1312 lines
42 KiB
C
1312 lines
42 KiB
C
/**
|
|
******************************************************************************
|
|
* @file stm32h7xx_hal.c
|
|
* @author MCD Application Team
|
|
* @brief HAL module driver.
|
|
* This is the common part of the HAL initialization
|
|
*
|
|
******************************************************************************
|
|
* @attention
|
|
*
|
|
* Copyright (c) 2017 STMicroelectronics.
|
|
* All rights reserved.
|
|
*
|
|
* This software is licensed under terms that can be found in the LICENSE file
|
|
* in the root directory of this software component.
|
|
* If no LICENSE file comes with this software, it is provided AS-IS.
|
|
*
|
|
******************************************************************************
|
|
@verbatim
|
|
==============================================================================
|
|
##### How to use this driver #####
|
|
==============================================================================
|
|
[..]
|
|
The common HAL driver contains a set of generic and common APIs that can be
|
|
used by the PPP peripheral drivers and the user to start using the HAL.
|
|
[..]
|
|
The HAL contains two APIs' categories:
|
|
(+) Common HAL APIs
|
|
(+) Services HAL APIs
|
|
|
|
@endverbatim
|
|
******************************************************************************
|
|
*/
|
|
|
|
/* Includes ------------------------------------------------------------------*/
|
|
#include "stm32h7xx_hal.h"
|
|
|
|
/** @addtogroup STM32H7xx_HAL_Driver
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup HAL HAL
|
|
* @brief HAL module driver.
|
|
* @{
|
|
*/
|
|
|
|
/* Private typedef -----------------------------------------------------------*/
|
|
/* Private define ------------------------------------------------------------*/
|
|
/**
|
|
* @brief STM32H7xx HAL Driver version number V1.11.1
|
|
*/
|
|
#define __STM32H7xx_HAL_VERSION_MAIN (0x01UL) /*!< [31:24] main version */
|
|
#define __STM32H7xx_HAL_VERSION_SUB1 (0x0BUL) /*!< [23:16] sub1 version */
|
|
#define __STM32H7xx_HAL_VERSION_SUB2 (0x01UL) /*!< [15:8] sub2 version */
|
|
#define __STM32H7xx_HAL_VERSION_RC (0x00UL) /*!< [7:0] release candidate */
|
|
#define __STM32H7xx_HAL_VERSION ((__STM32H7xx_HAL_VERSION_MAIN << 24)\
|
|
|(__STM32H7xx_HAL_VERSION_SUB1 << 16)\
|
|
|(__STM32H7xx_HAL_VERSION_SUB2 << 8 )\
|
|
|(__STM32H7xx_HAL_VERSION_RC))
|
|
|
|
#define IDCODE_DEVID_MASK ((uint32_t)0x00000FFF)
|
|
#define VREFBUF_TIMEOUT_VALUE (uint32_t)10 /* 10 ms */
|
|
|
|
/* Private macro -------------------------------------------------------------*/
|
|
/* Private variables ---------------------------------------------------------*/
|
|
/* Exported variables --------------------------------------------------------*/
|
|
|
|
/** @defgroup HAL_Exported_Variables HAL Exported Variables
|
|
* @{
|
|
*/
|
|
__IO uint32_t uwTick;
|
|
uint32_t uwTickPrio = (1UL << __NVIC_PRIO_BITS); /* Invalid PRIO */
|
|
HAL_TickFreqTypeDef uwTickFreq = HAL_TICK_FREQ_DEFAULT; /* 1KHz */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Private function prototypes -----------------------------------------------*/
|
|
/* Private functions ---------------------------------------------------------*/
|
|
|
|
/** @addtogroup HAL_Exported_Functions
|
|
* @{
|
|
*/
|
|
|
|
/** @addtogroup HAL_Group1
|
|
* @brief Initialization and de-initialization functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Initialization and de-initialization functions #####
|
|
===============================================================================
|
|
[..] This section provides functions allowing to:
|
|
(+) Initializes the Flash interface the NVIC allocation and initial clock
|
|
configuration. It initializes the systick also when timeout is needed
|
|
and the backup domain when enabled.
|
|
(+) De-Initializes common part of the HAL.
|
|
(+) Configure The time base source to have 1ms time base with a dedicated
|
|
Tick interrupt priority.
|
|
(++) SysTick timer is used by default as source of time base, but user
|
|
can eventually implement his proper time base source (a general purpose
|
|
timer for example or other time source), keeping in mind that Time base
|
|
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
|
|
handled in milliseconds basis.
|
|
(++) Time base configuration function (HAL_InitTick ()) is called automatically
|
|
at the beginning of the program after reset by HAL_Init() or at any time
|
|
when clock is configured, by HAL_RCC_ClockConfig().
|
|
(++) Source of time base is configured to generate interrupts at regular
|
|
time intervals. Care must be taken if HAL_Delay() is called from a
|
|
peripheral ISR process, the Tick interrupt line must have higher priority
|
|
(numerically lower) than the peripheral interrupt. Otherwise the caller
|
|
ISR process will be blocked.
|
|
(++) functions affecting time base configurations are declared as __weak
|
|
to make override possible in case of other implementations in user file.
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief This function is used to initialize the HAL Library; it must be the first
|
|
* instruction to be executed in the main program (before to call any other
|
|
* HAL function), it performs the following:
|
|
* Configures the SysTick to generate an interrupt each 1 millisecond,
|
|
* which is clocked by the HSI (at this stage, the clock is not yet
|
|
* configured and thus the system is running from the internal HSI at 16 MHz).
|
|
* Set NVIC Group Priority to 4.
|
|
* Calls the HAL_MspInit() callback function defined in user file
|
|
* "stm32h7xx_hal_msp.c" to do the global low level hardware initialization
|
|
*
|
|
* @note SysTick is used as time base for the HAL_Delay() function, the application
|
|
* need to ensure that the SysTick time base is always set to 1 millisecond
|
|
* to have correct HAL operation.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_Init(void)
|
|
{
|
|
|
|
uint32_t common_system_clock;
|
|
|
|
#if defined(DUAL_CORE) && defined(CORE_CM4)
|
|
/* Configure Cortex-M4 Instruction cache through ART accelerator */
|
|
__HAL_RCC_ART_CLK_ENABLE(); /* Enable the Cortex-M4 ART Clock */
|
|
__HAL_ART_CONFIG_BASE_ADDRESS(0x08100000UL); /* Configure the Cortex-M4 ART Base address to the Flash Bank 2 : */
|
|
__HAL_ART_ENABLE(); /* Enable the Cortex-M4 ART */
|
|
#endif /* DUAL_CORE && CORE_CM4 */
|
|
|
|
/* Set Interrupt Group Priority */
|
|
HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
|
|
|
|
/* Update the SystemCoreClock global variable */
|
|
#if defined(RCC_D1CFGR_D1CPRE)
|
|
common_system_clock = HAL_RCC_GetSysClockFreq() >> ((D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_D1CPRE)>> RCC_D1CFGR_D1CPRE_Pos]) & 0x1FU);
|
|
#else
|
|
common_system_clock = HAL_RCC_GetSysClockFreq() >> ((D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_CDCPRE)>> RCC_CDCFGR1_CDCPRE_Pos]) & 0x1FU);
|
|
#endif
|
|
|
|
/* Update the SystemD2Clock global variable */
|
|
#if defined(RCC_D1CFGR_HPRE)
|
|
SystemD2Clock = (common_system_clock >> ((D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_HPRE)>> RCC_D1CFGR_HPRE_Pos]) & 0x1FU));
|
|
#else
|
|
SystemD2Clock = (common_system_clock >> ((D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_HPRE)>> RCC_CDCFGR1_HPRE_Pos]) & 0x1FU));
|
|
#endif
|
|
|
|
#if defined(DUAL_CORE) && defined(CORE_CM4)
|
|
SystemCoreClock = SystemD2Clock;
|
|
#else
|
|
SystemCoreClock = common_system_clock;
|
|
#endif /* DUAL_CORE && CORE_CM4 */
|
|
|
|
/* Use systick as time base source and configure 1ms tick (default clock after Reset is HSI) */
|
|
if(HAL_InitTick(TICK_INT_PRIORITY) != HAL_OK)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Init the low level hardware */
|
|
HAL_MspInit();
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief This function de-Initializes common part of the HAL and stops the systick.
|
|
* This function is optional.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_DeInit(void)
|
|
{
|
|
/* Reset of all peripherals */
|
|
__HAL_RCC_AHB3_FORCE_RESET();
|
|
__HAL_RCC_AHB3_RELEASE_RESET();
|
|
|
|
__HAL_RCC_AHB1_FORCE_RESET();
|
|
__HAL_RCC_AHB1_RELEASE_RESET();
|
|
|
|
__HAL_RCC_AHB2_FORCE_RESET();
|
|
__HAL_RCC_AHB2_RELEASE_RESET();
|
|
|
|
__HAL_RCC_AHB4_FORCE_RESET();
|
|
__HAL_RCC_AHB4_RELEASE_RESET();
|
|
|
|
__HAL_RCC_APB3_FORCE_RESET();
|
|
__HAL_RCC_APB3_RELEASE_RESET();
|
|
|
|
__HAL_RCC_APB1L_FORCE_RESET();
|
|
__HAL_RCC_APB1L_RELEASE_RESET();
|
|
|
|
__HAL_RCC_APB1H_FORCE_RESET();
|
|
__HAL_RCC_APB1H_RELEASE_RESET();
|
|
|
|
__HAL_RCC_APB2_FORCE_RESET();
|
|
__HAL_RCC_APB2_RELEASE_RESET();
|
|
|
|
__HAL_RCC_APB4_FORCE_RESET();
|
|
__HAL_RCC_APB4_RELEASE_RESET();
|
|
|
|
/* De-Init the low level hardware */
|
|
HAL_MspDeInit();
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Initializes the MSP.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_MspInit(void)
|
|
{
|
|
/* NOTE : This function Should not be modified, when the callback is needed,
|
|
the HAL_MspInit could be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief DeInitializes the MSP.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_MspDeInit(void)
|
|
{
|
|
/* NOTE : This function Should not be modified, when the callback is needed,
|
|
the HAL_MspDeInit could be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief This function configures the source of the time base.
|
|
* The time source is configured to have 1ms time base with a dedicated
|
|
* Tick interrupt priority.
|
|
* @note This function is called automatically at the beginning of program after
|
|
* reset by HAL_Init() or at any time when clock is reconfigured by HAL_RCC_ClockConfig().
|
|
* @note In the default implementation, SysTick timer is the source of time base.
|
|
* It is used to generate interrupts at regular time intervals.
|
|
* Care must be taken if HAL_Delay() is called from a peripheral ISR process,
|
|
* the SysTick interrupt must have higher priority (numerically lower)
|
|
* than the peripheral interrupt. Otherwise the caller ISR process will be blocked.
|
|
* The function is declared as __weak to be overwritten in case of other
|
|
* implementation in user file.
|
|
* @param TickPriority: Tick interrupt priority.
|
|
* @retval HAL status
|
|
*/
|
|
__weak HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
|
|
{
|
|
/* Check uwTickFreq for MisraC 2012 (even if uwTickFreq is a enum type that don't take the value zero)*/
|
|
if((uint32_t)uwTickFreq == 0UL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Configure the SysTick to have interrupt in 1ms time basis*/
|
|
if (HAL_SYSTICK_Config(SystemCoreClock / (1000UL / (uint32_t)uwTickFreq)) > 0U)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Configure the SysTick IRQ priority */
|
|
if (TickPriority < (1UL << __NVIC_PRIO_BITS))
|
|
{
|
|
HAL_NVIC_SetPriority(SysTick_IRQn, TickPriority, 0U);
|
|
uwTickPrio = TickPriority;
|
|
}
|
|
else
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @addtogroup HAL_Group2
|
|
* @brief HAL Control functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### HAL Control functions #####
|
|
===============================================================================
|
|
[..] This section provides functions allowing to:
|
|
(+) Provide a tick value in millisecond
|
|
(+) Provide a blocking delay in millisecond
|
|
(+) Suspend the time base source interrupt
|
|
(+) Resume the time base source interrupt
|
|
(+) Get the HAL API driver version
|
|
(+) Get the device identifier
|
|
(+) Get the device revision identifier
|
|
(+) Enable/Disable Debug module during SLEEP mode
|
|
(+) Enable/Disable Debug module during STOP mode
|
|
(+) Enable/Disable Debug module during STANDBY mode
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief This function is called to increment a global variable "uwTick"
|
|
* used as application time base.
|
|
* @note In the default implementation, this variable is incremented each 1ms
|
|
* in Systick ISR.
|
|
* @note This function is declared as __weak to be overwritten in case of other
|
|
* implementations in user file.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_IncTick(void)
|
|
{
|
|
uwTick += (uint32_t)uwTickFreq;
|
|
}
|
|
|
|
/**
|
|
* @brief Provides a tick value in millisecond.
|
|
* @note This function is declared as __weak to be overwritten in case of other
|
|
* implementations in user file.
|
|
* @retval tick value
|
|
*/
|
|
__weak uint32_t HAL_GetTick(void)
|
|
{
|
|
return uwTick;
|
|
}
|
|
|
|
/**
|
|
* @brief This function returns a tick priority.
|
|
* @retval tick priority
|
|
*/
|
|
uint32_t HAL_GetTickPrio(void)
|
|
{
|
|
return uwTickPrio;
|
|
}
|
|
|
|
/**
|
|
* @brief Set new tick Freq.
|
|
* @retval Status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SetTickFreq(HAL_TickFreqTypeDef Freq)
|
|
{
|
|
HAL_StatusTypeDef status = HAL_OK;
|
|
HAL_TickFreqTypeDef prevTickFreq;
|
|
|
|
assert_param(IS_TICKFREQ(Freq));
|
|
|
|
if (uwTickFreq != Freq)
|
|
{
|
|
|
|
/* Back up uwTickFreq frequency */
|
|
prevTickFreq = uwTickFreq;
|
|
|
|
/* Update uwTickFreq global variable used by HAL_InitTick() */
|
|
uwTickFreq = Freq;
|
|
|
|
/* Apply the new tick Freq */
|
|
status = HAL_InitTick(uwTickPrio);
|
|
if (status != HAL_OK)
|
|
{
|
|
/* Restore previous tick frequency */
|
|
uwTickFreq = prevTickFreq;
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @brief Return tick frequency.
