steering-wheel/Drivers/STM32H7xx_HAL_Driver/Inc/stm32h7xx_ll_fmac.h

1070 lines
35 KiB
C

/**
******************************************************************************
* @file stm32h7xx_ll_fmac.h
* @author MCD Application Team
* @brief Header file of FMAC LL module.
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32H7xx_LL_FMAC_H
#define STM32H7xx_LL_FMAC_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32h7xx.h"
/** @addtogroup STM32H7xx_LL_Driver
* @{
*/
#if defined(FMAC)
/** @defgroup FMAC_LL FMAC
* @{
*/
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup FMAC_LL_Exported_Constants FMAC Exported Constants
* @{
*/
/** @defgroup FMAC_LL_EC_GET_FLAG Get Flag Defines
* @brief Flag defines which can be used with LL_FMAC_ReadReg function
* @{
*/
#define LL_FMAC_SR_SAT FMAC_SR_SAT /*!< Saturation Error Flag
(this helps in debugging a filter) */
#define LL_FMAC_SR_UNFL FMAC_SR_UNFL /*!< Underflow Error Flag */
#define LL_FMAC_SR_OVFL FMAC_SR_OVFL /*!< Overflow Error Flag */
#define LL_FMAC_SR_X1FULL FMAC_SR_X1FULL /*!< X1 Buffer Full Flag */
#define LL_FMAC_SR_YEMPTY FMAC_SR_YEMPTY /*!< Y Buffer Empty Flag */
/**
* @}
*/
/** @defgroup FMAC_LL_EC_IT IT Defines
* @brief IT defines which can be used with LL_FMAC_ReadReg and LL_FMAC_WriteReg functions
* @{
*/
#define LL_FMAC_CR_SATIEN FMAC_CR_SATIEN /*!< Saturation Error Interrupt Enable
(this helps in debugging a filter) */
#define LL_FMAC_CR_UNFLIEN FMAC_CR_UNFLIEN /*!< Underflow Error Interrupt Enable */
#define LL_FMAC_CR_OVFLIEN FMAC_CR_OVFLIEN /*!< Overflow Error Interrupt Enable */
#define LL_FMAC_CR_WIEN FMAC_CR_WIEN /*!< Write Interrupt Enable */
#define LL_FMAC_CR_RIEN FMAC_CR_RIEN /*!< Read Interrupt Enable */
/**
* @}
*/
/** @defgroup FMAC_LL_EC_WM FMAC watermarks
* @brief Watermark defines that can be used for buffer full (input) or buffer empty (output)
* @{
*/
#define LL_FMAC_WM_0_THRESHOLD_1 0x00000000U /*!< Buffer full/empty flag set if there
is less than 1 free/unread space. */
#define LL_FMAC_WM_1_THRESHOLD_2 0x01000000U /*!< Buffer full/empty flag set if there
are less than 2 free/unread spaces. */
#define LL_FMAC_WM_2_THRESHOLD_4 0x02000000U /*!< Buffer full/empty flag set if there
are less than 4 free/unread spaces. */
#define LL_FMAC_WM_3_THRESHOLD_8 0x03000000U /*!< Buffer full/empty flag set if there
are less than 8 free/empty spaces. */
/**
* @}
*/
/** @defgroup FMAC_LL_EC_FUNC FMAC functions
* @{
*/
#define LL_FMAC_FUNC_LOAD_X1 (FMAC_PARAM_FUNC_0) /*!< Load X1 buffer */
#define LL_FMAC_FUNC_LOAD_X2 (FMAC_PARAM_FUNC_1) /*!< Load X2 buffer */
#define LL_FMAC_FUNC_LOAD_Y (FMAC_PARAM_FUNC_1 | FMAC_PARAM_FUNC_0) /*!< Load Y buffer */
#define LL_FMAC_FUNC_CONVO_FIR (FMAC_PARAM_FUNC_3) /*!< Convolution (FIR filter) */
#define LL_FMAC_FUNC_IIR_DIRECT_FORM_1 (FMAC_PARAM_FUNC_3 | FMAC_PARAM_FUNC_0) /*!< IIR filter (direct form 1) */
/**
* @}
*/
/** @defgroup FMAC_LL_EC_PROCESSING FMAC processing
* @{
*/
#define LL_FMAC_PROCESSING_STOP 0x00U /*!< Stop FMAC Processing */
#define LL_FMAC_PROCESSING_START 0x01U /*!< Start FMAC Processing */
/**
* @}
*/
/**
* @}
*/
/* External variables --------------------------------------------------------*/
/* Exported macros -----------------------------------------------------------*/
/** @defgroup FMAC_LL_Exported_Macros FMAC Exported Macros
* @{
*/
/** @defgroup FMAC_LL_EM_WRITE_READ Common Write and read registers Macros
* @{
*/
/**
* @brief Write a value in FMAC register
* @param __INSTANCE__ FMAC Instance
* @param __REG__ Register to be written
* @param __VALUE__ Value to be written in the register
* @retval None
*/
#define LL_FMAC_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))
/**
* @brief Read a value in FMAC register
* @param __INSTANCE__ FMAC Instance
* @param __REG__ Register to be read
* @retval Register value
*/
#define LL_FMAC_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
/**
* @}
*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup FMAC_LL_Exported_Functions FMAC Exported Functions
* @{
*/
/** @defgroup FMAC_LL_EF_Configuration FMAC Configuration functions
* @{
*/
/**
* @brief Configure X1 full watermark.
