stw24/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_q15.c

333 lines
8.2 KiB
C
Raw Normal View History

2023-03-05 15:36:10 +01:00
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_cfft_q15.c
* Description: Combined Radix Decimation in Q15 Frequency CFFT processing function
*
* $Date: 18. March 2019
* $Revision: V1.6.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
extern void arm_radix4_butterfly_q15(
q15_t * pSrc,
uint32_t fftLen,
const q15_t * pCoef,
uint32_t twidCoefModifier);
extern void arm_radix4_butterfly_inverse_q15(
q15_t * pSrc,
uint32_t fftLen,
const q15_t * pCoef,
uint32_t twidCoefModifier);
extern void arm_bitreversal_16(
uint16_t * pSrc,
const uint16_t bitRevLen,
const uint16_t * pBitRevTable);
void arm_cfft_radix4by2_q15(
q15_t * pSrc,
uint32_t fftLen,
const q15_t * pCoef);
void arm_cfft_radix4by2_inverse_q15(
q15_t * pSrc,
uint32_t fftLen,
const q15_t * pCoef);
/**
@ingroup groupTransforms
*/
/**
@addtogroup ComplexFFT
@{
*/
/**
@brief Processing function for Q15 complex FFT.
@param[in] S points to an instance of Q15 CFFT structure
@param[in,out] p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place
@param[in] ifftFlag flag that selects transform direction
- value = 0: forward transform
- value = 1: inverse transform
@param[in] bitReverseFlag flag that enables / disables bit reversal of output
- value = 0: disables bit reversal of output
- value = 1: enables bit reversal of output
@return none
*/
void arm_cfft_q15(
const arm_cfft_instance_q15 * S,
q15_t * p1,
uint8_t ifftFlag,
uint8_t bitReverseFlag)
{
uint32_t L = S->fftLen;
if (ifftFlag == 1U)
{
switch (L)
{
case 16:
case 64:
case 256:
case 1024:
case 4096:
arm_radix4_butterfly_inverse_q15 ( p1, L, (q15_t*)S->pTwiddle, 1 );
break;
case 32:
case 128:
case 512:
case 2048:
arm_cfft_radix4by2_inverse_q15 ( p1, L, S->pTwiddle );
break;
}
}
else
{
switch (L)
{
case 16:
case 64:
case 256:
case 1024:
case 4096:
arm_radix4_butterfly_q15 ( p1, L, (q15_t*)S->pTwiddle, 1 );
break;
case 32:
case 128:
case 512:
case 2048:
arm_cfft_radix4by2_q15 ( p1, L, S->pTwiddle );
break;
}
}
if ( bitReverseFlag )
arm_bitreversal_16 ((uint16_t*) p1, S->bitRevLength, S->pBitRevTable);
}
/**
@} end of ComplexFFT group
*/
void arm_cfft_radix4by2_q15(
q15_t * pSrc,
uint32_t fftLen,
const q15_t * pCoef)
{
uint32_t i;
uint32_t n2;
q15_t p0, p1, p2, p3;
#if defined (ARM_MATH_DSP)
q31_t T, S, R;
q31_t coeff, out1, out2;
const q15_t *pC = pCoef;
q15_t *pSi = pSrc;
q15_t *pSl = pSrc + fftLen;
#else
uint32_t l;
q15_t xt, yt, cosVal, sinVal;
#endif
n2 = fftLen >> 1U;
#if defined (ARM_MATH_DSP)
for (i = n2; i > 0; i--)
{
coeff = read_q15x2_ia ((q15_t **) &pC);
T = read_q15x2 (pSi);
T = __SHADD16(T, 0); /* this is just a SIMD arithmetic shift right by 1 */
S = read_q15x2 (pSl);
S = __SHADD16(S, 0); /* this is just a SIMD arithmetic shift right by 1 */
R = __QSUB16(T, S);
write_q15x2_ia (&pSi, __SHADD16(T, S));
#ifndef ARM_MATH_BIG_ENDIAN
out1 = __SMUAD(coeff, R) >> 16U;
out2 = __SMUSDX(coeff, R);
#else
out1 = __SMUSDX(R, coeff) >> 16U;
out2 = __SMUAD(coeff, R);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
write_q15x2_ia (&pSl, (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF));