|
|
* @retval tick period in Hz
|
|
*/
|
|
HAL_TickFreqTypeDef HAL_GetTickFreq(void)
|
|
{
|
|
return uwTickFreq;
|
|
}
|
|
|
|
/**
|
|
* @brief This function provides minimum delay (in milliseconds) based
|
|
* on variable incremented.
|
|
* @note In the default implementation , SysTick timer is the source of time base.
|
|
* It is used to generate interrupts at regular time intervals where uwTick
|
|
* is incremented.
|
|
* @note This function is declared as __weak to be overwritten in case of other
|
|
* implementations in user file.
|
|
* @param Delay specifies the delay time length, in milliseconds.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_Delay(uint32_t Delay)
|
|
{
|
|
uint32_t tickstart = HAL_GetTick();
|
|
uint32_t wait = Delay;
|
|
|
|
/* Add a freq to guarantee minimum wait */
|
|
if (wait < HAL_MAX_DELAY)
|
|
{
|
|
wait += (uint32_t)(uwTickFreq);
|
|
}
|
|
|
|
while ((HAL_GetTick() - tickstart) < wait)
|
|
{
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Suspend Tick increment.
|
|
* @note In the default implementation , SysTick timer is the source of time base. It is
|
|
* used to generate interrupts at regular time intervals. Once HAL_SuspendTick()
|
|
* is called, the SysTick interrupt will be disabled and so Tick increment
|
|
* is suspended.
|
|
* @note This function is declared as __weak to be overwritten in case of other
|
|
* implementations in user file.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_SuspendTick(void)
|
|
{
|
|
/* Disable SysTick Interrupt */
|
|
SysTick->CTRL &= ~SysTick_CTRL_TICKINT_Msk;
|
|
}
|
|
|
|
/**
|
|
* @brief Resume Tick increment.
|
|
* @note In the default implementation , SysTick timer is the source of time base. It is
|
|
* used to generate interrupts at regular time intervals. Once HAL_ResumeTick()
|
|
* is called, the SysTick interrupt will be enabled and so Tick increment
|
|
* is resumed.
|
|
* @note This function is declared as __weak to be overwritten in case of other
|
|
* implementations in user file.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_ResumeTick(void)
|
|
{
|
|
/* Enable SysTick Interrupt */
|
|
SysTick->CTRL |= SysTick_CTRL_TICKINT_Msk;
|
|
}
|
|
|
|
/**
|
|
* @brief Returns the HAL revision
|
|
* @retval version : 0xXYZR (8bits for each decimal, R for RC)
|
|
*/
|
|
uint32_t HAL_GetHalVersion(void)
|
|
{
|
|
return __STM32H7xx_HAL_VERSION;
|
|
}
|
|
|
|
/**
|
|
* @brief Returns the device revision identifier.
|
|
* @retval Device revision identifier
|
|
*/
|
|
uint32_t HAL_GetREVID(void)
|
|
{
|
|
return((DBGMCU->IDCODE) >> 16);
|
|
}
|
|
|
|
/**
|
|
* @brief Returns the device identifier.
|
|
* @retval Device identifier
|
|
*/
|
|
uint32_t HAL_GetDEVID(void)
|
|
{
|
|
return((DBGMCU->IDCODE) & IDCODE_DEVID_MASK);
|
|
}
|
|
|
|
/**
|
|
* @brief Return the first word of the unique device identifier (UID based on 96 bits)
|
|
* @retval Device identifier
|
|
*/
|
|
uint32_t HAL_GetUIDw0(void)
|
|
{
|
|
return(READ_REG(*((uint32_t *)UID_BASE)));
|
|
}
|
|
|
|
/**
|
|
* @brief Return the second word of the unique device identifier (UID based on 96 bits)
|
|
* @retval Device identifier
|
|
*/
|
|
uint32_t HAL_GetUIDw1(void)
|
|
{
|
|
return(READ_REG(*((uint32_t *)(UID_BASE + 4U))));
|
|
}
|
|
|
|
/**
|
|
* @brief Return the third word of the unique device identifier (UID based on 96 bits)
|
|
* @retval Device identifier
|
|
*/
|
|
uint32_t HAL_GetUIDw2(void)
|
|
{
|
|
return(READ_REG(*((uint32_t *)(UID_BASE + 8U))));
|
|
}
|
|
|
|
/**
|
|
* @brief Configure the internal voltage reference buffer voltage scale.
|
|
* @param VoltageScaling specifies the output voltage to achieve
|
|
* This parameter can be one of the following values:
|
|
* @arg SYSCFG_VREFBUF_VOLTAGE_SCALE0: VREF_OUT1 around 2.5 V.
|
|
* This requires VDDA equal to or higher than 2.8 V.
|
|
* @arg SYSCFG_VREFBUF_VOLTAGE_SCALE1: VREF_OUT2 around 2.048 V.
|
|
* This requires VDDA equal to or higher than 2.4 V.
|
|
* @arg SYSCFG_VREFBUF_VOLTAGE_SCALE2: VREF_OUT3 around 1.8 V.
|
|
* This requires VDDA equal to or higher than 2.1 V.
|
|
* @arg SYSCFG_VREFBUF_VOLTAGE_SCALE3: VREF_OUT4 around 1.5 V.
|
|
* This requires VDDA equal to or higher than 1.8 V.
|
|
* @retval None
|
|
*/
|
|
void HAL_SYSCFG_VREFBUF_VoltageScalingConfig(uint32_t VoltageScaling)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_SYSCFG_VREFBUF_VOLTAGE_SCALE(VoltageScaling));
|
|
|
|
MODIFY_REG(VREFBUF->CSR, VREFBUF_CSR_VRS, VoltageScaling);
|
|
}
|
|
|
|
/**
|
|
* @brief Configure the internal voltage reference buffer high impedance mode.
|
|
* @param Mode specifies the high impedance mode
|
|
* This parameter can be one of the following values:
|
|
* @arg SYSCFG_VREFBUF_HIGH_IMPEDANCE_DISABLE: VREF+ pin is internally connect to VREFINT output.
|
|
* @arg SYSCFG_VREFBUF_HIGH_IMPEDANCE_ENABLE: VREF+ pin is high impedance.
|
|
* @retval None
|
|
*/
|
|
void HAL_SYSCFG_VREFBUF_HighImpedanceConfig(uint32_t Mode)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_SYSCFG_VREFBUF_HIGH_IMPEDANCE(Mode));
|
|
|
|
MODIFY_REG(VREFBUF->CSR, VREFBUF_CSR_HIZ, Mode);
|
|
}
|
|
|
|
/**
|
|
* @brief Tune the Internal Voltage Reference buffer (VREFBUF).
|
|
* @retval None
|
|
*/
|
|
void HAL_SYSCFG_VREFBUF_TrimmingConfig(uint32_t TrimmingValue)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_SYSCFG_VREFBUF_TRIMMING(TrimmingValue));
|
|
|
|
MODIFY_REG(VREFBUF->CCR, VREFBUF_CCR_TRIM, TrimmingValue);
|
|
}
|
|
|
|
/**
|
|
* @brief Enable the Internal Voltage Reference buffer (VREFBUF).