* @rmtoll X1BUFCFG FULL_WM LL_FMAC_SetX1FullWatermark
* @param FMACx FMAC instance
* @param Watermark This parameter can be one of the following values:
* @arg @ref LL_FMAC_WM_0_THRESHOLD_1
* @arg @ref LL_FMAC_WM_1_THRESHOLD_2
* @arg @ref LL_FMAC_WM_2_THRESHOLD_4
* @arg @ref LL_FMAC_WM_3_THRESHOLD_8
* @retval None
*/
__STATIC_INLINE void LL_FMAC_SetX1FullWatermark(FMAC_TypeDef *FMACx, uint32_t Watermark)
{
MODIFY_REG(FMACx->X1BUFCFG, FMAC_X1BUFCFG_FULL_WM, Watermark);
}
/**
* @brief Return X1 full watermark.
* @rmtoll X1BUFCFG FULL_WM LL_FMAC_GetX1FullWatermark
* @param FMACx FMAC instance
* @retval uint32_t Returned value can be one of the following values:
* @arg @ref LL_FMAC_WM_0_THRESHOLD_1
* @arg @ref LL_FMAC_WM_1_THRESHOLD_2
* @arg @ref LL_FMAC_WM_2_THRESHOLD_4
* @arg @ref LL_FMAC_WM_3_THRESHOLD_8
*/
__STATIC_INLINE uint32_t LL_FMAC_GetX1FullWatermark(FMAC_TypeDef *FMACx)
{
return (uint32_t)(READ_BIT(FMACx->X1BUFCFG, FMAC_X1BUFCFG_FULL_WM));
}
/**
* @brief Configure X1 buffer size.
* @rmtoll X1BUFCFG X1_BUF_SIZE LL_FMAC_SetX1BufferSize
* @param FMACx FMAC instance
* @param BufferSize Number of 16-bit words allocated to the input buffer (including the optional "headroom").
* This parameter must be a number between Min_Data=0x01 and Max_Data=0xFF.
* @retval None
*/
__STATIC_INLINE void LL_FMAC_SetX1BufferSize(FMAC_TypeDef *FMACx, uint8_t BufferSize)
{
MODIFY_REG(FMACx->X1BUFCFG, FMAC_X1BUFCFG_X1_BUF_SIZE, ((uint32_t)BufferSize) << FMAC_X1BUFCFG_X1_BUF_SIZE_Pos);
}
/**
* @brief Return X1 buffer size.
* @rmtoll X1BUFCFG X1_BUF_SIZE LL_FMAC_GetX1BufferSize
* @param FMACx FMAC instance
* @retval uint8_t Number of 16-bit words allocated to the input buffer
* (including the optional "headroom") (value between Min_Data=0x01 and Max_Data=0xFF).
*/
__STATIC_INLINE uint8_t LL_FMAC_GetX1BufferSize(FMAC_TypeDef *FMACx)
{
return (uint8_t)(READ_BIT(FMACx->X1BUFCFG, FMAC_X1BUFCFG_X1_BUF_SIZE) >> FMAC_X1BUFCFG_X1_BUF_SIZE_Pos);
}
/**
* @brief Configure X1 base.
* @rmtoll X1BUFCFG X1_BASE LL_FMAC_SetX1Base
* @param FMACx FMAC instance
* @param Base Base address of the input buffer (X1) within the internal memory.
* This parameter must be a value between Min_Data=0x00 and Max_Data=0xFF.
* @retval None
*/
__STATIC_INLINE void LL_FMAC_SetX1Base(FMAC_TypeDef *FMACx, uint8_t Base)
{
MODIFY_REG(FMACx->X1BUFCFG, FMAC_X1BUFCFG_X1_BASE, ((uint32_t)Base) << FMAC_X1BUFCFG_X1_BASE_Pos);
}
/**
* @brief Return X1 base.
* @rmtoll X1BUFCFG X1_BASE LL_FMAC_GetX1Base
* @param FMACx FMAC instance
* @retval uint8_t Base address of the input buffer (X1) within the internal memory
* (value between Min_Data=0x00 and Max_Data=0xFF).
*/
__STATIC_INLINE uint8_t LL_FMAC_GetX1Base(FMAC_TypeDef *FMACx)
{
return (uint8_t)(READ_BIT(FMACx->X1BUFCFG, FMAC_X1BUFCFG_X1_BASE) >> FMAC_X1BUFCFG_X1_BASE_Pos);
}
/**
* @brief Configure X2 buffer size.
* @rmtoll X2BUFCFG X2_BUF_SIZE LL_FMAC_SetX2BufferSize
* @param FMACx FMAC instance
* @param BufferSize Number of 16-bit words allocated to the coefficient buffer.
* This parameter must be a number between Min_Data=0x01 and Max_Data=0xFF.
* @retval None
*/
__STATIC_INLINE void LL_FMAC_SetX2BufferSize(FMAC_TypeDef *FMACx, uint8_t BufferSize)
{
MODIFY_REG(FMACx->X2BUFCFG, FMAC_X2BUFCFG_X2_BUF_SIZE, ((uint32_t)BufferSize) << FMAC_X2BUFCFG_X2_BUF_SIZE_Pos);
}
/**
* @brief Return X2 buffer size.
* @rmtoll X2BUFCFG X2_BUF_SIZE LL_FMAC_GetX2BufferSize
* @param FMACx FMAC instance
* @retval uint8_t Number of 16-bit words allocated to the coefficient buffer
* (value between Min_Data=0x01 and Max_Data=0xFF).
*/
__STATIC_INLINE uint8_t LL_FMAC_GetX2BufferSize(FMAC_TypeDef *FMACx)
{
return (uint8_t)(READ_BIT(FMACx->X2BUFCFG, FMAC_X2BUFCFG_X2_BUF_SIZE) >> FMAC_X2BUFCFG_X2_BUF_SIZE_Pos);
}
/**
* @brief Configure X2 base.
* @rmtoll X2BUFCFG X2_BASE LL_FMAC_SetX2Base
* @param FMACx FMAC instance
* @param Base Base address of the coefficient buffer (X2) within the internal memory.
* This parameter must be a value between Min_Data=0x00 and Max_Data=0xFF.
* @retval None
*/
__STATIC_INLINE void LL_FMAC_SetX2Base(FMAC_TypeDef *FMACx, uint8_t Base)
{
MODIFY_REG(FMACx->X2BUFCFG, FMAC_X2BUFCFG_X2_BASE, ((uint32_t)Base) << FMAC_X2BUFCFG_X2_BASE_Pos);
}
/**
* @brief Return X2 base.
* @rmtoll X2BUFCFG X2_BASE LL_FMAC_GetX2Base
* @param FMACx FMAC instance
* @retval uint8_t Base address of the coefficient buffer (X2) within the internal memory
* (value between Min_Data=0x00 and Max_Data=0xFF).
*/
__STATIC_INLINE uint8_t LL_FMAC_GetX2Base(FMAC_TypeDef *FMACx)
{
return (uint8_t)(READ_BIT(FMACx->X2BUFCFG, FMAC_X2BUFCFG_X2_BASE) >> FMAC_X2BUFCFG_X2_BASE_Pos);
}
/**
* @brief Configure Y empty watermark.
* @rmtoll YBUFCFG EMPTY_WM LL_FMAC_SetYEmptyWatermark
* @param FMACx FMAC instance
* @param Watermark This parameter can be one of the following values:
* @arg @ref LL_FMAC_WM_0_THRESHOLD_1
* @arg @ref LL_FMAC_WM_1_THRESHOLD_2
* @arg @ref LL_FMAC_WM_2_THRESHOLD_4
* @arg @ref LL_FMAC_WM_3_THRESHOLD_8
* @retval None
*/
__STATIC_INLINE void LL_FMAC_SetYEmptyWatermark(FMAC_TypeDef *FMACx, uint32_t Watermark)
{
MODIFY_REG(FMACx->YBUFCFG, FMAC_YBUFCFG_EMPTY_WM, Watermark);
}
/**
* @brief Return Y empty watermark.
* @rmtoll YBUFCFG EMPTY_WM LL_FMAC_GetYEmptyWatermark
* @param FMACx FMAC instance
* @retval uint32_t Returned value can be one of the following values:
* @arg @ref LL_FMAC_WM_0_THRESHOLD_1
* @arg @ref LL_FMAC_WM_1_THRESHOLD_2
* @arg @ref LL_FMAC_WM_2_THRESHOLD_4
* @arg @ref LL_FMAC_WM_3_THRESHOLD_8
*/
__STATIC_INLINE uint32_t LL_FMAC_GetYEmptyWatermark(FMAC_TypeDef *FMACx)
{
return (uint32_t)(READ_BIT(FMACx->YBUFCFG, FMAC_YBUFCFG_EMPTY_WM));
}
/**
* @brief Configure Y buffer size.
* @rmtoll YBUFCFG Y_BUF_SIZE LL_FMAC_SetYBufferSize
* @param FMACx FMAC instance
* @param BufferSize Number of 16-bit words allocated to the output buffer (including the optional "headroom").
* This parameter must be a number between Min_Data=0x01 and Max_Data=0xFF.
* @retval None
*/
__STATIC_INLINE void LL_FMAC_SetYBufferSize(FMAC_TypeDef *FMACx, uint8_t BufferSize)
{
MODIFY_REG(FMACx->YBUFCFG, FMAC_YBUFCFG_Y_BUF_SIZE, ((uint32_t)BufferSize) << FMAC_YBUFCFG_Y_BUF_SIZE_Pos);
}
/**
* @brief Return Y buffer size.
* @rmtoll YBUFCFG Y_BUF_SIZE LL_FMAC_GetYBufferSize
* @param FMACx FMAC instance
* @retval uint8_t Number of 16-bit words allocated to the output buffer
* (including the optional "headroom" - value between Min_Data=0x01 and Max_Data=0xFF).
*/
__STATIC_INLINE uint8_t LL_FMAC_GetYBufferSize(FMAC_TypeDef *FMACx)
{
return (uint8_t)(READ_BIT(FMACx->YBUFCFG, FMAC_YBUFCFG_Y_BUF_SIZE) >> FMAC_YBUFCFG_Y_BUF_SIZE_Pos);
}
/**
* @brief Configure Y base.
* @rmtoll YBUFCFG Y_BASE LL_FMAC_SetYBase
* @param FMACx FMAC instance
* @param Base Base address of the output buffer (Y) within the internal memory.
* This parameter must be a value between Min_Data=0x00 and Max_Data=0xFF.
* @retval None
*/
__STATIC_INLINE void LL_FMAC_SetYBase(FMAC_TypeDef *FMACx, uint8_t Base)
{
MODIFY_REG(FMACx->YBUFCFG, FMAC_YBUFCFG_Y_BASE, ((uint32_t)Base) << FMAC_YBUFCFG_Y_BASE_Pos);
}
/**
* @brief Return Y base.
* @rmtoll YBUFCFG Y_BASE LL_FMAC_GetYBase
* @param FMACx FMAC instance
* @retval uint8_t Base address of the output buffer (Y) within the internal memory
* (value between Min_Data=0x00 and Max_Data=0xFF).
*/
__STATIC_INLINE uint8_t LL_FMAC_GetYBase(FMAC_TypeDef *FMACx)
{
return (uint8_t)(READ_BIT(FMACx->YBUFCFG, FMAC_YBUFCFG_Y_BASE) >> FMAC_YBUFCFG_Y_BASE_Pos);
}
/**
* @brief Start FMAC processing.
* @rmtoll PARAM START LL_FMAC_EnableStart
* @param FMACx FMAC instance
* @retval None
*/
__STATIC_INLINE void LL_FMAC_EnableStart(FMAC_TypeDef *FMACx)
{
SET_BIT(FMACx->PARAM, FMAC_PARAM_START);
}
/**
* @brief Stop FMAC processing.
* @rmtoll PARAM START LL_FMAC_DisableStart
* @param FMACx FMAC instance
* @retval None
*/
__STATIC_INLINE void LL_FMAC_DisableStart(FMAC_TypeDef *FMACx)
{
CLEAR_BIT(FMACx->PARAM, FMAC_PARAM_START);
}
/**
* @brief Check the state of FMAC processing.
* @rmtoll PARAM START LL_FMAC_IsEnabledStart
* @param FMACx FMAC instance
* @retval uint32_t State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_FMAC_IsEnabledStart(FMAC_TypeDef *FMACx)
{
return ((READ_BIT(FMACx->PARAM, FMAC_PARAM_START) == (FMAC_PARAM_START)) ? 1UL : 0UL);
}
/**
* @brief Configure function.
* @rmtoll PARAM FUNC LL_FMAC_SetFunction
* @param FMACx FMAC instance
* @param Function This parameter can be one of the following values:
* @arg @ref LL_FMAC_FUNC_LOAD_X1
* @arg @ref LL_FMAC_FUNC_LOAD_X2
* @arg @ref LL_FMAC_FUNC_LOAD_Y
* @arg @ref LL_FMAC_FUNC_CONVO_FIR
* @arg @ref LL_FMAC_FUNC_IIR_DIRECT_FORM_1
* @retval None
*/
__STATIC_INLINE void LL_FMAC_SetFunction(FMAC_TypeDef *FMACx, uint32_t Function)
{
MODIFY_REG(FMACx->PARAM, FMAC_PARAM_FUNC, Function);
}
/**
* @brief Return function.
* @rmtoll PARAM FUNC LL_FMAC_GetFunction
* @param FMACx FMAC instance
* @retval uint32_t Returned value can be one of the following values:
* @arg @ref LL_FMAC_FUNC_LOAD_X1
* @arg @ref LL_FMAC_FUNC_LOAD_X2
* @arg @ref LL_FMAC_FUNC_LOAD_Y
* @arg @ref LL_FMAC_FUNC_CONVO_FIR
* @arg @ref LL_FMAC_FUNC_IIR_DIRECT_FORM_1
*/
__STATIC_INLINE uint32_t LL_FMAC_GetFunction(FMAC_TypeDef *FMACx)
{
return (uint32_t)(READ_BIT(FMACx->PARAM, FMAC_PARAM_FUNC));
}
/**
* @brief Configure input parameter R.
* @rmtoll PARAM R LL_FMAC_SetParamR
* @param FMACx FMAC instance
* @param Param Parameter R (gain, etc.).
* This parameter must be a value between Min_Data=0x00 and Max_Data=0xFF.
* @retval None
*/
__STATIC_INLINE void LL_FMAC_SetParamR(FMAC_TypeDef *FMACx, uint8_t Param)
{
MODIFY_REG(FMACx->PARAM, FMAC_PARAM_R, ((uint32_t)Param) << FMAC_PARAM_R_Pos);
}
/**
* @brief Return input parameter R.
* @rmtoll PARAM R LL_FMAC_GetParamR
* @param FMACx FMAC instance
* @retval uint8_t Parameter R (gain, etc.) (value between Min_Data=0x00 and Max_Data=0xFF).
*/
__STATIC_INLINE uint8_t LL_FMAC_GetParamR(FMAC_TypeDef *FMACx)
{
return (uint8_t)(READ_BIT(FMACx->PARAM, FMAC_PARAM_R) >> FMAC_PARAM_R_Pos);
}
/**
* @brief Configure input parameter Q.
* @rmtoll PARAM Q LL_FMAC_SetParamQ
* @param FMACx FMAC instance
* @param Param Parameter Q (vector length, etc.).
* This parameter must be a value between Min_Data=0x00 and Max_Data=0xFF.
* @retval None
*/
__STATIC_INLINE void LL_FMAC_SetParamQ(FMAC_TypeDef *FMACx, uint8_t Param)
{
MODIFY_REG(FMACx->PARAM, FMAC_PARAM_Q, ((uint32_t)Param) << FMAC_PARAM_Q_Pos);
}
/**
* @brief Return input parameter Q.
* @rmtoll PARAM Q LL_FMAC_GetParamQ
* @param FMACx FMAC instance
* @retval uint8_t Parameter Q (vector length, etc.) (value between Min_Data=0x00 and Max_Data=0xFF).
*/
__STATIC_INLINE uint8_t LL_FMAC_GetParamQ(FMAC_TypeDef *FMACx)
{
return (uint8_t)(READ_BIT(FMACx->PARAM, FMAC_PARAM_Q) >> FMAC_PARAM_Q_Pos);
}
/**
* @brief Configure input parameter P.
* @rmtoll PARAM P LL_FMAC_SetParamP
* @param FMACx FMAC instance
* @param Param Parameter P (vector length, number of filter taps, etc.).
* This parameter must be a value between Min_Data=0x00 and Max_Data=0xFF.
* @retval None
*/
__STATIC_INLINE void LL_FMAC_SetParamP(FMAC_TypeDef *FMACx, uint8_t Param)
{
MODIFY_REG(FMACx->PARAM, FMAC_PARAM_P, ((uint32_t)Param));
}
/**
* @brief Return input parameter P.
* @rmtoll PARAM P LL_FMAC_GetParamP
* @param FMACx FMAC instance
* @retval uint8_t Parameter P (vector length, number of filter taps, etc.)
* (value between Min_Data=0x00 and Max_Data=0xFF).
*/
__STATIC_INLINE uint8_t LL_FMAC_GetParamP(FMAC_TypeDef *FMACx)
{
return (uint8_t)(READ_BIT(FMACx->PARAM, FMAC_PARAM_P));
}
/**
* @}
*/
/** @defgroup FMAC_LL_EF_Reset_Management Reset_Management
* @{
*/
/**
* @brief Start the FMAC reset.
* @rmtoll CR RESET LL_FMAC_EnableReset
* @param FMACx FMAC instance
* @retval None
*/
__STATIC_INLINE void LL_FMAC_EnableReset(FMAC_TypeDef *FMACx)
{
SET_BIT(FMACx->CR, FMAC_CR_RESET);
}
/**
* @brief Check the state of the FMAC reset.
* @rmtoll CR RESET LL_FMAC_IsEnabledReset
* @param FMACx FMAC instance
* @retval uint32_t State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_FMAC_IsEnabledReset(FMAC_TypeDef *FMACx)
{
return ((READ_BIT(FMACx->CR, FMAC_CR_RESET) == (FMAC_CR_RESET)) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup FMAC_LL_EF_Configuration FMAC Configuration functions
* @{
*/
/**
* @brief Enable Clipping.
* @rmtoll CR CLIPEN LL_FMAC_EnableClipping
* @param FMACx FMAC instance
* @retval None
*/
__STATIC_INLINE void LL_FMAC_EnableClipping(FMAC_TypeDef *FMACx)
{
SET_BIT(FMACx->CR, FMAC_CR_CLIPEN);
}
/**
* @brief Disable Clipping.
* @rmtoll CR CLIPEN LL_FMAC_DisableClipping
* @param FMACx FMAC instance
* @retval None
*/
__STATIC_INLINE void LL_FMAC_DisableClipping(FMAC_TypeDef *FMACx)
{
CLEAR_BIT(FMACx->CR, FMAC_CR_CLIPEN);
}
/**
* @brief Check Clipping State.
* @rmtoll CR CLIPEN LL_FMAC_IsEnabledClipping
* @param FMACx FMAC instance
* @retval uint32_t State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_FMAC_IsEnabledClipping(FMAC_TypeDef *FMACx)
{
return ((READ_BIT(FMACx->CR, FMAC_CR_CLIPEN) == (FMAC_CR_CLIPEN)) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup FMAC_LL_EF_DMA_Management DMA_Management
* @{
*/
/**
* @brief Enable FMAC DMA write channel request.
* @rmtoll CR DMAWEN LL_FMAC_EnableDMAReq_WRITE
* @param FMACx FMAC instance
* @retval None
*/
__STATIC_INLINE void LL_FMAC_EnableDMAReq_WRITE(FMAC_TypeDef *FMACx)
{
SET_BIT(FMACx->CR, FMAC_CR_DMAWEN);
}
/**
* @brief Disable FMAC DMA write channel request.
* @rmtoll CR DMAWEN LL_FMAC_DisableDMAReq_WRITE
* @param FMACx FMAC instance
* @retval None
*/
__STATIC_INLINE void LL_FMAC_DisableDMAReq_WRITE(FMAC_TypeDef *FMACx)
{
CLEAR_BIT(FMACx->CR, FMAC_CR_DMAWEN);
}
/**
* @brief Check FMAC DMA write channel request state.
* @rmtoll CR DMAWEN LL_FMAC_IsEnabledDMAReq_WRITE
* @param FMACx FMAC instance
* @retval uint32_t State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_FMAC_IsEnabledDMAReq_WRITE(FMAC_TypeDef *FMACx)
{
return ((READ_BIT(FMACx->CR, FMAC_CR_DMAWEN) == (FMAC_CR_DMAWEN)) ? 1UL : 0UL);
}
/**
* @brief Enable FMAC DMA read channel request.
* @rmtoll CR DMAREN LL_FMAC_EnableDMAReq_READ
* @param FMACx FMAC instance
* @retval None
*/
__STATIC_INLINE void LL_FMAC_EnableDMAReq_READ(FMAC_TypeDef *FMACx)
{
SET_BIT(FMACx->CR, FMAC_CR_DMAREN);
}
/**
* @brief Disable FMAC DMA read channel request.
* @rmtoll CR DMAREN LL_FMAC_DisableDMAReq_READ
* @param FMACx FMAC instance
* @retval None
*/
__STATIC_INLINE void LL_FMAC_DisableDMAReq_READ(FMAC_TypeDef *FMACx)
{
CLEAR_BIT(FMACx->CR, FMAC_CR_DMAREN);
}
/**
* @brief Check FMAC DMA read channel request state.
* @rmtoll CR DMAREN LL_FMAC_IsEnabledDMAReq_READ
* @param FMACx FMAC instance
* @retval uint32_t State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_FMAC_IsEnabledDMAReq_READ(FMAC_TypeDef *FMACx)
{
return ((READ_BIT(FMACx->CR, FMAC_CR_DMAREN) == (FMAC_CR_DMAREN)) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup FMAC_LL_EF_IT_Management IT_Management
* @{
*/
/**
* @brief Enable FMAC saturation error interrupt.