}
#else /* #if defined (ARM_MATH_DSP) */
for (i = 0; i < n2; i++)
{
cosVal = pCoef[2 * i];
sinVal = pCoef[2 * i + 1];
l = i + n2;
xt = (pSrc[2 * i] >> 1U) - (pSrc[2 * l] >> 1U);
pSrc[2 * i] = ((pSrc[2 * i] >> 1U) + (pSrc[2 * l] >> 1U)) >> 1U;
yt = (pSrc[2 * i + 1] >> 1U) - (pSrc[2 * l + 1] >> 1U);
pSrc[2 * i + 1] = ((pSrc[2 * l + 1] >> 1U) + (pSrc[2 * i + 1] >> 1U)) >> 1U;
pSrc[2 * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16U)) +
((int16_t) (((q31_t) yt * sinVal) >> 16U)) );
pSrc[2 * l + 1] = (((int16_t) (((q31_t) yt * cosVal) >> 16U)) -
((int16_t) (((q31_t) xt * sinVal) >> 16U)) );
}
#endif /* #if defined (ARM_MATH_DSP) */
/* first col */
arm_radix4_butterfly_q15( pSrc, n2, (q15_t*)pCoef, 2U);
/* second col */
arm_radix4_butterfly_q15( pSrc + fftLen, n2, (q15_t*)pCoef, 2U);
n2 = fftLen >> 1U;
for (i = 0; i < n2; i++)
{
p0 = pSrc[4 * i + 0];
p1 = pSrc[4 * i + 1];
p2 = pSrc[4 * i + 2];
p3 = pSrc[4 * i + 3];
p0 <<= 1U;
p1 <<= 1U;
p2 <<= 1U;
p3 <<= 1U;
pSrc[4 * i + 0] = p0;
pSrc[4 * i + 1] = p1;
pSrc[4 * i + 2] = p2;
pSrc[4 * i + 3] = p3;
}
}
void arm_cfft_radix4by2_inverse_q15(
q15_t * pSrc,
uint32_t fftLen,
const q15_t * pCoef)
{
uint32_t i;
uint32_t n2;
q15_t p0, p1, p2, p3;
#if defined (ARM_MATH_DSP)
q31_t T, S, R;
q31_t coeff, out1, out2;
const q15_t *pC = pCoef;
q15_t *pSi = pSrc;
q15_t *pSl = pSrc + fftLen;
#else
uint32_t l;
q15_t xt, yt, cosVal, sinVal;
#endif
n2 = fftLen >> 1U;
#if defined (ARM_MATH_DSP)
for (i = n2; i > 0; i--)
{
coeff = read_q15x2_ia ((q15_t **) &pC);
T = read_q15x2 (pSi);
T = __SHADD16(T, 0); /* this is just a SIMD arithmetic shift right by 1 */
S = read_q15x2 (pSl);
S = __SHADD16(S, 0); /* this is just a SIMD arithmetic shift right by 1 */
R = __QSUB16(T, S);
write_q15x2_ia (&pSi, __SHADD16(T, S));
#ifndef ARM_MATH_BIG_ENDIAN
out1 = __SMUSD(coeff, R) >> 16U;
out2 = __SMUADX(coeff, R);
#else
out1 = __SMUADX(R, coeff) >> 16U;
out2 = __SMUSD(__QSUB(0, coeff), R);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
write_q15x2_ia (&pSl, (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF));
}
#else /* #if defined (ARM_MATH_DSP) */
for (i = 0; i < n2; i++)
{
cosVal = pCoef[2 * i];
sinVal = pCoef[2 * i + 1];
l = i + n2;
xt = (pSrc[2 * i] >> 1U) - (pSrc[2 * l] >> 1U);
pSrc[2 * i] = ((pSrc[2 * i] >> 1U) + (pSrc[2 * l] >> 1U)) >> 1U;
yt = (pSrc[2 * i + 1] >> 1U) - (pSrc[2 * l + 1] >> 1U);
pSrc[2 * i + 1] = ((pSrc[2 * l + 1] >> 1U) + (pSrc[2 * i + 1] >> 1U)) >> 1U;
pSrc[2 * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16U)) -
((int16_t) (((q31_t) yt * sinVal) >> 16U)) );
pSrc[2 * l + 1] = (((int16_t) (((q31_t) yt * cosVal) >> 16U)) +
((int16_t) (((q31_t) xt * sinVal) >> 16U)) );
}
#endif /* #if defined (ARM_MATH_DSP) */
/* first col */
arm_radix4_butterfly_inverse_q15( pSrc, n2, (q15_t*)pCoef, 2U);
/* second col */
arm_radix4_butterfly_inverse_q15( pSrc + fftLen, n2, (q15_t*)pCoef, 2U);
n2 = fftLen >> 1U;
for (i = 0; i < n2; i++)
{
p0 = pSrc[4 * i + 0];
p1 = pSrc[4 * i + 1];
p2 = pSrc[4 * i + 2];
p3 = pSrc[4 * i + 3];
p0 <<= 1U;
p1 <<= 1U;
p2 <<= 1U;
p3 <<= 1U;
pSrc[4 * i + 0] = p0;
pSrc[4 * i + 1] = p1;
pSrc[4 * i + 2] = p2;
pSrc[4 * i + 3] = p3;
}
}