2022-11-12 14:29:31 +01:00

441 lines
13 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2022 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32l4xx_hal.h"
#include "stm32l4xx_hal_i2c.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define VL6180X_ADDR (0x29 << 1)
#define VL6180X_REG_SYSTEM_INTERRUPT_CONFIG_GPIO 0x14
#define VL6180X_REG_SYSTEM_INTERRUPT_CLEAR 0x15
#define VL6180X_REG_SYSTEM_FRESH_OUT_OF_RESET 0x16
#define VL6180X_REG_SYSRANGE_START 0x18
#define VL6180X_REG_RESULT_RANGE_STATUS 0x4D
#define VL6180X_REG_RESULT_INTERRUPT_STATUS_GPIO 0x4F
#define VL6180X_REG_RESULT_RANGE_VAL 0x62
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;
UART_HandleTypeDef huart2;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_I2C1_Init(void);
static void MX_USART2_UART_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
volatile uint16_t range = 0;
void tof_write_reg(uint16_t reg_addr, uint32_t data, int len_bytes) {
uint8_t buf[len_bytes + 2];
buf[0] = reg_addr >> 8;
buf[1] = reg_addr & 0xFF;
for (int idx = len_bytes + 1; idx >= 2; idx--) {
buf[idx] = data & 0xFF;
data >>= 8;
}
if (HAL_I2C_Master_Transmit(&hi2c1, VL6180X_ADDR, buf, len_bytes, 100) !=
HAL_OK) {
Error_Handler();
}
}
uint32_t tof_read_reg(uint16_t reg_addr, int len_bytes) {
// Write index
uint8_t addr_buf[2] = {reg_addr >> 8, reg_addr & 0xFF};
if (HAL_I2C_Master_Transmit(&hi2c1, VL6180X_ADDR, addr_buf, 2, 100) !=
HAL_OK) {
Error_Handler();
}
// Read data
uint8_t buf[len_bytes];
if (HAL_I2C_Master_Receive(&hi2c1, VL6180X_ADDR | 1, buf, len_bytes, 100) !=
HAL_OK) {
Error_Handler();
}
// Demarshal
uint32_t result = 0;
for (int i = 0; i < len_bytes; i++) {
int shift = (len_bytes - i - 1) * 8;
result |= ((uint32_t)buf[i]) << shift;
}
return result;
}
void tof_init(void) {
if (tof_read_reg(VL6180X_REG_SYSTEM_FRESH_OUT_OF_RESET, 1) & 1) {
// LOAD SETTINGS AS PER AN4545, SECTION 9
// Mandatory : private registers
tof_write_reg(0x0207, 0x01, 1);
tof_write_reg(0x0208, 0x01, 1);
tof_write_reg(0x0096, 0x00, 1);
tof_write_reg(0x0097, 0xfd, 1);
tof_write_reg(0x00e3, 0x01, 1);
tof_write_reg(0x00e4, 0x03, 1);
tof_write_reg(0x00e5, 0x02, 1);
tof_write_reg(0x00e6, 0x01, 1);
tof_write_reg(0x00e7, 0x03, 1);
tof_write_reg(0x00f5, 0x02, 1);
tof_write_reg(0x00d9, 0x05, 1);
tof_write_reg(0x00db, 0xce, 1);
tof_write_reg(0x00dc, 0x03, 1);
tof_write_reg(0x00dd, 0xf8, 1);
tof_write_reg(0x009f, 0x00, 1);
tof_write_reg(0x00a3, 0x3c, 1);
tof_write_reg(0x00b7, 0x00, 1);
tof_write_reg(0x00bb, 0x3c, 1);
tof_write_reg(0x00b2, 0x09, 1);
tof_write_reg(0x00ca, 0x09, 1);
tof_write_reg(0x0198, 0x01, 1);
tof_write_reg(0x01b0, 0x17, 1);
tof_write_reg(0x01ad, 0x00, 1);
tof_write_reg(0x00ff, 0x05, 1);
tof_write_reg(0x0100, 0x05, 1);
tof_write_reg(0x0199, 0x05, 1);
tof_write_reg(0x01a6, 0x1b, 1);
tof_write_reg(0x01ac, 0x3e, 1);
tof_write_reg(0x01a7, 0x1f, 1);
tof_write_reg(0x0030, 0x00, 1);
// Recommended : Public registers - See data sheet for more detail
tof_write_reg(0x0011, 0x10, 1); // Enables polling for New Sample ready
// when measurement completes
tof_write_reg(0x010a, 0x30, 1); // Set the averaging sample period
// (compromise between lower noise and
// increased execution time)
tof_write_reg(0x003f, 0x46, 1); // Sets the light and dark gain (upper
// nibble). Dark gain should not be
// changed.
tof_write_reg(0x0031, 0xFF, 1); // sets the # of range measurements after
// which auto calibration of system is
// performed
tof_write_reg(0x0041, 0x63, 1); // Set ALS integration time to 100ms
tof_write_reg(0x002e, 0x01, 1); // perform a single temperature calibration
// of the ranging sensor
// Optional: Public registers - See data sheet for more detail
tof_write_reg(0x001b, 0x09, 1); // Set default ranging inter-measurement
// period to 100ms
tof_write_reg(0x003e, 0x31, 1); // Set default ALS inter-measurement period
// to 500ms
tof_write_reg(0x0014, 0x24, 1); // Configures interrupt on New Sample
// Ready threshold event
tof_write_reg(VL6180X_REG_SYSTEM_FRESH_OUT_OF_RESET, 0, 1);
}
// tof_write_reg(VL6180X_REG_SYSTEM_INTERRUPT_CONFIG_GPIO, 4, 1);
}
uint8_t tof_range_poll(void) {
if (tof_read_reg(VL6180X_REG_RESULT_RANGE_STATUS, 1) & 1) {
// Not ready
Error_Handler();
}
tof_write_reg(VL6180X_REG_SYSRANGE_START, 0b01, 1);
while (1) {
uint8_t status = tof_read_reg(VL6180X_REG_RESULT_INTERRUPT_STATUS_GPIO, 1);
if (status & 0b11000000) {
// Error bits
Error_Handler();
}
if ((status & 0b111) == 4) {
// New sample ready threshold event
break;
}
status = tof_read_reg(VL6180X_REG_RESULT_RANGE_STATUS, 1);
if (status & 0xF0) {
// Error code
Error_Handler();
}
HAL_Delay(10);
}
uint8_t range = tof_read_reg(VL6180X_REG_RESULT_RANGE_VAL, 2);
// Clear interrupt
tof_write_reg(VL6180X_REG_SYSTEM_INTERRUPT_CLEAR, 0x07, 1);
return range;
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void) {
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick.
*/
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_I2C1_Init();
MX_USART2_UART_Init();
HAL_Delay(100);
tof_init();
HAL_Delay(100);
/* USER CODE BEGIN 2 */
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1) {
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
range = tof_range_poll();
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void) {
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK) {
Error_Handler();
}
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 1;
RCC_OscInitStruct.PLL.PLLN = 10;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK |
RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK) {
Error_Handler();
}
}
/**
* @brief I2C1 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C1_Init(void) {
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.Timing = 0x10909CEC;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK) {
Error_Handler();
}
/** Configure Analogue filter
*/
if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK) {
Error_Handler();
}
/** Configure Digital filter
*/
if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void) {
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart2) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void) {
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : B1_Pin */
GPIO_InitStruct.Pin = B1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : LD2_Pin */
GPIO_InitStruct.Pin = LD2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LD2_GPIO_Port, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void) {
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1) {
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line) {
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line
number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file,
line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */