Initial commit

This commit is contained in:
2023-03-05 15:36:10 +01:00
commit 528134d084
1464 changed files with 1331348 additions and 0 deletions

819
Core/Src/main.c Normal file
View File

@ -0,0 +1,819 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2023 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
DMA2D_HandleTypeDef hdma2d;
FDCAN_HandleTypeDef hfdcan1;
JPEG_HandleTypeDef hjpeg;
LTDC_HandleTypeDef hltdc;
OSPI_HandleTypeDef hospi1;
SPI_HandleTypeDef hspi1;
SPI_HandleTypeDef hspi3;
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim4;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA2D_Init(void);
static void MX_FDCAN1_Init(void);
static void MX_LTDC_Init(void);
static void MX_JPEG_Init(void);
static void MX_OCTOSPI1_Init(void);
static void MX_SPI1_Init(void);
static void MX_SPI3_Init(void);
static void MX_TIM1_Init(void);
static void MX_TIM2_Init(void);
static void MX_TIM4_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void) {
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick.
*/
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA2D_Init();
MX_FDCAN1_Init();
MX_LTDC_Init();
MX_JPEG_Init();
MX_OCTOSPI1_Init();
MX_SPI1_Init();
MX_SPI3_Init();
MX_TIM1_Init();
MX_TIM2_Init();
MX_TIM4_Init();
/* USER CODE BEGIN 2 */
if (HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_4) != HAL_OK) {
Error_Handler();
}
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1) {
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
uint32_t now = HAL_GetTick();
GPIO_PinState status1 = (now / 500) % 2 == 0;
GPIO_PinState status2 = (now / 1000) % 2 == 0;
HAL_GPIO_WritePin(STATUS1_GPIO_Port, STATUS1_Pin, status1);
HAL_GPIO_WritePin(STATUS2_GPIO_Port, STATUS2_Pin, status2);
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void) {
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/*AXI clock gating */
RCC->CKGAENR = 0xFFFFFFFF;
/** Supply configuration update enable
*/
HAL_PWREx_ConfigSupply(PWR_LDO_SUPPLY);
/** Configure the main internal regulator output voltage
*/
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE3);
while (!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {
}
/** Macro to configure the PLL clock source
*/
__HAL_RCC_PLL_PLLSOURCE_CONFIG(RCC_PLLSOURCE_HSI);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_DIV1;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 4;
RCC_OscInitStruct.PLL.PLLN = 8;
RCC_OscInitStruct.PLL.PLLP = 2;
RCC_OscInitStruct.PLL.PLLQ = 128;
RCC_OscInitStruct.PLL.PLLR = 2;
RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_3;
RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE;
RCC_OscInitStruct.PLL.PLLFRACN = 0;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK |
RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2 |
RCC_CLOCKTYPE_D3PCLK1 | RCC_CLOCKTYPE_D1PCLK1;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV2;
RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV2;
RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) {
Error_Handler();
}
}
/**
* @brief DMA2D Initialization Function
* @param None
* @retval None
*/
static void MX_DMA2D_Init(void) {
/* USER CODE BEGIN DMA2D_Init 0 */
/* USER CODE END DMA2D_Init 0 */
/* USER CODE BEGIN DMA2D_Init 1 */
/* USER CODE END DMA2D_Init 1 */
hdma2d.Instance = DMA2D;
hdma2d.Init.Mode = DMA2D_M2M;
hdma2d.Init.ColorMode = DMA2D_OUTPUT_RGB888;
hdma2d.Init.OutputOffset = 0;
hdma2d.LayerCfg[1].InputOffset = 0;
hdma2d.LayerCfg[1].InputColorMode = DMA2D_INPUT_RGB888;
hdma2d.LayerCfg[1].AlphaMode = DMA2D_NO_MODIF_ALPHA;
hdma2d.LayerCfg[1].InputAlpha = 0;
hdma2d.LayerCfg[1].AlphaInverted = DMA2D_REGULAR_ALPHA;
hdma2d.LayerCfg[1].RedBlueSwap = DMA2D_RB_REGULAR;
hdma2d.LayerCfg[1].ChromaSubSampling = DMA2D_NO_CSS;
if (HAL_DMA2D_Init(&hdma2d) != HAL_OK) {
Error_Handler();
}
if (HAL_DMA2D_ConfigLayer(&hdma2d, 1) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN DMA2D_Init 2 */
/* USER CODE END DMA2D_Init 2 */
}
/**
* @brief FDCAN1 Initialization Function
* @param None
* @retval None
*/
static void MX_FDCAN1_Init(void) {
/* USER CODE BEGIN FDCAN1_Init 0 */
/* USER CODE END FDCAN1_Init 0 */
/* USER CODE BEGIN FDCAN1_Init 1 */
/* USER CODE END FDCAN1_Init 1 */
hfdcan1.Instance = FDCAN1;
hfdcan1.Init.FrameFormat = FDCAN_FRAME_CLASSIC;
hfdcan1.Init.Mode = FDCAN_MODE_NORMAL;
hfdcan1.Init.AutoRetransmission = DISABLE;
hfdcan1.Init.TransmitPause = DISABLE;
hfdcan1.Init.ProtocolException = DISABLE;
hfdcan1.Init.NominalPrescaler = 16;
hfdcan1.Init.NominalSyncJumpWidth = 1;
hfdcan1.Init.NominalTimeSeg1 = 2;
hfdcan1.Init.NominalTimeSeg2 = 2;
hfdcan1.Init.DataPrescaler = 1;
hfdcan1.Init.DataSyncJumpWidth = 1;
hfdcan1.Init.DataTimeSeg1 = 1;
hfdcan1.Init.DataTimeSeg2 = 1;
hfdcan1.Init.MessageRAMOffset = 0;
hfdcan1.Init.StdFiltersNbr = 0;
hfdcan1.Init.ExtFiltersNbr = 0;
hfdcan1.Init.RxFifo0ElmtsNbr = 0;
hfdcan1.Init.RxFifo0ElmtSize = FDCAN_DATA_BYTES_8;
hfdcan1.Init.RxFifo1ElmtsNbr = 0;
hfdcan1.Init.RxFifo1ElmtSize = FDCAN_DATA_BYTES_8;
hfdcan1.Init.RxBuffersNbr = 0;
hfdcan1.Init.RxBufferSize = FDCAN_DATA_BYTES_8;
hfdcan1.Init.TxEventsNbr = 0;
hfdcan1.Init.TxBuffersNbr = 0;
hfdcan1.Init.TxFifoQueueElmtsNbr = 0;
hfdcan1.Init.TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION;
hfdcan1.Init.TxElmtSize = FDCAN_DATA_BYTES_8;
if (HAL_FDCAN_Init(&hfdcan1) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN FDCAN1_Init 2 */
/* USER CODE END FDCAN1_Init 2 */
}
/**
* @brief JPEG Initialization Function
* @param None
* @retval None
*/
static void MX_JPEG_Init(void) {
/* USER CODE BEGIN JPEG_Init 0 */
/* USER CODE END JPEG_Init 0 */
/* USER CODE BEGIN JPEG_Init 1 */
/* USER CODE END JPEG_Init 1 */
hjpeg.Instance = JPEG;
if (HAL_JPEG_Init(&hjpeg) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN JPEG_Init 2 */
/* USER CODE END JPEG_Init 2 */
}
/**
* @brief LTDC Initialization Function
* @param None
* @retval None
*/
static void MX_LTDC_Init(void) {
/* USER CODE BEGIN LTDC_Init 0 */
/* USER CODE END LTDC_Init 0 */
LTDC_LayerCfgTypeDef pLayerCfg = {0};
LTDC_LayerCfgTypeDef pLayerCfg1 = {0};
/* USER CODE BEGIN LTDC_Init 1 */
/* USER CODE END LTDC_Init 1 */
hltdc.Instance = LTDC;
hltdc.Init.HSPolarity = LTDC_HSPOLARITY_AL;
hltdc.Init.VSPolarity = LTDC_VSPOLARITY_AL;
hltdc.Init.DEPolarity = LTDC_DEPOLARITY_AH;
hltdc.Init.PCPolarity = LTDC_PCPOLARITY_IPC;
hltdc.Init.HorizontalSync = 4;
hltdc.Init.VerticalSync = 1;
hltdc.Init.AccumulatedHBP = 9;
hltdc.Init.AccumulatedVBP = 3;
hltdc.Init.AccumulatedActiveW = 329;
hltdc.Init.AccumulatedActiveH = 483;
