steering-wheel/Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_ll_rcc.c

1794 lines
50 KiB
C

/**
******************************************************************************
* @file stm32h7xx_ll_rcc.c
* @author MCD Application Team
* @brief RCC LL module driver.
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file in
* the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
******************************************************************************
*/
#if defined(USE_FULL_LL_DRIVER)
/* Includes ------------------------------------------------------------------*/
#include "stm32h7xx_ll_rcc.h"
#include "stm32h7xx_ll_bus.h"
#ifdef USE_FULL_ASSERT
#include "stm32_assert.h"
#else
#define assert_param(expr) ((void)0U)
#endif
/** @addtogroup STM32H7xx_LL_Driver
* @{
*/
#if defined(RCC)
/** @addtogroup RCC_LL
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/** @addtogroup RCC_LL_Private_Variables
* @{
*/
const uint8_t LL_RCC_PrescTable[16] = {0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9};
/**
* @}
*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/** @addtogroup RCC_LL_Private_Macros
* @{
*/
#define IS_LL_RCC_USART_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_USART16_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_USART234578_CLKSOURCE))
#define IS_LL_RCC_I2C_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_I2C123_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_I2C4_CLKSOURCE))
#define IS_LL_RCC_LPTIM_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_LPTIM1_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_LPTIM2_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_LPTIM345_CLKSOURCE))
#if defined(SAI3)
#define IS_LL_RCC_SAI_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_SAI1_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_SAI23_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_SAI4A_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_SAI4B_CLKSOURCE))
#elif defined(SAI4)
#define IS_LL_RCC_SAI_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_SAI1_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_SAI4A_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_SAI4B_CLKSOURCE))
#else
#define IS_LL_RCC_SAI_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_SAI1_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_SAI2A_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_SAI2B_CLKSOURCE))
#endif /* SAI3 */
#define IS_LL_RCC_SPI_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_SPI123_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_SPI45_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_SPI6_CLKSOURCE))
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup RCC_LL_Private_Functions RCC Private functions
* @{
*/
static uint32_t RCC_GetSystemClockFreq(void);
static uint32_t RCC_GetHCLKClockFreq(uint32_t SYSCLK_Frequency);
static uint32_t RCC_GetPCLK1ClockFreq(uint32_t HCLK_Frequency);
static uint32_t RCC_GetPCLK2ClockFreq(uint32_t HCLK_Frequency);
static uint32_t RCC_GetPCLK3ClockFreq(uint32_t HCLK_Frequency);
static uint32_t RCC_GetPCLK4ClockFreq(uint32_t HCLK_Frequency);
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup RCC_LL_Exported_Functions
* @{
*/
/** @addtogroup RCC_LL_EF_Init
* @{
*/
/**
* @brief Resets the RCC clock configuration to the default reset state.
* @note The default reset state of the clock configuration is given below:
* - HSI ON and used as system clock source
* - HSE, PLL1, PLL2 and PLL3 OFF
* - AHB, APB Bus pre-scaler set to 1.
* - CSS, MCO1 and MCO2 OFF
* - All interrupts disabled
* @note This function doesn't modify the configuration of the
* - Peripheral clocks
* - LSI, LSE and RTC clocks
* @retval None
*/
void LL_RCC_DeInit(void)
{
/* Increasing the CPU frequency */
if (FLASH_LATENCY_DEFAULT > (READ_BIT((FLASH->ACR), FLASH_ACR_LATENCY)))
{
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
MODIFY_REG(FLASH->ACR, FLASH_ACR_LATENCY, (uint32_t)(FLASH_LATENCY_DEFAULT));
}
/* Set HSION bit */
SET_BIT(RCC->CR, RCC_CR_HSION);
/* Wait for HSI READY bit */
while (LL_RCC_HSI_IsReady() == 0U)
{}
/* Reset CFGR register */
CLEAR_REG(RCC->CFGR);
/* Reset CSION , CSIKERON, HSEON, HSI48ON, HSECSSON,HSIDIV, PLL1ON, PLL2ON, PLL3ON bits */
CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_HSIKERON | RCC_CR_HSIDIV | RCC_CR_HSIDIVF | RCC_CR_CSION | RCC_CR_CSIKERON | RCC_CR_HSI48ON \
| RCC_CR_CSSHSEON | RCC_CR_PLL1ON | RCC_CR_PLL2ON | RCC_CR_PLL3ON);
/* Wait for PLL1 READY bit to be reset */
while (LL_RCC_PLL1_IsReady() != 0U)
{}
/* Wait for PLL2 READY bit to be reset */
while (LL_RCC_PLL2_IsReady() != 0U)
{}
/* Wait for PLL3 READY bit to be reset */
while (LL_RCC_PLL3_IsReady() != 0U)
{}
#if defined(RCC_D1CFGR_HPRE)
/* Reset D1CFGR register */
CLEAR_REG(RCC->D1CFGR);
/* Reset D2CFGR register */
CLEAR_REG(RCC->D2CFGR);
/* Reset D3CFGR register */
CLEAR_REG(RCC->D3CFGR);
#else
/* Reset CDCFGR1 register */
CLEAR_REG(RCC->CDCFGR1);
/* Reset CDCFGR2 register */
CLEAR_REG(RCC->CDCFGR2);
/* Reset SRDCFGR register */
CLEAR_REG(RCC->SRDCFGR);
#endif /* RCC_D1CFGR_HPRE */
/* Reset PLLCKSELR register to default value */
RCC->PLLCKSELR = RCC_PLLCKSELR_DIVM1_5 | RCC_PLLCKSELR_DIVM2_5 | RCC_PLLCKSELR_DIVM3_5;
/* Reset PLLCFGR register to default value */
LL_RCC_WriteReg(PLLCFGR, 0x01FF0000U);
/* Reset PLL1DIVR register to default value */
LL_RCC_WriteReg(PLL1DIVR, 0x01010280U);
/* Reset PLL1FRACR register */
CLEAR_REG(RCC->PLL1FRACR);
/* Reset PLL2DIVR register to default value */
LL_RCC_WriteReg(PLL2DIVR, 0x01010280U);
/* Reset PLL2FRACR register */
CLEAR_REG(RCC->PLL2FRACR);
/* Reset PLL3DIVR register to default value */
LL_RCC_WriteReg(PLL3DIVR, 0x01010280U);
/* Reset PLL3FRACR register */
CLEAR_REG(RCC->PLL3FRACR);
/* Reset HSEBYP bit */
CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP);
/* Disable all interrupts */
CLEAR_REG(RCC->CIER);
/* Clear all interrupts */
SET_BIT(RCC->CICR, RCC_CICR_LSIRDYC | RCC_CICR_LSERDYC | RCC_CICR_HSIRDYC | RCC_CICR_HSERDYC
| RCC_CICR_CSIRDYC | RCC_CICR_HSI48RDYC | RCC_CICR_PLLRDYC | RCC_CICR_PLL2RDYC
| RCC_CICR_PLL3RDYC | RCC_CICR_LSECSSC | RCC_CICR_HSECSSC);
/* Clear reset source flags */
SET_BIT(RCC->RSR, RCC_RSR_RMVF);
/* Decreasing the number of wait states because of lower CPU frequency */
if (FLASH_LATENCY_DEFAULT < (READ_BIT((FLASH->ACR), FLASH_ACR_LATENCY)))
{
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
MODIFY_REG(FLASH->ACR, FLASH_ACR_LATENCY, (uint32_t)(FLASH_LATENCY_DEFAULT));
}
}
/**
* @}
*/
/** @addtogroup RCC_LL_EF_Get_Freq
* @brief Return the frequencies of different on chip clocks; System, AHB, APB1, APB2, APB3 and APB4 buses clocks.
* and different peripheral clocks available on the device.
* @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)
* @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(**)
* @note If SYSCLK source is CSI, function returns values based on CSI_VALUE(***)
* @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(**)
* or HSI_VALUE(*) multiplied/divided by the PLL factors.
* @note (*) HSI_VALUE is a constant defined in header file (default value
* 64 MHz) divider by HSIDIV, but the real value may vary depending on
* on the variations in voltage and temperature.
* @note (**) HSE_VALUE is a constant defined in header file (default value
* 25 MHz), user has to ensure that HSE_VALUE is same as the real
* frequency of the crystal used. Otherwise, this function may
* have wrong result.
* @note (***) CSI_VALUE is a constant defined in header file (default value
* 4 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
* @note The result of this function could be incorrect when using fractional
* value for HSE crystal.
* @note This function can be used by the user application to compute the
* baud-rate for the communication peripherals or configure other parameters.
* @{
*/
/**
* @brief Return the frequencies of different on chip clocks; System, AHB, APB1, APB2, APB3 and APB4 buses clocks.
* @note Each time SYSCLK, HCLK, PCLK1, PCLK2, PCLK3 and/or PCLK4 clock changes, this function
* must be called to update structure fields. Otherwise, any
* configuration based on this function will be incorrect.
* @param RCC_Clocks pointer to a @ref LL_RCC_ClocksTypeDef structure which will hold the clocks frequencies
* @retval None
*/
void LL_RCC_GetSystemClocksFreq(LL_RCC_ClocksTypeDef *RCC_Clocks)
{
/* Get SYSCLK frequency */
RCC_Clocks->SYSCLK_Frequency = RCC_GetSystemClockFreq();
/* HCLK clock frequency */
RCC_Clocks->HCLK_Frequency = RCC_GetHCLKClockFreq(RCC_Clocks->SYSCLK_Frequency);
/* PCLK1 clock frequency */
RCC_Clocks->PCLK1_Frequency = RCC_GetPCLK1ClockFreq(RCC_Clocks->HCLK_Frequency);
/* PCLK2 clock frequency */
RCC_Clocks->PCLK2_Frequency = RCC_GetPCLK2ClockFreq(RCC_Clocks->HCLK_Frequency);
/* PCLK3 clock frequency */
RCC_Clocks->PCLK3_Frequency = RCC_GetPCLK3ClockFreq(RCC_Clocks->HCLK_Frequency);
/* PCLK4 clock frequency */
RCC_Clocks->PCLK4_Frequency = RCC_GetPCLK4ClockFreq(RCC_Clocks->HCLK_Frequency);
}
/**
* @brief Return PLL1 clocks frequencies
* @note LL_RCC_PERIPH_FREQUENCY_NO returned for non activated output or oscillator not ready
* @retval None
*/
void LL_RCC_GetPLL1ClockFreq(LL_PLL_ClocksTypeDef *PLL_Clocks)
{
uint32_t pllinputfreq = LL_RCC_PERIPH_FREQUENCY_NO, pllsource;
uint32_t m, n, fracn = 0U;
/* PLL_VCO = (HSE_VALUE, CSI_VALUE or HSI_VALUE/HSIDIV) / PLLM * (PLLN + FRACN)
SYSCLK = PLL_VCO / PLLP
*/
pllsource = LL_RCC_PLL_GetSource();
switch (pllsource)
{
case LL_RCC_PLLSOURCE_HSI:
if (LL_RCC_HSI_IsReady() != 0U)
{
pllinputfreq = HSI_VALUE >> (LL_RCC_HSI_GetDivider() >> RCC_CR_HSIDIV_Pos);
}
break;
case LL_RCC_PLLSOURCE_CSI:
if (LL_RCC_CSI_IsReady() != 0U)
{
pllinputfreq = CSI_VALUE;
}
break;
case LL_RCC_PLLSOURCE_HSE:
if (LL_RCC_HSE_IsReady() != 0U)
{
pllinputfreq = HSE_VALUE;
}
break;
case LL_RCC_PLLSOURCE_NONE:
default:
/* PLL clock disabled */
break;
}
PLL_Clocks->PLL_P_Frequency = 0U;
PLL_Clocks->PLL_Q_Frequency = 0U;
PLL_Clocks->PLL_R_Frequency = 0U;
m = LL_RCC_PLL1_GetM();
n = LL_RCC_PLL1_GetN();
if (LL_RCC_PLL1FRACN_IsEnabled() != 0U)
{
fracn = LL_RCC_PLL1_GetFRACN();
}
if (m != 0U)
{
if (LL_RCC_PLL1P_IsEnabled() != 0U)
{
PLL_Clocks->PLL_P_Frequency = LL_RCC_CalcPLLClockFreq(pllinputfreq, m, n, fracn, LL_RCC_PLL1_GetP());
}
if (LL_RCC_PLL1Q_IsEnabled() != 0U)
{
PLL_Clocks->PLL_Q_Frequency = LL_RCC_CalcPLLClockFreq(pllinputfreq, m, n, fracn, LL_RCC_PLL1_GetQ());
}
if (LL_RCC_PLL1R_IsEnabled() != 0U)
{
PLL_Clocks->PLL_R_Frequency = LL_RCC_CalcPLLClockFreq(pllinputfreq, m, n, fracn, LL_RCC_PLL1_GetR());
}
}
}
/**
* @brief Return PLL2 clocks frequencies
* @note LL_RCC_PERIPH_FREQUENCY_NO returned for non activated output or oscillator not ready
* @retval None
*/
void LL_RCC_GetPLL2ClockFreq(LL_PLL_ClocksTypeDef *PLL_Clocks)
{
uint32_t pllinputfreq = LL_RCC_PERIPH_FREQUENCY_NO, pllsource;
uint32_t m, n, fracn = 0U;
/* PLL_VCO = (HSE_VALUE, CSI_VALUE or HSI_VALUE/HSIDIV) / PLLM * (PLLN + FRACN)
SYSCLK = PLL_VCO / PLLP
*/
pllsource = LL_RCC_PLL_GetSource();
switch (pllsource)
{
case LL_RCC_PLLSOURCE_HSI:
if (LL_RCC_HSI_IsReady() != 0U)
{
pllinputfreq = HSI_VALUE >> (LL_RCC_HSI_GetDivider() >> RCC_CR_HSIDIV_Pos);
}
break;
case LL_RCC_PLLSOURCE_CSI:
if (LL_RCC_CSI_IsReady() != 0U)
{
pllinputfreq = CSI_VALUE;
}
break;
case LL_RCC_PLLSOURCE_HSE:
if (LL_RCC_HSE_IsReady() != 0U)
{
pllinputfreq = HSE_VALUE;
}
break;
case LL_RCC_PLLSOURCE_NONE:
default:
/* PLL clock disabled */
break;
}
PLL_Clocks->PLL_P_Frequency = 0U;
PLL_Clocks->PLL_Q_Frequency = 0U;
PLL_Clocks->PLL_R_Frequency = 0U;
m = LL_RCC_PLL2_GetM();
n = LL_RCC_PLL2_GetN();
if (LL_RCC_PLL2FRACN_IsEnabled() != 0U)
{
fracn = LL_RCC_PLL2_GetFRACN();
}
if (m != 0U)
{
if (LL_RCC_PLL2P_IsEnabled() != 0U)
{
PLL_Clocks->PLL_P_Frequency = LL_RCC_CalcPLLClockFreq(pllinputfreq, m, n, fracn, LL_RCC_PLL2_GetP());
}
if (LL_RCC_PLL2Q_IsEnabled() != 0U)
{
PLL_Clocks->PLL_Q_Frequency = LL_RCC_CalcPLLClockFreq(pllinputfreq, m, n, fracn, LL_RCC_PLL2_GetQ());
}
if (LL_RCC_PLL2R_IsEnabled() != 0U)
{
PLL_Clocks->PLL_R_Frequency = LL_RCC_CalcPLLClockFreq(pllinputfreq, m, n, fracn, LL_RCC_PLL2_GetR());
}
}
}
/**
* @brief Return PLL3 clocks frequencies
* @note LL_RCC_PERIPH_FREQUENCY_NO returned for non activated output or oscillator not ready
* @retval None
*/
void LL_RCC_GetPLL3ClockFreq(LL_PLL_ClocksTypeDef *PLL_Clocks)
{
uint32_t pllinputfreq = LL_RCC_PERIPH_FREQUENCY_NO, pllsource;
uint32_t m, n, fracn = 0U;
/* PLL_VCO = (HSE_VALUE, CSI_VALUE or HSI_VALUE/HSIDIV) / PLLM * (PLLN + FRACN)
SYSCLK = PLL_VCO / PLLP
*/
pllsource = LL_RCC_PLL_GetSource();
switch (pllsource)
{
case LL_RCC_PLLSOURCE_HSI:
if (LL_RCC_HSI_IsReady() != 0U)
{
pllinputfreq = HSI_VALUE >> (LL_RCC_HSI_GetDivider() >> RCC_CR_HSIDIV_Pos);
}
break;
case LL_RCC_PLLSOURCE_CSI:
if (LL_RCC_CSI_IsReady() != 0U)
{
pllinputfreq = CSI_VALUE;
}
break;
case LL_RCC_PLLSOURCE_HSE:
if (LL_RCC_HSE_IsReady() != 0U)
{
pllinputfreq = HSE_VALUE;
}
break;
case LL_RCC_PLLSOURCE_NONE:
default:
/* PLL clock disabled */
break;
}
PLL_Clocks->PLL_P_Frequency = 0U;
PLL_Clocks->PLL_Q_Frequency = 0U;
PLL_Clocks->PLL_R_Frequency = 0U;
m = LL_RCC_PLL3_GetM();
n = LL_RCC_PLL3_GetN();
if (LL_RCC_PLL3FRACN_IsEnabled() != 0U)
{
fracn = LL_RCC_PLL3_GetFRACN();
}
if ((m != 0U) && (pllinputfreq != 0U))
{
if (LL_RCC_PLL3P_IsEnabled() != 0U)
{
PLL_Clocks->PLL_P_Frequency = LL_RCC_CalcPLLClockFreq(pllinputfreq, m, n, fracn, LL_RCC_PLL3_GetP());
}
if (LL_RCC_PLL3Q_IsEnabled() != 0U)
{
PLL_Clocks->PLL_Q_Frequency = LL_RCC_CalcPLLClockFreq(pllinputfreq, m, n, fracn, LL_RCC_PLL3_GetQ());
}
if (LL_RCC_PLL3R_IsEnabled() != 0U)
{
PLL_Clocks->PLL_R_Frequency = LL_RCC_CalcPLLClockFreq(pllinputfreq, m, n, fracn, LL_RCC_PLL3_GetR());
}
}
}
/**
* @brief Helper function to calculate the PLL frequency output
* @note ex: @ref LL_RCC_CalcPLLClockFreq (HSE_VALUE, @ref LL_RCC_PLL1_GetM (),
* @ref LL_RCC_PLL1_GetN (), @ref LL_RCC_PLL1_GetFRACN (), @ref LL_RCC_PLL1_GetP ());
* @param PLLInputFreq PLL Input frequency (based on HSE/(HSI/HSIDIV)/CSI)
* @param M Between 1 and 63
* @param N Between 4 and 512
* @param FRACN Between 0 and 0x1FFF
* @param PQR VCO output divider (P, Q or R)
* Between 1 and 128, except for PLL1P Odd value not allowed
* @retval PLL1 clock frequency (in Hz)
*/
uint32_t LL_RCC_CalcPLLClockFreq(uint32_t PLLInputFreq, uint32_t M, uint32_t N, uint32_t FRACN, uint32_t PQR)
{
float_t freq;
freq = ((float_t)PLLInputFreq / (float_t)M) * ((float_t)N + ((float_t)FRACN / (float_t)0x2000));
freq = freq / (float_t)PQR;
return (uint32_t)freq;
}
/**
* @brief Return USARTx clock frequency
* @param USARTxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_USART16_CLKSOURCE
* @arg @ref LL_RCC_USART234578_CLKSOURCE
* @retval USART clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator is not ready
*/
uint32_t LL_RCC_GetUSARTClockFreq(uint32_t USARTxSource)
{
uint32_t usart_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
LL_PLL_ClocksTypeDef PLL_Clocks;
/* Check parameter */
assert_param(IS_LL_RCC_USART_CLKSOURCE(USARTxSource));
switch (LL_RCC_GetUSARTClockSource(USARTxSource))
{
case LL_RCC_USART16_CLKSOURCE_PCLK2:
usart_frequency = RCC_GetPCLK2ClockFreq(RCC_GetHCLKClockFreq(LL_RCC_CALC_SYSCLK_FREQ(RCC_GetSystemClockFreq(), LL_RCC_GetSysPrescaler())));
break;
case LL_RCC_USART234578_CLKSOURCE_PCLK1:
usart_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(LL_RCC_CALC_SYSCLK_FREQ(RCC_GetSystemClockFreq(), LL_RCC_GetSysPrescaler())));
break;
case LL_RCC_USART16_CLKSOURCE_PLL2Q:
case LL_RCC_USART234578_CLKSOURCE_PLL2Q:
if (LL_RCC_PLL2_IsReady() != 0U)
{
LL_RCC_GetPLL2ClockFreq(&PLL_Clocks);
usart_frequency = PLL_Clocks.PLL_Q_Frequency;
}
break;
case LL_RCC_USART16_CLKSOURCE_PLL3Q:
case LL_RCC_USART234578_CLKSOURCE_PLL3Q:
if (LL_RCC_PLL3_IsReady() != 0U)
{
LL_RCC_GetPLL3ClockFreq(&PLL_Clocks);
usart_frequency = PLL_Clocks.PLL_Q_Frequency;
}
break;
case LL_RCC_USART16_CLKSOURCE_HSI:
case LL_RCC_USART234578_CLKSOURCE_HSI:
if (LL_RCC_HSI_IsReady() != 0U)
{
usart_frequency = HSI_VALUE >> (LL_RCC_HSI_GetDivider() >> RCC_CR_HSIDIV_Pos);
}
break;
case LL_RCC_USART16_CLKSOURCE_CSI:
case LL_RCC_USART234578_CLKSOURCE_CSI:
if (LL_RCC_CSI_IsReady() != 0U)
{
usart_frequency = CSI_VALUE;
}
break;
case LL_RCC_USART16_CLKSOURCE_LSE:
case LL_RCC_USART234578_CLKSOURCE_LSE:
if (LL_RCC_LSE_IsReady() != 0U)
{
usart_frequency = LSE_VALUE;
}
break;
default:
/* Kernel clock disabled */
break;
}
return usart_frequency;
}
/**
* @brief Return LPUART clock frequency
* @param LPUARTxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_LPUART1_CLKSOURCE
* @retval LPUART clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator is not ready
*/
uint32_t LL_RCC_GetLPUARTClockFreq(uint32_t LPUARTxSource)
{
uint32_t lpuart_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
LL_PLL_ClocksTypeDef PLL_Clocks;
switch (LL_RCC_GetLPUARTClockSource(LPUARTxSource))
{
case LL_RCC_LPUART1_CLKSOURCE_PCLK4:
lpuart_frequency = RCC_GetPCLK4ClockFreq(RCC_GetHCLKClockFreq(LL_RCC_CALC_SYSCLK_FREQ(RCC_GetSystemClockFreq(), LL_RCC_GetSysPrescaler())));
break;
case LL_RCC_LPUART1_CLKSOURCE_PLL2Q:
if (LL_RCC_PLL2_IsReady() != 0U)
{
LL_RCC_GetPLL2ClockFreq(&PLL_Clocks);
lpuart_frequency = PLL_Clocks.PLL_Q_Frequency;
}
break;
case LL_RCC_LPUART1_CLKSOURCE_PLL3Q:
if (LL_RCC_PLL3_IsReady() != 0U)
{
LL_RCC_GetPLL3ClockFreq(&PLL_Clocks);
lpuart_frequency = PLL_Clocks.PLL_Q_Frequency;
}
break;
case LL_RCC_LPUART1_CLKSOURCE_HSI:
if (LL_RCC_HSI_IsReady() != 0U)
{
lpuart_frequency = HSI_VALUE >> (LL_RCC_HSI_GetDivider() >> RCC_CR_HSIDIV_Pos);
}
break;
case LL_RCC_LPUART1_CLKSOURCE_CSI:
if (LL_RCC_CSI_IsReady() != 0U)
{
lpuart_frequency = CSI_VALUE;
}
break;
case LL_RCC_LPUART1_CLKSOURCE_LSE:
if (LL_RCC_LSE_IsReady() != 0U)
{
lpuart_frequency = LSE_VALUE;
}
break;
default:
/* Kernel clock disabled */
break;
}
return lpuart_frequency;
}
/**
* @brief Return I2Cx clock frequency
* @param I2CxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_I2C123_CLKSOURCE
* @arg @ref LL_RCC_I2C4_CLKSOURCE
* @retval I2C clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator is not ready
*/
uint32_t LL_RCC_GetI2CClockFreq(uint32_t I2CxSource)
{
uint32_t i2c_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
LL_PLL_ClocksTypeDef PLL_Clocks;
/* Check parameter */
assert_param(IS_LL_RCC_I2C_CLKSOURCE(I2CxSource));
switch (LL_RCC_GetI2CClockSource(I2CxSource))
{
case LL_RCC_I2C123_CLKSOURCE_PCLK1:
i2c_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(LL_RCC_CALC_SYSCLK_FREQ(RCC_GetSystemClockFreq(), LL_RCC_GetSysPrescaler())));
break;
case LL_RCC_I2C4_CLKSOURCE_PCLK4:
i2c_frequency = RCC_GetPCLK4ClockFreq(RCC_GetHCLKClockFreq(LL_RCC_CALC_SYSCLK_FREQ(RCC_GetSystemClockFreq(), LL_RCC_GetSysPrescaler())));
break;
case LL_RCC_I2C123_CLKSOURCE_PLL3R:
case LL_RCC_I2C4_CLKSOURCE_PLL3R:
if (LL_RCC_PLL3_IsReady() != 0U)
{
LL_RCC_GetPLL3ClockFreq(&PLL_Clocks);
i2c_frequency = PLL_Clocks.PLL_R_Frequency;
}
break;
case LL_RCC_I2C123_CLKSOURCE_HSI:
case LL_RCC_I2C4_CLKSOURCE_HSI:
if (LL_RCC_HSI_IsReady() != 0U)
{
i2c_frequency = HSI_VALUE >> (LL_RCC_HSI_GetDivider() >> RCC_CR_HSIDIV_Pos);
}
break;
case LL_RCC_I2C123_CLKSOURCE_CSI:
case LL_RCC_I2C4_CLKSOURCE_CSI:
if (LL_RCC_CSI_IsReady() != 0U)
{
i2c_frequency = CSI_VALUE;
}
break;
default:
/* Nothing to do */
break;
}
return i2c_frequency;
}
/**
* @brief Return LPTIMx clock frequency
* @param LPTIMxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE
* @arg @ref LL_RCC_LPTIM2_CLKSOURCE
* @arg @ref LL_RCC_LPTIM345_CLKSOURCE
* @retval LPTIM clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator is not ready
*/
uint32_t LL_RCC_GetLPTIMClockFreq(uint32_t LPTIMxSource)
{
uint32_t lptim_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
LL_PLL_ClocksTypeDef PLL_Clocks;
/* Check parameter */
assert_param(IS_LL_RCC_LPTIM_CLKSOURCE(LPTIMxSource));
switch (LL_RCC_GetLPTIMClockSource(LPTIMxSource))
{
case LL_RCC_LPTIM1_CLKSOURCE_PCLK1:
lptim_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(LL_RCC_CALC_SYSCLK_FREQ(RCC_GetSystemClockFreq(), LL_RCC_GetSysPrescaler())));
break;
case LL_RCC_LPTIM2_CLKSOURCE_PCLK4:
case LL_RCC_LPTIM345_CLKSOURCE_PCLK4:
lptim_frequency = RCC_GetPCLK4ClockFreq(RCC_GetHCLKClockFreq(LL_RCC_CALC_SYSCLK_FREQ(RCC_GetSystemClockFreq(), LL_RCC_GetSysPrescaler())));
break;
case LL_RCC_LPTIM1_CLKSOURCE_PLL2P:
case LL_RCC_LPTIM2_CLKSOURCE_PLL2P:
case LL_RCC_LPTIM345_CLKSOURCE_PLL2P:
if (LL_RCC_PLL2_IsReady() != 0U)
{
LL_RCC_GetPLL2ClockFreq(&PLL_Clocks);
lptim_frequency = PLL_Clocks.PLL_P_Frequency;
}
break;
case LL_RCC_LPTIM1_CLKSOURCE_PLL3R:
case LL_RCC_LPTIM2_CLKSOURCE_PLL3R:
case LL_RCC_LPTIM345_CLKSOURCE_PLL3R:
if (LL_RCC_PLL3_IsReady() != 0U)
{
LL_RCC_GetPLL3ClockFreq(&PLL_Clocks);
lptim_frequency = PLL_Clocks.PLL_R_Frequency;
}
break;
case LL_RCC_LPTIM1_CLKSOURCE_LSE:
case LL_RCC_LPTIM2_CLKSOURCE_LSE:
case LL_RCC_LPTIM345_CLKSOURCE_LSE:
if (LL_RCC_LSE_IsReady() != 0U)
{
lptim_frequency = LSE_VALUE;
}
break;
case LL_RCC_LPTIM1_CLKSOURCE_LSI:
case LL_RCC_LPTIM2_CLKSOURCE_LSI:
case LL_RCC_LPTIM345_CLKSOURCE_LSI:
if (LL_RCC_LSI_IsReady() != 0U)
{
lptim_frequency = LSI_VALUE;
}
break;
case LL_RCC_LPTIM1_CLKSOURCE_CLKP:
case LL_RCC_LPTIM2_CLKSOURCE_CLKP:
case LL_RCC_LPTIM345_CLKSOURCE_CLKP:
lptim_frequency = LL_RCC_GetCLKPClockFreq(LL_RCC_CLKP_CLKSOURCE);
break;
default:
/* Kernel clock disabled */
break;
}
return lptim_frequency;
}
/**
* @brief Return SAIx clock frequency
* @param SAIxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_SAI1_CLKSOURCE
* @arg @ref LL_RCC_SAI23_CLKSOURCE (*)
* @arg @ref LL_RCC_SAI2A_CLKSOURCE (*)
* @arg @ref LL_RCC_SAI2B_CLKSOURCE (*)
* @arg @ref LL_RCC_SAI4A_CLKSOURCE (*)
* @arg @ref LL_RCC_SAI4B_CLKSOURCE (*)
* @retval SAI clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator is not ready
*
* (*) : Available on some STM32H7 lines only.
*/
uint32_t LL_RCC_GetSAIClockFreq(uint32_t SAIxSource)
{
uint32_t sai_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
LL_PLL_ClocksTypeDef PLL_Clocks;
/* Check parameter */
assert_param(IS_LL_RCC_SAI_CLKSOURCE(SAIxSource));
switch (LL_RCC_GetSAIClockSource(SAIxSource))
{
case LL_RCC_SAI1_CLKSOURCE_PLL1Q:
#if defined(SAI3)
case LL_RCC_SAI23_CLKSOURCE_PLL1Q:
#endif /* SAI3 */
#if defined(SAI4)
case LL_RCC_SAI4A_CLKSOURCE_PLL1Q:
case LL_RCC_SAI4B_CLKSOURCE_PLL1Q:
#endif /* SAI4 */
#if defined (RCC_CDCCIP1R_SAI2ASEL) || defined(RCC_CDCCIP1R_SAI2BSEL)
case LL_RCC_SAI2A_CLKSOURCE_PLL1Q:
case LL_RCC_SAI2B_CLKSOURCE_PLL1Q:
#endif /* RCC_CDCCIP1R_SAI2ASEL || RCC_CDCCIP1R_SAI2BSEL */
if (LL_RCC_PLL1_IsReady() != 0U)
{
LL_RCC_GetPLL1ClockFreq(&PLL_Clocks);
sai_frequency = PLL_Clocks.PLL_Q_Frequency;
}
break;
case LL_RCC_SAI1_CLKSOURCE_PLL2P:
#if defined(SAI3)
case LL_RCC_SAI23_CLKSOURCE_PLL2P:
#endif /* SAI3 */
#if defined(SAI4)
case LL_RCC_SAI4A_CLKSOURCE_PLL2P:
case LL_RCC_SAI4B_CLKSOURCE_PLL2P:
#endif /* SAI4 */
#if defined (RCC_CDCCIP1R_SAI2ASEL) || defined(RCC_CDCCIP1R_SAI2BSEL)
case LL_RCC_SAI2A_CLKSOURCE_PLL2P:
case LL_RCC_SAI2B_CLKSOURCE_PLL2P:
#endif /* RCC_CDCCIP1R_SAI2ASEL || RCC_CDCCIP1R_SAI2BSEL */
if (LL_RCC_PLL2_IsReady() != 0U)
{
LL_RCC_GetPLL2ClockFreq(&PLL_Clocks);
sai_frequency = PLL_Clocks.PLL_P_Frequency;
}
break;
case LL_RCC_SAI1_CLKSOURCE_PLL3P:
#if defined(SAI3)
case LL_RCC_SAI23_CLKSOURCE_PLL3P:
#endif /* SAI3 */
#if defined(SAI4)
case LL_RCC_SAI4A_CLKSOURCE_PLL3P:
case LL_RCC_SAI4B_CLKSOURCE_PLL3P:
#endif /* SAI4 */
#if defined (RCC_CDCCIP1R_SAI2ASEL) || defined(RCC_CDCCIP1R_SAI2BSEL)
case LL_RCC_SAI2A_CLKSOURCE_PLL3P:
case LL_RCC_SAI2B_CLKSOURCE_PLL3P:
#endif /* RCC_CDCCIP1R_SAI2ASEL || RCC_CDCCIP1R_SAI2BSEL */
if (LL_RCC_PLL3_IsReady() != 0U)
{
LL_RCC_GetPLL3ClockFreq(&PLL_Clocks);
sai_frequency = PLL_Clocks.PLL_P_Frequency;
}
break;
case LL_RCC_SAI1_CLKSOURCE_I2S_CKIN:
#if defined(SAI3)
case LL_RCC_SAI23_CLKSOURCE_I2S_CKIN:
#endif /* SAI3 */
#if defined(SAI4)
case LL_RCC_SAI4A_CLKSOURCE_I2S_CKIN:
case LL_RCC_SAI4B_CLKSOURCE_I2S_CKIN:
#endif /* SAI4 */
#if defined (RCC_CDCCIP1R_SAI2ASEL) || defined(RCC_CDCCIP1R_SAI2BSEL)
case LL_RCC_SAI2A_CLKSOURCE_I2S_CKIN:
case LL_RCC_SAI2B_CLKSOURCE_I2S_CKIN:
#endif /* RCC_CDCCIP1R_SAI2ASEL || RCC_CDCCIP1R_SAI2BSEL */
sai_frequency = EXTERNAL_CLOCK_VALUE;
break;
case LL_RCC_SAI1_CLKSOURCE_CLKP:
#if defined(SAI3)
case LL_RCC_SAI23_CLKSOURCE_CLKP:
#endif /* SAI3 */
#if defined(SAI4)
case LL_RCC_SAI4A_CLKSOURCE_CLKP:
case LL_RCC_SAI4B_CLKSOURCE_CLKP:
#endif /* SAI4 */
#if defined (RCC_CDCCIP1R_SAI2ASEL) || defined(RCC_CDCCIP1R_SAI2BSEL)
case LL_RCC_SAI2A_CLKSOURCE_CLKP:
case LL_RCC_SAI2B_CLKSOURCE_CLKP:
#endif /* RCC_CDCCIP1R_SAI2ASEL || RCC_CDCCIP1R_SAI2BSEL */
sai_frequency = LL_RCC_GetCLKPClockFreq(LL_RCC_CLKP_CLKSOURCE);
break;
default:
/* Kernel clock disabled */
break;
}
return sai_frequency;
}
/**
* @brief Return ADC clock frequency
* @param ADCxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_ADC_CLKSOURCE
* @retval ADC clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator is not ready
*/
uint32_t LL_RCC_GetADCClockFreq(uint32_t ADCxSource)
{
uint32_t adc_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
LL_PLL_ClocksTypeDef PLL_Clocks;
switch (LL_RCC_GetADCClockSource(ADCxSource))
{
case LL_RCC_ADC_CLKSOURCE_PLL2P:
if (LL_RCC_PLL2_IsReady() != 0U)
{
LL_RCC_GetPLL2ClockFreq(&PLL_Clocks);
adc_frequency = PLL_Clocks.PLL_P_Frequency;
}
break;
case LL_RCC_ADC_CLKSOURCE_PLL3R:
if (LL_RCC_PLL3_IsReady() != 0U)
{
LL_RCC_GetPLL3ClockFreq(&PLL_Clocks);
adc_frequency = PLL_Clocks.PLL_R_Frequency;
}
break;
case LL_RCC_ADC_CLKSOURCE_CLKP:
adc_frequency = LL_RCC_GetCLKPClockFreq(LL_RCC_CLKP_CLKSOURCE);
break;
default:
/* Kernel clock disabled */
break;
}
return adc_frequency;
}
/**
* @brief Return SDMMC clock frequency
* @param SDMMCxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_SDMMC_CLKSOURCE
* @retval SDMMC clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator is not ready
*/
uint32_t LL_RCC_GetSDMMCClockFreq(uint32_t SDMMCxSource)
{
uint32_t sdmmc_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
LL_PLL_ClocksTypeDef PLL_Clocks;
switch (LL_RCC_GetSDMMCClockSource(SDMMCxSource))
{
case LL_RCC_SDMMC_CLKSOURCE_PLL1Q:
if (LL_RCC_PLL1_IsReady() != 0U)
{
LL_RCC_GetPLL1ClockFreq(&PLL_Clocks);
sdmmc_frequency = PLL_Clocks.PLL_Q_Frequency;
}
break;
case LL_RCC_SDMMC_CLKSOURCE_PLL2R:
if (LL_RCC_PLL2_IsReady() != 0U)
{
LL_RCC_GetPLL2ClockFreq(&PLL_Clocks);
sdmmc_frequency = PLL_Clocks.PLL_R_Frequency;
}
break;
default:
/* Nothing to do */
break;
}
return sdmmc_frequency;
}
/**
* @brief Return RNG clock frequency
* @param RNGxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_RNG_CLKSOURCE
* @retval RNG clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator is not ready
*/
uint32_t LL_RCC_GetRNGClockFreq(uint32_t RNGxSource)
{
uint32_t rng_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
LL_PLL_ClocksTypeDef PLL_Clocks;
switch (LL_RCC_GetRNGClockSource(RNGxSource))
{
case LL_RCC_RNG_CLKSOURCE_PLL1Q:
if (LL_RCC_PLL1_IsReady() != 0U)
{
LL_RCC_GetPLL1ClockFreq(&PLL_Clocks);
rng_frequency = PLL_Clocks.PLL_Q_Frequency;
}
break;
case LL_RCC_RNG_CLKSOURCE_HSI48:
if (LL_RCC_HSI48_IsReady() != 0U)
{
rng_frequency = 48000000U;
}
break;
case LL_RCC_RNG_CLKSOURCE_LSE:
if (LL_RCC_LSE_IsReady() != 0U)
{
rng_frequency = LSE_VALUE;
}
break;
case LL_RCC_RNG_CLKSOURCE_LSI:
if (LL_RCC_LSI_IsReady() != 0U)
{
rng_frequency = LSI_VALUE;
}
break;
default:
/* Nothing to do */
break;
}
return rng_frequency;
}
/**
* @brief Return CEC clock frequency
* @param CECxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_RNG_CLKSOURCE
* @retval CEC clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator is not ready
*/
uint32_t LL_RCC_GetCECClockFreq(uint32_t CECxSource)
{
uint32_t cec_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
switch (LL_RCC_GetCECClockSource(CECxSource))
{
case LL_RCC_CEC_CLKSOURCE_LSE:
if (LL_RCC_LSE_IsReady() != 0U)
{
cec_frequency = LSE_VALUE;
}
break;
case LL_RCC_CEC_CLKSOURCE_LSI:
if (LL_RCC_LSI_IsReady() != 0U)
{
cec_frequency = LSI_VALUE;
}
break;
case LL_RCC_CEC_CLKSOURCE_CSI_DIV122:
if (LL_RCC_CSI_IsReady() != 0U)
{
cec_frequency = CSI_VALUE / 122U;
}
break;
default:
/* Kernel clock disabled */
break;
}
return cec_frequency;
}
/**
* @brief Return USB clock frequency
* @param USBxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_USB_CLKSOURCE
* @retval USB clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator is not ready or Disabled
*/
uint32_t LL_RCC_GetUSBClockFreq(uint32_t USBxSource)
{
uint32_t usb_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
LL_PLL_ClocksTypeDef PLL_Clocks;
switch (LL_RCC_GetUSBClockSource(USBxSource))
{
case LL_RCC_USB_CLKSOURCE_PLL1Q:
if (LL_RCC_PLL1_IsReady() != 0U)
{
LL_RCC_GetPLL1ClockFreq(&PLL_Clocks);
usb_frequency = PLL_Clocks.PLL_Q_Frequency;
}
break;
case LL_RCC_USB_CLKSOURCE_PLL3Q:
if (LL_RCC_PLL3_IsReady() != 0U)
{
LL_RCC_GetPLL3ClockFreq(&PLL_Clocks);
usb_frequency = PLL_Clocks.PLL_Q_Frequency;
}
break;
case LL_RCC_USB_CLKSOURCE_HSI48:
if (LL_RCC_HSI48_IsReady() != 0U)
{
usb_frequency = HSI48_VALUE;
}
break;
case LL_RCC_USB_CLKSOURCE_DISABLE:
default:
/* Nothing to do */
break;
}
return usb_frequency;
}
/**
* @brief Return DFSDM clock frequency
* @param DFSDMxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_DFSDM1_CLKSOURCE
* @retval DFSDM clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator is not ready
*/
uint32_t LL_RCC_GetDFSDMClockFreq(uint32_t DFSDMxSource)
{
uint32_t dfsdm_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
switch (LL_RCC_GetDFSDMClockSource(DFSDMxSource))
{
case LL_RCC_DFSDM1_CLKSOURCE_SYSCLK:
dfsdm_frequency = RCC_GetSystemClockFreq();
break;
case LL_RCC_DFSDM1_CLKSOURCE_PCLK2:
dfsdm_frequency = RCC_GetPCLK2ClockFreq(RCC_GetHCLKClockFreq(LL_RCC_CALC_SYSCLK_FREQ(RCC_GetSystemClockFreq(), LL_RCC_GetSysPrescaler())));
break;
default:
/* Nothing to do */
break;
}
return dfsdm_frequency;
}
#if defined(DFSDM2_BASE)
/**
* @brief Return DFSDM clock frequency
* @param DFSDMxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_DFSDM2_CLKSOURCE
* @retval DFSDM clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator is not ready
*/
uint32_t LL_RCC_GetDFSDM2ClockFreq(uint32_t DFSDMxSource)
{
uint32_t dfsdm_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
switch (LL_RCC_GetDFSDM2ClockSource(DFSDMxSource))
{
case LL_RCC_DFSDM2_CLKSOURCE_SYSCLK:
dfsdm_frequency = RCC_GetSystemClockFreq();
break;
case LL_RCC_DFSDM2_CLKSOURCE_PCLK4:
dfsdm_frequency = RCC_GetPCLK4ClockFreq(RCC_GetHCLKClockFreq(LL_RCC_CALC_SYSCLK_FREQ(RCC_GetSystemClockFreq(), LL_RCC_GetSysPrescaler())));
break;
default:
/* Nothing to do */
break;
}
return dfsdm_frequency;
}
#endif /* DFSDM2_BASE */
#if defined(DSI)
/**
* @brief Return DSI clock frequency
* @param DSIxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_DSI_CLKSOURCE
* @retval DSI clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator is not ready
* - @ref LL_RCC_PERIPH_FREQUENCY_NA indicates that external clock is used
*/
uint32_t LL_RCC_GetDSIClockFreq(uint32_t DSIxSource)
{
uint32_t dsi_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
LL_PLL_ClocksTypeDef PLL_Clocks;
switch (LL_RCC_GetDSIClockSource(DSIxSource))
{
case LL_RCC_DSI_CLKSOURCE_PLL2Q:
if (LL_RCC_PLL2_IsReady() != 0U)
{
LL_RCC_GetPLL2ClockFreq(&PLL_Clocks);
dsi_frequency = PLL_Clocks.PLL_Q_Frequency;
}
break;
case LL_RCC_DSI_CLKSOURCE_PHY:
dsi_frequency = LL_RCC_PERIPH_FREQUENCY_NA;
break;
default:
/* Nothing to do */
break;
}
return dsi_frequency;
}
#endif /* DSI */
/**
* @brief Return SPDIF clock frequency
* @param SPDIFxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_SPDIF_CLKSOURCE
* @retval SPDIF clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator is not ready
*/
uint32_t LL_RCC_GetSPDIFClockFreq(uint32_t SPDIFxSource)
{
uint32_t spdif_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
LL_PLL_ClocksTypeDef PLL_Clocks;
switch (LL_RCC_GetSPDIFClockSource(SPDIFxSource))
{
case LL_RCC_SPDIF_CLKSOURCE_PLL1Q:
if (LL_RCC_PLL1_IsReady() != 0U)
{
LL_RCC_GetPLL1ClockFreq(&PLL_Clocks);
spdif_frequency = PLL_Clocks.PLL_Q_Frequency;
}
break;
case LL_RCC_SPDIF_CLKSOURCE_PLL2R:
if (LL_RCC_PLL2_IsReady() != 0U)
{
LL_RCC_GetPLL2ClockFreq(&PLL_Clocks);
spdif_frequency = PLL_Clocks.PLL_R_Frequency;
}
break;
case LL_RCC_SPDIF_CLKSOURCE_PLL3R:
if (LL_RCC_PLL3_IsReady() != 0U)
{
LL_RCC_GetPLL3ClockFreq(&PLL_Clocks);
spdif_frequency = PLL_Clocks.PLL_R_Frequency;
}
break;
case LL_RCC_SPDIF_CLKSOURCE_HSI:
if (LL_RCC_HSI_IsReady() != 0U)
{
spdif_frequency = HSI_VALUE >> (LL_RCC_HSI_GetDivider() >> RCC_CR_HSIDIV_Pos);
}
break;
default:
/* Nothing to do */
break;
}
return spdif_frequency;
}
/**
* @brief Return SPIx clock frequency
* @param SPIxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_SPI123_CLKSOURCE
* @arg @ref LL_RCC_SPI45_CLKSOURCE
* @arg @ref LL_RCC_SPI6_CLKSOURCE
* @retval SPI clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator is not ready
*/
uint32_t LL_RCC_GetSPIClockFreq(uint32_t SPIxSource)
{
uint32_t spi_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
LL_PLL_ClocksTypeDef PLL_Clocks;
/* Check parameter */
assert_param(IS_LL_RCC_SPI_CLKSOURCE(SPIxSource));
switch (LL_RCC_GetSPIClockSource(SPIxSource))
{
case LL_RCC_SPI123_CLKSOURCE_PLL1Q:
if (LL_RCC_PLL1_IsReady() != 0U)
{
LL_RCC_GetPLL1ClockFreq(&PLL_Clocks);
spi_frequency = PLL_Clocks.PLL_Q_Frequency;
}
break;
case LL_RCC_SPI123_CLKSOURCE_PLL2P:
if (LL_RCC_PLL2_IsReady() != 0U)
{
LL_RCC_GetPLL2ClockFreq(&PLL_Clocks);
spi_frequency = PLL_Clocks.PLL_P_Frequency;
}
break;
case LL_RCC_SPI123_CLKSOURCE_PLL3P:
if (LL_RCC_PLL3_IsReady() != 0U)
{
LL_RCC_GetPLL3ClockFreq(&PLL_Clocks);
spi_frequency = PLL_Clocks.PLL_P_Frequency;
}
break;
case LL_RCC_SPI123_CLKSOURCE_I2S_CKIN:
#if defined(LL_RCC_SPI6_CLKSOURCE_I2S_CKIN)
case LL_RCC_SPI6_CLKSOURCE_I2S_CKIN:
#endif /* LL_RCC_SPI6_CLKSOURCE_I2S_CKIN */
spi_frequency = EXTERNAL_CLOCK_VALUE;
break;
case LL_RCC_SPI123_CLKSOURCE_CLKP:
spi_frequency = LL_RCC_GetCLKPClockFreq(LL_RCC_CLKP_CLKSOURCE);
break;
case LL_RCC_SPI45_CLKSOURCE_PCLK2:
spi_frequency = RCC_GetPCLK2ClockFreq(RCC_GetHCLKClockFreq(LL_RCC_CALC_SYSCLK_FREQ(RCC_GetSystemClockFreq(), LL_RCC_GetSysPrescaler())));
break;
case LL_RCC_SPI6_CLKSOURCE_PCLK4:
spi_frequency = RCC_GetPCLK4ClockFreq(RCC_GetHCLKClockFreq(LL_RCC_CALC_SYSCLK_FREQ(RCC_GetSystemClockFreq(), LL_RCC_GetSysPrescaler())));
break;
case LL_RCC_SPI45_CLKSOURCE_PLL2Q:
case LL_RCC_SPI6_CLKSOURCE_PLL2Q:
if (LL_RCC_PLL2_IsReady() != 0U)
{
LL_RCC_GetPLL2ClockFreq(&PLL_Clocks);
spi_frequency = PLL_Clocks.PLL_Q_Frequency;
}
break;
case LL_RCC_SPI45_CLKSOURCE_PLL3Q:
case LL_RCC_SPI6_CLKSOURCE_PLL3Q:
if (LL_RCC_PLL3_IsReady() != 0U)
{
LL_RCC_GetPLL3ClockFreq(&PLL_Clocks);
spi_frequency = PLL_Clocks.PLL_Q_Frequency;
}
break;
case LL_RCC_SPI45_CLKSOURCE_HSI:
case LL_RCC_SPI6_CLKSOURCE_HSI:
if (LL_RCC_HSI_IsReady() != 0U)
{
spi_frequency = HSI_VALUE >> (LL_RCC_HSI_GetDivider() >> RCC_CR_HSIDIV_Pos);
}
break;
case LL_RCC_SPI45_CLKSOURCE_CSI:
case LL_RCC_SPI6_CLKSOURCE_CSI:
if (LL_RCC_CSI_IsReady() != 0U)
{
spi_frequency = CSI_VALUE;
}
break;
case LL_RCC_SPI45_CLKSOURCE_HSE:
case LL_RCC_SPI6_CLKSOURCE_HSE:
if (LL_RCC_HSE_IsReady() != 0U)
{
spi_frequency = HSE_VALUE;
}
break;
default:
/* Kernel clock disabled */
break;
}
return spi_frequency;
}
/**
* @brief Return SWP clock frequency
* @param SWPxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_SWP_CLKSOURCE
* @retval SWP clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator is not ready
*/
uint32_t LL_RCC_GetSWPClockFreq(uint32_t SWPxSource)
{
uint32_t swp_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
switch (LL_RCC_GetSWPClockSource(SWPxSource))
{
case LL_RCC_SWP_CLKSOURCE_PCLK1:
swp_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(LL_RCC_CALC_SYSCLK_FREQ(RCC_GetSystemClockFreq(), LL_RCC_GetSysPrescaler())));
break;
case LL_RCC_SWP_CLKSOURCE_HSI:
if (LL_RCC_HSI_IsReady() != 0U)
{
swp_frequency = HSI_VALUE >> (LL_RCC_HSI_GetDivider() >> RCC_CR_HSIDIV_Pos);
}
break;
default:
/* Nothing to do */
break;
}
return swp_frequency;
}
/**
* @brief Return FDCAN clock frequency
* @param FDCANxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_FDCAN_CLKSOURCE
* @retval FDCAN clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator is not ready
*/
uint32_t LL_RCC_GetFDCANClockFreq(uint32_t FDCANxSource)
{
uint32_t fdcan_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
LL_PLL_ClocksTypeDef PLL_Clocks;
switch (LL_RCC_GetFDCANClockSource(FDCANxSource))
{
case LL_RCC_FDCAN_CLKSOURCE_HSE:
if (LL_RCC_HSE_IsReady() != 0U)
{
fdcan_frequency = HSE_VALUE;
}
break;
case LL_RCC_FDCAN_CLKSOURCE_PLL1Q:
if (LL_RCC_PLL1_IsReady() != 0U)
{
LL_RCC_GetPLL1ClockFreq(&PLL_Clocks);
fdcan_frequency = PLL_Clocks.PLL_Q_Frequency;
}
break;
case LL_RCC_FDCAN_CLKSOURCE_PLL2Q:
if (LL_RCC_PLL2_IsReady() != 0U)
{
LL_RCC_GetPLL2ClockFreq(&PLL_Clocks);
fdcan_frequency = PLL_Clocks.PLL_Q_Frequency;
}
break;
default:
/* Kernel clock disabled */
break;
}
return fdcan_frequency;
}
/**
* @brief Return FMC clock frequency
* @param FMCxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_FMC_CLKSOURCE
* @retval FMC clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator is not ready
*/
uint32_t LL_RCC_GetFMCClockFreq(uint32_t FMCxSource)
{
uint32_t fmc_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
LL_PLL_ClocksTypeDef PLL_Clocks;
switch (LL_RCC_GetFMCClockSource(FMCxSource))
{
case LL_RCC_FMC_CLKSOURCE_HCLK:
fmc_frequency = RCC_GetHCLKClockFreq(LL_RCC_CALC_SYSCLK_FREQ(RCC_GetSystemClockFreq(), LL_RCC_GetSysPrescaler()));
break;
case LL_RCC_FMC_CLKSOURCE_PLL1Q:
if (LL_RCC_PLL1_IsReady() != 0U)
{
LL_RCC_GetPLL1ClockFreq(&PLL_Clocks);
fmc_frequency = PLL_Clocks.PLL_Q_Frequency;
}
break;
case LL_RCC_FMC_CLKSOURCE_PLL2R:
if (LL_RCC_PLL2_IsReady() != 0U)
{
LL_RCC_GetPLL2ClockFreq(&PLL_Clocks);
fmc_frequency = PLL_Clocks.PLL_R_Frequency;
}
break;
case LL_RCC_FMC_CLKSOURCE_CLKP:
fmc_frequency = LL_RCC_GetCLKPClockFreq(LL_RCC_CLKP_CLKSOURCE);
break;
default:
/* Nothing to do */
break;
}
return fmc_frequency;
}
#if defined(QUADSPI)
/**
* @brief Return QSPI clock frequency
* @param QSPIxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_QSPI_CLKSOURCE