* @rmtoll CR SATIEN LL_FMAC_EnableIT_SAT
* @param FMACx FMAC instance
* @retval None
*/
__STATIC_INLINE void LL_FMAC_EnableIT_SAT(FMAC_TypeDef *FMACx)
{
SET_BIT(FMACx->CR, FMAC_CR_SATIEN);
}
/**
* @brief Disable FMAC saturation error interrupt.
* @rmtoll CR SATIEN LL_FMAC_DisableIT_SAT
* @param FMACx FMAC instance
* @retval None
*/
__STATIC_INLINE void LL_FMAC_DisableIT_SAT(FMAC_TypeDef *FMACx)
{
CLEAR_BIT(FMACx->CR, FMAC_CR_SATIEN);
}
/**
* @brief Check FMAC saturation error interrupt state.
* @rmtoll CR SATIEN LL_FMAC_IsEnabledIT_SAT
* @param FMACx FMAC instance
* @retval uint32_t State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_FMAC_IsEnabledIT_SAT(FMAC_TypeDef *FMACx)
{
return ((READ_BIT(FMACx->CR, FMAC_CR_SATIEN) == (FMAC_CR_SATIEN)) ? 1UL : 0UL);
}
/**
* @brief Enable FMAC underflow error interrupt.
* @rmtoll CR UNFLIEN LL_FMAC_EnableIT_UNFL
* @param FMACx FMAC instance
* @retval None
*/
__STATIC_INLINE void LL_FMAC_EnableIT_UNFL(FMAC_TypeDef *FMACx)
{
SET_BIT(FMACx->CR, FMAC_CR_UNFLIEN);
}
/**
* @brief Disable FMAC underflow error interrupt.
* @rmtoll CR UNFLIEN LL_FMAC_DisableIT_UNFL
* @param FMACx FMAC instance
* @retval None
*/
__STATIC_INLINE void LL_FMAC_DisableIT_UNFL(FMAC_TypeDef *FMACx)
{
CLEAR_BIT(FMACx->CR, FMAC_CR_UNFLIEN);
}
/**
* @brief Check FMAC underflow error interrupt state.
* @rmtoll CR UNFLIEN LL_FMAC_IsEnabledIT_UNFL
* @param FMACx FMAC instance
* @retval uint32_t State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_FMAC_IsEnabledIT_UNFL(FMAC_TypeDef *FMACx)
{
return ((READ_BIT(FMACx->CR, FMAC_CR_UNFLIEN) == (FMAC_CR_UNFLIEN)) ? 1UL : 0UL);
}
/**
* @brief Enable FMAC overflow error interrupt.
* @rmtoll CR OVFLIEN LL_FMAC_EnableIT_OVFL
* @param FMACx FMAC instance
* @retval None
*/
__STATIC_INLINE void LL_FMAC_EnableIT_OVFL(FMAC_TypeDef *FMACx)
{
SET_BIT(FMACx->CR, FMAC_CR_OVFLIEN);
}
/**
* @brief Disable FMAC overflow error interrupt.
* @rmtoll CR OVFLIEN LL_FMAC_DisableIT_OVFL
* @param FMACx FMAC instance
* @retval None
*/
__STATIC_INLINE void LL_FMAC_DisableIT_OVFL(FMAC_TypeDef *FMACx)
{
CLEAR_BIT(FMACx->CR, FMAC_CR_OVFLIEN);
}
/**
* @brief Check FMAC overflow error interrupt state.
* @rmtoll CR OVFLIEN LL_FMAC_IsEnabledIT_OVFL
* @param FMACx FMAC instance
* @retval uint32_t State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_FMAC_IsEnabledIT_OVFL(FMAC_TypeDef *FMACx)
{
return ((READ_BIT(FMACx->CR, FMAC_CR_OVFLIEN) == (FMAC_CR_OVFLIEN)) ? 1UL : 0UL);
}
/**
* @brief Enable FMAC write interrupt.
* @rmtoll CR WIEN LL_FMAC_EnableIT_WR
* @param FMACx FMAC instance
* @retval None
*/
__STATIC_INLINE void LL_FMAC_EnableIT_WR(FMAC_TypeDef *FMACx)
{
SET_BIT(FMACx->CR, FMAC_CR_WIEN);
}
/**
* @brief Disable FMAC write interrupt.
* @rmtoll CR WIEN LL_FMAC_DisableIT_WR
* @param FMACx FMAC instance
* @retval None
*/
__STATIC_INLINE void LL_FMAC_DisableIT_WR(FMAC_TypeDef *FMACx)
{
CLEAR_BIT(FMACx->CR, FMAC_CR_WIEN);
}
/**
* @brief Check FMAC write interrupt state.
* @rmtoll CR WIEN LL_FMAC_IsEnabledIT_WR
* @param FMACx FMAC instance
* @retval uint32_t State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_FMAC_IsEnabledIT_WR(FMAC_TypeDef *FMACx)
{
return ((READ_BIT(FMACx->CR, FMAC_CR_WIEN) == (FMAC_CR_WIEN)) ? 1UL : 0UL);
}
/**
* @brief Enable FMAC read interrupt.
* @rmtoll CR RIEN LL_FMAC_EnableIT_RD
* @param FMACx FMAC instance
* @retval None
*/
__STATIC_INLINE void LL_FMAC_EnableIT_RD(FMAC_TypeDef *FMACx)
{
SET_BIT(FMACx->CR, FMAC_CR_RIEN);
}
/**
* @brief Disable FMAC read interrupt.
* @rmtoll CR RIEN LL_FMAC_DisableIT_RD
* @param FMACx FMAC instance
* @retval None
*/
__STATIC_INLINE void LL_FMAC_DisableIT_RD(FMAC_TypeDef *FMACx)
{
CLEAR_BIT(FMACx->CR, FMAC_CR_RIEN);
}
/**
* @brief Check FMAC read interrupt state.
* @rmtoll CR RIEN LL_FMAC_IsEnabledIT_RD
* @param FMACx FMAC instance
* @retval uint32_t State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_FMAC_IsEnabledIT_RD(FMAC_TypeDef *FMACx)
{
return ((READ_BIT(FMACx->CR, FMAC_CR_RIEN) == (FMAC_CR_RIEN)) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup FMAC_LL_EF_FLAG_Management FLAG_Management
* @{
*/
/**
* @brief Check FMAC saturation error flag state.
* @rmtoll SR SAT LL_FMAC_IsActiveFlag_SAT
* @param FMACx FMAC instance
* @retval uint32_t State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_FMAC_IsActiveFlag_SAT(FMAC_TypeDef *FMACx)
{
return ((READ_BIT(FMACx->SR, FMAC_SR_SAT) == (FMAC_SR_SAT)) ? 1UL : 0UL);
}
/**
* @brief Check FMAC underflow error flag state.
* @rmtoll SR UNFL LL_FMAC_IsActiveFlag_UNFL
* @param FMACx FMAC instance
* @retval uint32_t State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_FMAC_IsActiveFlag_UNFL(FMAC_TypeDef *FMACx)
{
return ((READ_BIT(FMACx->SR, FMAC_SR_UNFL) == (FMAC_SR_UNFL)) ? 1UL : 0UL);
}
/**
* @brief Check FMAC overflow error flag state.
* @rmtoll SR OVFL LL_FMAC_IsActiveFlag_OVFL
* @param FMACx FMAC instance
* @retval uint32_t State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_FMAC_IsActiveFlag_OVFL(FMAC_TypeDef *FMACx)
{
return ((READ_BIT(FMACx->SR, FMAC_SR_OVFL) == (FMAC_SR_OVFL)) ? 1UL : 0UL);
}
/**
* @brief Check FMAC X1 buffer full flag state.
* @rmtoll SR X1FULL LL_FMAC_IsActiveFlag_X1FULL
* @param FMACx FMAC instance
* @retval uint32_t State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_FMAC_IsActiveFlag_X1FULL(FMAC_TypeDef *FMACx)
{
return ((READ_BIT(FMACx->SR, FMAC_SR_X1FULL) == (FMAC_SR_X1FULL)) ? 1UL : 0UL);
}
/**
* @brief Check FMAC Y buffer empty flag state.
* @rmtoll SR YEMPTY LL_FMAC_IsActiveFlag_YEMPTY
* @param FMACx FMAC instance
* @retval uint32_t State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_FMAC_IsActiveFlag_YEMPTY(FMAC_TypeDef *FMACx)
{
return ((READ_BIT(FMACx->SR, FMAC_SR_YEMPTY) == (FMAC_SR_YEMPTY)) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup FMAC_LL_EF_Data_Management Data_Management
* @{
*/
/**
* @brief Write 16-bit input data for the FMAC processing.
* @rmtoll WDATA WDATA LL_FMAC_WriteData
* @param FMACx FMAC instance
* @param InData 16-bit value to be provided as input data for FMAC processing.
* This parameter must be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
* @retval None
*/
__STATIC_INLINE void LL_FMAC_WriteData(FMAC_TypeDef *FMACx, uint16_t InData)
{
WRITE_REG(FMACx->WDATA, InData);
}
/**
* @brief Return 16-bit output data of FMAC processing.
* @rmtoll RDATA RDATA LL_FMAC_ReadData
* @param FMACx FMAC instance
* @retval uint16_t 16-bit output data of FMAC processing (value between Min_Data=0x0000 and Max_Data=0xFFFF).
*/
__STATIC_INLINE uint16_t LL_FMAC_ReadData(FMAC_TypeDef *FMACx)
{
return (uint16_t)(READ_REG(FMACx->RDATA));
}
/**
* @}
*/
/** @defgroup FMAC_LL_EF_Configuration FMAC Configuration functions
* @{
*/
/**
* @brief Configure memory for X1 buffer.
* @rmtoll X1BUFCFG FULL_WM LL_FMAC_ConfigX1\n
* X1BUFCFG X1_BASE LL_FMAC_ConfigX1\n
* X1BUFCFG X1_BUF_SIZE LL_FMAC_ConfigX1
* @param FMACx FMAC instance
* @param Watermark This parameter can be one of the following values:
* @arg @ref LL_FMAC_WM_0_THRESHOLD_1
* @arg @ref LL_FMAC_WM_1_THRESHOLD_2
* @arg @ref LL_FMAC_WM_2_THRESHOLD_4
* @arg @ref LL_FMAC_WM_3_THRESHOLD_8
* @param Base Base address of the input buffer (X1) within the internal memory.
* This parameter must be a value between Min_Data=0x00 and Max_Data=0xFF.
* @param BufferSize Number of 16-bit words allocated to the input buffer (including the optional "headroom").
* This parameter must be a number between Min_Data=0x01 and Max_Data=0xFF.
* @retval None
*/
__STATIC_INLINE void LL_FMAC_ConfigX1(FMAC_TypeDef *FMACx, uint32_t Watermark, uint8_t Base, uint8_t BufferSize)
{
MODIFY_REG(FMACx->X1BUFCFG, FMAC_X1BUFCFG_FULL_WM | FMAC_X1BUFCFG_X1_BASE | FMAC_X1BUFCFG_X1_BUF_SIZE,
Watermark | (((uint32_t)Base) << FMAC_X1BUFCFG_X1_BASE_Pos) |
(((uint32_t)BufferSize) << FMAC_X1BUFCFG_X1_BUF_SIZE_Pos));
}
/**
* @brief Configure memory for X2 buffer.
* @rmtoll X2BUFCFG X2_BASE LL_FMAC_ConfigX2\n
* X2BUFCFG X2_BUF_SIZE LL_FMAC_ConfigX2
* @param FMACx FMAC instance
* @param Base Base address of the coefficient buffer (X2) within the internal memory.
* This parameter must be a value between Min_Data=0x00 and Max_Data=0xFF.
* @param BufferSize Number of 16-bit words allocated to the coefficient buffer.
* This parameter must be a number between Min_Data=0x01 and Max_Data=0xFF.
* @retval None
*/
__STATIC_INLINE void LL_FMAC_ConfigX2(FMAC_TypeDef *FMACx, uint8_t Base, uint8_t BufferSize)
{
MODIFY_REG(FMACx->X2BUFCFG, FMAC_X2BUFCFG_X2_BASE | FMAC_X2BUFCFG_X2_BUF_SIZE,
(((uint32_t)Base) << FMAC_X2BUFCFG_X2_BASE_Pos) |
(((uint32_t)BufferSize) << FMAC_X2BUFCFG_X2_BUF_SIZE_Pos));
}
/**
* @brief Configure memory for Y buffer.
* @rmtoll YBUFCFG EMPTY_WM LL_FMAC_ConfigY\n
* YBUFCFG Y_BASE LL_FMAC_ConfigY\n
* YBUFCFG Y_BUF_SIZE LL_FMAC_ConfigY
* @param FMACx FMAC instance
* @param Watermark This parameter can be one of the following values:
* @arg @ref LL_FMAC_WM_0_THRESHOLD_1
* @arg @ref LL_FMAC_WM_1_THRESHOLD_2
* @arg @ref LL_FMAC_WM_2_THRESHOLD_4
* @arg @ref LL_FMAC_WM_3_THRESHOLD_8
* @param Base Base address of the output buffer (Y) within the internal memory.
* This parameter must be a value between Min_Data=0x00 and Max_Data=0xFF.
* @param BufferSize Number of 16-bit words allocated to the output buffer (including the optional "headroom").
* This parameter must be a number between Min_Data=0x01 and Max_Data=0xFF.
* @retval None
*/
__STATIC_INLINE void LL_FMAC_ConfigY(FMAC_TypeDef *FMACx, uint32_t Watermark, uint8_t Base, uint8_t BufferSize)
{
MODIFY_REG(FMACx->YBUFCFG, FMAC_YBUFCFG_EMPTY_WM | FMAC_YBUFCFG_Y_BASE | FMAC_YBUFCFG_Y_BUF_SIZE,
Watermark | (((uint32_t)Base) << FMAC_YBUFCFG_Y_BASE_Pos) |
(((uint32_t)BufferSize) << FMAC_YBUFCFG_Y_BUF_SIZE_Pos));
}
/**
* @brief Configure the FMAC processing.
* @rmtoll PARAM START LL_FMAC_ConfigFunc\n
* PARAM FUNC LL_FMAC_ConfigFunc\n
* PARAM P LL_FMAC_ConfigFunc\n
* PARAM Q LL_FMAC_ConfigFunc\n
* PARAM R LL_FMAC_ConfigFunc
* @param FMACx FMAC instance
* @param Start This parameter can be one of the following values:
* @arg @ref LL_FMAC_PROCESSING_STOP
* @arg @ref LL_FMAC_PROCESSING_START
* @param Function This parameter can be one of the following values:
* @arg @ref LL_FMAC_FUNC_LOAD_X1
* @arg @ref LL_FMAC_FUNC_LOAD_X2
* @arg @ref LL_FMAC_FUNC_LOAD_Y
* @arg @ref LL_FMAC_FUNC_CONVO_FIR
* @arg @ref LL_FMAC_FUNC_IIR_DIRECT_FORM_1
* @param ParamP Parameter P (vector length, number of filter taps, etc.).
* This parameter must be a value between Min_Data=0x00 and Max_Data=0xFF.
* @param ParamQ Parameter Q (vector length, etc.).
* This parameter must be a value between Min_Data=0x00 and Max_Data=0xFF.
* @param ParamR Parameter R (gain, etc.).
* This parameter must be a value between Min_Data=0x00 and Max_Data=0xFF.
* @retval None
*/
__STATIC_INLINE void LL_FMAC_ConfigFunc(FMAC_TypeDef *FMACx, uint8_t Start, uint32_t Function, uint8_t ParamP,
uint8_t ParamQ, uint8_t ParamR)
{
MODIFY_REG(FMACx->PARAM, FMAC_PARAM_START | FMAC_PARAM_FUNC | FMAC_PARAM_P | FMAC_PARAM_Q | FMAC_PARAM_R,
(((uint32_t)Start) << FMAC_PARAM_START_Pos) | Function | (((uint32_t)ParamP) << FMAC_PARAM_P_Pos) |
(((uint32_t)ParamQ) << FMAC_PARAM_Q_Pos) | (((uint32_t)ParamR) << FMAC_PARAM_R_Pos));
}
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup FMAC_LL_EF_Init Initialization and de-initialization functions
* @{
*/
ErrorStatus LL_FMAC_Init(FMAC_TypeDef *FMACx);
ErrorStatus LL_FMAC_DeInit(FMAC_TypeDef *FMACx);
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/**
* @}
*/
/**
* @}
*/
#endif /* defined(FMAC) */
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32H7xx_LL_FMAC_H */