hltdc.Init.TotalWidth = 334;
hltdc.Init.TotalHeigh = 485;
hltdc.Init.Backcolor.Blue = 0;
hltdc.Init.Backcolor.Green = 0;
hltdc.Init.Backcolor.Red = 0;
if (HAL_LTDC_Init(&hltdc) != HAL_OK) {
Error_Handler();
}
pLayerCfg.WindowX0 = 0;
pLayerCfg.WindowX1 = 0;
pLayerCfg.WindowY0 = 0;
pLayerCfg.WindowY1 = 0;
pLayerCfg.PixelFormat = LTDC_PIXEL_FORMAT_ARGB8888;
pLayerCfg.Alpha = 0;
pLayerCfg.Alpha0 = 0;
pLayerCfg.BlendingFactor1 = LTDC_BLENDING_FACTOR1_CA;
pLayerCfg.BlendingFactor2 = LTDC_BLENDING_FACTOR2_CA;
pLayerCfg.FBStartAdress = 0;
pLayerCfg.ImageWidth = 0;
pLayerCfg.ImageHeight = 0;
pLayerCfg.Backcolor.Blue = 0;
pLayerCfg.Backcolor.Green = 0;
pLayerCfg.Backcolor.Red = 0;
if (HAL_LTDC_ConfigLayer(&hltdc, &pLayerCfg, 0) != HAL_OK) {
Error_Handler();
}
pLayerCfg1.WindowX0 = 0;
pLayerCfg1.WindowX1 = 0;
pLayerCfg1.WindowY0 = 0;
pLayerCfg1.WindowY1 = 0;
pLayerCfg1.PixelFormat = LTDC_PIXEL_FORMAT_ARGB8888;
pLayerCfg1.Alpha = 0;
pLayerCfg1.Alpha0 = 0;
pLayerCfg1.BlendingFactor1 = LTDC_BLENDING_FACTOR1_CA;
pLayerCfg1.BlendingFactor2 = LTDC_BLENDING_FACTOR2_CA;
pLayerCfg1.FBStartAdress = 0;
pLayerCfg1.ImageWidth = 0;
pLayerCfg1.ImageHeight = 0;
pLayerCfg1.Backcolor.Blue = 0;
pLayerCfg1.Backcolor.Green = 0;
pLayerCfg1.Backcolor.Red = 0;
if (HAL_LTDC_ConfigLayer(&hltdc, &pLayerCfg1, 1) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN LTDC_Init 2 */
/* USER CODE END LTDC_Init 2 */
}
/**
* @brief OCTOSPI1 Initialization Function
* @param None
* @retval None
*/
static void MX_OCTOSPI1_Init(void) {
/* USER CODE BEGIN OCTOSPI1_Init 0 */
/* USER CODE END OCTOSPI1_Init 0 */
OSPIM_CfgTypeDef sOspiManagerCfg = {0};
/* USER CODE BEGIN OCTOSPI1_Init 1 */
/* USER CODE END OCTOSPI1_Init 1 */
/* OCTOSPI1 parameter configuration*/
hospi1.Instance = OCTOSPI1;
hospi1.Init.FifoThreshold = 1;
hospi1.Init.DualQuad = HAL_OSPI_DUALQUAD_DISABLE;
hospi1.Init.MemoryType = HAL_OSPI_MEMTYPE_MICRON;
hospi1.Init.DeviceSize = 32;
hospi1.Init.ChipSelectHighTime = 1;
hospi1.Init.FreeRunningClock = HAL_OSPI_FREERUNCLK_DISABLE;
hospi1.Init.ClockMode = HAL_OSPI_CLOCK_MODE_0;
hospi1.Init.WrapSize = HAL_OSPI_WRAP_NOT_SUPPORTED;
hospi1.Init.ClockPrescaler = 1;
hospi1.Init.SampleShifting = HAL_OSPI_SAMPLE_SHIFTING_NONE;
hospi1.Init.DelayHoldQuarterCycle = HAL_OSPI_DHQC_DISABLE;
hospi1.Init.ChipSelectBoundary = 0;
hospi1.Init.DelayBlockBypass = HAL_OSPI_DELAY_BLOCK_BYPASSED;
hospi1.Init.MaxTran = 0;
hospi1.Init.Refresh = 0;
if (HAL_OSPI_Init(&hospi1) != HAL_OK) {
Error_Handler();
}
sOspiManagerCfg.ClkPort = 1;
sOspiManagerCfg.NCSPort = 1;
sOspiManagerCfg.IOLowPort = HAL_OSPIM_IOPORT_1_LOW;
if (HAL_OSPIM_Config(&hospi1, &sOspiManagerCfg,
HAL_OSPI_TIMEOUT_DEFAULT_VALUE) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN OCTOSPI1_Init 2 */
/* USER CODE END OCTOSPI1_Init 2 */
}
/**
* @brief SPI1 Initialization Function
* @param None
* @retval None
*/
static void MX_SPI1_Init(void) {
/* USER CODE BEGIN SPI1_Init 0 */
/* USER CODE END SPI1_Init 0 */
/* USER CODE BEGIN SPI1_Init 1 */
/* USER CODE END SPI1_Init 1 */
/* SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_1LINE;
hspi1.Init.DataSize = SPI_DATASIZE_4BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_HARD_OUTPUT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 0x0;
hspi1.Init.NSSPMode = SPI_NSS_PULSE_ENABLE;
hspi1.Init.NSSPolarity = SPI_NSS_POLARITY_LOW;
hspi1.Init.FifoThreshold = SPI_FIFO_THRESHOLD_01DATA;
hspi1.Init.TxCRCInitializationPattern =
SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
hspi1.Init.RxCRCInitializationPattern =
SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
hspi1.Init.MasterSSIdleness = SPI_MASTER_SS_IDLENESS_00CYCLE;
hspi1.Init.MasterInterDataIdleness = SPI_MASTER_INTERDATA_IDLENESS_00CYCLE;
hspi1.Init.MasterReceiverAutoSusp = SPI_MASTER_RX_AUTOSUSP_DISABLE;
hspi1.Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_DISABLE;
hspi1.Init.IOSwap = SPI_IO_SWAP_DISABLE;
if (HAL_SPI_Init(&hspi1) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN SPI1_Init 2 */
/* USER CODE END SPI1_Init 2 */
}
/**
* @brief SPI3 Initialization Function
* @param None
* @retval None
*/
static void MX_SPI3_Init(void) {
/* USER CODE BEGIN SPI3_Init 0 */
/* USER CODE END SPI3_Init 0 */
/* USER CODE BEGIN SPI3_Init 1 */
/* USER CODE END SPI3_Init 1 */
/* SPI3 parameter configuration*/
hspi3.Instance = SPI3;
hspi3.Init.Mode = SPI_MODE_MASTER;
hspi3.Init.Direction = SPI_DIRECTION_2LINES_TXONLY;
hspi3.Init.DataSize = SPI_DATASIZE_4BIT;
hspi3.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi3.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi3.Init.NSS = SPI_NSS_SOFT;
hspi3.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
hspi3.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi3.Init.TIMode = SPI_TIMODE_DISABLE;
hspi3.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi3.Init.CRCPolynomial = 0x0;
hspi3.Init.NSSPMode = SPI_NSS_PULSE_ENABLE;
hspi3.Init.NSSPolarity = SPI_NSS_POLARITY_LOW;
hspi3.Init.FifoThreshold = SPI_FIFO_THRESHOLD_01DATA;
hspi3.Init.TxCRCInitializationPattern =
SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
hspi3.Init.RxCRCInitializationPattern =
SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
hspi3.Init.MasterSSIdleness = SPI_MASTER_SS_IDLENESS_00CYCLE;
hspi3.Init.MasterInterDataIdleness = SPI_MASTER_INTERDATA_IDLENESS_00CYCLE;
hspi3.Init.MasterReceiverAutoSusp = SPI_MASTER_RX_AUTOSUSP_DISABLE;
hspi3.Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_DISABLE;
hspi3.Init.IOSwap = SPI_IO_SWAP_DISABLE;
if (HAL_SPI_Init(&hspi3) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN SPI3_Init 2 */
/* USER CODE END SPI3_Init 2 */
}
/**
* @brief TIM1 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM1_Init(void) {
/* USER CODE BEGIN TIM1_Init 0 */
/* USER CODE END TIM1_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
/* USER CODE BEGIN TIM1_Init 1 */
/* USER CODE END TIM1_Init 1 */
htim1.Instance = TIM1;
htim1.Init.Prescaler = 0;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 65535;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim1) != HAL_OK) {
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK) {
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim1) != HAL_OK) {
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK) {
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK) {
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_2) != HAL_OK) {
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_3) != HAL_OK) {
Error_Handler();
}