|
|
* @retval HAL_OK/HAL_TIMEOUT
|
|
*/
|
|
HAL_StatusTypeDef HAL_SYSCFG_EnableVREFBUF(void)
|
|
{
|
|
uint32_t tickstart;
|
|
|
|
SET_BIT(VREFBUF->CSR, VREFBUF_CSR_ENVR);
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait for VRR bit */
|
|
while(READ_BIT(VREFBUF->CSR, VREFBUF_CSR_VRR) == 0UL)
|
|
{
|
|
if((HAL_GetTick() - tickstart) > VREFBUF_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Disable the Internal Voltage Reference buffer (VREFBUF).
|
|
*
|
|
* @retval None
|
|
*/
|
|
void HAL_SYSCFG_DisableVREFBUF(void)
|
|
{
|
|
CLEAR_BIT(VREFBUF->CSR, VREFBUF_CSR_ENVR);
|
|
}
|
|
|
|
#if defined(SYSCFG_PMCR_EPIS_SEL)
|
|
/**
|
|
* @brief Ethernet PHY Interface Selection either MII or RMII
|
|
* @param SYSCFG_ETHInterface: Selects the Ethernet PHY interface
|
|
* This parameter can be one of the following values:
|
|
* @arg SYSCFG_ETH_MII : Select the Media Independent Interface
|
|
* @arg SYSCFG_ETH_RMII: Select the Reduced Media Independent Interface
|
|
* @retval None
|
|
*/
|
|
void HAL_SYSCFG_ETHInterfaceSelect(uint32_t SYSCFG_ETHInterface)
|
|
{
|
|
/* Check the parameter */
|
|
assert_param(IS_SYSCFG_ETHERNET_CONFIG(SYSCFG_ETHInterface));
|
|
|
|
MODIFY_REG(SYSCFG->PMCR, SYSCFG_PMCR_EPIS_SEL, (uint32_t)(SYSCFG_ETHInterface));
|
|
}
|
|
#endif /* SYSCFG_PMCR_EPIS_SEL */
|
|
|
|
/**
|
|
* @brief Analog Switch control for dual analog pads.
|
|
* @param SYSCFG_AnalogSwitch: Selects the analog pad
|
|
* This parameter can be one or a combination of the following values:
|
|
* @arg SYSCFG_SWITCH_PA0 : Select PA0 analog switch
|
|
* @arg SYSCFG_SWITCH_PA1: Select PA1 analog switch
|
|
* @arg SYSCFG_SWITCH_PC2 : Select PC2 analog switch
|
|
* @arg SYSCFG_SWITCH_PC3: Select PC3 analog switch
|
|
* @param SYSCFG_SwitchState: Open or Close the analog switch between dual pads (PXn and PXn_C)
|
|
* This parameter can be one or a combination of the following values:
|
|
* @arg SYSCFG_SWITCH_PA0_OPEN
|
|
* @arg SYSCFG_SWITCH_PA0_CLOSE
|
|
* @arg SYSCFG_SWITCH_PA1_OPEN
|
|
* @arg SYSCFG_SWITCH_PA1_CLOSE
|
|
* @arg SYSCFG_SWITCH_PC2_OPEN
|
|
* @arg SYSCFG_SWITCH_PC2_CLOSE
|
|
* @arg SYSCFG_SWITCH_PC3_OPEN
|
|
* @arg SYSCFG_SWITCH_PC3_CLOSE
|
|
* @retval None
|
|
*/
|
|
|
|
void HAL_SYSCFG_AnalogSwitchConfig(uint32_t SYSCFG_AnalogSwitch , uint32_t SYSCFG_SwitchState )
|
|
{
|
|
/* Check the parameter */
|
|
assert_param(IS_SYSCFG_ANALOG_SWITCH(SYSCFG_AnalogSwitch));
|
|
assert_param(IS_SYSCFG_SWITCH_STATE(SYSCFG_SwitchState));
|
|
|
|
MODIFY_REG(SYSCFG->PMCR, (uint32_t) SYSCFG_AnalogSwitch, (uint32_t)(SYSCFG_SwitchState));
|
|
}
|
|
|
|
#if defined(SYSCFG_PMCR_BOOSTEN)
|
|
/**
|
|
* @brief Enables the booster to reduce the total harmonic distortion of the analog
|
|
* switch when the supply voltage is lower than 2.7 V.
|
|
* @note Activating the booster allows to guaranty the analog switch AC performance
|
|
* when the supply voltage is below 2.7 V: in this case, the analog switch
|
|
* performance is the same on the full voltage range
|
|
* @retval None
|
|
*/
|
|
void HAL_SYSCFG_EnableBOOST(void)
|
|
{
|
|
SET_BIT(SYSCFG->PMCR, SYSCFG_PMCR_BOOSTEN) ;
|
|
}
|
|
|
|
/**
|
|
* @brief Disables the booster
|
|
* @note Activating the booster allows to guaranty the analog switch AC performance
|
|
* when the supply voltage is below 2.7 V: in this case, the analog switch
|
|
* performance is the same on the full voltage range
|
|
* @retval None
|
|
*/
|
|
void HAL_SYSCFG_DisableBOOST(void)
|
|
{
|
|
CLEAR_BIT(SYSCFG->PMCR, SYSCFG_PMCR_BOOSTEN) ;
|
|
}
|
|
#endif /* SYSCFG_PMCR_BOOSTEN */
|
|
|
|
#if defined (SYSCFG_UR2_BOOT_ADD0) || defined (SYSCFG_UR2_BCM7_ADD0)
|
|
/**
|
|
* @brief BootCM7 address 0 configuration
|
|
* @param BootRegister :Specifies the Boot Address register (Address0 or Address1)
|
|
* This parameter can be one of the following values:
|
|
* @arg SYSCFG_BOOT_ADDR0 : Select the boot address0
|
|
* @arg SYSCFG_BOOT_ADDR1: Select the boot address1
|
|
* @param BootAddress :Specifies the CM7 Boot Address to be loaded in Address0 or Address1
|
|
* @retval None
|
|
*/
|
|
void HAL_SYSCFG_CM7BootAddConfig(uint32_t BootRegister, uint32_t BootAddress)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_SYSCFG_BOOT_REGISTER(BootRegister));
|
|
