steering-wheel/Core/Src/leds.c

325 lines
8.6 KiB
C

#include "leds.h"
#include "app_azure_rtos.h"
#include "main.h"
#include "stm32h7xx_hal.h"
#include "stm32h7xx_hal_dma.h"
#include "stm32h7xx_hal_gpio.h"
#include "stm32h7xx_hal_spi.h"
#include "stm32h7xx_hal_tim.h"
#include "tx_api.h"
#include "vehicle_state.h"
#include <stdint.h>
#define LED_SPEED_MIN 15 // km/h
#define LED_SPEED_MAX 80 // km/h
#define LED_SPEED_HUE_MIN 180.0f // °
#define LED_SPEED_HUE_MAX 0.0f // °
SPI_HandleTypeDef *hspi;
TIM_HandleTypeDef *htim;
extern uint16_t led_buf[256][3];
static size_t led_buf_idx = 0;
static TX_THREAD child_thread;
static void *child_thread_stack;
void led_init(SPI_HandleTypeDef *spi, TIM_HandleTypeDef *pwmtim) {
hspi = spi;
htim = pwmtim;
HAL_GPIO_WritePin(LED_LE_GPIO_Port, LED_LE_Pin, GPIO_PIN_RESET);
memset(led_buf, 0, sizeof(led_buf));
if (HAL_SPI_Transmit_DMA(hspi, (const uint8_t *)&led_buf[led_buf_idx], 3) !=
HAL_OK) {
Error_Handler();
}
__HAL_TIM_SET_COMPARE(htim, PWM_CHANNEL_R, 0x3FFF);
__HAL_TIM_SET_COMPARE(htim, PWM_CHANNEL_G, 0x13FF);
__HAL_TIM_SET_COMPARE(htim, PWM_CHANNEL_B, 0x1FFF);
if (HAL_TIM_PWM_Start(htim, PWM_CHANNEL_R) != HAL_OK) {
Error_Handler();
}
if (HAL_TIM_PWM_Start(htim, PWM_CHANNEL_G) != HAL_OK) {
Error_Handler();
}
if (HAL_TIM_PWM_Start(htim, PWM_CHANNEL_B) != HAL_OK) {
Error_Handler();
}
}
void led_set(size_t idx, uint8_t r, uint8_t g, uint8_t b) {
uint16_t led_set = (1 << idx);
uint16_t led_unset = ~led_set;
uint8_t rgb[] = {b, g, r};
for (size_t time = 0; time < 256; time++) {
// TODO: Shouldn't time only go up to 254?
for (size_t i = 0; i < 3; i++) {
if (time < rgb[i]) {
led_buf[time][i] |= led_set;
} else {
led_buf[time][i] &= led_unset;
}
}
}
}
void led_all_off() { memset(led_buf, 0, sizeof(led_buf)); }
void led_thread_entry(ULONG child_thread_stack_addr) {
child_thread_stack = (void *)child_thread_stack_addr;
led_start_animation(ANIM_RAINBOW);
while (1) {
tx_thread_sleep(10);
if (child_thread.tx_thread_stack_start &&
child_thread.tx_thread_state != TX_COMPLETED &&
child_thread.tx_thread_state != TX_TERMINATED) {
continue;
}
float speed =
(vehicle_state.speed - LED_SPEED_MIN) / (LED_SPEED_MAX - LED_SPEED_MIN);
float num_leds_exact = speed * N_LEDS;
num_leds_exact = fmin(N_LEDS, fmax(0, num_leds_exact));
int num_leds = num_leds_exact;
float num_leds_frac = num_leds_exact - num_leds;
float hue =
LED_SPEED_HUE_MIN - speed * (LED_SPEED_HUE_MIN - LED_SPEED_HUE_MAX);
hue = fmin(LED_SPEED_HUE_MIN, fmax(LED_SPEED_HUE_MAX, hue));
uint8_t r, g, b;
led_hsv_to_rgb(hue, 1.0f, 1.0f, &r, &g, &b);
// Fully illuminate first n LEDs
for (int i = 0; i < num_leds; i++) {
led_set(i, r, g, b);
}
// Partially illuminate n+1th LED
if (num_leds < N_LEDS) {
led_hsv_to_rgb(hue, 1.0f, num_leds_frac, &r, &g, &b);
led_set(num_leds, r, g, b);
}
// Turn off all other LEDs
for (int i = num_leds + 1; i < N_LEDS; i++) {
led_set(i, 0, 0, 0);
}
}
}
void led_start_animation(LEDAnimation anim) {
if (child_thread.tx_thread_stack_start && // Check if any thread was started
// previously
child_thread.tx_thread_state != TX_COMPLETED &&
child_thread.tx_thread_state != TX_TERMINATED) {
if (tx_thread_terminate(&child_thread) != TX_SUCCESS) {
Error_Handler();
}
}
if (child_thread.tx_thread_stack_start && // Check if any thread was started
// previously
tx_thread_delete(&child_thread) != TX_SUCCESS) {
Error_Handler();
}
void (*animation_entry)(ULONG);
switch (anim) {
case ANIM_TE_STARTUP:
animation_entry = led_anim_te_startup;
break;
case ANIM_FT_STARTUP:
animation_entry = led_anim_ft_startup;
break;
case ANIM_KNIGHT_RIDER:
animation_entry = led_anim_knight_rider;
break;
case ANIM_RAINBOW:
animation_entry = led_anim_rainbow;
break;
default:
return;
}
led_all_off();
if (tx_thread_create(&child_thread, "LED Animation Thread", animation_entry,
0, child_thread_stack, THREAD_STACK_SIZE,