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = 0;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
sBreakDeadTimeConfig.BreakFilter = 0;
sBreakDeadTimeConfig.Break2State = TIM_BREAK2_DISABLE;
sBreakDeadTimeConfig.Break2Polarity = TIM_BREAK2POLARITY_HIGH;
sBreakDeadTimeConfig.Break2Filter = 0;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN TIM1_Init 2 */
/* USER CODE END TIM1_Init 2 */
HAL_TIM_MspPostInit(&htim1);
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM2_Init(void) {
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 6399;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 99;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK) {
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) {
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim2) != HAL_OK) {
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) {
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 100;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_4) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
HAL_TIM_MspPostInit(&htim2);
}
/**
* @brief TIM4 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM4_Init(void) {
/* USER CODE BEGIN TIM4_Init 0 */
/* USER CODE END TIM4_Init 0 */
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM4_Init 1 */
/* USER CODE END TIM4_Init 1 */
htim4.Instance = TIM4;
htim4.Init.Prescaler = 0;
htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
htim4.Init.Period = 65535;
htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&htim4) != HAL_OK) {
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK) {
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_1) != HAL_OK) {
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_2) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN TIM4_Init 2 */
/* USER CODE END TIM4_Init 2 */
HAL_TIM_MspPostInit(&htim4);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void) {
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOF_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOG_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, STATUS1_Pin | STATUS2_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LED_LE_GPIO_Port, LED_LE_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOG, DISPSPI_DCX_Pin | DISP_RESET_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(BOOT0_SET_GPIO_Port, BOOT0_SET_Pin, GPIO_PIN_RESET);
/*Configure GPIO pins : ENC1A_Pin ENC1B_Pin ENC2A_Pin ENC2B_Pin */
GPIO_InitStruct.Pin = ENC1A_Pin | ENC1B_Pin | ENC2A_Pin | ENC2B_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
/*Configure GPIO pins : BTN1_Pin BTN2_Pin BTN3_Pin BTN4_Pin
BTN5_Pin BTN6_Pin */
GPIO_InitStruct.Pin =
BTN1_Pin | BTN2_Pin | BTN3_Pin | BTN4_Pin | BTN5_Pin | BTN6_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);
/*Configure GPIO pins : STATUS1_Pin STATUS2_Pin */
GPIO_InitStruct.Pin = STATUS1_Pin | STATUS2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : LED_LE_Pin */
GPIO_InitStruct.Pin = LED_LE_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LED_LE_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : DISPSPI_DCX_Pin DISP_RESET_Pin */
GPIO_InitStruct.Pin = DISPSPI_DCX_Pin | DISP_RESET_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);
/*Configure GPIO pin : BOOT0_SET_Pin */
GPIO_InitStruct.Pin = BOOT0_SET_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(BOOT0_SET_GPIO_Port, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void) {
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1) {
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line) {
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line
number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file,
line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

View File

@ -0,0 +1,876 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file stm32h7xx_hal_msp.c
* @brief This file provides code for the MSP Initialization
* and de-Initialization codes.
******************************************************************************
* @attention
*
* Copyright (c) 2023 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN TD */
/* USER CODE END TD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN Define */
/* USER CODE END Define */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN Macro */
/* USER CODE END Macro */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* External functions --------------------------------------------------------*/
/* USER CODE BEGIN ExternalFunctions */
/* USER CODE END ExternalFunctions */
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim);
/**
* Initializes the Global MSP.
*/
void HAL_MspInit(void)
{
/* USER CODE BEGIN MspInit 0 */
/* USER CODE END MspInit 0 */
__HAL_RCC_SYSCFG_CLK_ENABLE();
/* System interrupt init*/
/* USER CODE BEGIN MspInit 1 */
/* USER CODE END MspInit 1 */
}
/**
* @brief DMA2D MSP Initialization
* This function configures the hardware resources used in this example
* @param hdma2d: DMA2D handle pointer
* @retval None
*/
void HAL_DMA2D_MspInit(DMA2D_HandleTypeDef* hdma2d)
{
if(hdma2d->Instance==DMA2D)
{
/* USER CODE BEGIN DMA2D_MspInit 0 */
/* USER CODE END DMA2D_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_DMA2D_CLK_ENABLE();
/* USER CODE BEGIN DMA2D_MspInit 1 */
/* USER CODE END DMA2D_MspInit 1 */
}
}
/**
* @brief DMA2D MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param hdma2d: DMA2D handle pointer
* @retval None
*/
void HAL_DMA2D_MspDeInit(DMA2D_HandleTypeDef* hdma2d)
{
if(hdma2d->Instance==DMA2D)
{
/* USER CODE BEGIN DMA2D_MspDeInit 0 */
/* USER CODE END DMA2D_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_DMA2D_CLK_DISABLE();
/* USER CODE BEGIN DMA2D_MspDeInit 1 */
/* USER CODE END DMA2D_MspDeInit 1 */
}
}
/**
* @brief FDCAN MSP Initialization
* This function configures the hardware resources used in this example
* @param hfdcan: FDCAN handle pointer
* @retval None
*/
void HAL_FDCAN_MspInit(FDCAN_HandleTypeDef* hfdcan)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};
if(hfdcan->Instance==FDCAN1)
{
/* USER CODE BEGIN FDCAN1_MspInit 0 */
/* USER CODE END FDCAN1_MspInit 0 */
/** Initializes the peripherals clock
*/
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_FDCAN;
PeriphClkInitStruct.FdcanClockSelection = RCC_FDCANCLKSOURCE_PLL;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
{
Error_Handler();
}
/* Peripheral clock enable */
__HAL_RCC_FDCAN_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
/**FDCAN1 GPIO Configuration
PD0 ------> FDCAN1_RX