assert_param(IS_SYSCFG_BOOT_ADDRESS(BootAddress));
|
|
if ( BootRegister == SYSCFG_BOOT_ADDR0 )
|
|
{
|
|
/* Configure CM7 BOOT ADD0 */
|
|
#if defined(DUAL_CORE)
|
|
MODIFY_REG(SYSCFG->UR2, SYSCFG_UR2_BCM7_ADD0, ((BootAddress >> 16) << SYSCFG_UR2_BCM7_ADD0_Pos));
|
|
#else
|
|
MODIFY_REG(SYSCFG->UR2, SYSCFG_UR2_BOOT_ADD0, ((BootAddress >> 16) << SYSCFG_UR2_BOOT_ADD0_Pos));
|
|
#endif /*DUAL_CORE*/
|
|
}
|
|
else
|
|
{
|
|
/* Configure CM7 BOOT ADD1 */
|
|
#if defined(DUAL_CORE)
|
|
MODIFY_REG(SYSCFG->UR3, SYSCFG_UR3_BCM7_ADD1, (BootAddress >> 16));
|
|
#else
|
|
MODIFY_REG(SYSCFG->UR3, SYSCFG_UR3_BOOT_ADD1, (BootAddress >> 16));
|
|
#endif /*DUAL_CORE*/
|
|
}
|
|
}
|
|
#endif /* SYSCFG_UR2_BOOT_ADD0 || SYSCFG_UR2_BCM7_ADD0 */
|
|
|
|
#if defined(DUAL_CORE)
|
|
/**
|
|
* @brief BootCM4 address 0 configuration
|
|
* @param BootRegister :Specifies the Boot Address register (Address0 or Address1)
|
|
* This parameter can be one of the following values:
|
|
* @arg SYSCFG_BOOT_ADDR0 : Select the boot address0
|
|
* @arg SYSCFG_BOOT_ADDR1: Select the boot address1
|
|
* @param BootAddress :Specifies the CM4 Boot Address to be loaded in Address0 or Address1
|
|
* @retval None
|
|
*/
|
|
void HAL_SYSCFG_CM4BootAddConfig(uint32_t BootRegister, uint32_t BootAddress)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_SYSCFG_BOOT_REGISTER(BootRegister));
|
|
assert_param(IS_SYSCFG_BOOT_ADDRESS(BootAddress));
|
|
|
|
if ( BootRegister == SYSCFG_BOOT_ADDR0 )
|
|
{
|
|
/* Configure CM4 BOOT ADD0 */
|
|
MODIFY_REG(SYSCFG->UR3, SYSCFG_UR3_BCM4_ADD0, ((BootAddress >> 16)<< SYSCFG_UR3_BCM4_ADD0_Pos));
|
|
}
|
|
|
|
else
|
|
{
|
|
/* Configure CM4 BOOT ADD1 */
|
|
MODIFY_REG(SYSCFG->UR4, SYSCFG_UR4_BCM4_ADD1, (BootAddress >> 16));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Enables the Cortex-M7 boot
|
|
* @retval None
|
|
*/
|
|
void HAL_SYSCFG_EnableCM7BOOT(void)
|
|
{
|
|
SET_BIT(SYSCFG->UR1, SYSCFG_UR1_BCM7);
|
|
}
|
|
|
|
/**
|
|
* @brief Disables the Cortex-M7 boot
|
|
* @note Disabling the boot will gate the CPU clock
|
|
* @retval None
|
|
*/
|
|
void HAL_SYSCFG_DisableCM7BOOT(void)
|
|
{
|
|
CLEAR_BIT(SYSCFG->UR1, SYSCFG_UR1_BCM7) ;
|
|
}
|
|
|
|
/**
|
|
* @brief Enables the Cortex-M4 boot
|
|
* @retval None
|
|
*/
|
|
void HAL_SYSCFG_EnableCM4BOOT(void)
|
|
{
|
|
SET_BIT(SYSCFG->UR1, SYSCFG_UR1_BCM4);
|
|
}
|
|
|
|
/**
|
|
* @brief Disables the Cortex-M4 boot
|
|
* @note Disabling the boot will gate the CPU clock
|
|
* @retval None
|
|
*/
|
|
void HAL_SYSCFG_DisableCM4BOOT(void)
|
|
{
|
|
CLEAR_BIT(SYSCFG->UR1, SYSCFG_UR1_BCM4);
|
|
}
|
|
#endif /*DUAL_CORE*/
|
|
/**
|
|
* @brief Enables the I/O Compensation Cell.
|
|
* @note The I/O compensation cell can be used only when the device supply
|
|
* voltage ranges from 1.62 to 2.0 V and from 2.7 to 3.6 V.
|
|
* @retval None
|
|
*/
|
|
void HAL_EnableCompensationCell(void)
|
|
{
|
|
SET_BIT(SYSCFG->CCCSR, SYSCFG_CCCSR_EN) ;
|
|
}
|
|
|
|
/**
|
|
* @brief Power-down the I/O Compensation Cell.
|
|
* @note The I/O compensation cell can be used only when the device supply
|
|
* voltage ranges from 1.62 to 2.0 V and from 2.7 to 3.6 V.
|
|
* @retval None
|
|
*/
|
|
void HAL_DisableCompensationCell(void)
|
|
{
|
|
CLEAR_BIT(SYSCFG->CCCSR, SYSCFG_CCCSR_EN);
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief To Enable optimize the I/O speed when the product voltage is low.
|
|
* @note This bit is active only if PRODUCT_BELOW_25V user option bit is set. It must be
|
|
* used only if the product supply voltage is below 2.5 V. Setting this bit when VDD is
|
|
* higher than 2.5 V might be destructive.
|
|
* @retval None
|
|
*/
|
|
void HAL_SYSCFG_EnableIOSpeedOptimize(void)
|
|
{
|
|
#if defined(SYSCFG_CCCSR_HSLV)
|
|
SET_BIT(SYSCFG->CCCSR, SYSCFG_CCCSR_HSLV);
|
|
#else
|
|
SET_BIT(SYSCFG->CCCSR, (SYSCFG_CCCSR_HSLV0| SYSCFG_CCCSR_HSLV1 | SYSCFG_CCCSR_HSLV2 | SYSCFG_CCCSR_HSLV3));
|
|
#endif /* SYSCFG_CCCSR_HSLV */
|
|
}
|
|
|
|
/**
|
|
* @brief To Disable optimize the I/O speed when the product voltage is low.
|
|
* @note This bit is active only if PRODUCT_BELOW_25V user option bit is set. It must be
|
|
* used only if the product supply voltage is below 2.5 V. Setting this bit when VDD is
|
|
* higher than 2.5 V might be destructive.
|
|
* @retval None
|
|
*/
|
|
void HAL_SYSCFG_DisableIOSpeedOptimize(void)
|
|
{
|
|
#if defined(SYSCFG_CCCSR_HSLV)
|
|
CLEAR_BIT(SYSCFG->CCCSR, SYSCFG_CCCSR_HSLV);
|
|
#else
|
|
CLEAR_BIT(SYSCFG->CCCSR, (SYSCFG_CCCSR_HSLV0| SYSCFG_CCCSR_HSLV1 | SYSCFG_CCCSR_HSLV2 | SYSCFG_CCCSR_HSLV3));
|
|
#endif /* SYSCFG_CCCSR_HSLV */
|
|
}
|
|
|
|
/**
|
|
* @brief Code selection for the I/O Compensation cell
|
|
* @param SYSCFG_CompCode: Selects the code to be applied for the I/O compensation cell
|
|
* This parameter can be one of the following values:
|
|
* @arg SYSCFG_CELL_CODE : Select Code from the cell (available in the SYSCFG_CCVR)
|
|
* @arg SYSCFG_REGISTER_CODE: Select Code from the SYSCFG compensation cell code register (SYSCFG_CCCR)
|
|
* @retval None
|
|
*/
|
|
void HAL_SYSCFG_CompensationCodeSelect(uint32_t SYSCFG_CompCode)
|
|
{
|
|
/* Check the parameter */
|
|
assert_param(IS_SYSCFG_CODE_SELECT(SYSCFG_CompCode));
|
|
MODIFY_REG(SYSCFG->CCCSR, SYSCFG_CCCSR_CS, (uint32_t)(SYSCFG_CompCode));
|
|
}
|
|
|
|
/**
|
|
* @brief Code selection for the I/O Compensation cell
|
|
* @param SYSCFG_PMOSCode: PMOS compensation code
|
|
* This code is applied to the I/O compensation cell when the CS bit of the
|
|
* SYSCFG_CMPCR is set
|
|
* @param SYSCFG_NMOSCode: NMOS compensation code
|
|
* This code is applied to the I/O compensation cell when the CS bit of the
|
|
* SYSCFG_CMPCR is set
|
|
* @retval None
|
|
*/
|
|
void HAL_SYSCFG_CompensationCodeConfig(uint32_t SYSCFG_PMOSCode, uint32_t SYSCFG_NMOSCode )
|
|
{
|
|
/* Check the parameter */
|
|
assert_param(IS_SYSCFG_CODE_CONFIG(SYSCFG_PMOSCode));
|
|
assert_param(IS_SYSCFG_CODE_CONFIG(SYSCFG_NMOSCode));
|
|
MODIFY_REG(SYSCFG->CCCR, SYSCFG_CCCR_NCC|SYSCFG_CCCR_PCC, (((uint32_t)(SYSCFG_PMOSCode)<< 4)|(uint32_t)(SYSCFG_NMOSCode)) );
|
|
}
|
|
|
|
#if defined(SYSCFG_CCCR_NCC_MMC)
|
|
/**
|
|
* @brief Code selection for the I/O Compensation cell
|
|
* @param SYSCFG_PMOSCode: VDDMMC PMOS compensation code
|
|
* This code is applied to the I/O compensation cell when the CS bit of the
|
|
* SYSCFG_CMPCR is set
|
|
* @param SYSCFG_NMOSCode: VDDMMC NMOS compensation code
|
|
* This code is applied to the I/O compensation cell when the CS bit of the
|
|
* SYSCFG_CMPCR is set
|
|
* @retval None
|
|
*/
|
|
void HAL_SYSCFG_VDDMMC_CompensationCodeConfig(uint32_t SYSCFG_PMOSCode, uint32_t SYSCFG_NMOSCode )
|
|
{
|
|
/* Check the parameter */
|
|
assert_param(IS_SYSCFG_CODE_CONFIG(SYSCFG_PMOSCode));
|
|
assert_param(IS_SYSCFG_CODE_CONFIG(SYSCFG_NMOSCode));
|
|
MODIFY_REG(SYSCFG->CCCR, (SYSCFG_CCCR_NCC_MMC | SYSCFG_CCCR_PCC_MMC), (((uint32_t)(SYSCFG_PMOSCode)<< 4)|(uint32_t)(SYSCFG_NMOSCode)) );
|
|
}
|
|
#endif /* SYSCFG_CCCR_NCC_MMC */
|
|
|
|
#if defined(SYSCFG_ADC2ALT_ADC2_ROUT0)
|
|
/** @brief SYSCFG ADC2 internal input alternate connection macros
|
|
* @param Adc2AltRout0 This parameter can be a value of :
|
|
* @arg @ref SYSCFG_ADC2_ROUT0_DAC1_1 DAC1_out1 connected to ADC2 VINP[16]
|
|
* @arg @ref SYSCFG_ADC2_ROUT0_VBAT4 VBAT/4 connected to ADC2 VINP[16]
|
|
*/
|
|
void HAL_SYSCFG_ADC2ALT_Rout0Config(uint32_t Adc2AltRout0)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_SYSCFG_ADC2ALT_ROUT0(Adc2AltRout0));
|
|
|
|
MODIFY_REG(SYSCFG->ADC2ALT, SYSCFG_ADC2ALT_ADC2_ROUT0, Adc2AltRout0);
|
|
}
|
|
#endif /*SYSCFG_ADC2ALT_ADC2_ROUT0*/
|
|
|
|
#if defined(SYSCFG_ADC2ALT_ADC2_ROUT1)
|
|
/** @brief SYSCFG ADC2 internal input alternate connection macros
|
|
* @param Adc2AltRout1 This parameter can be a value of :
|
|
* @arg @ref SYSCFG_ADC2_ROUT1_DAC1_2 DAC1_out2 connected to ADC2 VINP[17]
|
|
* @arg @ref SYSCFG_ADC2_ROUT1_VREFINT VREFINT connected to ADC2 VINP[17]
|
|
*/
|
|
void HAL_SYSCFG_ADC2ALT_Rout1Config(uint32_t Adc2AltRout1)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_SYSCFG_ADC2ALT_ROUT1(Adc2AltRout1));
|
|
|
|
MODIFY_REG(SYSCFG->ADC2ALT, SYSCFG_ADC2ALT_ADC2_ROUT1, Adc2AltRout1);
|
|
}
|
|
#endif /*SYSCFG_ADC2ALT_ADC2_ROUT1*/
|
|
|
|
/**
|
|
* @brief Enable the Debug Module during Domain1/CDomain SLEEP mode
|
|
* @retval None
|
|
*/
|
|
void HAL_DBGMCU_EnableDBGSleepMode(void)
|
|
{
|
|
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEPD1);
|
|
}
|
|
|
|
/**
|
|
* @brief Disable the Debug Module during Domain1/CDomain SLEEP mode
|
|
* @retval None
|
|
*/
|
|
void HAL_DBGMCU_DisableDBGSleepMode(void)
|
|
{
|
|
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEPD1);
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Enable the Debug Module during Domain1/CDomain STOP mode
|
|
* @retval None
|
|
*/
|
|
void HAL_DBGMCU_EnableDBGStopMode(void)
|
|
{
|
|
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD1);
|
|
}
|
|
|
|
/**
|
|
* @brief Disable the Debug Module during Domain1/CDomain STOP mode
|
|
* @retval None
|
|
*/
|
|
void HAL_DBGMCU_DisableDBGStopMode(void)
|
|
{
|
|
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD1);
|
|
}
|
|
|
|
/**
|
|
* @brief Enable the Debug Module during Domain1/CDomain STANDBY mode
|
|
* @retval None
|
|
*/
|
|
void HAL_DBGMCU_EnableDBGStandbyMode(void)
|
|
{
|
|
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD1);
|
|
}
|
|
|
|
/**
|
|
* @brief Disable the Debug Module during Domain1/CDomain STANDBY mode
|
|
* @retval None
|
|
*/
|
|
void HAL_DBGMCU_DisableDBGStandbyMode(void)
|
|
{
|
|
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD1);
|
|
}
|
|
|
|
#if defined(DUAL_CORE)
|
|
/**
|
|
* @brief Enable the Debug Module during Domain1 SLEEP mode
|
|
* @retval None
|
|
*/
|
|
void HAL_EnableDomain2DBGSleepMode(void)
|
|
{
|
|
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEPD2);
|
|
}
|
|
|
|
/**
|
|
* @brief Disable the Debug Module during Domain2 SLEEP mode
|
|
* @retval None
|
|
*/
|
|
void HAL_DisableDomain2DBGSleepMode(void)
|
|
{
|
|
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEPD2);
|
|
}
|
|
|
|
/**
|
|
* @brief Enable the Debug Module during Domain2 STOP mode
|
|
* @retval None
|
|
*/
|
|
void HAL_EnableDomain2DBGStopMode(void)
|
|
{
|
|