THREAD_PRIO_LED_CHILD, THREAD_PRIO_LED_CHILD, 0,
TX_AUTO_START) != TX_SUCCESS) {
Error_Handler();
}
}
void led_anim_te_startup(ULONG _) {
led_anim_blinker(0xF2, 0x8B, 0x00, 20, 7, 2);
}
void led_anim_ft_startup(ULONG _) { led_anim_blinker(0xC5, 0, 0, 20, 7, 2); }
void led_anim_knight_rider(ULONG _) {
const size_t num_leds = 5;
int tail_right = 1;
size_t tail = 0;
while (1) {
size_t x = tail;
int x_right = tail_right;
uint8_t red = 0;
for (size_t i = 0; i < num_leds + 1; i++) {
led_set(x, red, 0, 0);
if (x == 8) {
x_right = 0;
} else if (x == 0) {
x_right = 1;
}
if (x_right) {
x++;
} else {
x--;
}
red += 0xFF / num_leds;
}
if (tail == 8) {
tail_right = 0;
} else if (tail == 0) {
tail_right = 1;
}
if (tail_right) {
tail++;
} else {
tail--;
}
tx_thread_sleep(5);
}
}
void led_anim_rainbow(ULONG _) {
size_t tail = 0;
float offset = 0.0f;
// Moving rainbow
uint32_t start = HAL_GetTick();
while (offset < 360) {
for (size_t i = 0; i < N_LEDS; i++) {
size_t led = (tail + i) % N_LEDS;
uint8_t r, g, b;
float hue = fmodf(offset + i * 360.0f / N_LEDS, 360.0f);
led_hsv_to_rgb(hue, 1, 1, &r, &g, &b);
led_set(led, r, g, b);
}
offset = (HAL_GetTick() - start) / 5.0f;
tx_thread_sleep(1);
}
// Fade-out
for (float val = 1.0f; val > 0; val -= 0.1f) {
for (size_t i = 0; i < N_LEDS; i++) {
float hue = fmodf(offset + i * 360.0f / N_LEDS, 360.0f);
uint8_t r, g, b;
led_hsv_to_rgb(hue, 1, val, &r, &g, &b);
led_set(i, r, g, b);
}
tx_thread_sleep(1);
}
}
void led_anim_blinker(uint8_t r, uint8_t g, uint8_t b,
uint32_t brightness_steps, uint32_t next_led_steps,
uint32_t delay) {
uint8_t colors[brightness_steps][3];
for (int i = brightness_steps - 1; i >= 0; i--) {
colors[i][0] = r * i / (brightness_steps - 1);
colors[i][1] = g * i / (brightness_steps - 1);
colors[i][2] = b * i / (brightness_steps - 1);
}
int32_t simultaneous_leds = brightness_steps / next_led_steps;
if (simultaneous_leds * next_led_steps != brightness_steps) {
simultaneous_leds++;
}
int inc = 1;
for (int i = 0; i < 2; i++) {
int32_t furthest = 0;
size_t color_idx = 0;
while (furthest < 5 + simultaneous_leds) {
for (int32_t offset = 0; offset < simultaneous_leds; offset++) {
int32_t diff = furthest - offset;
size_t led_color_idx = color_idx + offset * next_led_steps;
if (diff < 0 || diff > 4 || led_color_idx >= brightness_steps) {
continue;
}
if (!inc) {
led_color_idx = brightness_steps - led_color_idx - 1;
}
uint8_t *color = colors[led_color_idx];
led_set(4 + diff, color[0], color[1], color[2]);
led_set(4 - diff, color[0], color[1], color[2]);
}
color_idx++;
if (color_idx == next_led_steps) {
color_idx = 0;
furthest++;
}
tx_thread_sleep(delay);
}
inc = !inc;
}
}
void led_hsv_to_rgb(float h, float s, float v, uint8_t *r, uint8_t *g,
uint8_t *b) {
float c = v * s;
float x = c * (1 - fabs(fmod(h / 60.0, 2) - 1));
float m = v - c;
float r1, g1, b1;
if (h < 60) {
r1 = c;
g1 = x;
b1 = 0;
} else if (h < 120) {
r1 = x;
g1 = c;
b1 = 0;
} else if (h < 180) {
r1 = 0;
g1 = c;
b1 = x;
} else if (h < 240) {
r1 = 0;
g1 = x;
b1 = c;
} else if (h < 300) {
r1 = x;
g1 = 0;
b1 = c;
} else {
r1 = c;
g1 = 0;
b1 = x;
}
*r = (int)((r1 + m) * 255.0 + 0.5);
*g = (int)((g1 + m) * 255.0 + 0.5);
*b = (int)((b1 + m) * 255.0 + 0.5);
}
void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *handle) {
if (handle != hspi) {
return;
}
led_buf_idx = (led_buf_idx + 1) % 256;
HAL_GPIO_WritePin(LED_LE_GPIO_Port, LED_LE_Pin, GPIO_PIN_SET);
for (size_t i = 0; i < 10; i++) {
asm("nop" ::: "memory");
}
HAL_GPIO_WritePin(LED_LE_GPIO_Port, LED_LE_Pin, GPIO_PIN_RESET);
for (size_t i = 0; i < 10; i++) {
asm("nop" ::: "memory");
}
HAL_SPI_Transmit_DMA(hspi, (const uint8_t *)&led_buf[led_buf_idx], 3);
}
void HAL_SPI_ErrorCallback(SPI_HandleTypeDef *handle) {
if (handle != hspi) {
return;
}
volatile uint32_t err = HAL_DMA_GetError(hspi->hdmatx);
err = err;
}