PD1 ------> FDCAN1_TX
*/
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF9_FDCAN1;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/* USER CODE BEGIN FDCAN1_MspInit 1 */
/* USER CODE END FDCAN1_MspInit 1 */
}
}
/**
* @brief FDCAN MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param hfdcan: FDCAN handle pointer
* @retval None
*/
void HAL_FDCAN_MspDeInit(FDCAN_HandleTypeDef* hfdcan)
{
if(hfdcan->Instance==FDCAN1)
{
/* USER CODE BEGIN FDCAN1_MspDeInit 0 */
/* USER CODE END FDCAN1_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_FDCAN_CLK_DISABLE();
/**FDCAN1 GPIO Configuration
PD0 ------> FDCAN1_RX
PD1 ------> FDCAN1_TX
*/
HAL_GPIO_DeInit(GPIOD, GPIO_PIN_0|GPIO_PIN_1);
/* USER CODE BEGIN FDCAN1_MspDeInit 1 */
/* USER CODE END FDCAN1_MspDeInit 1 */
}
}
/**
* @brief JPEG MSP Initialization
* This function configures the hardware resources used in this example
* @param hjpeg: JPEG handle pointer
* @retval None
*/
void HAL_JPEG_MspInit(JPEG_HandleTypeDef* hjpeg)
{
if(hjpeg->Instance==JPEG)
{
/* USER CODE BEGIN JPEG_MspInit 0 */
/* USER CODE END JPEG_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_JPEG_CLK_ENABLE();
/* USER CODE BEGIN JPEG_MspInit 1 */
/* USER CODE END JPEG_MspInit 1 */
}
}
/**
* @brief JPEG MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param hjpeg: JPEG handle pointer
* @retval None
*/
void HAL_JPEG_MspDeInit(JPEG_HandleTypeDef* hjpeg)
{
if(hjpeg->Instance==JPEG)
{
/* USER CODE BEGIN JPEG_MspDeInit 0 */
/* USER CODE END JPEG_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_JPEG_CLK_DISABLE();
/* USER CODE BEGIN JPEG_MspDeInit 1 */
/* USER CODE END JPEG_MspDeInit 1 */
}
}
/**
* @brief LTDC MSP Initialization
* This function configures the hardware resources used in this example
* @param hltdc: LTDC handle pointer
* @retval None
*/
void HAL_LTDC_MspInit(LTDC_HandleTypeDef* hltdc)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};
if(hltdc->Instance==LTDC)
{
/* USER CODE BEGIN LTDC_MspInit 0 */
/* USER CODE END LTDC_MspInit 0 */
/** Initializes the peripherals clock
*/
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_LTDC;
PeriphClkInitStruct.PLL3.PLL3M = 4;
PeriphClkInitStruct.PLL3.PLL3N = 8;
PeriphClkInitStruct.PLL3.PLL3P = 2;
PeriphClkInitStruct.PLL3.PLL3Q = 2;
PeriphClkInitStruct.PLL3.PLL3R = 14;
PeriphClkInitStruct.PLL3.PLL3RGE = RCC_PLL3VCIRANGE_3;
PeriphClkInitStruct.PLL3.PLL3VCOSEL = RCC_PLL3VCOWIDE;
PeriphClkInitStruct.PLL3.PLL3FRACN = 0.0;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
{
Error_Handler();
}
/* Peripheral clock enable */
__HAL_RCC_LTDC_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
/**LTDC GPIO Configuration
PC0 ------> LTDC_G2
PC1 ------> LTDC_G5
PA1 ------> LTDC_R2
PA4 ------> LTDC_VSYNC
PC4 ------> LTDC_R7
PC5 ------> LTDC_DE
PB0 ------> LTDC_R3
PB10 ------> LTDC_G4
PB14 ------> LTDC_CLK
PB15 ------> LTDC_G7
PD10 ------> LTDC_B3
PC6 ------> LTDC_HSYNC
PC7 ------> LTDC_G6
PC9 ------> LTDC_G3
PA8 ------> LTDC_R6
PA9 ------> LTDC_R5
PA10 ------> LTDC_B4
PA11 ------> LTDC_R4
PD6 ------> LTDC_B2
PB5 ------> LTDC_B5
PB8 ------> LTDC_B6
PB9 ------> LTDC_B7
*/
GPIO_InitStruct.Pin = GPIO_PIN_0;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF11_LTDC;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6
|GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF14_LTDC;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_4|GPIO_PIN_8|GPIO_PIN_9
|GPIO_PIN_11;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF14_LTDC;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_0;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF9_LTDC;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_10|GPIO_PIN_14|GPIO_PIN_15|GPIO_PIN_8
|GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF14_LTDC;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_10|GPIO_PIN_6;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF14_LTDC;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF10_LTDC;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_10;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF12_LTDC;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_5;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF11_LTDC;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* USER CODE BEGIN LTDC_MspInit 1 */
/* USER CODE END LTDC_MspInit 1 */
}
}
/**
* @brief LTDC MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param hltdc: LTDC handle pointer
* @retval None
*/
void HAL_LTDC_MspDeInit(LTDC_HandleTypeDef* hltdc)
{
if(hltdc->Instance==LTDC)
{
/* USER CODE BEGIN LTDC_MspDeInit 0 */
/* USER CODE END LTDC_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_LTDC_CLK_DISABLE();
/**LTDC GPIO Configuration
PC0 ------> LTDC_G2
PC1 ------> LTDC_G5
PA1 ------> LTDC_R2
PA4 ------> LTDC_VSYNC
PC4 ------> LTDC_R7
PC5 ------> LTDC_DE
PB0 ------> LTDC_R3
PB10 ------> LTDC_G4
PB14 ------> LTDC_CLK
PB15 ------> LTDC_G7
PD10 ------> LTDC_B3
PC6 ------> LTDC_HSYNC
PC7 ------> LTDC_G6
PC9 ------> LTDC_G3
PA8 ------> LTDC_R6
PA9 ------> LTDC_R5
PA10 ------> LTDC_B4
PA11 ------> LTDC_R4
PD6 ------> LTDC_B2
PB5 ------> LTDC_B5
PB8 ------> LTDC_B6
PB9 ------> LTDC_B7
*/
HAL_GPIO_DeInit(GPIOC, GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_4|GPIO_PIN_5
|GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_9);
HAL_GPIO_DeInit(GPIOA, GPIO_PIN_1|GPIO_PIN_4|GPIO_PIN_8|GPIO_PIN_9
|GPIO_PIN_10|GPIO_PIN_11);
HAL_GPIO_DeInit(GPIOB, GPIO_PIN_0|GPIO_PIN_10|GPIO_PIN_14|GPIO_PIN_15
|GPIO_PIN_5|GPIO_PIN_8|GPIO_PIN_9);
HAL_GPIO_DeInit(GPIOD, GPIO_PIN_10|GPIO_PIN_6);
/* USER CODE BEGIN LTDC_MspDeInit 1 */
/* USER CODE END LTDC_MspDeInit 1 */
}
}
/**
* @brief OSPI MSP Initialization
* This function configures the hardware resources used in this example
* @param hospi: OSPI handle pointer
* @retval None
*/
void HAL_OSPI_MspInit(OSPI_HandleTypeDef* hospi)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};
if(hospi->Instance==OCTOSPI1)
{
/* USER CODE BEGIN OCTOSPI1_MspInit 0 */
/* USER CODE END OCTOSPI1_MspInit 0 */
/** Initializes the peripherals clock
*/
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_OSPI;
PeriphClkInitStruct.OspiClockSelection = RCC_OSPICLKSOURCE_D1HCLK;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
{
Error_Handler();
}
/* Peripheral clock enable */
__HAL_RCC_OCTOSPIM_CLK_ENABLE();
__HAL_RCC_OSPI1_CLK_ENABLE();
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOF_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOG_CLK_ENABLE();
/**OCTOSPI1 GPIO Configuration
PE2 ------> OCTOSPIM_P1_IO2
PF6 ------> OCTOSPIM_P1_IO3
PF8 ------> OCTOSPIM_P1_IO0
PF9 ------> OCTOSPIM_P1_IO1
PB2 ------> OCTOSPIM_P1_CLK
PG6 ------> OCTOSPIM_P1_NCS
*/
GPIO_InitStruct.Pin = GPIO_PIN_2;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF9_OCTOSPIM_P1;
HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_6|GPIO_PIN_8|GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF10_OCTOSPIM_P1;
HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_2;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF9_OCTOSPIM_P1;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_6;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF10_OCTOSPIM_P1;
HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);
/* USER CODE BEGIN OCTOSPI1_MspInit 1 */
/* USER CODE END OCTOSPI1_MspInit 1 */
}
}
/**
* @brief OSPI MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param hospi: OSPI handle pointer
* @retval None
*/
void HAL_OSPI_MspDeInit(OSPI_HandleTypeDef* hospi)
{
if(hospi->Instance==OCTOSPI1)
{
/* USER CODE BEGIN OCTOSPI1_MspDeInit 0 */
/* USER CODE END OCTOSPI1_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_OCTOSPIM_CLK_DISABLE();
__HAL_RCC_OSPI1_CLK_DISABLE();
/**OCTOSPI1 GPIO Configuration
PE2 ------> OCTOSPIM_P1_IO2
PF6 ------> OCTOSPIM_P1_IO3
PF8 ------> OCTOSPIM_P1_IO0
PF9 ------> OCTOSPIM_P1_IO1
PB2 ------> OCTOSPIM_P1_CLK
PG6 ------> OCTOSPIM_P1_NCS
*/
HAL_GPIO_DeInit(GPIOE, GPIO_PIN_2);
HAL_GPIO_DeInit(GPIOF, GPIO_PIN_6|GPIO_PIN_8|GPIO_PIN_9);
HAL_GPIO_DeInit(GPIOB, GPIO_PIN_2);
HAL_GPIO_DeInit(GPIOG, GPIO_PIN_6);
/* USER CODE BEGIN OCTOSPI1_MspDeInit 1 */
/* USER CODE END OCTOSPI1_MspDeInit 1 */
}
}
/**
* @brief SPI MSP Initialization
* This function configures the hardware resources used in this example
* @param hspi: SPI handle pointer
* @retval None
*/
void HAL_SPI_MspInit(SPI_HandleTypeDef* hspi)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};
if(hspi->Instance==SPI1)
{
/* USER CODE BEGIN SPI1_MspInit 0 */
/* USER CODE END SPI1_MspInit 0 */
/** Initializes the peripherals clock
*/
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_SPI1;
PeriphClkInitStruct.Spi123ClockSelection = RCC_SPI123CLKSOURCE_PLL;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
{
Error_Handler();
}
/* Peripheral clock enable */
__HAL_RCC_SPI1_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOG_CLK_ENABLE();
/**SPI1 GPIO Configuration
PA5 ------> SPI1_SCK
PA7 ------> SPI1_MOSI
PG10 ------> SPI1_NSS
*/
GPIO_InitStruct.Pin = GPIO_PIN_5|GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF5_SPI1;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Pin = DISPSPI_CSX_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF5_SPI1;
HAL_GPIO_Init(DISPSPI_CSX_GPIO_Port, &GPIO_InitStruct);
/* USER CODE BEGIN SPI1_MspInit 1 */
/* USER CODE END SPI1_MspInit 1 */
}
else if(hspi->Instance==SPI3)
{
/* USER CODE BEGIN SPI3_MspInit 0 */
/* USER CODE END SPI3_MspInit 0 */
/** Initializes the peripherals clock
*/
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_SPI3;
PeriphClkInitStruct.Spi123ClockSelection = RCC_SPI123CLKSOURCE_PLL;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
{
Error_Handler();
}
/* Peripheral clock enable */
__HAL_RCC_SPI3_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
/**SPI3 GPIO Configuration
PC10 ------> SPI3_SCK
PC12 ------> SPI3_MOSI
*/
GPIO_InitStruct.Pin = LED_CP_Pin|LED_D_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF6_SPI3;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/* USER CODE BEGIN SPI3_MspInit 1 */
/* USER CODE END SPI3_MspInit 1 */
}
}
/**
* @brief SPI MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param hspi: SPI handle pointer
* @retval None
*/
void HAL_SPI_MspDeInit(SPI_HandleTypeDef* hspi)
{
if(hspi->Instance==SPI1)
{
/* USER CODE BEGIN SPI1_MspDeInit 0 */
/* USER CODE END SPI1_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_SPI1_CLK_DISABLE();
/**SPI1 GPIO Configuration
PA5 ------> SPI1_SCK
PA7 ------> SPI1_MOSI
PG10 ------> SPI1_NSS
*/
HAL_GPIO_DeInit(GPIOA, GPIO_PIN_5|GPIO_PIN_7);
HAL_GPIO_DeInit(DISPSPI_CSX_GPIO_Port, DISPSPI_CSX_Pin);
/* USER CODE BEGIN SPI1_MspDeInit 1 */
/* USER CODE END SPI1_MspDeInit 1 */
}
else if(hspi->Instance==SPI3)
{
/* USER CODE BEGIN SPI3_MspDeInit 0 */
/* USER CODE END SPI3_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_SPI3_CLK_DISABLE();
/**SPI3 GPIO Configuration
PC10 ------> SPI3_SCK
PC12 ------> SPI3_MOSI
*/
HAL_GPIO_DeInit(GPIOC, LED_CP_Pin|LED_D_Pin);
/* USER CODE BEGIN SPI3_MspDeInit 1 */
/* USER CODE END SPI3_MspDeInit 1 */
}
}
/**
* @brief TIM_Base MSP Initialization
* This function configures the hardware resources used in this example
* @param htim_base: TIM_Base handle pointer
* @retval None
*/
void HAL_TIM_Base_MspInit(TIM_HandleTypeDef* htim_base)
{
if(htim_base->Instance==TIM1)
{
/* USER CODE BEGIN TIM1_MspInit 0 */
/* USER CODE END TIM1_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_TIM1_CLK_ENABLE();
/* USER CODE BEGIN TIM1_MspInit 1 */
/* USER CODE END TIM1_MspInit 1 */
}
else if(htim_base->Instance==TIM2)
{
/* USER CODE BEGIN TIM2_MspInit 0 */
/* USER CODE END TIM2_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_TIM2_CLK_ENABLE();
/* USER CODE BEGIN TIM2_MspInit 1 */
/* USER CODE END TIM2_MspInit 1 */
}
}
/**
* @brief TIM_PWM MSP Initialization
* This function configures the hardware resources used in this example
* @param htim_pwm: TIM_PWM handle pointer
* @retval None
*/
void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef* htim_pwm)
{
if(htim_pwm->Instance==TIM4)
{
/* USER CODE BEGIN TIM4_MspInit 0 */
/* USER CODE END TIM4_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_TIM4_CLK_ENABLE();
/* USER CODE BEGIN TIM4_MspInit 1 */
/* USER CODE END TIM4_MspInit 1 */
}
}
void HAL_TIM_MspPostInit(TIM_HandleTypeDef* htim)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
if(htim->Instance==TIM1)
{
/* USER CODE BEGIN TIM1_MspPostInit 0 */
/* USER CODE END TIM1_MspPostInit 0 */
__HAL_RCC_GPIOE_CLK_ENABLE();
/**TIM1 GPIO Configuration
PE9 ------> TIM1_CH1
PE11 ------> TIM1_CH2
PE13 ------> TIM1_CH3
*/
GPIO_InitStruct.Pin = PWM_R_Pin|PWM_G_Pin|PWM_B_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF1_TIM1;
HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
/* USER CODE BEGIN TIM1_MspPostInit 1 */
/* USER CODE END TIM1_MspPostInit 1 */
}
else if(htim->Instance==TIM2)
{
/* USER CODE BEGIN TIM2_MspPostInit 0 */
/* USER CODE END TIM2_MspPostInit 0 */
__HAL_RCC_GPIOA_CLK_ENABLE();
/**TIM2 GPIO Configuration
