steering-wheel/Drivers/CMSIS/DSP/Source/ComplexMathFunctions/arm_cmplx_conj_f32.c

162 lines
3.9 KiB
C

/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_cmplx_conj_f32.c
* Description: Floating-point complex conjugate
*
* $Date: 18. March 2019
* $Revision: V1.6.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
/**
@ingroup groupCmplxMath
*/
/**
@defgroup cmplx_conj Complex Conjugate
Conjugates the elements of a complex data vector.
The <code>pSrc</code> points to the source data and
<code>pDst</code> points to the destination data where the result should be written.
<code>numSamples</code> specifies the number of complex samples
and the data in each array is stored in an interleaved fashion
(real, imag, real, imag, ...).
Each array has a total of <code>2*numSamples</code> values.
The underlying algorithm is used:
<pre>
for (n = 0; n < numSamples; n++) {
pDst[(2*n) ] = pSrc[(2*n) ]; // real part
pDst[(2*n)+1] = -pSrc[(2*n)+1]; // imag part
}
</pre>
There are separate functions for floating-point, Q15, and Q31 data types.
*/
/**
@addtogroup cmplx_conj
@{
*/
/**
@brief Floating-point complex conjugate.
@param[in] pSrc points to the input vector
@param[out] pDst points to the output vector
@param[in] numSamples number of samples in each vector
@return none
*/
void arm_cmplx_conj_f32(
const float32_t * pSrc,
float32_t * pDst,
uint32_t numSamples)
{
uint32_t blkCnt; /* Loop counter */
#if defined(ARM_MATH_NEON)
float32x4_t zero;
float32x4x2_t vec;
zero = vdupq_n_f32(0.0);
/* Compute 4 outputs at a time */
blkCnt = numSamples >> 2U;
while (blkCnt > 0U)
{
/* C[0]+jC[1] = A[0]+(-1)*jA[1] */
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
vec = vld2q_f32(pSrc);
vec.val[1] = vsubq_f32(zero,vec.val[1]);
vst2q_f32(pDst,vec);
/* Increment pointers */
pSrc += 8;
pDst += 8;
/* Decrement the loop counter */
blkCnt--;
}
/* Tail */
blkCnt = numSamples & 0x3;
#else
#if defined (ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */
blkCnt = numSamples >> 2U;
while (blkCnt > 0U)
{
/* C[0] + jC[1] = A[0]+ j(-1)A[1] */
/* Calculate Complex Conjugate and store result in destination buffer. */
*pDst++ = *pSrc++;
*pDst++ = -*pSrc++;
*pDst++ = *pSrc++;
*pDst++ = -*pSrc++;
*pDst++ = *pSrc++;
*pDst++ = -*pSrc++;
*pDst++ = *pSrc++;
*pDst++ = -*pSrc++;
/* Decrement loop counter */
blkCnt--;
}
/* Loop unrolling: Compute remaining outputs */
blkCnt = numSamples % 0x4U;
#else
/* Initialize blkCnt with number of samples */
blkCnt = numSamples;
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
#endif /* #if defined (ARM_MATH_NEON) */
while (blkCnt > 0U)
{
/* C[0] + jC[1] = A[0]+ j(-1)A[1] */
/* Calculate Complex Conjugate and store result in destination buffer. */
*pDst++ = *pSrc++;
*pDst++ = -*pSrc++;
/* Decrement loop counter */
blkCnt--;
}
}
/**
@} end of cmplx_conj group
*/