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD2);
|
|
}
|
|
|
|
/**
|
|
* @brief Disable the Debug Module during Domain2 STOP mode
|
|
* @retval None
|
|
*/
|
|
void HAL_DisableDomain2DBGStopMode(void)
|
|
{
|
|
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD2);
|
|
}
|
|
|
|
/**
|
|
* @brief Enable the Debug Module during Domain2 STANDBY mode
|
|
* @retval None
|
|
*/
|
|
void HAL_EnableDomain2DBGStandbyMode(void)
|
|
{
|
|
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD2);
|
|
}
|
|
|
|
/**
|
|
* @brief Disable the Debug Module during Domain2 STANDBY mode
|
|
* @retval None
|
|
*/
|
|
void HAL_DisableDomain2DBGStandbyMode(void)
|
|
{
|
|
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD2);
|
|
}
|
|
#endif /*DUAL_CORE*/
|
|
|
|
#if defined(DBGMCU_CR_DBG_STOPD3)
|
|
/**
|
|
* @brief Enable the Debug Module during Domain3/SRDomain STOP mode
|
|
* @retval None
|
|
*/
|
|
void HAL_EnableDomain3DBGStopMode(void)
|
|
{
|
|
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD3);
|
|
}
|
|
|
|
/**
|
|
* @brief Disable the Debug Module during Domain3/SRDomain STOP mode
|
|
* @retval None
|
|
*/
|
|
void HAL_DisableDomain3DBGStopMode(void)
|
|
{
|
|
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD3);
|
|
}
|
|
#endif /*DBGMCU_CR_DBG_STOPD3*/
|
|
|
|
#if defined(DBGMCU_CR_DBG_STANDBYD3)
|
|
/**
|
|
* @brief Enable the Debug Module during Domain3/SRDomain STANDBY mode
|
|
* @retval None
|
|
*/
|
|
void HAL_EnableDomain3DBGStandbyMode(void)
|
|
{
|
|
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD3);
|
|
}
|
|
|
|
/**
|
|
* @brief Disable the Debug Module during Domain3/SRDomain STANDBY mode
|
|
* @retval None
|
|
*/
|
|
void HAL_DisableDomain3DBGStandbyMode(void)
|
|
{
|
|
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD3);
|
|
}
|
|
#endif /*DBGMCU_CR_DBG_STANDBYD3*/
|
|
|
|
/**
|
|
* @brief Set the FMC Memory Mapping Swapping config.
|
|
* @param BankMapConfig: Defines the FMC Bank mapping configuration. This parameter can be
|
|
FMC_SWAPBMAP_DISABLE, FMC_SWAPBMAP_SDRAM_SRAM, FMC_SWAPBMAP_SDRAMB2
|
|
* @retval HAL state
|
|
*/
|
|
void HAL_SetFMCMemorySwappingConfig(uint32_t BankMapConfig)
|
|
{
|
|
/* Check the parameter */
|
|
assert_param(IS_FMC_SWAPBMAP_MODE(BankMapConfig));
|
|
MODIFY_REG(FMC_Bank1_R->BTCR[0], FMC_BCR1_BMAP, BankMapConfig);
|
|
}
|
|
|
|
/**
|
|
* @brief Get FMC Bank mapping mode.
|
|
* @retval The FMC Bank mapping mode. This parameter can be
|
|
FMC_SWAPBMAP_DISABLE, FMC_SWAPBMAP_SDRAM_SRAM, FMC_SWAPBMAP_SDRAMB2
|
|
*/
|
|
uint32_t HAL_GetFMCMemorySwappingConfig(void)
|
|
{
|
|
return READ_BIT(FMC_Bank1_R->BTCR[0], FMC_BCR1_BMAP);
|
|
}
|
|
|
|
/**
|
|
* @brief Configure the EXTI input event line edge
|
|
* @note No edge configuration for direct lines but for configurable lines:(EXTI_LINE0..EXTI_LINE21),
|
|
* EXTI_LINE49,EXTI_LINE51,EXTI_LINE82,EXTI_LINE84,EXTI_LINE85 and EXTI_LINE86.
|
|
* @param EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
|
|
* (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved
|
|
* @param EXTI_Edge: Specifies EXTI line Edge used.
|
|
* This parameter can be one of the following values :
|
|
* @arg EXTI_RISING_EDGE : Configurable line, with Rising edge trigger detection
|
|
* @arg EXTI_FALLING_EDGE: Configurable line, with Falling edge trigger detection
|
|
* @retval None
|
|
*/
|
|
void HAL_EXTI_EdgeConfig(uint32_t EXTI_Line , uint32_t EXTI_Edge )
|
|
{
|
|
/* Check the parameter */
|
|
assert_param(IS_HAL_EXTI_CONFIG_LINE(EXTI_Line));
|
|
assert_param(IS_EXTI_EDGE_LINE(EXTI_Edge));
|
|
|
|
/* Clear Rising Falling edge configuration */
|
|
CLEAR_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->FTSR1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
|
|
CLEAR_BIT( *(__IO uint32_t *) (((uint32_t) &(EXTI->RTSR1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
|
|
|
|
if( (EXTI_Edge & EXTI_RISING_EDGE) == EXTI_RISING_EDGE)
|
|
{
|
|
SET_BIT( *(__IO uint32_t *) (((uint32_t) &(EXTI->RTSR1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
|
|
}
|
|
if( (EXTI_Edge & EXTI_FALLING_EDGE) == EXTI_FALLING_EDGE)
|
|
{
|
|
SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->FTSR1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Generates a Software interrupt on selected EXTI line.
|
|
* @param EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
|
|
* (EXTI_LINE0..EXTI_LINE21),EXTI_LINE49,EXTI_LINE51,EXTI_LINE82,EXTI_LINE84,EXTI_LINE85 and EXTI_LINE86.
|
|
* @retval None
|
|
*/
|
|
void HAL_EXTI_GenerateSWInterrupt(uint32_t EXTI_Line)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_HAL_EXTI_CONFIG_LINE(EXTI_Line));
|
|
|
|
SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->SWIER1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Clears the EXTI's line pending flags for Domain D1
|
|
* @param EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
|
|
* (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved
|
|
* @retval None
|
|
*/
|
|
void HAL_EXTI_D1_ClearFlag(uint32_t EXTI_Line)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_EXTI_D1_LINE(EXTI_Line));
|
|
WRITE_REG(*(__IO uint32_t *) (((uint32_t) &(EXTI_D1->PR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
|
|
|
|
}
|
|
|
|
#if defined(DUAL_CORE)
|
|
/**
|
|
* @brief Clears the EXTI's line pending flags for Domain D2
|
|
* @param EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
|
|
* (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved
|
|
* @retval None
|
|
*/
|
|
void HAL_EXTI_D2_ClearFlag(uint32_t EXTI_Line)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_EXTI_D2_LINE(EXTI_Line));
|
|
WRITE_REG(*(__IO uint32_t *) (((uint32_t) &(EXTI_D2->PR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
|
|
}
|
|
|
|
#endif /*DUAL_CORE*/
|
|
/**
|
|
* @brief Configure the EXTI input event line for Domain D1
|
|
* @param EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
|
|
* (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved
|
|
* @param EXTI_Mode: Specifies which EXTI line is used as interrupt or an event.