PA3 ------> TIM2_CH4
*/
GPIO_InitStruct.Pin = PWM_BACKLIGHT_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF1_TIM2;
HAL_GPIO_Init(PWM_BACKLIGHT_GPIO_Port, &GPIO_InitStruct);
/* USER CODE BEGIN TIM2_MspPostInit 1 */
/* USER CODE END TIM2_MspPostInit 1 */
}
else if(htim->Instance==TIM4)
{
/* USER CODE BEGIN TIM4_MspPostInit 0 */
/* USER CODE END TIM4_MspPostInit 0 */
__HAL_RCC_GPIOD_CLK_ENABLE();
/**TIM4 GPIO Configuration
PD12 ------> TIM4_CH1
PD13 ------> TIM4_CH2
*/
GPIO_InitStruct.Pin = LOGO1_Pin|LOGO2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF2_TIM4;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/* USER CODE BEGIN TIM4_MspPostInit 1 */
/* USER CODE END TIM4_MspPostInit 1 */
}
}
/**
* @brief TIM_Base MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param htim_base: TIM_Base handle pointer
* @retval None
*/
void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef* htim_base)
{
if(htim_base->Instance==TIM1)
{
/* USER CODE BEGIN TIM1_MspDeInit 0 */
/* USER CODE END TIM1_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_TIM1_CLK_DISABLE();
/* USER CODE BEGIN TIM1_MspDeInit 1 */
/* USER CODE END TIM1_MspDeInit 1 */
}
else if(htim_base->Instance==TIM2)
{
/* USER CODE BEGIN TIM2_MspDeInit 0 */
/* USER CODE END TIM2_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_TIM2_CLK_DISABLE();
/* USER CODE BEGIN TIM2_MspDeInit 1 */
/* USER CODE END TIM2_MspDeInit 1 */
}
}
/**
* @brief TIM_PWM MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param htim_pwm: TIM_PWM handle pointer
* @retval None
*/
void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef* htim_pwm)
{
if(htim_pwm->Instance==TIM4)
{
/* USER CODE BEGIN TIM4_MspDeInit 0 */
/* USER CODE END TIM4_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_TIM4_CLK_DISABLE();
/* USER CODE BEGIN TIM4_MspDeInit 1 */
/* USER CODE END TIM4_MspDeInit 1 */
}
}
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */

203
Core/Src/stm32h7xx_it.c Normal file
View File

@ -0,0 +1,203 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file stm32h7xx_it.c
* @brief Interrupt Service Routines.
******************************************************************************
* @attention
*
* Copyright (c) 2023 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32h7xx_it.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN TD */
/* USER CODE END TD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/* External variables --------------------------------------------------------*/
/* USER CODE BEGIN EV */
/* USER CODE END EV */
/******************************************************************************/
/* Cortex Processor Interruption and Exception Handlers */
/******************************************************************************/
/**
* @brief This function handles Non maskable interrupt.
*/
void NMI_Handler(void)
{
/* USER CODE BEGIN NonMaskableInt_IRQn 0 */
/* USER CODE END NonMaskableInt_IRQn 0 */
/* USER CODE BEGIN NonMaskableInt_IRQn 1 */
while (1)
{
}
/* USER CODE END NonMaskableInt_IRQn 1 */
}
/**
* @brief This function handles Hard fault interrupt.
*/
void HardFault_Handler(void)
{
/* USER CODE BEGIN HardFault_IRQn 0 */
/* USER CODE END HardFault_IRQn 0 */
while (1)
{
/* USER CODE BEGIN W1_HardFault_IRQn 0 */
/* USER CODE END W1_HardFault_IRQn 0 */
}
}
/**
* @brief This function handles Memory management fault.
*/
void MemManage_Handler(void)
{
/* USER CODE BEGIN MemoryManagement_IRQn 0 */
/* USER CODE END MemoryManagement_IRQn 0 */
while (1)
{
/* USER CODE BEGIN W1_MemoryManagement_IRQn 0 */
/* USER CODE END W1_MemoryManagement_IRQn 0 */
}
}
/**
* @brief This function handles Pre-fetch fault, memory access fault.
*/
void BusFault_Handler(void)
{
/* USER CODE BEGIN BusFault_IRQn 0 */
/* USER CODE END BusFault_IRQn 0 */
while (1)
{
/* USER CODE BEGIN W1_BusFault_IRQn 0 */
/* USER CODE END W1_BusFault_IRQn 0 */
}
}
/**
* @brief This function handles Undefined instruction or illegal state.
*/
void UsageFault_Handler(void)
{
/* USER CODE BEGIN UsageFault_IRQn 0 */
/* USER CODE END UsageFault_IRQn 0 */
while (1)
{
/* USER CODE BEGIN W1_UsageFault_IRQn 0 */
/* USER CODE END W1_UsageFault_IRQn 0 */
}
}
/**
* @brief This function handles System service call via SWI instruction.
*/
void SVC_Handler(void)
{
/* USER CODE BEGIN SVCall_IRQn 0 */
/* USER CODE END SVCall_IRQn 0 */
/* USER CODE BEGIN SVCall_IRQn 1 */
/* USER CODE END SVCall_IRQn 1 */
}
/**
* @brief This function handles Debug monitor.
*/
void DebugMon_Handler(void)
{
/* USER CODE BEGIN DebugMonitor_IRQn 0 */
/* USER CODE END DebugMonitor_IRQn 0 */
/* USER CODE BEGIN DebugMonitor_IRQn 1 */
/* USER CODE END DebugMonitor_IRQn 1 */
}
/**
* @brief This function handles Pendable request for system service.
*/
void PendSV_Handler(void)
{
/* USER CODE BEGIN PendSV_IRQn 0 */
/* USER CODE END PendSV_IRQn 0 */
/* USER CODE BEGIN PendSV_IRQn 1 */
/* USER CODE END PendSV_IRQn 1 */
}
/**
* @brief This function handles System tick timer.
*/
void SysTick_Handler(void)
{
/* USER CODE BEGIN SysTick_IRQn 0 */
/* USER CODE END SysTick_IRQn 0 */
HAL_IncTick();
/* USER CODE BEGIN SysTick_IRQn 1 */
/* USER CODE END SysTick_IRQn 1 */
}
/******************************************************************************/
/* STM32H7xx Peripheral Interrupt Handlers */
/* Add here the Interrupt Handlers for the used peripherals. */
/* For the available peripheral interrupt handler names, */
/* please refer to the startup file (startup_stm32h7xx.s). */
/******************************************************************************/
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */

450
Core/Src/system_stm32h7xx.c Normal file
View File

@ -0,0 +1,450 @@
/**
******************************************************************************
* @file system_stm32h7xx.c
* @author MCD Application Team
* @brief CMSIS Cortex-Mx Device Peripheral Access Layer System Source File.
*
* This file provides two functions and one global variable to be called from
* user application:
* - SystemInit(): This function is called at startup just after reset and
* before branch to main program. This call is made inside
* the "startup_stm32h7xx.s" file.
*
* - SystemCoreClock variable: Contains the core clock, it can be used
* by the user application to setup the SysTick
* timer or configure other parameters.
*
* - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must
* be called whenever the core clock is changed
* during program execution.
