		||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | 
			
		||||
* POSSIBILITY OF SUCH DAMAGE.
 | 
			
		||||
* -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @ingroup groupExamples
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @defgroup GRUExample Gated Recurrent Unit Example
 | 
			
		||||
 *
 | 
			
		||||
 * \par Description:
 | 
			
		||||
 * \par
 | 
			
		||||
 * Demonstrates a gated recurrent unit (GRU) example with the use of fully-connected,
 | 
			
		||||
 * Tanh/Sigmoid activation functions.
 | 
			
		||||
 *
 | 
			
		||||
 * \par Model definition:
 | 
			
		||||
 * \par
 | 
			
		||||
 * GRU is a type of recurrent neural network (RNN). It contains two sigmoid gates and one hidden
 | 
			
		||||
 * state. 
 | 
			
		||||
 * \par
 | 
			
		||||
 * The computation can be summarized as:
 | 
			
		||||
 * <pre>z[t] = sigmoid( W_z ⋅ {h[t-1],x[t]} )
 | 
			
		||||
 * r[t] = sigmoid( W_r ⋅ {h[t-1],x[t]} ) 
 | 
			
		||||
 * n[t] = tanh( W_n ⋅ [r[t] × {h[t-1], x[t]} ) 
 | 
			
		||||
 * h[t] = (1 - z[t]) × h[t-1] + z[t] × n[t] </pre>
 | 
			
		||||
 * \image html GRU.gif "Gate Recurrent Unit Diagram"
 | 
			
		||||
 *
 | 
			
		||||
 * \par Variables Description:
 | 
			
		||||
 * \par
 | 
			
		||||
 * \li \c update_gate_weights, \c reset_gate_weights, \c hidden_state_weights are weights corresponding to update gate (W_z), reset gate (W_r), and hidden state (W_n).
 | 
			
		||||
 * \li \c update_gate_bias, \c reset_gate_bias, \c hidden_state_bias are layer bias arrays
 | 
			
		||||
 * \li \c test_input1, \c test_input2, \c test_history are the inputs and initial history
 | 
			
		||||
 *
 | 
			
		||||
 * \par
 | 
			
		||||
 * The buffer is allocated as:
 | 
			
		||||
 * \par
 | 
			
		||||
 * | reset | input | history | update | hidden_state |
 | 
			
		||||
 * \par
 | 
			
		||||
 * In this way, the concatination is automatically done since (reset, input) and (input, history)
 | 
			
		||||
 * are physically concatinated in memory.
 | 
			
		||||
 * \par
 | 
			
		||||
 *  The ordering of the weight matrix should be adjusted accordingly.
 | 
			
		||||
 *
 | 
			
		||||
  *
 | 
			
		||||
 * 
 | 
			
		||||
 * \par CMSIS DSP Software Library Functions Used:
 | 
			
		||||
 * \par
 | 
			
		||||
 * - arm_fully_connected_mat_q7_vec_q15_opt()
 | 
			
		||||
 * - arm_nn_activations_direct_q15()
 | 
			
		||||
 * - arm_mult_q15()
 | 
			
		||||
 * - arm_offset_q15()
 | 
			
		||||
 * - arm_sub_q15()
 | 
			
		||||
 * - arm_copy_q15()
 | 
			
		||||
 *
 | 
			
		||||
 * <b> Refer  </b>
 | 
			
		||||
 * \link arm_nnexamples_gru.cpp \endlink
 | 
			
		||||
 *
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
#include <math.h>
 | 
			
		||||
#include "arm_nnexamples_gru_test_data.h"
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
#ifdef _RTE_
 | 
			
		||||
#include "RTE_Components.h"
 | 
			
		||||
#ifdef RTE_Compiler_EventRecorder
 | 
			
		||||
#include "EventRecorder.h"
 | 
			
		||||
#endif
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#define DIM_HISTORY 32
 | 
			
		||||
#define DIM_INPUT 32
 | 
			
		||||
#define DIM_VEC 64
 | 
			
		||||
 | 
			
		||||
#define USE_X4
 | 
			
		||||
 | 
			
		||||
#ifndef USE_X4
 | 
			
		||||
static q7_t update_gate_weights[DIM_VEC * DIM_HISTORY] = UPDATE_GATE_WEIGHT_X2;
 | 
			
		||||
static q7_t reset_gate_weights[DIM_VEC * DIM_HISTORY] = RESET_GATE_WEIGHT_X2;
 | 
			
		||||
static q7_t hidden_state_weights[DIM_VEC * DIM_HISTORY] = HIDDEN_STATE_WEIGHT_X2;
 | 
			
		||||
#else
 | 
			
		||||
static q7_t update_gate_weights[DIM_VEC * DIM_HISTORY] = UPDATE_GATE_WEIGHT_X4;
 | 
			
		||||
static q7_t reset_gate_weights[DIM_VEC * DIM_HISTORY] = RESET_GATE_WEIGHT_X4;
 | 
			
		||||
static q7_t hidden_state_weights[DIM_VEC * DIM_HISTORY] = HIDDEN_STATE_WEIGHT_X4;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
static q7_t update_gate_bias[DIM_HISTORY] = UPDATE_GATE_BIAS;
 | 
			
		||||
static q7_t reset_gate_bias[DIM_HISTORY] = RESET_GATE_BIAS;
 | 
			
		||||
static q7_t hidden_state_bias[DIM_HISTORY] = HIDDEN_STATE_BIAS;
 | 
			
		||||
 | 
			
		||||
static q15_t test_input1[DIM_INPUT] = INPUT_DATA1;
 | 
			
		||||
static q15_t test_input2[DIM_INPUT] = INPUT_DATA2;
 | 
			
		||||
static q15_t test_history[DIM_HISTORY] = HISTORY_DATA;
 | 
			
		||||
 | 
			
		||||
q15_t     scratch_buffer[DIM_HISTORY * 4 + DIM_INPUT];
 | 
			
		||||
 | 
			
		||||
void gru_example(q15_t * scratch_input, uint16_t input_size, uint16_t history_size,
 | 
			
		||||
                 q7_t * weights_update, q7_t * weights_reset, q7_t * weights_hidden_state,
 | 
			
		||||
                 q7_t * bias_update, q7_t * bias_reset, q7_t * bias_hidden_state)
 | 
			
		||||
{
 | 
			
		||||
  q15_t    *reset = scratch_input;
 | 
			
		||||
  q15_t    *input = scratch_input + history_size;
 | 
			
		||||
  q15_t    *history = scratch_input + history_size + input_size;
 | 
			
		||||
  q15_t    *update = scratch_input + 2 * history_size + input_size;
 | 
			
		||||
  q15_t    *hidden_state = scratch_input + 3 * history_size + input_size;
 | 
			
		||||
 | 
			
		||||
  // reset gate calculation
 | 
			
		||||
  // the range of the output can be adjusted with bias_shift and output_shift
 | 
			
		||||
#ifndef USE_X4
 | 
			
		||||
  arm_fully_connected_mat_q7_vec_q15(input, weights_reset, input_size + history_size, history_size, 0, 15, bias_reset,
 | 
			
		||||
                                     reset, NULL);
 | 
			
		||||
#else
 | 
			
		||||
  arm_fully_connected_mat_q7_vec_q15_opt(input, weights_reset, input_size + history_size, history_size, 0, 15,
 | 
			
		||||
                                         bias_reset, reset, NULL);
 | 
			
		||||
#endif
 | 
			
		||||
  // sigmoid function, the size of the integer bit-width should be consistent with out_shift
 | 
			
		||||
  arm_nn_activations_direct_q15(reset, history_size, 0, ARM_SIGMOID);
 | 
			
		||||
  arm_mult_q15(history, reset, reset, history_size);
 | 
			
		||||
 | 
			
		||||
  // update gate calculation
 | 
			
		||||
  // the range of the output can be adjusted with bias_shift and output_shift
 | 
			
		||||
#ifndef USE_X4
 | 
			
		||||
  arm_fully_connected_mat_q7_vec_q15(input, weights_update, input_size + history_size, history_size, 0, 15,
 | 
			
		||||
                                     bias_update, update, NULL);
 | 
			
		||||
#else
 | 
			
		||||
  arm_fully_connected_mat_q7_vec_q15_opt(input, weights_update, input_size + history_size, history_size, 0, 15,
 | 
			
		||||
                                         bias_update, update, NULL);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
  // sigmoid function, the size of the integer bit-width should be consistent with out_shift
 | 
			
		||||
  arm_nn_activations_direct_q15(update, history_size, 0, ARM_SIGMOID);
 | 
			
		||||
 | 
			
		||||
  // hidden state calculation
 | 
			
		||||
#ifndef USE_X4
 | 
			
		||||
  arm_fully_connected_mat_q7_vec_q15(reset, weights_hidden_state, input_size + history_size, history_size, 0, 15,
 | 
			
		||||
                                     bias_hidden_state, hidden_state, NULL);
 | 
			
		||||
#else
 | 
			
		||||
  arm_fully_connected_mat_q7_vec_q15_opt(reset, weights_hidden_state, input_size + history_size, history_size, 0, 15,
 | 
			
		||||
                                         bias_hidden_state, hidden_state, NULL);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
  // tanh function, the size of the integer bit-width should be consistent with out_shift
 | 
			
		||||
  arm_nn_activations_direct_q15(hidden_state, history_size, 0, ARM_TANH);
 | 
			
		||||
  arm_mult_q15(update, hidden_state, hidden_state, history_size);
 | 
			
		||||
 | 
			
		||||
  // we calculate z - 1 here
 | 
			
		||||
  // so final addition becomes substraction
 | 
			
		||||
  arm_offset_q15(update, 0x8000, update, history_size);
 | 
			
		||||
  // multiply history
 | 
			
		||||
  arm_mult_q15(history, update, update, history_size);
 | 
			
		||||
  // calculate history_out
 | 
			
		||||
  arm_sub_q15(hidden_state, update, history, history_size);
 | 
			
		||||
 | 
			
		||||
  return;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int main()
 | 
			
		||||
{
 | 
			
		||||
  #ifdef RTE_Compiler_EventRecorder
 | 
			
		||||
  EventRecorderInitialize (EventRecordAll, 1);  // initialize and start Event Recorder
 | 
			
		||||
  #endif
 | 
			
		||||
 | 
			
		||||
  printf("Start GRU execution\n");
 | 
			
		||||
  int       input_size = DIM_INPUT;
 | 
			
		||||
  int       history_size = DIM_HISTORY;
 | 
			
		||||
 | 
			
		||||
  // copy over the input data 
 | 
			
		||||
  arm_copy_q15(test_input1, scratch_buffer + history_size, input_size);
 | 
			
		||||
  arm_copy_q15(test_history, scratch_buffer + history_size + input_size, history_size);
 | 
			
		||||
 | 
			
		||||
  gru_example(scratch_buffer, input_size, history_size,
 | 
			
		||||
              update_gate_weights, reset_gate_weights, hidden_state_weights,
 | 
			
		||||
              update_gate_bias, reset_gate_bias, hidden_state_bias);
 | 
			
		||||
  printf("Complete first iteration on GRU\n");
 | 
			
		||||
 | 
			
		||||
  arm_copy_q15(test_input2, scratch_buffer + history_size, input_size);
 | 
			
		||||
  gru_example(scratch_buffer, input_size, history_size,
 | 
			
		||||
              update_gate_weights, reset_gate_weights, hidden_state_weights,
 | 
			
		||||
              update_gate_bias, reset_gate_bias, hidden_state_bias);
 | 
			
		||||
  printf("Complete second iteration on GRU\n");
 | 
			
		||||
 | 
			
		||||
  return 0;
 | 
			
		||||
}
 | 
			
		||||
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							@ -0,0 +1,7 @@
 | 
			
		||||
CMSIS NN Lib example arm_nnexample_gru0 for
 | 
			
		||||
  Cortex-M0, Cortex-M3, Cortex-M4 and Cortex-M7.
 | 
			
		||||
 | 
			
		||||
The example is configured for IAR Embedded Workbench for ARM Simulator.
 | 
			
		||||
 | 
			
		||||
When changing target, remember to change the ARM_MATH_CMx and __FPU_PRESENT
 | 
			
		||||
Preprocessor defines for C/C++ Compiler
 | 
			
		||||
		Reference in New Issue
	
	Block a user