|
|
* This parameter can be one or a combination of the following values :
|
|
* @arg EXTI_MODE_IT : Interrupt Mode selected
|
|
* @arg EXTI_MODE_EVT : Event Mode selected
|
|
* @param EXTI_LineCmd controls (Enable/Disable) the EXTI line.
|
|
|
|
* @retval None
|
|
*/
|
|
void HAL_EXTI_D1_EventInputConfig(uint32_t EXTI_Line , uint32_t EXTI_Mode, uint32_t EXTI_LineCmd )
|
|
{
|
|
/* Check the parameter */
|
|
assert_param(IS_EXTI_D1_LINE(EXTI_Line));
|
|
assert_param(IS_EXTI_MODE_LINE(EXTI_Mode));
|
|
|
|
if( (EXTI_Mode & EXTI_MODE_IT) == EXTI_MODE_IT)
|
|
{
|
|
if( EXTI_LineCmd == 0UL)
|
|
{
|
|
/* Clear EXTI line configuration */
|
|
CLEAR_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI_D1->IMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)),(uint32_t)(1UL << (EXTI_Line & 0x1FUL)) );
|
|
}
|
|
else
|
|
{
|
|
SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI_D1->IMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
|
|
}
|
|
}
|
|
|
|
if( (EXTI_Mode & EXTI_MODE_EVT) == EXTI_MODE_EVT)
|
|
{
|
|
if( EXTI_LineCmd == 0UL)
|
|
{
|
|
/* Clear EXTI line configuration */
|
|
CLEAR_BIT( *(__IO uint32_t *) (((uint32_t) &(EXTI_D1->EMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
|
|
}
|
|
else
|
|
{
|
|
SET_BIT( *(__IO uint32_t *) (((uint32_t) &(EXTI_D1->EMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(DUAL_CORE)
|
|
/**
|
|
* @brief Configure the EXTI input event line for Domain D2
|
|
* @param EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
|
|
* (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved
|
|
* @param EXTI_Mode: Specifies which EXTI line is used as interrupt or an event.
|
|
* This parameter can be one or a combination of the following values :
|
|
* @arg EXTI_MODE_IT : Interrupt Mode selected
|
|
* @arg EXTI_MODE_EVT : Event Mode selected
|
|
* @param EXTI_LineCmd controls (Enable/Disable) the EXTI line.
|
|
|
|
* @retval None
|
|
*/
|
|
void HAL_EXTI_D2_EventInputConfig(uint32_t EXTI_Line , uint32_t EXTI_Mode, uint32_t EXTI_LineCmd )
|
|
{
|
|
/* Check the parameter */
|
|
assert_param(IS_EXTI_D2_LINE(EXTI_Line));
|
|
assert_param(IS_EXTI_MODE_LINE(EXTI_Mode));
|
|
|
|
if( (EXTI_Mode & EXTI_MODE_IT) == EXTI_MODE_IT)
|
|
{
|
|
if( EXTI_LineCmd == 0UL)
|
|
{
|
|
/* Clear EXTI line configuration */
|
|
CLEAR_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI_D2->IMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)),(uint32_t)(1UL << (EXTI_Line & 0x1FUL)) );
|
|
}
|
|
else
|
|
{
|
|
SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI_D2->IMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
|
|
}
|
|
}
|
|
|
|
if( (EXTI_Mode & EXTI_MODE_EVT) == EXTI_MODE_EVT)
|
|
{
|
|
if( EXTI_LineCmd == 0UL)
|
|
{
|
|
/* Clear EXTI line configuration */
|
|
CLEAR_BIT( *(__IO uint32_t *) (((uint32_t) &(EXTI_D2->EMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
|
|
}
|
|
else
|
|
{
|
|
SET_BIT( *(__IO uint32_t *) (((uint32_t) &(EXTI_D2->EMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
|
|
}
|
|
}
|
|
}
|
|
#endif /*DUAL_CORE*/
|
|
|
|
/**
|
|
* @brief Configure the EXTI input event line for Domain D3
|
|
* @param EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
|
|
* (EXTI_LINE0...EXTI_LINE15),(EXTI_LINE19...EXTI_LINE21),EXTI_LINE25, EXTI_LINE34,
|
|
* EXTI_LINE35,EXTI_LINE41,(EXTI_LINE48...EXTI_LINE53)
|
|
* @param EXTI_LineCmd controls (Enable/Disable) the EXTI line.
|
|
* @param EXTI_ClearSrc: Specifies the clear source of D3 pending event.
|
|
* This parameter can be one of the following values :
|
|
* @arg BDMA_CH6_CLEAR : BDMA ch6 event selected as D3 domain pendclear source
|
|
* @arg BDMA_CH7_CLEAR : BDMA ch7 event selected as D3 domain pendclear source
|
|
* @arg LPTIM4_OUT_CLEAR : LPTIM4 out selected as D3 domain pendclear source
|
|
* @arg LPTIM5_OUT_CLEAR : LPTIM5 out selected as D3 domain pendclear source
|
|
* @retval None
|
|
*/
|
|
void HAL_EXTI_D3_EventInputConfig(uint32_t EXTI_Line, uint32_t EXTI_LineCmd , uint32_t EXTI_ClearSrc )
|
|
{
|
|
__IO uint32_t *pRegv;
|
|
|
|
/* Check the parameter */
|
|
assert_param(IS_EXTI_D3_LINE(EXTI_Line));
|
|
assert_param(IS_EXTI_D3_CLEAR(EXTI_ClearSrc));
|
|
|
|
if( EXTI_LineCmd == 0UL)
|
|
{
|
|
/* Clear EXTI line configuration */
|
|
CLEAR_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->D3PMR1)) + ((EXTI_Line >> 5 ) * 0x20UL)),(uint32_t)(1UL << (EXTI_Line & 0x1FUL)) );
|
|
}
|
|
else
|
|
{
|
|
SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->D3PMR1)) +((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
|
|
}
|
|
|
|
if(((EXTI_Line>>4)%2UL) == 0UL)
|
|
{
|
|
pRegv = (__IO uint32_t *) (((uint32_t) &(EXTI->D3PCR1L)) + ((EXTI_Line >> 5 ) * 0x20UL));
|
|
}
|
|
else
|
|
{
|
|
pRegv = (__IO uint32_t *) (((uint32_t) &(EXTI->D3PCR1H)) + ((EXTI_Line >> 5 ) * 0x20UL));
|
|
}
|
|
MODIFY_REG(*pRegv, (uint32_t)(3UL << ((EXTI_Line*2UL) & 0x1FUL)), (uint32_t)(EXTI_ClearSrc << ((EXTI_Line*2UL) & 0x1FUL)));
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
|