*
*
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/** @addtogroup CMSIS
* @{
*/
/** @addtogroup stm32h7xx_system
* @{
*/
/** @addtogroup STM32H7xx_System_Private_Includes
* @{
*/
#include "stm32h7xx.h"
#include <math.h>
#if !defined (HSE_VALUE)
#define HSE_VALUE ((uint32_t)25000000) /*!< Value of the External oscillator in Hz */
#endif /* HSE_VALUE */
#if !defined (CSI_VALUE)
#define CSI_VALUE ((uint32_t)4000000) /*!< Value of the Internal oscillator in Hz*/
#endif /* CSI_VALUE */
#if !defined (HSI_VALUE)
#define HSI_VALUE ((uint32_t)64000000) /*!< Value of the Internal oscillator in Hz*/
#endif /* HSI_VALUE */
/**
* @}
*/
/** @addtogroup STM32H7xx_System_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @addtogroup STM32H7xx_System_Private_Defines
* @{
*/
/************************* Miscellaneous Configuration ************************/
/*!< Uncomment the following line if you need to use initialized data in D2 domain SRAM (AHB SRAM) */
/* #define DATA_IN_D2_SRAM */
/* Note: Following vector table addresses must be defined in line with linker
configuration. */
/*!< Uncomment the following line if you need to relocate the vector table
anywhere in FLASH BANK1 or AXI SRAM, else the vector table is kept at the automatic
remap of boot address selected */
/* #define USER_VECT_TAB_ADDRESS */
#if defined(USER_VECT_TAB_ADDRESS)
#if defined(DUAL_CORE) && defined(CORE_CM4)
/*!< Uncomment the following line if you need to relocate your vector Table
in D2 AXI SRAM else user remap will be done in FLASH BANK2. */
/* #define VECT_TAB_SRAM */
#if defined(VECT_TAB_SRAM)
#define VECT_TAB_BASE_ADDRESS D2_AXISRAM_BASE /*!< Vector Table base address field.
This value must be a multiple of 0x300. */
#define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field.
This value must be a multiple of 0x300. */
#else
#define VECT_TAB_BASE_ADDRESS FLASH_BANK2_BASE /*!< Vector Table base address field.
This value must be a multiple of 0x300. */
#define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field.
This value must be a multiple of 0x300. */
#endif /* VECT_TAB_SRAM */
#else
/*!< Uncomment the following line if you need to relocate your vector Table
in D1 AXI SRAM else user remap will be done in FLASH BANK1. */
/* #define VECT_TAB_SRAM */
#if defined(VECT_TAB_SRAM)
#define VECT_TAB_BASE_ADDRESS D1_AXISRAM_BASE /*!< Vector Table base address field.
This value must be a multiple of 0x300. */
#define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field.
This value must be a multiple of 0x300. */
#else
#define VECT_TAB_BASE_ADDRESS FLASH_BANK1_BASE /*!< Vector Table base address field.
This value must be a multiple of 0x300. */
#define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field.
This value must be a multiple of 0x300. */
#endif /* VECT_TAB_SRAM */
#endif /* DUAL_CORE && CORE_CM4 */
#endif /* USER_VECT_TAB_ADDRESS */
/******************************************************************************/
/**
* @}
*/
/** @addtogroup STM32H7xx_System_Private_Macros
* @{
*/
/**
* @}
*/
/** @addtogroup STM32H7xx_System_Private_Variables
* @{
*/
/* This variable is updated in three ways:
1) by calling CMSIS function SystemCoreClockUpdate()
2) by calling HAL API function HAL_RCC_GetHCLKFreq()
3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency
Note: If you use this function to configure the system clock; then there
is no need to call the 2 first functions listed above, since SystemCoreClock
variable is updated automatically.
*/
uint32_t SystemCoreClock = 64000000;
uint32_t SystemD2Clock = 64000000;
const uint8_t D1CorePrescTable[16] = {0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9};
/**
* @}
*/
/** @addtogroup STM32H7xx_System_Private_FunctionPrototypes
* @{
*/
/**
* @}
*/
/** @addtogroup STM32H7xx_System_Private_Functions
* @{
*/
/**
* @brief Setup the microcontroller system
* Initialize the FPU setting and vector table location
* configuration.
* @param None
* @retval None
*/
void SystemInit (void)
{
#if defined (DATA_IN_D2_SRAM)
__IO uint32_t tmpreg;
#endif /* DATA_IN_D2_SRAM */
/* FPU settings ------------------------------------------------------------*/
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
SCB->CPACR |= ((3UL << (10*2))|(3UL << (11*2))); /* set CP10 and CP11 Full Access */
#endif
/* Reset the RCC clock configuration to the default reset state ------------*/
/* Increasing the CPU frequency */
if(FLASH_LATENCY_DEFAULT > (READ_BIT((FLASH->ACR), FLASH_ACR_LATENCY)))
{
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
MODIFY_REG(FLASH->ACR, FLASH_ACR_LATENCY, (uint32_t)(FLASH_LATENCY_DEFAULT));
}
/* Set HSION bit */
RCC->CR |= RCC_CR_HSION;
/* Reset CFGR register */
RCC->CFGR = 0x00000000;
/* Reset HSEON, HSECSSON, CSION, HSI48ON, CSIKERON, PLL1ON, PLL2ON and PLL3ON bits */
RCC->CR &= 0xEAF6ED7FU;
/* Decreasing the number of wait states because of lower CPU frequency */
if(FLASH_LATENCY_DEFAULT < (READ_BIT((FLASH->ACR), FLASH_ACR_LATENCY)))
{
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
MODIFY_REG(FLASH->ACR, FLASH_ACR_LATENCY, (uint32_t)(FLASH_LATENCY_DEFAULT));
}
#if defined(D3_SRAM_BASE)
/* Reset D1CFGR register */
RCC->D1CFGR = 0x00000000;
/* Reset D2CFGR register */
RCC->D2CFGR = 0x00000000;
/* Reset D3CFGR register */
RCC->D3CFGR = 0x00000000;
#else
/* Reset CDCFGR1 register */
RCC->CDCFGR1 = 0x00000000;
/* Reset CDCFGR2 register */
RCC->CDCFGR2 = 0x00000000;
/* Reset SRDCFGR register */
RCC->SRDCFGR = 0x00000000;
#endif
/* Reset PLLCKSELR register */
RCC->PLLCKSELR = 0x02020200;
/* Reset PLLCFGR register */
RCC->PLLCFGR = 0x01FF0000;
/* Reset PLL1DIVR register */
RCC->PLL1DIVR = 0x01010280;
/* Reset PLL1FRACR register */
RCC->PLL1FRACR = 0x00000000;
/* Reset PLL2DIVR register */
RCC->PLL2DIVR = 0x01010280;
/* Reset PLL2FRACR register */
RCC->PLL2FRACR = 0x00000000;
/* Reset PLL3DIVR register */
RCC->PLL3DIVR = 0x01010280;
/* Reset PLL3FRACR register */
RCC->PLL3FRACR = 0x00000000;
/* Reset HSEBYP bit */
RCC->CR &= 0xFFFBFFFFU;
/* Disable all interrupts */
RCC->CIER = 0x00000000;
#if (STM32H7_DEV_ID == 0x450UL)
/* dual core CM7 or single core line */
if((DBGMCU->IDCODE & 0xFFFF0000U) < 0x20000000U)
{
/* if stm32h7 revY*/
/* Change the switch matrix read issuing capability to 1 for the AXI SRAM target (Target 7) */
*((__IO uint32_t*)0x51008108) = 0x000000001U;
}
#endif /* STM32H7_DEV_ID */
#if defined(DATA_IN_D2_SRAM)
/* in case of initialized data in D2 SRAM (AHB SRAM), enable the D2 SRAM clock (AHB SRAM clock) */
#if defined(RCC_AHB2ENR_D2SRAM3EN)
RCC->AHB2ENR |= (RCC_AHB2ENR_D2SRAM1EN | RCC_AHB2ENR_D2SRAM2EN | RCC_AHB2ENR_D2SRAM3EN);
#elif defined(RCC_AHB2ENR_D2SRAM2EN)
RCC->AHB2ENR |= (RCC_AHB2ENR_D2SRAM1EN | RCC_AHB2ENR_D2SRAM2EN);
#else
RCC->AHB2ENR |= (RCC_AHB2ENR_AHBSRAM1EN | RCC_AHB2ENR_AHBSRAM2EN);
#endif /* RCC_AHB2ENR_D2SRAM3EN */
tmpreg = RCC->AHB2ENR;
(void) tmpreg;
#endif /* DATA_IN_D2_SRAM */
#if defined(DUAL_CORE) && defined(CORE_CM4)
/* Configure the Vector Table location add offset address for cortex-M4 ------------------*/
#if defined(USER_VECT_TAB_ADDRESS)
SCB->VTOR = VECT_TAB_BASE_ADDRESS | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal D2 AXI-RAM or in Internal FLASH */
#endif /* USER_VECT_TAB_ADDRESS */
#else
/*
* Disable the FMC bank1 (enabled after reset).
* This, prevents CPU speculation access on this bank which blocks the use of FMC during
* 24us. During this time the others FMC master (such as LTDC) cannot use it!
*/
FMC_Bank1_R->BTCR[0] = 0x000030D2;
/* Configure the Vector Table location -------------------------------------*/
#if defined(USER_VECT_TAB_ADDRESS)
SCB->VTOR = VECT_TAB_BASE_ADDRESS | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal D1 AXI-RAM or in Internal FLASH */
#endif /* USER_VECT_TAB_ADDRESS */
#endif /*DUAL_CORE && CORE_CM4*/
}
/**
* @brief Update SystemCoreClock variable according to Clock Register Values.
* The SystemCoreClock variable contains the core clock , it can
* be used by the user application to setup the SysTick timer or configure
* other parameters.
*
* @note Each time the core clock changes, this function must be called
* to update SystemCoreClock variable value. Otherwise, any configuration
* based on this variable will be incorrect.
*
* @note - The system frequency computed by this function is not the real
* frequency in the chip. It is calculated based on the predefined
* constant and the selected clock source:
*
* - If SYSCLK source is CSI, SystemCoreClock will contain the CSI_VALUE(*)
* - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(**)
* - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(***)
* - If SYSCLK source is PLL, SystemCoreClock will contain the CSI_VALUE(*),
* HSI_VALUE(**) or HSE_VALUE(***) multiplied/divided by the PLL factors.
*
* (*) CSI_VALUE is a constant defined in stm32h7xx_hal.h file (default value
* 4 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
* (**) HSI_VALUE is a constant defined in stm32h7xx_hal.h file (default value
* 64 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
*
* (***)HSE_VALUE is a constant defined in stm32h7xx_hal.h file (default value
* 25 MHz), user has to ensure that HSE_VALUE is same as the real
* frequency of the crystal used. Otherwise, this function may
* have wrong result.
*
* - The result of this function could be not correct when using fractional
* value for HSE crystal.
* @param None
* @retval None
*/
void SystemCoreClockUpdate (void)
{
uint32_t pllp, pllsource, pllm, pllfracen, hsivalue, tmp;
uint32_t common_system_clock;
float_t fracn1, pllvco;
/* Get SYSCLK source -------------------------------------------------------*/
switch (RCC->CFGR & RCC_CFGR_SWS)
{
case RCC_CFGR_SWS_HSI: /* HSI used as system clock source */
common_system_clock = (uint32_t) (HSI_VALUE >> ((RCC->CR & RCC_CR_HSIDIV)>> 3));
break;
case RCC_CFGR_SWS_CSI: /* CSI used as system clock source */
common_system_clock = CSI_VALUE;
break;
case RCC_CFGR_SWS_HSE: /* HSE used as system clock source */
common_system_clock = HSE_VALUE;
break;
case RCC_CFGR_SWS_PLL1: /* PLL1 used as system clock source */
/* PLL_VCO = (HSE_VALUE or HSI_VALUE or CSI_VALUE/ PLLM) * PLLN
SYSCLK = PLL_VCO / PLLR
*/
pllsource = (RCC->PLLCKSELR & RCC_PLLCKSELR_PLLSRC);
pllm = ((RCC->PLLCKSELR & RCC_PLLCKSELR_DIVM1)>> 4) ;
pllfracen = ((RCC->PLLCFGR & RCC_PLLCFGR_PLL1FRACEN)>>RCC_PLLCFGR_PLL1FRACEN_Pos);
fracn1 = (float_t)(uint32_t)(pllfracen* ((RCC->PLL1FRACR & RCC_PLL1FRACR_FRACN1)>> 3));
if (pllm != 0U)
{
switch (pllsource)
{
case RCC_PLLCKSELR_PLLSRC_HSI: /* HSI used as PLL clock source */
hsivalue = (HSI_VALUE >> ((RCC->CR & RCC_CR_HSIDIV)>> 3)) ;
pllvco = ( (float_t)hsivalue / (float_t)pllm) * ((float_t)(uint32_t)(RCC->PLL1DIVR & RCC_PLL1DIVR_N1) + (fracn1/(float_t)0x2000) +(float_t)1 );
break;
case RCC_PLLCKSELR_PLLSRC_CSI: /* CSI used as PLL clock source */
pllvco = ((float_t)CSI_VALUE / (float_t)pllm) * ((float_t)(uint32_t)(RCC->PLL1DIVR & RCC_PLL1DIVR_N1) + (fracn1/(float_t)0x2000) +(float_t)1 );
break;
case RCC_PLLCKSELR_PLLSRC_HSE: /* HSE used as PLL clock source */
pllvco = ((float_t)HSE_VALUE / (float_t)pllm) * ((float_t)(uint32_t)(RCC->PLL1DIVR & RCC_PLL1DIVR_N1) + (fracn1/(float_t)0x2000) +(float_t)1 );
break;
default:
hsivalue = (HSI_VALUE >> ((RCC->CR & RCC_CR_HSIDIV)>> 3)) ;
pllvco = ((float_t)hsivalue / (float_t)pllm) * ((float_t)(uint32_t)(RCC->PLL1DIVR & RCC_PLL1DIVR_N1) + (fracn1/(float_t)0x2000) +(float_t)1 );
break;
}
pllp = (((RCC->PLL1DIVR & RCC_PLL1DIVR_P1) >>9) + 1U ) ;
common_system_clock = (uint32_t)(float_t)(pllvco/(float_t)pllp);
}
else
{
common_system_clock = 0U;
}
break;
default:
common_system_clock = (uint32_t) (HSI_VALUE >> ((RCC->CR & RCC_CR_HSIDIV)>> 3));
break;
}
/* Compute SystemClock frequency --------------------------------------------------*/
#if defined (RCC_D1CFGR_D1CPRE)
tmp = D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_D1CPRE)>> RCC_D1CFGR_D1CPRE_Pos];
/* common_system_clock frequency : CM7 CPU frequency */
common_system_clock >>= tmp;
/* SystemD2Clock frequency : CM4 CPU, AXI and AHBs Clock frequency */
SystemD2Clock = (common_system_clock >> ((D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_HPRE)>> RCC_D1CFGR_HPRE_Pos]) & 0x1FU));
#else
tmp = D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_CDCPRE)>> RCC_CDCFGR1_CDCPRE_Pos];
/* common_system_clock frequency : CM7 CPU frequency */
common_system_clock >>= tmp;
/* SystemD2Clock frequency : AXI and AHBs Clock frequency */
SystemD2Clock = (common_system_clock >> ((D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_HPRE)>> RCC_CDCFGR1_HPRE_Pos]) & 0x1FU));
#endif
#if defined(DUAL_CORE) && defined(CORE_CM4)
SystemCoreClock = SystemD2Clock;
#else
SystemCoreClock = common_system_clock;
#endif /* DUAL_CORE && CORE_CM4 */
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/