* @retval QSPI clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator is not ready
*/
uint32_t LL_RCC_GetQSPIClockFreq(uint32_t QSPIxSource)
{
uint32_t qspi_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
LL_PLL_ClocksTypeDef PLL_Clocks;
switch (LL_RCC_GetQSPIClockSource(QSPIxSource))
{
case LL_RCC_QSPI_CLKSOURCE_HCLK:
qspi_frequency = RCC_GetHCLKClockFreq(LL_RCC_CALC_SYSCLK_FREQ(RCC_GetSystemClockFreq(), LL_RCC_GetSysPrescaler()));
break;
case LL_RCC_QSPI_CLKSOURCE_PLL1Q:
if (LL_RCC_PLL1_IsReady() != 0U)
{
LL_RCC_GetPLL1ClockFreq(&PLL_Clocks);
qspi_frequency = PLL_Clocks.PLL_Q_Frequency;
}
break;
case LL_RCC_QSPI_CLKSOURCE_PLL2R:
if (LL_RCC_PLL2_IsReady() != 0U)
{
LL_RCC_GetPLL2ClockFreq(&PLL_Clocks);
qspi_frequency = PLL_Clocks.PLL_R_Frequency;
}
break;
case LL_RCC_QSPI_CLKSOURCE_CLKP:
qspi_frequency = LL_RCC_GetCLKPClockFreq(LL_RCC_CLKP_CLKSOURCE);
break;
default:
/* Nothing to do */
break;
}
return qspi_frequency;
}
#endif /* QUADSPI */
#if defined(OCTOSPI1) || defined(OCTOSPI2)
/**
* @brief Return OSPI clock frequency
* @param OSPIxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_OSPI_CLKSOURCE
* @retval OSPI clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator is not ready
*/
uint32_t LL_RCC_GetOSPIClockFreq(uint32_t OSPIxSource)
{
uint32_t ospi_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
LL_PLL_ClocksTypeDef PLL_Clocks;
switch (LL_RCC_GetOSPIClockSource(OSPIxSource))
{
case LL_RCC_OSPI_CLKSOURCE_HCLK:
ospi_frequency = RCC_GetHCLKClockFreq(LL_RCC_CALC_SYSCLK_FREQ(RCC_GetSystemClockFreq(), LL_RCC_GetSysPrescaler()));
break;
case LL_RCC_OSPI_CLKSOURCE_PLL1Q:
if (LL_RCC_PLL1_IsReady() != 0U)
{
LL_RCC_GetPLL1ClockFreq(&PLL_Clocks);
ospi_frequency = PLL_Clocks.PLL_Q_Frequency;
}
break;
case LL_RCC_OSPI_CLKSOURCE_PLL2R:
if (LL_RCC_PLL2_IsReady() != 0U)
{
LL_RCC_GetPLL2ClockFreq(&PLL_Clocks);
ospi_frequency = PLL_Clocks.PLL_R_Frequency;
}
break;
case LL_RCC_OSPI_CLKSOURCE_CLKP:
ospi_frequency = LL_RCC_GetCLKPClockFreq(LL_RCC_CLKP_CLKSOURCE);
break;
default:
/* Nothing to do */
break;
}
return ospi_frequency;
}
#endif /* defined(OCTOSPI1) || defined(OCTOSPI2) */
/**
* @brief Return CLKP clock frequency
* @param CLKPxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_CLKP_CLKSOURCE
* @retval CLKP clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator is not ready
*/
uint32_t LL_RCC_GetCLKPClockFreq(uint32_t CLKPxSource)
{
uint32_t clkp_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
switch (LL_RCC_GetCLKPClockSource(CLKPxSource))
{
case LL_RCC_CLKP_CLKSOURCE_HSI:
if (LL_RCC_HSI_IsReady() != 0U)
{
clkp_frequency = HSI_VALUE >> (LL_RCC_HSI_GetDivider() >> RCC_CR_HSIDIV_Pos);
}
break;
case LL_RCC_CLKP_CLKSOURCE_CSI:
if (LL_RCC_CSI_IsReady() != 0U)
{
clkp_frequency = CSI_VALUE;
}
break;
case LL_RCC_CLKP_CLKSOURCE_HSE:
if (LL_RCC_HSE_IsReady() != 0U)
{
clkp_frequency = HSE_VALUE;
}
break;
default:
/* CLKP clock disabled */
break;
}
return clkp_frequency;
}
/**
* @}
*/
/**
* @}
*/
/** @addtogroup RCC_LL_Private_Functions
* @{
*/
/**
* @brief Return SYSTEM clock frequency
* @retval SYSTEM clock frequency (in Hz)
*/
static uint32_t RCC_GetSystemClockFreq(void)
{
uint32_t frequency = 0U;
LL_PLL_ClocksTypeDef PLL_Clocks;
/* Get SYSCLK source -------------------------------------------------------*/
switch (LL_RCC_GetSysClkSource())
{
/* No check on Ready: Won't be selected by hardware if not */
case LL_RCC_SYS_CLKSOURCE_STATUS_HSI:
frequency = HSI_VALUE >> (LL_RCC_HSI_GetDivider() >> RCC_CR_HSIDIV_Pos);
break;
case LL_RCC_SYS_CLKSOURCE_STATUS_CSI:
frequency = CSI_VALUE;
break;
case LL_RCC_SYS_CLKSOURCE_STATUS_HSE:
frequency = HSE_VALUE;
break;
case LL_RCC_SYS_CLKSOURCE_STATUS_PLL1:
LL_RCC_GetPLL1ClockFreq(&PLL_Clocks);
frequency = PLL_Clocks.PLL_P_Frequency;
break;
default:
/* Nothing to do */
break;
}
return frequency;
}
/**
* @brief Return HCLK clock frequency
* @param SYSCLK_Frequency SYSCLK clock frequency
* @retval HCLK clock frequency (in Hz)
*/
static uint32_t RCC_GetHCLKClockFreq(uint32_t SYSCLK_Frequency)
{
/* HCLK clock frequency */
return LL_RCC_CALC_HCLK_FREQ(SYSCLK_Frequency, LL_RCC_GetAHBPrescaler());
}
/**
* @brief Return PCLK1 clock frequency
* @param HCLK_Frequency HCLK clock frequency
* @retval PCLK1 clock frequency (in Hz)
*/
static uint32_t RCC_GetPCLK1ClockFreq(uint32_t HCLK_Frequency)
{
/* PCLK1 clock frequency */
return LL_RCC_CALC_PCLK1_FREQ(HCLK_Frequency, LL_RCC_GetAPB1Prescaler());
}
/**
* @brief Return PCLK2 clock frequency
* @param HCLK_Frequency HCLK clock frequency
* @retval PCLK2 clock frequency (in Hz)
*/
static uint32_t RCC_GetPCLK2ClockFreq(uint32_t HCLK_Frequency)
{
/* PCLK2 clock frequency */
return LL_RCC_CALC_PCLK2_FREQ(HCLK_Frequency, LL_RCC_GetAPB2Prescaler());
}
/**
* @brief Return PCLK3 clock frequency
* @param HCLK_Frequency HCLK clock frequency
* @retval PCLK3 clock frequency (in Hz)
*/
static uint32_t RCC_GetPCLK3ClockFreq(uint32_t HCLK_Frequency)
{
/* PCLK3 clock frequency */
return LL_RCC_CALC_PCLK3_FREQ(HCLK_Frequency, LL_RCC_GetAPB3Prescaler());
}
/**
* @brief Return PCLK4 clock frequency
* @param HCLK_Frequency HCLK clock frequency
* @retval PCLK4 clock frequency (in Hz)
*/
static uint32_t RCC_GetPCLK4ClockFreq(uint32_t HCLK_Frequency)
{
/* PCLK4 clock frequency */
return LL_RCC_CALC_PCLK4_FREQ(HCLK_Frequency, LL_RCC_GetAPB4Prescaler());
}
/**
* @}
*/
/**
* @}
*/
#endif /* defined(RCC) */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */