steering-wheel/Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_adc.c

4055 lines
157 KiB
C

/**
******************************************************************************
* @file stm32h7xx_hal_adc.c
* @author MCD Application Team
* @brief This file provides firmware functions to manage the following
* functionalities of the Analog to Digital Converter (ADC)
* peripheral:
* + Peripheral Control functions
* + Peripheral State functions
* Other functions (extended functions) are available in file
* "stm32h7xx_hal_adc_ex.c".
*
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### ADC peripheral features #####
==============================================================================
[..]
(+) 16-bit, 14-bit, 12-bit, 10-bit or 8-bit configurable resolution.
Note: On devices STM32H72xx and STM32H73xx, these resolution are applicable to instances ADC1 and ADC2.
ADC3 is featuring resolutions 12-bit, 10-bit, 8-bit, 6-bit.
(+) Interrupt generation at the end of regular conversion and in case of
analog watchdog or overrun events.
(+) Single and continuous conversion modes.
(+) Scan mode for conversion of several channels sequentially.
(+) Data alignment with in-built data coherency.
(+) Programmable sampling time (channel wise)
(+) External trigger (timer or EXTI) with configurable polarity
(+) DMA request generation for transfer of conversions data of regular group.
(+) Configurable delay between conversions in Dual interleaved mode.
(+) ADC channels selectable single/differential input.
(+) ADC offset shared on 4 offset instances.
(+) ADC calibration
(+) ADC conversion of regular group.
(+) ADC supply requirements: 1.62 V to 3.6 V.
(+) ADC input range: from Vref- (connected to Vssa) to Vref+ (connected to
Vdda or to an external voltage reference).
##### How to use this driver #####
==============================================================================
[..]
*** Configuration of top level parameters related to ADC ***
============================================================
[..]
(#) Enable the ADC interface
(++) As prerequisite, ADC clock must be configured at RCC top level.
(++) Two clock settings are mandatory:
(+++) ADC clock (core clock, also possibly conversion clock).
(+++) ADC clock (conversions clock).
Two possible clock sources: synchronous clock derived from AHB clock
or asynchronous clock derived from system clock, the PLL2 or the PLL3 running up to 400MHz.
(+++) Example:
Into HAL_ADC_MspInit() (recommended code location) or with
other device clock parameters configuration:
(+++) __HAL_RCC_ADC_CLK_ENABLE(); (mandatory)
RCC_ADCCLKSOURCE_PLL2 enable: (optional: if asynchronous clock selected)
(+++) RCC_PeriphClkInitTypeDef RCC_PeriphClkInit;
(+++) PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
(+++) PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_PLL2;
(+++) HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);
(++) ADC clock source and clock prescaler are configured at ADC level with
parameter "ClockPrescaler" using function HAL_ADC_Init().
(#) ADC pins configuration
(++) Enable the clock for the ADC GPIOs
using macro __HAL_RCC_GPIOx_CLK_ENABLE()
(++) Configure these ADC pins in analog mode
using function HAL_GPIO_Init()
(#) Optionally, in case of usage of ADC with interruptions:
(++) Configure the NVIC for ADC
using function HAL_NVIC_EnableIRQ(ADCx_IRQn)
(++) Insert the ADC interruption handler function HAL_ADC_IRQHandler()
into the function of corresponding ADC interruption vector
ADCx_IRQHandler().
(#) Optionally, in case of usage of DMA:
(++) Configure the DMA (DMA channel, mode normal or circular, ...)
using function HAL_DMA_Init().
(++) Configure the NVIC for DMA
using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn)
(++) Insert the ADC interruption handler function HAL_ADC_IRQHandler()
into the function of corresponding DMA interruption vector
DMAx_Channelx_IRQHandler().
*** Configuration of ADC, group regular, channels parameters ***
================================================================
[..]
(#) Configure the ADC parameters (resolution, data alignment, ...)
and regular group parameters (conversion trigger, sequencer, ...)
using function HAL_ADC_Init().
(#) Configure the channels for regular group parameters (channel number,
channel rank into sequencer, ..., into regular group)
using function HAL_ADC_ConfigChannel().
(#) Optionally, configure the analog watchdog parameters (channels
monitored, thresholds, ...)
using function HAL_ADC_AnalogWDGConfig().
*** Execution of ADC conversions ***
====================================
[..]
(#) Optionally, perform an automatic ADC calibration to improve the
conversion accuracy
using function HAL_ADCEx_Calibration_Start().
(#) ADC driver can be used among three modes: polling, interruption,
transfer by DMA.
(++) ADC conversion by polling:
(+++) Activate the ADC peripheral and start conversions
using function HAL_ADC_Start()
(+++) Wait for ADC conversion completion
using function HAL_ADC_PollForConversion()
(+++) Retrieve conversion results
using function HAL_ADC_GetValue()
(+++) Stop conversion and disable the ADC peripheral
using function HAL_ADC_Stop()
(++) ADC conversion by interruption:
(+++) Activate the ADC peripheral and start conversions
using function HAL_ADC_Start_IT()
(+++) Wait for ADC conversion completion by call of function
HAL_ADC_ConvCpltCallback()
(this function must be implemented in user program)
(+++) Retrieve conversion results
using function HAL_ADC_GetValue()
(+++) Stop conversion and disable the ADC peripheral
using function HAL_ADC_Stop_IT()
(++) ADC conversion with transfer by DMA:
(+++) Activate the ADC peripheral and start conversions
using function HAL_ADC_Start_DMA()
(+++) Wait for ADC conversion completion by call of function
HAL_ADC_ConvCpltCallback() or HAL_ADC_ConvHalfCpltCallback()
(these functions must be implemented in user program)
(+++) Conversion results are automatically transferred by DMA into
destination variable address.
(+++) Stop conversion and disable the ADC peripheral
using function HAL_ADC_Stop_DMA()
[..]
(@) Callback functions must be implemented in user program:
(+@) HAL_ADC_ErrorCallback()
(+@) HAL_ADC_LevelOutOfWindowCallback() (callback of analog watchdog)
(+@) HAL_ADC_ConvCpltCallback()
(+@) HAL_ADC_ConvHalfCpltCallback
*** Deinitialization of ADC ***
============================================================
[..]
(#) Disable the ADC interface
(++) ADC clock can be hard reset and disabled at RCC top level.
(++) Hard reset of ADC peripherals
using macro __HAL_RCC_ADCx_FORCE_RESET(), __HAL_RCC_ADCx_RELEASE_RESET().
(++) ADC clock disable
using the equivalent macro/functions as configuration step.
(+++) Example:
Into HAL_ADC_MspDeInit() (recommended code location) or with
other device clock parameters configuration:
(+++) __HAL_RCC_ADC_CLK_DISABLE(); (if not used anymore)
RCC_ADCCLKSOURCE_CLKP restore: (optional)
(+++) RCC_PeriphClkInitTypeDef RCC_PeriphClkInit;
(+++) PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
(+++) PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_CLKP;
(+++) HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);
(#) ADC pins configuration
(++) Disable the clock for the ADC GPIOs
using macro __HAL_RCC_GPIOx_CLK_DISABLE()
(#) Optionally, in case of usage of ADC with interruptions:
(++) Disable the NVIC for ADC
using function HAL_NVIC_EnableIRQ(ADCx_IRQn)
(#) Optionally, in case of usage of DMA:
(++) Deinitialize the DMA
using function HAL_DMA_Init().
(++) Disable the NVIC for DMA
using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn)
[..]
*** Callback registration ***
=============================================
[..]
The compilation flag USE_HAL_ADC_REGISTER_CALLBACKS, when set to 1,
allows the user to configure dynamically the driver callbacks.
Use Functions HAL_ADC_RegisterCallback()
to register an interrupt callback.
[..]
Function HAL_ADC_RegisterCallback() allows to register following callbacks:
(+) ConvCpltCallback : ADC conversion complete callback
(+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback
(+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback
(+) ErrorCallback : ADC error callback
(+) InjectedConvCpltCallback : ADC group injected conversion complete callback
(+) InjectedQueueOverflowCallback : ADC group injected context queue overflow callback
(+) LevelOutOfWindow2Callback : ADC analog watchdog 2 callback
(+) LevelOutOfWindow3Callback : ADC analog watchdog 3 callback
(+) EndOfSamplingCallback : ADC end of sampling callback
(+) MspInitCallback : ADC Msp Init callback
(+) MspDeInitCallback : ADC Msp DeInit callback
This function takes as parameters the HAL peripheral handle, the Callback ID
and a pointer to the user callback function.
[..]
Use function HAL_ADC_UnRegisterCallback to reset a callback to the default
weak function.
[..]
HAL_ADC_UnRegisterCallback takes as parameters the HAL peripheral handle,
and the Callback ID.
This function allows to reset following callbacks:
(+) ConvCpltCallback : ADC conversion complete callback
(+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback
(+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback
(+) ErrorCallback : ADC error callback
(+) InjectedConvCpltCallback : ADC group injected conversion complete callback
(+) InjectedQueueOverflowCallback : ADC group injected context queue overflow callback
(+) LevelOutOfWindow2Callback : ADC analog watchdog 2 callback
(+) LevelOutOfWindow3Callback : ADC analog watchdog 3 callback
(+) EndOfSamplingCallback : ADC end of sampling callback
(+) MspInitCallback : ADC Msp Init callback
(+) MspDeInitCallback : ADC Msp DeInit callback
[..]
By default, after the HAL_ADC_Init() and when the state is HAL_ADC_STATE_RESET
all callbacks are set to the corresponding weak functions:
examples HAL_ADC_ConvCpltCallback(), HAL_ADC_ErrorCallback().
Exception done for MspInit and MspDeInit functions that are
reset to the legacy weak functions in the HAL_ADC_Init()/ HAL_ADC_DeInit() only when
these callbacks are null (not registered beforehand).
[..]
If MspInit or MspDeInit are not null, the HAL_ADC_Init()/ HAL_ADC_DeInit()
keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state.
[..]
Callbacks can be registered/unregistered in HAL_ADC_STATE_READY state only.
Exception done MspInit/MspDeInit functions that can be registered/unregistered
in HAL_ADC_STATE_READY or HAL_ADC_STATE_RESET state,
thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
[..]
Then, the user first registers the MspInit/MspDeInit user callbacks
using HAL_ADC_RegisterCallback() before calling HAL_ADC_DeInit()
or HAL_ADC_Init() function.
[..]
When the compilation flag USE_HAL_ADC_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registration feature is not available and all callbacks
are set to the corresponding weak functions.
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32h7xx_hal.h"
/** @addtogroup STM32H7xx_HAL_Driver
* @{
*/
/** @defgroup ADC ADC
* @brief ADC HAL module driver
* @{
*/
#ifdef HAL_ADC_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup ADC_Private_Constants ADC Private Constants
* @{
*/
#define ADC_CFGR_FIELDS_1 ((uint32_t)(ADC_CFGR_RES |\
ADC_CFGR_CONT | ADC_CFGR_OVRMOD |\
ADC_CFGR_DISCEN | ADC_CFGR_DISCNUM |\
ADC_CFGR_EXTEN | ADC_CFGR_EXTSEL)) /*!< ADC_CFGR fields of parameters that can be updated
when no regular conversion is on-going */
#if defined(ADC_VER_V5_V90)
#define ADC3_CFGR_FIELDS_1 ((ADC3_CFGR_RES | ADC3_CFGR_ALIGN |\
ADC_CFGR_CONT | ADC_CFGR_OVRMOD |\
ADC_CFGR_DISCEN | ADC_CFGR_DISCNUM |\
ADC_CFGR_EXTEN | ADC_CFGR_EXTSEL)) /*!< ADC_CFGR fields of parameters that can be updated
when no regular conversion is on-going */
#endif
#define ADC_CFGR2_FIELDS ((uint32_t)(ADC_CFGR2_ROVSE | ADC_CFGR2_OVSR |\
ADC_CFGR2_OVSS | ADC_CFGR2_TROVS |\
ADC_CFGR2_ROVSM)) /*!< ADC_CFGR2 fields of parameters that can be updated when no conversion
(neither regular nor injected) is on-going */
/* Timeout values for ADC operations (enable settling time, */
/* disable settling time, ...). */
/* Values defined to be higher than worst cases: low clock frequency, */
/* maximum prescalers. */
#define ADC_ENABLE_TIMEOUT (2UL) /*!< ADC enable time-out value */
#define ADC_DISABLE_TIMEOUT (2UL) /*!< ADC disable time-out value */
/* Timeout to wait for current conversion on going to be completed. */
/* Timeout fixed to worst case, for 1 channel. */
/* - maximum sampling time (830.5 adc_clk) */
/* - ADC resolution (Tsar 16 bits= 16.5 adc_clk) */
/* - ADC clock with prescaler 256 */
/* 823 * 256 = 210688 clock cycles max */
/* Unit: cycles of CPU clock. */
#define ADC_CONVERSION_TIME_MAX_CPU_CYCLES (210688UL) /*!< ADC conversion completion time-out value */
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup ADC_Exported_Functions ADC Exported Functions
* @{
*/
/** @defgroup ADC_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief ADC Initialization and Configuration functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Initialize and configure the ADC.
(+) De-initialize the ADC.
@endverbatim
* @{
*/
/**
* @brief Initialize the ADC peripheral and regular group according to
* parameters specified in structure "ADC_InitTypeDef".
* @note As prerequisite, ADC clock must be configured at RCC top level
* (refer to description of RCC configuration for ADC
* in header of this file).
* @note Possibility to update parameters on the fly:
* This function initializes the ADC MSP (HAL_ADC_MspInit()) only when
* coming from ADC state reset. Following calls to this function can
* be used to reconfigure some parameters of ADC_InitTypeDef
* structure on the fly, without modifying MSP configuration. If ADC
* MSP has to be modified again, HAL_ADC_DeInit() must be called
* before HAL_ADC_Init().
* The setting of these parameters is conditioned to ADC state.
* For parameters constraints, see comments of structure
* "ADC_InitTypeDef".
* @note This function configures the ADC within 2 scopes: scope of entire
* ADC and scope of regular group. For parameters details, see comments
* of structure "ADC_InitTypeDef".
* @note Parameters related to common ADC registers (ADC clock mode) are set
* only if all ADCs are disabled.
* If this is not the case, these common parameters setting are
* bypassed without error reporting: it can be the intended behaviour in
* case of update of a parameter of ADC_InitTypeDef on the fly,
* without disabling the other ADCs.
* @param hadc ADC handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef *hadc)
{
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
uint32_t tmpCFGR;
uint32_t tmp_adc_reg_is_conversion_on_going;
__IO uint32_t wait_loop_index = 0UL;
uint32_t tmp_adc_is_conversion_on_going_regular;
uint32_t tmp_adc_is_conversion_on_going_injected;
/* Check ADC handle */
if (hadc == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
assert_param(IS_ADC_CLOCKPRESCALER(hadc->Init.ClockPrescaler));
assert_param(IS_ADC_RESOLUTION(hadc->Init.Resolution));
assert_param(IS_ADC_SCAN_MODE(hadc->Init.ScanConvMode));
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
assert_param(IS_ADC_EXTTRIG_EDGE(hadc->Init.ExternalTrigConvEdge));
assert_param(IS_ADC_EXTTRIG(hadc->Init.ExternalTrigConv));
assert_param(IS_ADC_CONVERSIONDATAMGT(hadc->Init.ConversionDataManagement));
assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection));
assert_param(IS_ADC_OVERRUN(hadc->Init.Overrun));
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.LowPowerAutoWait));
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.OversamplingMode));
if (hadc->Init.ScanConvMode != ADC_SCAN_DISABLE)
{
assert_param(IS_ADC_REGULAR_NB_CONV(hadc->Init.NbrOfConversion));
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode));
if (hadc->Init.DiscontinuousConvMode == ENABLE)
{
assert_param(IS_ADC_REGULAR_DISCONT_NUMBER(hadc->Init.NbrOfDiscConversion));
}
}
/* DISCEN and CONT bits cannot be set at the same time */
assert_param(!((hadc->Init.DiscontinuousConvMode == ENABLE) && (hadc->Init.ContinuousConvMode == ENABLE)));
/* Actions performed only if ADC is coming from state reset: */
/* - Initialization of ADC MSP */
if (hadc->State == HAL_ADC_STATE_RESET)
{
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
/* Init the ADC Callback settings */
hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback; /* Legacy weak callback */
hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback; /* Legacy weak callback */
hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback; /* Legacy weak callback */
hadc->ErrorCallback = HAL_ADC_ErrorCallback; /* Legacy weak callback */
hadc->InjectedConvCpltCallback = HAL_ADCEx_InjectedConvCpltCallback; /* Legacy weak callback */
hadc->InjectedQueueOverflowCallback = HAL_ADCEx_InjectedQueueOverflowCallback; /* Legacy weak callback */
hadc->LevelOutOfWindow2Callback = HAL_ADCEx_LevelOutOfWindow2Callback; /* Legacy weak callback */
hadc->LevelOutOfWindow3Callback = HAL_ADCEx_LevelOutOfWindow3Callback; /* Legacy weak callback */
hadc->EndOfSamplingCallback = HAL_ADCEx_EndOfSamplingCallback; /* Legacy weak callback */
if (hadc->MspInitCallback == NULL)
{
hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */
}
/* Init the low level hardware */
hadc->MspInitCallback(hadc);
#else
/* Init the low level hardware */
HAL_ADC_MspInit(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
/* Set ADC error code to none */
ADC_CLEAR_ERRORCODE(hadc);
/* Initialize Lock */
hadc->Lock = HAL_UNLOCKED;
}
/* - Exit from deep-power-down mode and ADC voltage regulator enable */
if (LL_ADC_IsDeepPowerDownEnabled(hadc->Instance) != 0UL)
{
/* Disable ADC deep power down mode */
LL_ADC_DisableDeepPowerDown(hadc->Instance);
/* System was in deep power down mode, calibration must
be relaunched or a previously saved calibration factor
re-applied once the ADC voltage regulator is enabled */
}
if (LL_ADC_IsInternalRegulatorEnabled(hadc->Instance) == 0UL)
{
/* Enable ADC internal voltage regulator */
LL_ADC_EnableInternalRegulator(hadc->Instance);
/* Note: Variable divided by 2 to compensate partially */
/* CPU processing cycles, scaling in us split to not */
/* exceed 32 bits register capacity and handle low frequency. */
wait_loop_index = ((LL_ADC_DELAY_INTERNAL_REGUL_STAB_US / 10UL) * ((SystemCoreClock / (100000UL * 2UL)) + 1UL));
while (wait_loop_index != 0UL)
{
wait_loop_index--;
}
}
/* Verification that ADC voltage regulator is correctly enabled, whether */
/* or not ADC is coming from state reset (if any potential problem of */
/* clocking, voltage regulator would not be enabled). */
if (LL_ADC_IsInternalRegulatorEnabled(hadc->Instance) == 0UL)
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
/* Set ADC error code to ADC peripheral internal error */
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
tmp_hal_status = HAL_ERROR;
}
/* Configuration of ADC parameters if previous preliminary actions are */
/* correctly completed and if there is no conversion on going on regular */
/* group (ADC may already be enabled at this point if HAL_ADC_Init() is */
/* called to update a parameter on the fly). */
tmp_adc_reg_is_conversion_on_going = LL_ADC_REG_IsConversionOngoing(hadc->Instance);
if (((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL)
&& (tmp_adc_reg_is_conversion_on_going == 0UL)
)
{
/* Set ADC state */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_REG_BUSY,
HAL_ADC_STATE_BUSY_INTERNAL);
/* Configuration of common ADC parameters */
/* Parameters update conditioned to ADC state: */
/* Parameters that can be updated only when ADC is disabled: */
/* - clock configuration */
if (LL_ADC_IsEnabled(hadc->Instance) == 0UL)
{
if (__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) == 0UL)
{
/* Reset configuration of ADC common register CCR: */
/* */
/* - ADC clock mode and ACC prescaler (CKMODE and PRESC bits)are set */
/* according to adc->Init.ClockPrescaler. It selects the clock */
/* source and sets the clock division factor. */
/* */
/* Some parameters of this register are not reset, since they are set */
/* by other functions and must be kept in case of usage of this */
/* function on the fly (update of a parameter of ADC_InitTypeDef */
/* without needing to reconfigure all other ADC groups/channels */
/* parameters): */
/* - when multimode feature is available, multimode-related */
/* parameters: MDMA, DMACFG, DELAY, DUAL (set by API */
/* HAL_ADCEx_MultiModeConfigChannel() ) */
/* - internal measurement paths: Vbat, temperature sensor, Vref */
/* (set into HAL_ADC_ConfigChannel() or */
/* HAL_ADCEx_InjectedConfigChannel() ) */
LL_ADC_SetCommonClock(__LL_ADC_COMMON_INSTANCE(hadc->Instance), hadc->Init.ClockPrescaler);
}
}
/* Configuration of ADC: */
/* - resolution Init.Resolution */
/* - external trigger to start conversion Init.ExternalTrigConv */
/* - external trigger polarity Init.ExternalTrigConvEdge */
/* - continuous conversion mode Init.ContinuousConvMode */
/* - overrun Init.Overrun */
/* - discontinuous mode Init.DiscontinuousConvMode */
/* - discontinuous mode channel count Init.NbrOfDiscConversion */
#if defined(ADC_VER_V5_3)
tmpCFGR = (ADC_CFGR_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode) |
hadc->Init.Overrun |
hadc->Init.Resolution |
ADC_CFGR_REG_DISCONTINUOUS((uint32_t)hadc->Init.DiscontinuousConvMode));
#elif defined(ADC_VER_V5_V90)
if (hadc->Instance == ADC3)
{
tmpCFGR = (ADC_CFGR_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode) |
hadc->Init.Overrun |
hadc->Init.DataAlign |
((__LL_ADC12_RESOLUTION_TO_ADC3(hadc->Init.Resolution) & (ADC_CFGR_RES_1 | ADC_CFGR_RES_0)) << 1UL) |
ADC_CFGR_REG_DISCONTINUOUS((uint32_t)hadc->Init.DiscontinuousConvMode));
}
else
{
tmpCFGR = (ADC_CFGR_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode) |
hadc->Init.Overrun |
hadc->Init.Resolution |
ADC_CFGR_REG_DISCONTINUOUS((uint32_t)hadc->Init.DiscontinuousConvMode));
}
#else
if ((HAL_GetREVID() > REV_ID_Y) && (ADC_RESOLUTION_8B == hadc->Init.Resolution))
{
/* for STM32H7 silicon rev.B and above , ADC_CFGR_RES value for 8bits resolution is : b111 */
tmpCFGR = (ADC_CFGR_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode) |
hadc->Init.Overrun |
hadc->Init.Resolution | (ADC_CFGR_RES_1 | ADC_CFGR_RES_0) |
ADC_CFGR_REG_DISCONTINUOUS((uint32_t)hadc->Init.DiscontinuousConvMode));
}
else
{
tmpCFGR = (ADC_CFGR_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode) |
hadc->Init.Overrun |
hadc->Init.Resolution |
ADC_CFGR_REG_DISCONTINUOUS((uint32_t)hadc->Init.DiscontinuousConvMode));
}
#endif /* ADC_VER_V5_3 */
if (hadc->Init.DiscontinuousConvMode == ENABLE)
{
tmpCFGR |= ADC_CFGR_DISCONTINUOUS_NUM(hadc->Init.NbrOfDiscConversion);
}
/* Enable external trigger if trigger selection is different of software */
/* start. */
/* Note: This configuration keeps the hardware feature of parameter */
/* ExternalTrigConvEdge "trigger edge none" equivalent to */
/* software start. */
if (hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START)
{
tmpCFGR |= ((hadc->Init.ExternalTrigConv & ADC_CFGR_EXTSEL)
| hadc->Init.ExternalTrigConvEdge
);
}
#if defined(ADC_VER_V5_V90)
if (hadc->Instance == ADC3)
{
/* Update Configuration Register CFGR */
MODIFY_REG(hadc->Instance->CFGR, ADC3_CFGR_FIELDS_1, tmpCFGR);
/* Configuration of sampling mode */
MODIFY_REG(hadc->Instance->CFGR2, ADC3_CFGR2_BULB | ADC3_CFGR2_SMPTRIG, hadc->Init.SamplingMode);
}
else
{
/* Update Configuration Register CFGR */
MODIFY_REG(hadc->Instance->CFGR, ADC_CFGR_FIELDS_1, tmpCFGR);
}
#else
/* Update Configuration Register CFGR */
MODIFY_REG(hadc->Instance->CFGR, ADC_CFGR_FIELDS_1, tmpCFGR);
#endif
/* Parameters update conditioned to ADC state: */
/* Parameters that can be updated when ADC is disabled or enabled without */
/* conversion on going on regular and injected groups: */
/* - Conversion data management Init.ConversionDataManagement */
/* - LowPowerAutoWait feature Init.LowPowerAutoWait */
/* - Oversampling parameters Init.Oversampling */
tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance);
tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance);
if ((tmp_adc_is_conversion_on_going_regular == 0UL)
&& (tmp_adc_is_conversion_on_going_injected == 0UL)
)
{
#if defined(ADC_VER_V5_V90)
if (hadc->Instance == ADC3)
{
tmpCFGR = (
ADC_CFGR_AUTOWAIT((uint32_t)hadc->Init.LowPowerAutoWait) |
ADC3_CFGR_DMACONTREQ((uint32_t)hadc->Init.DMAContinuousRequests));
}
else
{
tmpCFGR = (
ADC_CFGR_AUTOWAIT((uint32_t)hadc->Init.LowPowerAutoWait) |
ADC_CFGR_DMACONTREQ((uint32_t)hadc->Init.ConversionDataManagement));
}
#else
tmpCFGR = (
ADC_CFGR_AUTOWAIT((uint32_t)hadc->Init.LowPowerAutoWait) |
ADC_CFGR_DMACONTREQ((uint32_t)hadc->Init.ConversionDataManagement));
#endif
MODIFY_REG(hadc->Instance->CFGR, ADC_CFGR_FIELDS_2, tmpCFGR);
if (hadc->Init.OversamplingMode == ENABLE)
{
#if defined(ADC_VER_V5_V90)
if (hadc->Instance == ADC3)
{
assert_param(IS_ADC_OVERSAMPLING_RATIO_ADC3(hadc->Init.Oversampling.Ratio));
}
else
{
assert_param(IS_ADC_OVERSAMPLING_RATIO(hadc->Init.Oversampling.Ratio));
}
#else
assert_param(IS_ADC_OVERSAMPLING_RATIO(hadc->Init.Oversampling.Ratio));
#endif
assert_param(IS_ADC_RIGHT_BIT_SHIFT(hadc->Init.Oversampling.RightBitShift));
assert_param(IS_ADC_TRIGGERED_OVERSAMPLING_MODE(hadc->Init.Oversampling.TriggeredMode));
assert_param(IS_ADC_REGOVERSAMPLING_MODE(hadc->Init.Oversampling.OversamplingStopReset));
if ((hadc->Init.ExternalTrigConv == ADC_SOFTWARE_START)
|| (hadc->Init.ExternalTrigConvEdge == ADC_EXTERNALTRIGCONVEDGE_NONE))
{
/* Multi trigger is not applicable to software-triggered conversions */
assert_param((hadc->Init.Oversampling.TriggeredMode == ADC_TRIGGEREDMODE_SINGLE_TRIGGER));
}
#if defined(ADC_VER_V5_V90)
if (hadc->Instance == ADC3)
{
/* Configuration of Oversampler: */
/* - Oversampling Ratio */
/* - Right bit shift */
/* - Triggered mode */
/* - Oversampling mode (continued/resumed) */
MODIFY_REG(hadc->Instance->CFGR2,
ADC_CFGR2_OVSR |
ADC_CFGR2_OVSS |
ADC_CFGR2_TROVS |
ADC_CFGR2_ROVSM,
ADC_CFGR2_ROVSE |
hadc->Init.Oversampling.Ratio |
hadc->Init.Oversampling.RightBitShift |
hadc->Init.Oversampling.TriggeredMode |
hadc->Init.Oversampling.OversamplingStopReset
);
}
else
{
/* Configuration of Oversampler: */
/* - Oversampling Ratio */
/* - Right bit shift */
/* - Left bit shift */
/* - Triggered mode */
/* - Oversampling mode (continued/resumed) */
MODIFY_REG(hadc->Instance->CFGR2, ADC_CFGR2_FIELDS,
ADC_CFGR2_ROVSE |
((hadc->Init.Oversampling.Ratio - 1UL) << ADC_CFGR2_OVSR_Pos) |
hadc->Init.Oversampling.RightBitShift |
hadc->Init.Oversampling.TriggeredMode |
hadc->Init.Oversampling.OversamplingStopReset);
}
#else
/* Configuration of Oversampler: */
/* - Oversampling Ratio */
/* - Right bit shift */
/* - Left bit shift */
/* - Triggered mode */
/* - Oversampling mode (continued/resumed) */
MODIFY_REG(hadc->Instance->CFGR2, ADC_CFGR2_FIELDS,
ADC_CFGR2_ROVSE |
((hadc->Init.Oversampling.Ratio - 1UL) << ADC_CFGR2_OVSR_Pos) |
hadc->Init.Oversampling.RightBitShift |
hadc->Init.Oversampling.TriggeredMode |
hadc->Init.Oversampling.OversamplingStopReset);
#endif
}
else
{
/* Disable ADC oversampling scope on ADC group regular */
CLEAR_BIT(hadc->Instance->CFGR2, ADC_CFGR2_ROVSE);
}
/* Set the LeftShift parameter: it is applied to the final result with or without oversampling */
MODIFY_REG(hadc->Instance->CFGR2, ADC_CFGR2_LSHIFT, hadc->Init.LeftBitShift);
#if defined(ADC_VER_V5_V90)
if (hadc->Instance != ADC3)
{
/* Configure the BOOST Mode */
ADC_ConfigureBoostMode(hadc);
}
#else
/* Configure the BOOST Mode */
ADC_ConfigureBoostMode(hadc);
#endif
}
/* Configuration of regular group sequencer: */
/* - if scan mode is disabled, regular channels sequence length is set to */
/* 0x00: 1 channel converted (channel on regular rank 1) */
/* Parameter "NbrOfConversion" is discarded. */
/* Note: Scan mode is not present by hardware on this device, but */
/* emulated by software for alignment over all STM32 devices. */
/* - if scan mode is enabled, regular channels sequence length is set to */
/* parameter "NbrOfConversion". */
if (hadc->Init.ScanConvMode == ADC_SCAN_ENABLE)
{
/* Set number of ranks in regular group sequencer */
MODIFY_REG(hadc->Instance->SQR1, ADC_SQR1_L, (hadc->Init.NbrOfConversion - (uint8_t)1));
}
else
{
CLEAR_BIT(hadc->Instance->SQR1, ADC_SQR1_L);
}
/* Initialize the ADC state */
/* Clear HAL_ADC_STATE_BUSY_INTERNAL bit, set HAL_ADC_STATE_READY bit */
ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL, HAL_ADC_STATE_READY);
}
else
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
tmp_hal_status = HAL_ERROR;
}
/* Return function status */
return tmp_hal_status;
}
/**
* @brief Deinitialize the ADC peripheral registers to their default reset
* values, with deinitialization of the ADC MSP.
* @note For devices with several ADCs: reset of ADC common registers is done
* only if all ADCs sharing the same common group are disabled.
* (function "HAL_ADC_MspDeInit()" is also called under the same conditions:
* all ADC instances use the same core clock at RCC level, disabling
* the core clock reset all ADC instances).
* If this is not the case, reset of these common parameters reset is
* bypassed without error reporting: it can be the intended behavior in
* case of reset of a single ADC while the other ADCs sharing the same
* common group is still running.
* @note By default, HAL_ADC_DeInit() set ADC in mode deep power-down:
* this saves more power by reducing leakage currents
* and is particularly interesting before entering MCU low-power modes.
* @param hadc ADC handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef *hadc)
{
HAL_StatusTypeDef tmp_hal_status;
/* Check ADC handle */
if (hadc == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Set ADC state */
SET_BIT(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL);
/* Stop potential conversion on going */
tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP);
/* Disable ADC peripheral if conversions are effectively stopped */
/* Flush register JSQR: reset the queue sequencer when injected */
/* queue sequencer is enabled and ADC disabled. */
/* The software and hardware triggers of the injected sequence are both */
/* internally disabled just after the completion of the last valid */
/* injected sequence. */
SET_BIT(hadc->Instance->CFGR, ADC_CFGR_JQM);
/* Disable ADC peripheral if conversions are effectively stopped */
if (tmp_hal_status == HAL_OK)
{
/* Disable the ADC peripheral */
tmp_hal_status = ADC_Disable(hadc);
/* Check if ADC is effectively disabled */
if (tmp_hal_status == HAL_OK)
{
/* Change ADC state */
hadc->State = HAL_ADC_STATE_READY;
}
}
/* Note: HAL ADC deInit is done independently of ADC conversion stop */
/* and disable return status. In case of status fail, attempt to */
/* perform deinitialization anyway and it is up user code in */
/* in HAL_ADC_MspDeInit() to reset the ADC peripheral using */
/* system RCC hard reset. */
/* ========== Reset ADC registers ========== */
/* Reset register IER */
__HAL_ADC_DISABLE_IT(hadc, (ADC_IT_AWD3 | ADC_IT_AWD2 | ADC_IT_AWD1 |
ADC_IT_JQOVF | ADC_IT_OVR |
ADC_IT_JEOS | ADC_IT_JEOC |
ADC_IT_EOS | ADC_IT_EOC |
ADC_IT_EOSMP | ADC_IT_RDY));
/* Reset register ISR */
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_AWD3 | ADC_FLAG_AWD2 | ADC_FLAG_AWD1 |
ADC_FLAG_JQOVF | ADC_FLAG_OVR |
ADC_FLAG_JEOS | ADC_FLAG_JEOC |
ADC_FLAG_EOS | ADC_FLAG_EOC |
ADC_FLAG_EOSMP | ADC_FLAG_RDY));
/* Reset register CR */
/* Bits ADC_CR_JADSTP, ADC_CR_ADSTP, ADC_CR_JADSTART, ADC_CR_ADSTART,
ADC_CR_ADCAL, ADC_CR_ADDIS and ADC_CR_ADEN are in access mode "read-set":
no direct reset applicable.
Update CR register to reset value where doable by software */
CLEAR_BIT(hadc->Instance->CR, ADC_CR_ADVREGEN | ADC_CR_ADCALDIF);
SET_BIT(hadc->Instance->CR, ADC_CR_DEEPPWD);
/* Reset register CFGR */
CLEAR_BIT(hadc->Instance->CFGR, ADC_CFGR_AWD1CH | ADC_CFGR_JAUTO | ADC_CFGR_JAWD1EN |
ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL | ADC_CFGR_JQM |
ADC_CFGR_JDISCEN | ADC_CFGR_DISCNUM | ADC_CFGR_DISCEN |
ADC_CFGR_AUTDLY | ADC_CFGR_CONT | ADC_CFGR_OVRMOD |
ADC_CFGR_EXTEN | ADC_CFGR_EXTSEL |
ADC_CFGR_RES | ADC_CFGR_DMNGT);
SET_BIT(hadc->Instance->CFGR, ADC_CFGR_JQDIS);
/* Reset register CFGR2 */
CLEAR_BIT(hadc->Instance->CFGR2, ADC_CFGR2_ROVSM | ADC_CFGR2_TROVS | ADC_CFGR2_OVSS |
ADC_CFGR2_OVSR | ADC_CFGR2_JOVSE | ADC_CFGR2_ROVSE);
/* Reset register SMPR1 */
CLEAR_BIT(hadc->Instance->SMPR1, ADC_SMPR1_FIELDS);
/* Reset register SMPR2 */
CLEAR_BIT(hadc->Instance->SMPR2, ADC_SMPR2_SMP18 | ADC_SMPR2_SMP17 | ADC_SMPR2_SMP16 |
ADC_SMPR2_SMP15 | ADC_SMPR2_SMP14 | ADC_SMPR2_SMP13 |
ADC_SMPR2_SMP12 | ADC_SMPR2_SMP11 | ADC_SMPR2_SMP10);
#if defined(ADC_VER_V5_V90)
if (hadc->Instance == ADC3)
{
/* Reset register LTR1 and HTR1 */
CLEAR_BIT(hadc->Instance->LTR1_TR1, ADC3_TR1_HT1 | ADC3_TR1_LT1);
CLEAR_BIT(hadc->Instance->HTR1_TR2, ADC3_TR2_HT2 | ADC3_TR2_LT2);
/* Reset register LTR3 and HTR3 */
CLEAR_BIT(hadc->Instance->RES1_TR3, ADC3_TR3_HT3 | ADC3_TR3_LT3);
}
else
{
CLEAR_BIT(hadc->Instance->LTR1_TR1, ADC_LTR_LT);
CLEAR_BIT(hadc->Instance->HTR1_TR2, ADC_HTR_HT);
/* Reset register LTR2 and HTR2*/
CLEAR_BIT(hadc->Instance->LTR2_DIFSEL, ADC_LTR_LT);
CLEAR_BIT(hadc->Instance->HTR2_CALFACT, ADC_HTR_HT);
/* Reset register LTR3 and HTR3 */
CLEAR_BIT(hadc->Instance->LTR3_RES10, ADC_LTR_LT);
CLEAR_BIT(hadc->Instance->HTR3_RES11, ADC_HTR_HT);
}
#else
/* Reset register LTR1 and HTR1 */
CLEAR_BIT(hadc->Instance->LTR1, ADC_LTR_LT);
CLEAR_BIT(hadc->Instance->HTR1, ADC_HTR_HT);
/* Reset register LTR2 and HTR2*/
CLEAR_BIT(hadc->Instance->LTR2, ADC_LTR_LT);
CLEAR_BIT(hadc->Instance->HTR2, ADC_HTR_HT);
/* Reset register LTR3 and HTR3 */
CLEAR_BIT(hadc->Instance->LTR3, ADC_LTR_LT);
CLEAR_BIT(hadc->Instance->HTR3, ADC_HTR_HT);
#endif /* ADC_VER_V5_V90 */
/* Reset register SQR1 */
CLEAR_BIT(hadc->Instance->SQR1, ADC_SQR1_SQ4 | ADC_SQR1_SQ3 | ADC_SQR1_SQ2 |
ADC_SQR1_SQ1 | ADC_SQR1_L);
/* Reset register SQR2 */
CLEAR_BIT(hadc->Instance->SQR2, ADC_SQR2_SQ9 | ADC_SQR2_SQ8 | ADC_SQR2_SQ7 |
ADC_SQR2_SQ6 | ADC_SQR2_SQ5);
/* Reset register SQR3 */
CLEAR_BIT(hadc->Instance->SQR3, ADC_SQR3_SQ14 | ADC_SQR3_SQ13 | ADC_SQR3_SQ12 |
ADC_SQR3_SQ11 | ADC_SQR3_SQ10);
/* Reset register SQR4 */
CLEAR_BIT(hadc->Instance->SQR4, ADC_SQR4_SQ16 | ADC_SQR4_SQ15);
/* Register JSQR was reset when the ADC was disabled */
/* Reset register DR */
/* bits in access mode read only, no direct reset applicable*/
/* Reset register OFR1 */
CLEAR_BIT(hadc->Instance->OFR1, ADC_OFR1_SSATE | ADC_OFR1_OFFSET1_CH | ADC_OFR1_OFFSET1);
/* Reset register OFR2 */
CLEAR_BIT(hadc->Instance->OFR2, ADC_OFR2_SSATE | ADC_OFR2_OFFSET2_CH | ADC_OFR2_OFFSET2);
/* Reset register OFR3 */
CLEAR_BIT(hadc->Instance->OFR3, ADC_OFR3_SSATE | ADC_OFR3_OFFSET3_CH | ADC_OFR3_OFFSET3);
/* Reset register OFR4 */
CLEAR_BIT(hadc->Instance->OFR4, ADC_OFR4_SSATE | ADC_OFR4_OFFSET4_CH | ADC_OFR4_OFFSET4);
/* Reset registers JDR1, JDR2, JDR3, JDR4 */
/* bits in access mode read only, no direct reset applicable*/
/* Reset register AWD2CR */
CLEAR_BIT(hadc->Instance->AWD2CR, ADC_AWD2CR_AWD2CH);
/* Reset register AWD3CR */
CLEAR_BIT(hadc->Instance->AWD3CR, ADC_AWD3CR_AWD3CH);
#if defined(ADC_VER_V5_V90)
if (hadc->Instance == ADC3)
{
/* Reset register DIFSEL */
CLEAR_BIT(hadc->Instance->LTR2_DIFSEL, ADC_DIFSEL_DIFSEL);
/* Reset register CALFACT */
CLEAR_BIT(hadc->Instance->HTR2_CALFACT, ADC_CALFACT_CALFACT_D | ADC_CALFACT_CALFACT_S);
}
else
{
/* Reset register DIFSEL */
CLEAR_BIT(hadc->Instance->DIFSEL_RES12, ADC_DIFSEL_DIFSEL);
/* Reset register CALFACT */
CLEAR_BIT(hadc->Instance->CALFACT_RES13, ADC_CALFACT_CALFACT_D | ADC_CALFACT_CALFACT_S);
}
#else
/* Reset register DIFSEL */
CLEAR_BIT(hadc->Instance->DIFSEL, ADC_DIFSEL_DIFSEL);
/* Reset register CALFACT */
CLEAR_BIT(hadc->Instance->CALFACT, ADC_CALFACT_CALFACT_D | ADC_CALFACT_CALFACT_S);
#endif /* ADC_VER_V5_V90 */
/* ========== Reset common ADC registers ========== */
/* Software is allowed to change common parameters only when all the other
ADCs are disabled. */
if (__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) == 0UL)
{
/* Reset configuration of ADC common register CCR:
- clock mode: CKMODE, PRESCEN
- multimode related parameters(when this feature is available): DELAY, DUAL
(set into HAL_ADCEx_MultiModeConfigChannel() API)
- internal measurement paths: Vbat, temperature sensor, Vref (set into
HAL_ADC_ConfigChannel() or HAL_ADCEx_InjectedConfigChannel() )
*/
ADC_CLEAR_COMMON_CONTROL_REGISTER(hadc);
/* ========== Hard reset ADC peripheral ========== */
/* Performs a global reset of the entire ADC peripherals instances */
/* sharing the same common ADC instance: ADC state is forced to */
/* a similar state as after device power-on. */
/* Note: A possible implementation is to add RCC bus reset of ADC */
/* (for example, using macro */
/* __HAL_RCC_ADC..._FORCE_RESET()/..._RELEASE_RESET()/..._CLK_DISABLE()) */
/* in function "void HAL_ADC_MspDeInit(ADC_HandleTypeDef *hadc)": */
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
if (hadc->MspDeInitCallback == NULL)
{
hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */
}
/* DeInit the low level hardware: RCC clock, NVIC */
hadc->MspDeInitCallback(hadc);
#else
/* DeInit the low level hardware: RCC clock, NVIC */
HAL_ADC_MspDeInit(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
}
/* Set ADC error code to none */
ADC_CLEAR_ERRORCODE(hadc);
/* Reset injected channel configuration parameters */
hadc->InjectionConfig.ContextQueue = 0;
hadc->InjectionConfig.ChannelCount = 0;
/* Set ADC state */
hadc->State = HAL_ADC_STATE_RESET;
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmp_hal_status;
}
/**
* @brief Initialize the ADC MSP.
* @param hadc ADC handle
* @retval None
*/
__weak void HAL_ADC_MspInit(ADC_HandleTypeDef *hadc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hadc);
/* NOTE : This function should not be modified. When the callback is needed,
function HAL_ADC_MspInit must be implemented in the user file.
*/
}
/**
* @brief DeInitialize the ADC MSP.
* @param hadc ADC handle
* @note All ADC instances use the same core clock at RCC level, disabling
* the core clock reset all ADC instances).
* @retval None
*/
__weak void HAL_ADC_MspDeInit(ADC_HandleTypeDef *hadc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hadc);
/* NOTE : This function should not be modified. When the callback is needed,
function HAL_ADC_MspDeInit must be implemented in the user file.
*/
}
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
/**
* @brief Register a User ADC Callback
* To be used instead of the weak predefined callback
* @param hadc Pointer to a ADC_HandleTypeDef structure that contains
* the configuration information for the specified ADC.
* @param CallbackID ID of the callback to be registered
* This parameter can be one of the following values:
* @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID
* @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion DMA half-transfer callback ID
* @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID
* @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID
* @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID ADC group injected conversion complete callback ID
* @arg @ref HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID ADC group injected context queue overflow callback ID
* @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID ADC analog watchdog 2 callback ID
* @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID ADC analog watchdog 3 callback ID
* @arg @ref HAL_ADC_END_OF_SAMPLING_CB_ID ADC end of sampling callback ID
* @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID
* @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID
* @param pCallback pointer to the Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADC_RegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID, pADC_CallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if ((hadc->State & HAL_ADC_STATE_READY) != 0UL)
{
switch (CallbackID)
{
case HAL_ADC_CONVERSION_COMPLETE_CB_ID :
hadc->ConvCpltCallback = pCallback;
break;
case HAL_ADC_CONVERSION_HALF_CB_ID :
hadc->ConvHalfCpltCallback = pCallback;
break;
case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID :
hadc->LevelOutOfWindowCallback = pCallback;
break;
case HAL_ADC_ERROR_CB_ID :
hadc->ErrorCallback = pCallback;
break;
case HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID :
hadc->InjectedConvCpltCallback = pCallback;
break;
case HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID :
hadc->InjectedQueueOverflowCallback = pCallback;
break;
case HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID :
hadc->LevelOutOfWindow2Callback = pCallback;
break;
case HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID :
hadc->LevelOutOfWindow3Callback = pCallback;
break;
case HAL_ADC_END_OF_SAMPLING_CB_ID :
hadc->EndOfSamplingCallback = pCallback;
break;
case HAL_ADC_MSPINIT_CB_ID :
hadc->MspInitCallback = pCallback;
break;
case HAL_ADC_MSPDEINIT_CB_ID :
hadc->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (HAL_ADC_STATE_RESET == hadc->State)
{
switch (CallbackID)
{
case HAL_ADC_MSPINIT_CB_ID :
hadc->MspInitCallback = pCallback;
break;
case HAL_ADC_MSPDEINIT_CB_ID :
hadc->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Unregister a ADC Callback
* ADC callback is redirected to the weak predefined callback
* @param hadc Pointer to a ADC_HandleTypeDef structure that contains
* the configuration information for the specified ADC.
* @param CallbackID ID of the callback to be unregistered
* This parameter can be one of the following values:
* @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID
* @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion DMA half-transfer callback ID
* @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID
* @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID
* @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID ADC group injected conversion complete callback ID
* @arg @ref HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID ADC group injected context queue overflow callback ID
* @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID ADC analog watchdog 2 callback ID
* @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID ADC analog watchdog 3 callback ID
* @arg @ref HAL_ADC_END_OF_SAMPLING_CB_ID ADC end of sampling callback ID
* @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID
* @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADC_UnRegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID)
{
HAL_StatusTypeDef status = HAL_OK;
if ((hadc->State & HAL_ADC_STATE_READY) != 0UL)
{
switch (CallbackID)
{
case HAL_ADC_CONVERSION_COMPLETE_CB_ID :
hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback;
break;
case HAL_ADC_CONVERSION_HALF_CB_ID :
hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback;
break;
case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID :
hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback;
break;
case HAL_ADC_ERROR_CB_ID :
hadc->ErrorCallback = HAL_ADC_ErrorCallback;
break;
case HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID :
hadc->InjectedConvCpltCallback = HAL_ADCEx_InjectedConvCpltCallback;
break;
case HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID :
hadc->InjectedQueueOverflowCallback = HAL_ADCEx_InjectedQueueOverflowCallback;
break;
case HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID :
hadc->LevelOutOfWindow2Callback = HAL_ADCEx_LevelOutOfWindow2Callback;
break;
case HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID :
hadc->LevelOutOfWindow3Callback = HAL_ADCEx_LevelOutOfWindow3Callback;
break;
case HAL_ADC_END_OF_SAMPLING_CB_ID :
hadc->EndOfSamplingCallback = HAL_ADCEx_EndOfSamplingCallback;
break;
case HAL_ADC_MSPINIT_CB_ID :
hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */
break;
case HAL_ADC_MSPDEINIT_CB_ID :
hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */
break;
default :
/* Update the error code */
hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (HAL_ADC_STATE_RESET == hadc->State)
{
switch (CallbackID)
{
case HAL_ADC_MSPINIT_CB_ID :
hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */
break;
case HAL_ADC_MSPDEINIT_CB_ID :
hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */
break;
default :
/* Update the error code */
hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
/**
* @}
*/
/** @defgroup ADC_Exported_Functions_Group2 ADC Input and Output operation functions
* @brief ADC IO operation functions
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Start conversion of regular group.
(+) Stop conversion of regular group.
(+) Poll for conversion complete on regular group.
(+) Poll for conversion event.
(+) Get result of regular channel conversion.
(+) Start conversion of regular group and enable interruptions.
(+) Stop conversion of regular group and disable interruptions.
(+) Handle ADC interrupt request
(+) Start conversion of regular group and enable DMA transfer.
(+) Stop conversion of regular group and disable ADC DMA transfer.
@endverbatim
* @{
*/
/**
* @brief Enable ADC, start conversion of regular group.
* @note Interruptions enabled in this function: None.
* @note Case of multimode enabled (when multimode feature is available):
* if ADC is Slave, ADC is enabled but conversion is not started,
* if ADC is master, ADC is enabled and multimode conversion is started.
* @param hadc ADC handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef *hadc)
{
HAL_StatusTypeDef tmp_hal_status;
const ADC_TypeDef *tmpADC_Master;
uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance));
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Perform ADC enable and conversion start if no conversion is on going */
if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL)
{
/* Process locked */
__HAL_LOCK(hadc);
/* Enable the ADC peripheral */
tmp_hal_status = ADC_Enable(hadc);
/* Start conversion if ADC is effectively enabled */
if (tmp_hal_status == HAL_OK)
{
/* Set ADC state */
/* - Clear state bitfield related to regular group conversion results */
/* - Set state bitfield related to regular operation */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP,
HAL_ADC_STATE_REG_BUSY);
/* Reset HAL_ADC_STATE_MULTIMODE_SLAVE bit
- if ADC instance is master or if multimode feature is not available
- if multimode setting is disabled (ADC instance slave in independent mode) */
if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
|| (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
)
{
CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
}
/* Set ADC error code */
/* Check if a conversion is on going on ADC group injected */
if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY))
{
/* Reset ADC error code fields related to regular conversions only */
CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));
}
else
{
/* Reset all ADC error code fields */
ADC_CLEAR_ERRORCODE(hadc);
}
/* Clear ADC group regular conversion flag and overrun flag */
/* (To ensure of no unknown state from potential previous ADC operations) */
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR));
/* Process unlocked */
/* Unlock before starting ADC conversions: in case of potential */
/* interruption, to let the process to ADC IRQ Handler. */
__HAL_UNLOCK(hadc);
/* Enable conversion of regular group. */
/* If software start has been selected, conversion starts immediately. */
/* If external trigger has been selected, conversion will start at next */
/* trigger event. */
/* Case of multimode enabled (when multimode feature is available): */
/* - if ADC is slave and dual regular conversions are enabled, ADC is */
/* enabled only (conversion is not started), */
/* - if ADC is master, ADC is enabled and conversion is started. */
if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
|| (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
|| (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT)
|| (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN)
)
{
/* ADC instance is not a multimode slave instance with multimode regular conversions enabled */
if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO) != 0UL)
{
ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
}
/* Start ADC group regular conversion */
LL_ADC_REG_StartConversion(hadc->Instance);
}
else
{
/* ADC instance is a multimode slave instance with multimode regular conversions enabled */
SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
/* if Master ADC JAUTO bit is set, update Slave State in setting
HAL_ADC_STATE_INJ_BUSY bit and in resetting HAL_ADC_STATE_INJ_EOC bit */
tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance);
if (READ_BIT(tmpADC_Master->CFGR, ADC_CFGR_JAUTO) != 0UL)
{
ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
}
}
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hadc);
}
}
else
{
tmp_hal_status = HAL_BUSY;
}
/* Return function status */
return tmp_hal_status;
}
/**
* @brief Stop ADC conversion of regular group (and injected channels in
* case of auto_injection mode), disable ADC peripheral.
* @note: ADC peripheral disable is forcing stop of potential
* conversion on injected group. If injected group is under use, it
* should be preliminarily stopped using HAL_ADCEx_InjectedStop function.
* @param hadc ADC handle
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef *hadc)
{
HAL_StatusTypeDef tmp_hal_status;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Process locked */
__HAL_LOCK(hadc);
/* 1. Stop potential conversion on going, on ADC groups regular and injected */
tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP);
/* Disable ADC peripheral if conversions are effectively stopped */
if (tmp_hal_status == HAL_OK)
{
/* 2. Disable the ADC peripheral */
tmp_hal_status = ADC_Disable(hadc);
/* Check if ADC is effectively disabled */
if (tmp_hal_status == HAL_OK)
{
/* Set ADC state */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
HAL_ADC_STATE_READY);
}
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmp_hal_status;
}
/**
* @brief Wait for regular group conversion to be completed.
* @note ADC conversion flags EOS (end of sequence) and EOC (end of
* conversion) are cleared by this function, with an exception:
* if low power feature "LowPowerAutoWait" is enabled, flags are
* not cleared to not interfere with this feature until data register
* is read using function HAL_ADC_GetValue().
* @note This function cannot be used in a particular setup: ADC configured
* in DMA mode and polling for end of each conversion (ADC init
* parameter "EOCSelection" set to ADC_EOC_SINGLE_CONV).
* In this case, DMA resets the flag EOC and polling cannot be
* performed on each conversion. Nevertheless, polling can still
* be performed on the complete sequence (ADC init
* parameter "EOCSelection" set to ADC_EOC_SEQ_CONV).
* @param hadc ADC handle
* @param Timeout Timeout value in millisecond.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef *hadc, uint32_t Timeout)
{
uint32_t tickstart;
uint32_t tmp_Flag_End;
uint32_t tmp_cfgr;
const ADC_TypeDef *tmpADC_Master;
uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance));
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* If end of conversion selected to end of sequence conversions */
if (hadc->Init.EOCSelection == ADC_EOC_SEQ_CONV)
{
tmp_Flag_End = ADC_FLAG_EOS;
}
/* If end of conversion selected to end of unitary conversion */
else /* ADC_EOC_SINGLE_CONV */
{
/* Verification that ADC configuration is compliant with polling for */
/* each conversion: */
/* Particular case is ADC configured in DMA mode and ADC sequencer with */
/* several ranks and polling for end of each conversion. */
/* For code simplicity sake, this particular case is generalized to */
/* ADC configured in DMA mode and and polling for end of each conversion. */
if ((tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
|| (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT)
|| (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN)
)
{
/* Check DMNGT bit in handle ADC CFGR register */
if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_DMNGT_0) != 0UL)
{
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
return HAL_ERROR;
}
else
{
tmp_Flag_End = (ADC_FLAG_EOC);
}
}
else
{
/* Check ADC DMA mode in multimode on ADC group regular */
if (LL_ADC_GetMultiDMATransfer(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) != LL_ADC_MULTI_REG_DMA_EACH_ADC)
{
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
return HAL_ERROR;
}
else
{
tmp_Flag_End = (ADC_FLAG_EOC);
}
}
}
/* Get tick count */
tickstart = HAL_GetTick();
/* Wait until End of unitary conversion or sequence conversions flag is raised */
while ((hadc->Instance->ISR & tmp_Flag_End) == 0UL)
{
/* Check if timeout is disabled (set to infinite wait) */
if (Timeout != HAL_MAX_DELAY)
{
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0UL))
{
/* New check to avoid false timeout detection in case of preemption */
if((hadc->Instance->ISR & tmp_Flag_End) == 0UL)
{
/* Update ADC state machine to timeout */
SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
/* Process unlocked */
__HAL_UNLOCK(hadc);
return HAL_TIMEOUT;
}
}
}
}
/* Update ADC state machine */
SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
/* Determine whether any further conversion upcoming on group regular */
/* by external trigger, continuous mode or scan sequence on going. */
if ((LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance) != 0UL)
&& (hadc->Init.ContinuousConvMode == DISABLE)
)
{
/* Check whether end of sequence is reached */
if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS))
{
/* Set ADC state */
CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) == 0UL)
{
SET_BIT(hadc->State, HAL_ADC_STATE_READY);
}
}
}
/* Get relevant register CFGR in ADC instance of ADC master or slave */
/* in function of multimode state (for devices with multimode */
/* available). */
if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
|| (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
|| (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT)
|| (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN)
)
{
/* Retrieve handle ADC CFGR register */
tmp_cfgr = READ_REG(hadc->Instance->CFGR);
}
else
{
/* Retrieve Master ADC CFGR register */
tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance);
tmp_cfgr = READ_REG(tmpADC_Master->CFGR);
}
/* Clear polled flag */
if (tmp_Flag_End == ADC_FLAG_EOS)
{
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOS);
}
else
{
/* Clear end of conversion EOC flag of regular group if low power feature */
/* "LowPowerAutoWait " is disabled, to not interfere with this feature */
/* until data register is read using function HAL_ADC_GetValue(). */
if (READ_BIT(tmp_cfgr, ADC_CFGR_AUTDLY) == 0UL)
{
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS));
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Poll for ADC event.
* @param hadc ADC handle
* @param EventType the ADC event type.
* This parameter can be one of the following values:
* @arg @ref ADC_EOSMP_EVENT ADC End of Sampling event
* @arg @ref ADC_AWD1_EVENT ADC Analog watchdog 1 event (main analog watchdog, present on all STM32 devices)
* @arg @ref ADC_AWD2_EVENT ADC Analog watchdog 2 event (additional analog watchdog, not present on all STM32 families)
* @arg @ref ADC_AWD3_EVENT ADC Analog watchdog 3 event (additional analog watchdog, not present on all STM32 families)
* @arg @ref ADC_OVR_EVENT ADC Overrun event
* @arg @ref ADC_JQOVF_EVENT ADC Injected context queue overflow event
* @param Timeout Timeout value in millisecond.
* @note The relevant flag is cleared if found to be set, except for ADC_FLAG_OVR.
* Indeed, the latter is reset only if hadc->Init.Overrun field is set
* to ADC_OVR_DATA_OVERWRITTEN. Otherwise, data register may be potentially overwritten
* by a new converted data as soon as OVR is cleared.
* To reset OVR flag once the preserved data is retrieved, the user can resort
* to macro __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef *hadc, uint32_t EventType, uint32_t Timeout)
{
uint32_t tickstart;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
assert_param(IS_ADC_EVENT_TYPE(EventType));
/* Get tick count */
tickstart = HAL_GetTick();
/* Check selected event flag */
while (__HAL_ADC_GET_FLAG(hadc, EventType) == 0UL)
{
/* Check if timeout is disabled (set to infinite wait) */
if (Timeout != HAL_MAX_DELAY)
{
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0UL))
{
/* New check to avoid false timeout detection in case of preemption */
if(__HAL_ADC_GET_FLAG(hadc, EventType) == 0UL)
{
/* Update ADC state machine to timeout */
SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
/* Process unlocked */
__HAL_UNLOCK(hadc);
return HAL_TIMEOUT;
}
}
}
}
switch (EventType)
{
/* End Of Sampling event */
case ADC_EOSMP_EVENT:
/* Set ADC state */
SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOSMP);
/* Clear the End Of Sampling flag */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP);
break;
/* Analog watchdog (level out of window) event */
/* Note: In case of several analog watchdog enabled, if needed to know */
/* which one triggered and on which ADCx, test ADC state of analog watchdog */
/* flags HAL_ADC_STATE_AWD1/2/3 using function "HAL_ADC_GetState()". */
/* For example: */
/* " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD1) != 0UL) " */
/* " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD2) != 0UL) " */
/* " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD3) != 0UL) " */
/* Check analog watchdog 1 flag */
case ADC_AWD_EVENT:
/* Set ADC state */
SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);
/* Clear ADC analog watchdog flag */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD1);
break;
/* Check analog watchdog 2 flag */
case ADC_AWD2_EVENT:
/* Set ADC state */
SET_BIT(hadc->State, HAL_ADC_STATE_AWD2);
/* Clear ADC analog watchdog flag */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD2);
break;
/* Check analog watchdog 3 flag */
case ADC_AWD3_EVENT:
/* Set ADC state */
SET_BIT(hadc->State, HAL_ADC_STATE_AWD3);
/* Clear ADC analog watchdog flag */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD3);
break;
/* Injected context queue overflow event */
case ADC_JQOVF_EVENT:
/* Set ADC state */
SET_BIT(hadc->State, HAL_ADC_STATE_INJ_JQOVF);
/* Set ADC error code to Injected context queue overflow */
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_JQOVF);
/* Clear ADC Injected context queue overflow flag */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JQOVF);
break;
/* Overrun event */
default: /* Case ADC_OVR_EVENT */
/* If overrun is set to overwrite previous data, overrun event is not */
/* considered as an error. */
/* (cf ref manual "Managing conversions without using the DMA and without */
/* overrun ") */
if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED)
{
/* Set ADC state */
SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR);
/* Set ADC error code to overrun */
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR);
}
else
{
/* Clear ADC Overrun flag only if Overrun is set to ADC_OVR_DATA_OVERWRITTEN
otherwise, data register is potentially overwritten by new converted data as soon
as OVR is cleared. */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
}
break;
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Enable ADC, start conversion of regular group with interruption.
* @note Interruptions enabled in this function according to initialization
* setting : EOC (end of conversion), EOS (end of sequence),
* OVR overrun.
* Each of these interruptions has its dedicated callback function.
* @note Case of multimode enabled (when multimode feature is available):
* HAL_ADC_Start_IT() must be called for ADC Slave first, then for
* ADC Master.
* For ADC Slave, ADC is enabled only (conversion is not started).
* For ADC Master, ADC is enabled and multimode conversion is started.
* @note To guarantee a proper reset of all interruptions once all the needed
* conversions are obtained, HAL_ADC_Stop_IT() must be called to ensure
* a correct stop of the IT-based conversions.
* @note By default, HAL_ADC_Start_IT() does not enable the End Of Sampling
* interruption. If required (e.g. in case of oversampling with trigger
* mode), the user must:
* 1. first clear the EOSMP flag if set with macro __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP)
* 2. then enable the EOSMP interrupt with macro __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOSMP)
* before calling HAL_ADC_Start_IT().
* @param hadc ADC handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef *hadc)
{
HAL_StatusTypeDef tmp_hal_status;
const ADC_TypeDef *tmpADC_Master;
uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance));
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Perform ADC enable and conversion start if no conversion is on going */
if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL)
{
/* Process locked */
__HAL_LOCK(hadc);
/* Enable the ADC peripheral */
tmp_hal_status = ADC_Enable(hadc);
/* Start conversion if ADC is effectively enabled */
if (tmp_hal_status == HAL_OK)
{
/* Set ADC state */
/* - Clear state bitfield related to regular group conversion results */
/* - Set state bitfield related to regular operation */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP,
HAL_ADC_STATE_REG_BUSY);
/* Reset HAL_ADC_STATE_MULTIMODE_SLAVE bit
- if ADC instance is master or if multimode feature is not available
- if multimode setting is disabled (ADC instance slave in independent mode) */
if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
|| (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
)
{
CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
}
/* Set ADC error code */
/* Check if a conversion is on going on ADC group injected */
if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) != 0UL)
{
/* Reset ADC error code fields related to regular conversions only */
CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));
}
else
{
/* Reset all ADC error code fields */
ADC_CLEAR_ERRORCODE(hadc);
}
/* Clear ADC group regular conversion flag and overrun flag */
/* (To ensure of no unknown state from potential previous ADC operations) */
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR));
/* Process unlocked */
/* Unlock before starting ADC conversions: in case of potential */
/* interruption, to let the process to ADC IRQ Handler. */
__HAL_UNLOCK(hadc);
/* Disable all interruptions before enabling the desired ones */
__HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR));
/* Enable ADC end of conversion interrupt */
switch (hadc->Init.EOCSelection)
{
case ADC_EOC_SEQ_CONV:
__HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOS);
break;
/* case ADC_EOC_SINGLE_CONV */
default:
__HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOC);
break;
}
/* Enable ADC overrun interrupt */
/* If hadc->Init.Overrun is set to ADC_OVR_DATA_PRESERVED, only then is
ADC_IT_OVR enabled; otherwise data overwrite is considered as normal
behavior and no CPU time is lost for a non-processed interruption */
if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED)
{
__HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR);
}
/* Enable conversion of regular group. */
/* If software start has been selected, conversion starts immediately. */
/* If external trigger has been selected, conversion will start at next */
/* trigger event. */
/* Case of multimode enabled (when multimode feature is available): */
/* - if ADC is slave and dual regular conversions are enabled, ADC is */
/* enabled only (conversion is not started), */
/* - if ADC is master, ADC is enabled and conversion is started. */
if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
|| (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
|| (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT)
|| (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN)
)
{
/* ADC instance is not a multimode slave instance with multimode regular conversions enabled */
if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO) != 0UL)
{
ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
/* Enable as well injected interruptions in case
HAL_ADCEx_InjectedStart_IT() has not been called beforehand. This
allows to start regular and injected conversions when JAUTO is
set with a single call to HAL_ADC_Start_IT() */
switch (hadc->Init.EOCSelection)
{
case ADC_EOC_SEQ_CONV:
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC);
__HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOS);
break;
/* case ADC_EOC_SINGLE_CONV */
default:
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOS);
__HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOC);
break;
}
}
/* Start ADC group regular conversion */
LL_ADC_REG_StartConversion(hadc->Instance);
}
else
{
/* ADC instance is a multimode slave instance with multimode regular conversions enabled */
SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
/* if Master ADC JAUTO bit is set, Slave injected interruptions
are enabled nevertheless (for same reason as above) */
tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance);
if (READ_BIT(tmpADC_Master->CFGR, ADC_CFGR_JAUTO) != 0UL)
{
/* First, update Slave State in setting HAL_ADC_STATE_INJ_BUSY bit
and in resetting HAL_ADC_STATE_INJ_EOC bit */
ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
/* Next, set Slave injected interruptions */
switch (hadc->Init.EOCSelection)
{
case ADC_EOC_SEQ_CONV:
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC);
__HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOS);
break;
/* case ADC_EOC_SINGLE_CONV */
default:
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOS);
__HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOC);
break;
}
}
}
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hadc);
}
}
else
{
tmp_hal_status = HAL_BUSY;
}
/* Return function status */
return tmp_hal_status;
}
/**
* @brief Stop ADC conversion of regular group (and injected group in
* case of auto_injection mode), disable interrution of
* end-of-conversion, disable ADC peripheral.
* @param hadc ADC handle
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef *hadc)
{
HAL_StatusTypeDef tmp_hal_status;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Process locked */
__HAL_LOCK(hadc);
/* 1. Stop potential conversion on going, on ADC groups regular and injected */
tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP);
/* Disable ADC peripheral if conversions are effectively stopped */
if (tmp_hal_status == HAL_OK)
{
/* Disable ADC end of conversion interrupt for regular group */
/* Disable ADC overrun interrupt */
__HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR));
/* 2. Disable the ADC peripheral */
tmp_hal_status = ADC_Disable(hadc);
/* Check if ADC is effectively disabled */
if (tmp_hal_status == HAL_OK)
{
/* Set ADC state */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
HAL_ADC_STATE_READY);
}
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmp_hal_status;
}
/**
* @brief Enable ADC, start conversion of regular group and transfer result through DMA.
* @note Interruptions enabled in this function:
* overrun (if applicable), DMA half transfer, DMA transfer complete.
* Each of these interruptions has its dedicated callback function.
* @note Case of multimode enabled (when multimode feature is available): HAL_ADC_Start_DMA()
* is designed for single-ADC mode only. For multimode, the dedicated
* HAL_ADCEx_MultiModeStart_DMA() function must be used.
* @param hadc ADC handle
* @param pData Destination Buffer address.
* @param Length Number of data to be transferred from ADC peripheral to memory
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef *hadc, uint32_t *pData, uint32_t Length)
{
HAL_StatusTypeDef tmp_hal_status;
uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance));
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Perform ADC enable and conversion start if no conversion is on going */
if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL)
{
/* Process locked */
__HAL_LOCK(hadc);
/* Ensure that multimode regular conversions are not enabled. */
/* Otherwise, dedicated API HAL_ADCEx_MultiModeStart_DMA() must be used. */
if ((tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
|| (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT)
|| (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN)
)
{
/* Enable the ADC peripheral */
tmp_hal_status = ADC_Enable(hadc);
/* Start conversion if ADC is effectively enabled */
if (tmp_hal_status == HAL_OK)
{
/* Set ADC state */
/* - Clear state bitfield related to regular group conversion results */
/* - Set state bitfield related to regular operation */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP,
HAL_ADC_STATE_REG_BUSY);
/* Reset HAL_ADC_STATE_MULTIMODE_SLAVE bit
- if ADC instance is master or if multimode feature is not available
- if multimode setting is disabled (ADC instance slave in independent mode) */
if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
|| (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
)
{
CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
}
/* Check if a conversion is on going on ADC group injected */
if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) != 0UL)
{
/* Reset ADC error code fields related to regular conversions only */
CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));
}
else
{
/* Reset all ADC error code fields */
ADC_CLEAR_ERRORCODE(hadc);
}
/* Set the DMA transfer complete callback */
hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt;
/* Set the DMA half transfer complete callback */
hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt;
/* Set the DMA error callback */
hadc->DMA_Handle->XferErrorCallback = ADC_DMAError;
/* Manage ADC and DMA start: ADC overrun interruption, DMA start, */
/* ADC start (in case of SW start): */
/* Clear regular group conversion flag and overrun flag */
/* (To ensure of no unknown state from potential previous ADC */
/* operations) */
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR));
/* Process unlocked */
/* Unlock before starting ADC conversions: in case of potential */
/* interruption, to let the process to ADC IRQ Handler. */
__HAL_UNLOCK(hadc);
/* With DMA, overrun event is always considered as an error even if
hadc->Init.Overrun is set to ADC_OVR_DATA_OVERWRITTEN. Therefore,
ADC_IT_OVR is enabled. */
__HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR);
/* Enable ADC DMA mode*/
#if defined(ADC_VER_V5_V90)
if (hadc->Instance == ADC3)
{
LL_ADC_REG_SetDMATransferMode(hadc->Instance, ADC3_CFGR_DMACONTREQ((uint32_t)hadc->Init.DMAContinuousRequests));
LL_ADC_EnableDMAReq(hadc->Instance);
}
else
{
LL_ADC_REG_SetDataTransferMode(hadc->Instance, ADC_CFGR_DMACONTREQ((uint32_t)hadc->Init.ConversionDataManagement));
}
#else
LL_ADC_REG_SetDataTransferMode(hadc->Instance, (uint32_t)hadc->Init.ConversionDataManagement);
#endif
/* Start the DMA channel */
tmp_hal_status = HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length);
/* Enable conversion of regular group. */
/* If software start has been selected, conversion starts immediately. */
/* If external trigger has been selected, conversion will start at next */
/* trigger event. */
/* Start ADC group regular conversion */
LL_ADC_REG_StartConversion(hadc->Instance);
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hadc);
}
}
else
{
tmp_hal_status = HAL_ERROR;
/* Process unlocked */
__HAL_UNLOCK(hadc);
}
}
else
{
tmp_hal_status = HAL_BUSY;
}
/* Return function status */
return tmp_hal_status;
}
/**
* @brief Stop ADC conversion of regular group (and injected group in
* case of auto_injection mode), disable ADC DMA transfer, disable
* ADC peripheral.
* @note: ADC peripheral disable is forcing stop of potential
* conversion on ADC group injected. If ADC group injected is under use, it
* should be preliminarily stopped using HAL_ADCEx_InjectedStop function.
* @note Case of multimode enabled (when multimode feature is available):
* HAL_ADC_Stop_DMA() function is dedicated to single-ADC mode only.
* For multimode, the dedicated HAL_ADCEx_MultiModeStop_DMA() API must be used.
* @param hadc ADC handle
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef *hadc)
{
HAL_StatusTypeDef tmp_hal_status;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Process locked */
__HAL_LOCK(hadc);
/* 1. Stop potential ADC group regular conversion on going */
tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP);
/* Disable ADC peripheral if conversions are effectively stopped */
if (tmp_hal_status == HAL_OK)
{
/* Disable ADC DMA (ADC DMA configuration of continuous requests is kept) */
MODIFY_REG(hadc->Instance->CFGR, ADC_CFGR_DMNGT_0 | ADC_CFGR_DMNGT_1, 0UL);
/* Disable the DMA channel (in case of DMA in circular mode or stop */
/* while DMA transfer is on going) */
if (hadc->DMA_Handle->State == HAL_DMA_STATE_BUSY)
{
tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle);
/* Check if DMA channel effectively disabled */
if (tmp_hal_status != HAL_OK)
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA);
}
}
/* Disable ADC overrun interrupt */
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR);
/* 2. Disable the ADC peripheral */
/* Update "tmp_hal_status" only if DMA channel disabling passed, */
/* to keep in memory a potential failing status. */
if (tmp_hal_status == HAL_OK)
{
tmp_hal_status = ADC_Disable(hadc);
}
else
{
(void)ADC_Disable(hadc);
}
/* Check if ADC is effectively disabled */
if (tmp_hal_status == HAL_OK)
{
/* Set ADC state */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
HAL_ADC_STATE_READY);
}
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmp_hal_status;
}
/**
* @brief Get ADC regular group conversion result.
* @note Reading register DR automatically clears ADC flag EOC
* (ADC group regular end of unitary conversion).
* @note This function does not clear ADC flag EOS
* (ADC group regular end of sequence conversion).
* Occurrence of flag EOS rising:
* - If sequencer is composed of 1 rank, flag EOS is equivalent
* to flag EOC.
* - If sequencer is composed of several ranks, during the scan
* sequence flag EOC only is raised, at the end of the scan sequence
* both flags EOC and EOS are raised.
* To clear this flag, either use function:
* in programming model IT: @ref HAL_ADC_IRQHandler(), in programming
* model polling: @ref HAL_ADC_PollForConversion()
* or @ref __HAL_ADC_CLEAR_FLAG(&hadc, ADC_FLAG_EOS).
* @param hadc ADC handle
* @retval ADC group regular conversion data
*/
uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef *hadc)
{
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Note: EOC flag is not cleared here by software because automatically */
/* cleared by hardware when reading register DR. */
/* Return ADC converted value */
return hadc->Instance->DR;
}
/**
* @brief Handle ADC interrupt request.
* @param hadc ADC handle
* @retval None
*/
void HAL_ADC_IRQHandler(ADC_HandleTypeDef *hadc)
{
uint32_t overrun_error = 0UL; /* flag set if overrun occurrence has to be considered as an error */
uint32_t tmp_isr = hadc->Instance->ISR;
uint32_t tmp_ier = hadc->Instance->IER;
uint32_t tmp_adc_inj_is_trigger_source_sw_start;
uint32_t tmp_adc_reg_is_trigger_source_sw_start;
uint32_t tmp_cfgr;
const ADC_TypeDef *tmpADC_Master;
uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance));
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection));
/* ========== Check End of Sampling flag for ADC group regular ========== */
if (((tmp_isr & ADC_FLAG_EOSMP) == ADC_FLAG_EOSMP) && ((tmp_ier & ADC_IT_EOSMP) == ADC_IT_EOSMP))
{
/* Update state machine on end of sampling status if not in error state */
if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL)
{
/* Set ADC state */
SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOSMP);
}
/* End Of Sampling callback */
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
hadc->EndOfSamplingCallback(hadc);
#else
HAL_ADCEx_EndOfSamplingCallback(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
/* Clear regular group conversion flag */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP);
}
/* ====== Check ADC group regular end of unitary conversion sequence conversions ===== */
if ((((tmp_isr & ADC_FLAG_EOC) == ADC_FLAG_EOC) && ((tmp_ier & ADC_IT_EOC) == ADC_IT_EOC)) ||
(((tmp_isr & ADC_FLAG_EOS) == ADC_FLAG_EOS) && ((tmp_ier & ADC_IT_EOS) == ADC_IT_EOS)))
{
/* Update state machine on conversion status if not in error state */
if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL)
{
/* Set ADC state */
SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
}
/* Determine whether any further conversion upcoming on group regular */
/* by external trigger, continuous mode or scan sequence on going */
/* to disable interruption. */
if (LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance) != 0UL)
{
/* Get relevant register CFGR in ADC instance of ADC master or slave */
/* in function of multimode state (for devices with multimode */
/* available). */
if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
|| (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
|| (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT)
|| (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN)
)
{
/* check CONT bit directly in handle ADC CFGR register */
tmp_cfgr = READ_REG(hadc->Instance->CFGR);
}
else
{
/* else need to check Master ADC CONT bit */
tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance);
tmp_cfgr = READ_REG(tmpADC_Master->CFGR);
}
/* Carry on if continuous mode is disabled */
if (READ_BIT(tmp_cfgr, ADC_CFGR_CONT) != ADC_CFGR_CONT)
{
/* If End of Sequence is reached, disable interrupts */
if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS))
{
/* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit */
/* ADSTART==0 (no conversion on going) */
if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL)
{
/* Disable ADC end of sequence conversion interrupt */
/* Note: Overrun interrupt was enabled with EOC interrupt in */
/* HAL_Start_IT(), but is not disabled here because can be used */
/* by overrun IRQ process below. */
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS);
/* Set ADC state */
CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) == 0UL)
{
SET_BIT(hadc->State, HAL_ADC_STATE_READY);
}
}
else
{
/* Change ADC state to error state */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
/* Set ADC error code to ADC peripheral internal error */
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
}
}
}
}
/* Conversion complete callback */
/* Note: Into callback function "HAL_ADC_ConvCpltCallback()", */
/* to determine if conversion has been triggered from EOC or EOS, */
/* possibility to use: */
/* " if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_EOS)) " */
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
hadc->ConvCpltCallback(hadc);
#else
HAL_ADC_ConvCpltCallback(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
/* Clear regular group conversion flag */
/* Note: in case of overrun set to ADC_OVR_DATA_PRESERVED, end of */
/* conversion flags clear induces the release of the preserved data.*/
/* Therefore, if the preserved data value is needed, it must be */
/* read preliminarily into HAL_ADC_ConvCpltCallback(). */
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS));
}
/* ====== Check ADC group injected end of unitary conversion sequence conversions ===== */
if ((((tmp_isr & ADC_FLAG_JEOC) == ADC_FLAG_JEOC) && ((tmp_ier & ADC_IT_JEOC) == ADC_IT_JEOC)) ||
(((tmp_isr & ADC_FLAG_JEOS) == ADC_FLAG_JEOS) && ((tmp_ier & ADC_IT_JEOS) == ADC_IT_JEOS)))
{
/* Update state machine on conversion status if not in error state */
if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL)
{
/* Set ADC state */
SET_BIT(hadc->State, HAL_ADC_STATE_INJ_EOC);
}
/* Retrieve ADC configuration */
tmp_adc_inj_is_trigger_source_sw_start = LL_ADC_INJ_IsTriggerSourceSWStart(hadc->Instance);
tmp_adc_reg_is_trigger_source_sw_start = LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance);
/* Get relevant register CFGR in ADC instance of ADC master or slave */
/* in function of multimode state (for devices with multimode */
/* available). */
if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
|| (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
|| (tmp_multimode_config == LL_ADC_MULTI_DUAL_REG_SIMULT)
|| (tmp_multimode_config == LL_ADC_MULTI_DUAL_REG_INTERL)
)
{
tmp_cfgr = READ_REG(hadc->Instance->CFGR);
}
else
{
tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance);
tmp_cfgr = READ_REG(tmpADC_Master->CFGR);
}
/* Disable interruption if no further conversion upcoming by injected */
/* external trigger or by automatic injected conversion with regular */
/* group having no further conversion upcoming (same conditions as */
/* regular group interruption disabling above), */
/* and if injected scan sequence is completed. */
if (tmp_adc_inj_is_trigger_source_sw_start != 0UL)
{
if ((READ_BIT(tmp_cfgr, ADC_CFGR_JAUTO) == 0UL) ||
((tmp_adc_reg_is_trigger_source_sw_start != 0UL) &&
(READ_BIT(tmp_cfgr, ADC_CFGR_CONT) == 0UL)))
{
/* If End of Sequence is reached, disable interrupts */
if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOS))
{
/* Particular case if injected contexts queue is enabled: */
/* when the last context has been fully processed, JSQR is reset */
/* by the hardware. Even if no injected conversion is planned to come */
/* (queue empty, triggers are ignored), it can start again */
/* immediately after setting a new context (JADSTART is still set). */
/* Therefore, state of HAL ADC injected group is kept to busy. */
if (READ_BIT(tmp_cfgr, ADC_CFGR_JQM) == 0UL)
{
/* Allowed to modify bits ADC_IT_JEOC/ADC_IT_JEOS only if bit */
/* JADSTART==0 (no conversion on going) */
if (LL_ADC_INJ_IsConversionOngoing(hadc->Instance) == 0UL)
{
/* Disable ADC end of sequence conversion interrupt */
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC | ADC_IT_JEOS);
/* Set ADC state */
CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY);
if ((hadc->State & HAL_ADC_STATE_REG_BUSY) == 0UL)
{
SET_BIT(hadc->State, HAL_ADC_STATE_READY);
}
}
else
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
/* Set ADC error code to ADC peripheral internal error */
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
}
}
}
}
}
/* Injected Conversion complete callback */
/* Note: HAL_ADCEx_InjectedConvCpltCallback can resort to
if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_JEOS)) or
if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_JEOC)) to determine whether
interruption has been triggered by end of conversion or end of
sequence. */
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
hadc->InjectedConvCpltCallback(hadc);
#else
HAL_ADCEx_InjectedConvCpltCallback(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
/* Clear injected group conversion flag */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOC | ADC_FLAG_JEOS);
}
/* ========== Check Analog watchdog 1 flag ========== */
if (((tmp_isr & ADC_FLAG_AWD1) == ADC_FLAG_AWD1) && ((tmp_ier & ADC_IT_AWD1) == ADC_IT_AWD1))
{
/* Set ADC state */
SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);
/* Level out of window 1 callback */
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
hadc->LevelOutOfWindowCallback(hadc);
#else
HAL_ADC_LevelOutOfWindowCallback(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
/* Clear ADC analog watchdog flag */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD1);
}
/* ========== Check analog watchdog 2 flag ========== */
if (((tmp_isr & ADC_FLAG_AWD2) == ADC_FLAG_AWD2) && ((tmp_ier & ADC_IT_AWD2) == ADC_IT_AWD2))
{
/* Set ADC state */
SET_BIT(hadc->State, HAL_ADC_STATE_AWD2);
/* Level out of window 2 callback */
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
hadc->LevelOutOfWindow2Callback(hadc);
#else
HAL_ADCEx_LevelOutOfWindow2Callback(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
/* Clear ADC analog watchdog flag */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD2);
}
/* ========== Check analog watchdog 3 flag ========== */
if (((tmp_isr & ADC_FLAG_AWD3) == ADC_FLAG_AWD3) && ((tmp_ier & ADC_IT_AWD3) == ADC_IT_AWD3))
{
/* Set ADC state */
SET_BIT(hadc->State, HAL_ADC_STATE_AWD3);
/* Level out of window 3 callback */
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
hadc->LevelOutOfWindow3Callback(hadc);
#else
HAL_ADCEx_LevelOutOfWindow3Callback(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
/* Clear ADC analog watchdog flag */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD3);
}
/* ========== Check Overrun flag ========== */
if (((tmp_isr & ADC_FLAG_OVR) == ADC_FLAG_OVR) && ((tmp_ier & ADC_IT_OVR) == ADC_IT_OVR))
{
/* If overrun is set to overwrite previous data (default setting), */
/* overrun event is not considered as an error. */
/* (cf ref manual "Managing conversions without using the DMA and without */
/* overrun ") */
/* Exception for usage with DMA overrun event always considered as an */
/* error. */
if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED)
{
overrun_error = 1UL;
}
else
{
/* Check DMA configuration */
if (tmp_multimode_config != LL_ADC_MULTI_INDEPENDENT)
{
/* Multimode (when feature is available) is enabled,
Common Control Register MDMA bits must be checked. */
if (LL_ADC_GetMultiDMATransfer(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) != LL_ADC_MULTI_REG_DMA_EACH_ADC)
{
overrun_error = 1UL;
}
}
else
{
/* Multimode not set or feature not available or ADC independent */
if ((hadc->Instance->CFGR & ADC_CFGR_DMNGT) != 0UL)
{
overrun_error = 1UL;
}
}
}
if (overrun_error == 1UL)
{
/* Change ADC state to error state */
SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR);
/* Set ADC error code to overrun */
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR);
/* Error callback */
/* Note: In case of overrun, ADC conversion data is preserved until */
/* flag OVR is reset. */
/* Therefore, old ADC conversion data can be retrieved in */
/* function "HAL_ADC_ErrorCallback()". */
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
hadc->ErrorCallback(hadc);
#else
HAL_ADC_ErrorCallback(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
}
/* Clear ADC overrun flag */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
}
/* ========== Check Injected context queue overflow flag ========== */
if (((tmp_isr & ADC_FLAG_JQOVF) == ADC_FLAG_JQOVF) && ((tmp_ier & ADC_IT_JQOVF) == ADC_IT_JQOVF))
{
/* Change ADC state to overrun state */
SET_BIT(hadc->State, HAL_ADC_STATE_INJ_JQOVF);
/* Set ADC error code to Injected context queue overflow */
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_JQOVF);
/* Clear the Injected context queue overflow flag */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JQOVF);
/* Injected context queue overflow callback */
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
hadc->InjectedQueueOverflowCallback(hadc);
#else
HAL_ADCEx_InjectedQueueOverflowCallback(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
}
}
/**
* @brief Conversion complete callback in non-blocking mode.
* @param hadc ADC handle
* @retval None
*/
__weak void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hadc);
/* NOTE : This function should not be modified. When the callback is needed,
function HAL_ADC_ConvCpltCallback must be implemented in the user file.
*/
}
/**
* @brief Conversion DMA half-transfer callback in non-blocking mode.
* @param hadc ADC handle
* @retval None
*/
__weak void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef *hadc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hadc);
/* NOTE : This function should not be modified. When the callback is needed,
function HAL_ADC_ConvHalfCpltCallback must be implemented in the user file.
*/
}
/**
* @brief Analog watchdog 1 callback in non-blocking mode.
* @param hadc ADC handle
* @retval None
*/
__weak void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef *hadc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hadc);
/* NOTE : This function should not be modified. When the callback is needed,
function HAL_ADC_LevelOutOfWindowCallback must be implemented in the user file.
*/
}
/**
* @brief ADC error callback in non-blocking mode
* (ADC conversion with interruption or transfer by DMA).
* @note In case of error due to overrun when using ADC with DMA transfer
* (HAL ADC handle parameter "ErrorCode" to state "HAL_ADC_ERROR_OVR"):
* - Reinitialize the DMA using function "HAL_ADC_Stop_DMA()".
* - If needed, restart a new ADC conversion using function
* "HAL_ADC_Start_DMA()"
* (this function is also clearing overrun flag)
* @param hadc ADC handle
* @retval None
*/
__weak void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hadc);
/* NOTE : This function should not be modified. When the callback is needed,
function HAL_ADC_ErrorCallback must be implemented in the user file.
*/
}
/**
* @}
*/
/** @defgroup ADC_Exported_Functions_Group3 Peripheral Control functions
* @brief Peripheral Control functions
*
@verbatim
===============================================================================
##### Peripheral Control functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Configure channels on regular group
(+) Configure the analog watchdog
@endverbatim
* @{
*/
/**
* @brief Configure a channel to be assigned to ADC group regular.
* @note In case of usage of internal measurement channels:
* Vbat/VrefInt/TempSensor.
* These internal paths can be disabled using function
* HAL_ADC_DeInit().
* @note Possibility to update parameters on the fly:
* This function initializes channel into ADC group regular,
* following calls to this function can be used to reconfigure
* some parameters of structure "ADC_ChannelConfTypeDef" on the fly,
* without resetting the ADC.
* The setting of these parameters is conditioned to ADC state:
* Refer to comments of structure "ADC_ChannelConfTypeDef".
* @param hadc ADC handle
* @param sConfig Structure of ADC channel assigned to ADC group regular.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef *hadc, ADC_ChannelConfTypeDef *sConfig)
{
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
uint32_t tmpOffsetShifted;
uint32_t tmp_config_internal_channel;
__IO uint32_t wait_loop_index = 0;
uint32_t tmp_adc_is_conversion_on_going_regular;
uint32_t tmp_adc_is_conversion_on_going_injected;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
assert_param(IS_ADC_REGULAR_RANK(sConfig->Rank));
assert_param(IS_ADC_SAMPLE_TIME(sConfig->SamplingTime));
assert_param(IS_ADC_SINGLE_DIFFERENTIAL(sConfig->SingleDiff));
assert_param(IS_ADC_OFFSET_NUMBER(sConfig->OffsetNumber));
/* Check offset range according to oversampling setting */
if (hadc->Init.OversamplingMode == ENABLE)
{
assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), sConfig->Offset / (hadc->Init.Oversampling.Ratio + 1U)));
}
else
{
#if defined(ADC_VER_V5_V90)
if (hadc->Instance == ADC3)
{
assert_param(IS_ADC3_RANGE(ADC_GET_RESOLUTION(hadc), sConfig->Offset));
}
else
#endif /* ADC_VER_V5_V90 */
{
assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), sConfig->Offset));
}
}
/* if ROVSE is set, the value of the OFFSETy_EN bit in ADCx_OFRy register is
ignored (considered as reset) */
assert_param(!((sConfig->OffsetNumber != ADC_OFFSET_NONE) && (hadc->Init.OversamplingMode == ENABLE)));
/* Verification of channel number */
if (sConfig->SingleDiff != ADC_DIFFERENTIAL_ENDED)
{
assert_param(IS_ADC_CHANNEL(sConfig->Channel));
}
else
{
if (hadc->Instance == ADC1)
{
assert_param(IS_ADC1_DIFF_CHANNEL(sConfig->Channel));
}
if (hadc->Instance == ADC2)
{
assert_param(IS_ADC2_DIFF_CHANNEL(sConfig->Channel));
}
#if defined(ADC3)
/* ADC3 is not available on some STM32H7 products */
if (hadc->Instance == ADC3)
{
assert_param(IS_ADC3_DIFF_CHANNEL(sConfig->Channel));
}
#endif
}
/* Process locked */
__HAL_LOCK(hadc);
/* Parameters update conditioned to ADC state: */
/* Parameters that can be updated when ADC is disabled or enabled without */
/* conversion on going on regular group: */
/* - Channel number */
/* - Channel rank */
if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL)
{
#if defined(ADC_VER_V5_V90)
if (hadc->Instance != ADC3)
{
/* ADC channels preselection */
hadc->Instance->PCSEL_RES0 |= (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB((uint32_t)sConfig->Channel) & 0x1FUL));
}
#else
/* ADC channels preselection */
hadc->Instance->PCSEL |= (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB((uint32_t)sConfig->Channel) & 0x1FUL));
#endif /* ADC_VER_V5_V90 */
/* Set ADC group regular sequence: channel on the selected scan sequence rank */
LL_ADC_REG_SetSequencerRanks(hadc->Instance, sConfig->Rank, sConfig->Channel);
/* Parameters update conditioned to ADC state: */
/* Parameters that can be updated when ADC is disabled or enabled without */
/* conversion on going on regular group: */
/* - Channel sampling time */
/* - Channel offset */
tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance);
tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance);
if ((tmp_adc_is_conversion_on_going_regular == 0UL)
&& (tmp_adc_is_conversion_on_going_injected == 0UL)
)
{
/* Set sampling time of the selected ADC channel */
LL_ADC_SetChannelSamplingTime(hadc->Instance, sConfig->Channel, sConfig->SamplingTime);
/* Configure the offset: offset enable/disable, channel, offset value */
/* Shift the offset with respect to the selected ADC resolution. */
/* Offset has to be left-aligned on bit 11, the LSB (right bits) are set to 0 */
#if defined(ADC_VER_V5_V90)
if (hadc->Instance == ADC3)
{
tmpOffsetShifted = ADC3_OFFSET_SHIFT_RESOLUTION(hadc, (uint32_t)sConfig->Offset);
}
else
#endif /* ADC_VER_V5_V90 */
{
tmpOffsetShifted = ADC_OFFSET_SHIFT_RESOLUTION(hadc, (uint32_t)sConfig->Offset);
}
if (sConfig->OffsetNumber != ADC_OFFSET_NONE)
{
/* Set ADC selected offset number */
LL_ADC_SetOffset(hadc->Instance, sConfig->OffsetNumber, sConfig->Channel, tmpOffsetShifted);
#if defined(ADC_VER_V5_V90)
if (hadc->Instance == ADC3)
{
assert_param(IS_ADC3_OFFSET_SIGN(sConfig->OffsetSign));
assert_param(IS_FUNCTIONAL_STATE(sConfig->OffsetSaturation));
/* Set ADC selected offset sign & saturation */
LL_ADC_SetOffsetSign(hadc->Instance, sConfig->OffsetNumber, sConfig->OffsetSign);
LL_ADC_SetOffsetSaturation(hadc->Instance, sConfig->OffsetNumber, (sConfig->OffsetSaturation == ENABLE) ? LL_ADC_OFFSET_SATURATION_ENABLE : LL_ADC_OFFSET_SATURATION_DISABLE);
}
else
#endif /* ADC_VER_V5_V90 */
{
assert_param(IS_FUNCTIONAL_STATE(sConfig->OffsetSignedSaturation));
/* Set ADC selected offset signed saturation */
LL_ADC_SetOffsetSignedSaturation(hadc->Instance, sConfig->OffsetNumber, (sConfig->OffsetSignedSaturation == ENABLE) ? LL_ADC_OFFSET_SIGNED_SATURATION_ENABLE : LL_ADC_OFFSET_SIGNED_SATURATION_DISABLE);
assert_param(IS_FUNCTIONAL_STATE(sConfig->OffsetRightShift));
/* Set ADC selected offset right shift */
LL_ADC_SetDataRightShift(hadc->Instance, sConfig->OffsetNumber, (sConfig->OffsetRightShift == ENABLE) ? LL_ADC_OFFSET_RSHIFT_ENABLE : LL_ADC_OFFSET_RSHIFT_DISABLE);
}
}
else
{
/* Scan OFR1, OFR2, OFR3, OFR4 to check if the selected channel is enabled.
If this is the case, offset OFRx is disabled since
sConfig->OffsetNumber = ADC_OFFSET_NONE. */
#if defined(ADC_VER_V5_V90)
if (hadc->Instance == ADC3)
{
if (__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_1)) == __LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfig->Channel))
{
LL_ADC_SetOffsetState(hadc->Instance, LL_ADC_OFFSET_1, LL_ADC_OFFSET_DISABLE);
}
if (__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_2)) == __LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfig->Channel))
{
LL_ADC_SetOffsetState(hadc->Instance, LL_ADC_OFFSET_2, LL_ADC_OFFSET_DISABLE);
}
if (__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_3)) == __LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfig->Channel))
{
LL_ADC_SetOffsetState(hadc->Instance, LL_ADC_OFFSET_3, LL_ADC_OFFSET_DISABLE);
}
if (__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_4)) == __LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfig->Channel))
{
LL_ADC_SetOffsetState(hadc->Instance, LL_ADC_OFFSET_4, LL_ADC_OFFSET_DISABLE);
}
}
else
#endif /* ADC_VER_V5_V90 */
{
if (((hadc->Instance->OFR1) & ADC_OFR1_OFFSET1_CH) == ADC_OFR_CHANNEL(sConfig->Channel))
{
CLEAR_BIT(hadc->Instance->OFR1, ADC_OFR1_SSATE);
}
if (((hadc->Instance->OFR2) & ADC_OFR2_OFFSET2_CH) == ADC_OFR_CHANNEL(sConfig->Channel))
{
CLEAR_BIT(hadc->Instance->OFR2, ADC_OFR2_SSATE);
}
if (((hadc->Instance->OFR3) & ADC_OFR3_OFFSET3_CH) == ADC_OFR_CHANNEL(sConfig->Channel))
{
CLEAR_BIT(hadc->Instance->OFR3, ADC_OFR3_SSATE);
}
if (((hadc->Instance->OFR4) & ADC_OFR4_OFFSET4_CH) == ADC_OFR_CHANNEL(sConfig->Channel))
{
CLEAR_BIT(hadc->Instance->OFR4, ADC_OFR4_SSATE);
}
}
}
}
/* Parameters update conditioned to ADC state: */
/* Parameters that can be updated only when ADC is disabled: */
/* - Single or differential mode */
/* - Internal measurement channels: Vbat/VrefInt/TempSensor */
if (LL_ADC_IsEnabled(hadc->Instance) == 0UL)
{
/* Set mode single-ended or differential input of the selected ADC channel */
LL_ADC_SetChannelSingleDiff(hadc->Instance, sConfig->Channel, sConfig->SingleDiff);
/* Configuration of differential mode */
if (sConfig->SingleDiff == ADC_DIFFERENTIAL_ENDED)
{
/* Set sampling time of the selected ADC channel */
/* Note: ADC channel number masked with value "0x1F" to ensure shift value within 32 bits range */
LL_ADC_SetChannelSamplingTime(hadc->Instance,
(uint32_t)(__LL_ADC_DECIMAL_NB_TO_CHANNEL((__LL_ADC_CHANNEL_TO_DECIMAL_NB((uint32_t)sConfig->Channel) + 1UL) & 0x1FUL)),
sConfig->SamplingTime);
}
/* Management of internal measurement channels: Vbat/VrefInt/TempSensor. */
/* If internal channel selected, enable dedicated internal buffers and */
/* paths. */
/* Note: these internal measurement paths can be disabled using */
/* HAL_ADC_DeInit(). */
if (__LL_ADC_IS_CHANNEL_INTERNAL(sConfig->Channel))
{
/* Configuration of common ADC parameters */
tmp_config_internal_channel = LL_ADC_GetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance));
/* Software is allowed to change common parameters only when all ADCs */
/* of the common group are disabled. */
if (__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) == 0UL)
{
/* If the requested internal measurement path has already been enabled, */
/* bypass the configuration processing. */
if ((sConfig->Channel == ADC_CHANNEL_TEMPSENSOR) && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_TEMPSENSOR) == 0UL))
{
if (ADC_TEMPERATURE_SENSOR_INSTANCE(hadc))
{
LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), LL_ADC_PATH_INTERNAL_TEMPSENSOR | tmp_config_internal_channel);
/* Delay for temperature sensor stabilization time */
/* Wait loop initialization and execution */
/* Note: Variable divided by 2 to compensate partially */
/* CPU processing cycles, scaling in us split to not */
/* exceed 32 bits register capacity and handle low frequency. */
wait_loop_index = ((LL_ADC_DELAY_TEMPSENSOR_STAB_US / 10UL) * ((SystemCoreClock / (100000UL * 2UL)) + 1UL));
while (wait_loop_index != 0UL)
{
wait_loop_index--;
}
}
}
else if ((sConfig->Channel == ADC_CHANNEL_VBAT) && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_VBAT) == 0UL))
{
if (ADC_BATTERY_VOLTAGE_INSTANCE(hadc))
{
LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), LL_ADC_PATH_INTERNAL_VBAT | tmp_config_internal_channel);
}
}
else if ((sConfig->Channel == ADC_CHANNEL_VREFINT) && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_VREFINT) == 0UL))
{
if (ADC_VREFINT_INSTANCE(hadc))
{
LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), LL_ADC_PATH_INTERNAL_VREFINT | tmp_config_internal_channel);
}
}
else
{
/* nothing to do */
}
}
/* If the requested internal measurement path has already been */
/* enabled and other ADC of the common group are enabled, internal */
/* measurement paths cannot be enabled. */
else
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
tmp_hal_status = HAL_ERROR;
}
}
}
}
/* If a conversion is on going on regular group, no update on regular */
/* channel could be done on neither of the channel configuration structure */
/* parameters. */
else
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
tmp_hal_status = HAL_ERROR;
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmp_hal_status;
}
/**
* @brief Configure the analog watchdog.
* @note Possibility to update parameters on the fly:
* This function initializes the selected analog watchdog, successive
* calls to this function can be used to reconfigure some parameters
* of structure "ADC_AnalogWDGConfTypeDef" on the fly, without resetting
* the ADC.
* The setting of these parameters is conditioned to ADC state.
* For parameters constraints, see comments of structure
* "ADC_AnalogWDGConfTypeDef".
* @note On this STM32 series, analog watchdog thresholds cannot be modified
* while ADC conversion is on going.
* @param hadc ADC handle
* @param AnalogWDGConfig Structure of ADC analog watchdog configuration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef *hadc, ADC_AnalogWDGConfTypeDef *AnalogWDGConfig)
{
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
uint32_t tmpAWDHighThresholdShifted;
uint32_t tmpAWDLowThresholdShifted;
uint32_t tmp_adc_is_conversion_on_going_regular;
uint32_t tmp_adc_is_conversion_on_going_injected;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
assert_param(IS_ADC_ANALOG_WATCHDOG_NUMBER(AnalogWDGConfig->WatchdogNumber));
assert_param(IS_ADC_ANALOG_WATCHDOG_MODE(AnalogWDGConfig->WatchdogMode));
assert_param(IS_FUNCTIONAL_STATE(AnalogWDGConfig->ITMode));
if ((AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REG) ||
(AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_INJEC) ||
(AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REGINJEC))
{
assert_param(IS_ADC_CHANNEL(AnalogWDGConfig->Channel));
}
#if defined(ADC_VER_V5_V90)
if (hadc->Instance == ADC3)
{
/* Verify thresholds range */
if (hadc->Init.OversamplingMode == ENABLE)
{
/* Case of oversampling enabled: thresholds are compared to oversampling
intermediate computation (after ratio, before shift application) */
assert_param(IS_ADC3_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->HighThreshold / (hadc->Init.Oversampling.Ratio + 1UL)));
assert_param(IS_ADC3_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->LowThreshold / (hadc->Init.Oversampling.Ratio + 1UL)));
}
else
{
/* Verify if thresholds are within the selected ADC resolution */
assert_param(IS_ADC3_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->HighThreshold));
assert_param(IS_ADC3_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->LowThreshold));
}
}
else
#endif /* ADC_VER_V5_V90 */
{
/* Verify thresholds range */
if (hadc->Init.OversamplingMode == ENABLE)
{
/* Case of oversampling enabled: thresholds are compared to oversampling
intermediate computation (after ratio, before shift application) */
assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->HighThreshold / (hadc->Init.Oversampling.Ratio + 1UL)));
assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->LowThreshold / (hadc->Init.Oversampling.Ratio + 1UL)));
}
else
{
/* Verify if thresholds are within the selected ADC resolution */
assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->HighThreshold));
assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->LowThreshold));
}
}
/* Process locked */
__HAL_LOCK(hadc);
/* Parameters update conditioned to ADC state: */
/* Parameters that can be updated when ADC is disabled or enabled without */
/* conversion on going on ADC groups regular and injected: */
/* - Analog watchdog channels */
/* - Analog watchdog thresholds */
tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance);
tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance);
if ((tmp_adc_is_conversion_on_going_regular == 0UL)
&& (tmp_adc_is_conversion_on_going_injected == 0UL)
)
{
/* Analog watchdog configuration */
if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_1)
{
/* Configuration of analog watchdog: */
/* - Set the analog watchdog enable mode: one or overall group of */
/* channels, on groups regular and-or injected. */
switch (AnalogWDGConfig->WatchdogMode)
{
case ADC_ANALOGWATCHDOG_SINGLE_REG:
LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, __LL_ADC_ANALOGWD_CHANNEL_GROUP(AnalogWDGConfig->Channel,
LL_ADC_GROUP_REGULAR));
break;
case ADC_ANALOGWATCHDOG_SINGLE_INJEC:
LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, __LL_ADC_ANALOGWD_CHANNEL_GROUP(AnalogWDGConfig->Channel,
LL_ADC_GROUP_INJECTED));
break;
case ADC_ANALOGWATCHDOG_SINGLE_REGINJEC:
LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, __LL_ADC_ANALOGWD_CHANNEL_GROUP(AnalogWDGConfig->Channel,
LL_ADC_GROUP_REGULAR_INJECTED));
break;
case ADC_ANALOGWATCHDOG_ALL_REG:
LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_ALL_CHANNELS_REG);
break;
case ADC_ANALOGWATCHDOG_ALL_INJEC:
LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_ALL_CHANNELS_INJ);
break;
case ADC_ANALOGWATCHDOG_ALL_REGINJEC:
LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_ALL_CHANNELS_REG_INJ);
break;
default: /* ADC_ANALOGWATCHDOG_NONE */
LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_DISABLE);
break;
}
/* Shift the offset in function of the selected ADC resolution: */
/* Thresholds have to be left-aligned on bit 11, the LSB (right bits) */
/* are set to 0 */
tmpAWDHighThresholdShifted = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->HighThreshold);
tmpAWDLowThresholdShifted = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->LowThreshold);
/* Set the high and low thresholds */
#if defined(ADC_VER_V5_V90)
if (hadc->Instance == ADC3)
{
MODIFY_REG(hadc->Instance->LTR1_TR1,
ADC3_TR1_AWDFILT,
AnalogWDGConfig->FilteringConfig);
MODIFY_REG(hadc->Instance->LTR1_TR1, ADC3_TR1_LT1, tmpAWDLowThresholdShifted);
MODIFY_REG(hadc->Instance->LTR1_TR1, ADC3_TR1_HT1, (tmpAWDHighThresholdShifted << ADC3_TR1_HT1_Pos));
}
else
{
MODIFY_REG(hadc->Instance->LTR1_TR1, ADC_LTR_LT, tmpAWDLowThresholdShifted);
MODIFY_REG(hadc->Instance->HTR1_TR2, ADC_HTR_HT, tmpAWDHighThresholdShifted);
}
#else
MODIFY_REG(hadc->Instance->LTR1, ADC_LTR_LT, tmpAWDLowThresholdShifted);
MODIFY_REG(hadc->Instance->HTR1, ADC_HTR_HT, tmpAWDHighThresholdShifted);
#endif
/* Update state, clear previous result related to AWD1 */
CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD1);
/* Clear flag ADC analog watchdog */
/* Note: Flag cleared Clear the ADC Analog watchdog flag to be ready */
/* to use for HAL_ADC_IRQHandler() or HAL_ADC_PollForEvent() */
/* (in case left enabled by previous ADC operations). */
LL_ADC_ClearFlag_AWD1(hadc->Instance);
/* Configure ADC analog watchdog interrupt */
if (AnalogWDGConfig->ITMode == ENABLE)
{
LL_ADC_EnableIT_AWD1(hadc->Instance);
}
else
{
LL_ADC_DisableIT_AWD1(hadc->Instance);
}
}
/* Case of ADC_ANALOGWATCHDOG_2 or ADC_ANALOGWATCHDOG_3 */
else
{
switch (AnalogWDGConfig->WatchdogMode)
{
case ADC_ANALOGWATCHDOG_SINGLE_REG:
case ADC_ANALOGWATCHDOG_SINGLE_INJEC:
case ADC_ANALOGWATCHDOG_SINGLE_REGINJEC:
/* Update AWD by bitfield to keep the possibility to monitor */
/* several channels by successive calls of this function. */
if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2)
{
SET_BIT(hadc->Instance->AWD2CR, (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB(AnalogWDGConfig->Channel) & 0x1FUL)));
}
else
{
SET_BIT(hadc->Instance->AWD3CR, (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB(AnalogWDGConfig->Channel) & 0x1FUL)));
}
break;
case ADC_ANALOGWATCHDOG_ALL_REG:
case ADC_ANALOGWATCHDOG_ALL_INJEC:
case ADC_ANALOGWATCHDOG_ALL_REGINJEC:
#if defined(ADC_VER_V5_V90)
if (hadc->Instance == ADC3)
{
LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, AnalogWDGConfig->WatchdogNumber, LL_ADC_AWD_ALL_CHANNELS_REG_INJ);
}
else
{
#endif /*ADC_VER_V5_V90*/
/* Update AWD by bitfield to keep the possibility to monitor */
/* several channels by successive calls of this function. */
if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2)
{
SET_BIT(hadc->Instance->AWD2CR, (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB(AnalogWDGConfig->Channel) & 0x1FUL)));
}
else
{
SET_BIT(hadc->Instance->AWD3CR, (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB(AnalogWDGConfig->Channel) & 0x1FUL)));
}
#if defined(ADC_VER_V5_V90)
}
#endif /*ADC_VER_V5_V90*/
break;
default: /* ADC_ANALOGWATCHDOG_NONE */
LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, AnalogWDGConfig->WatchdogNumber, LL_ADC_AWD_DISABLE);
break;
}
/* Shift the thresholds in function of the selected ADC resolution */
/* have to be left-aligned on bit 15, the LSB (right bits) are set to 0 */
tmpAWDHighThresholdShifted = ADC_AWD23THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->HighThreshold);
tmpAWDLowThresholdShifted = ADC_AWD23THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->LowThreshold);
#if defined(ADC_VER_V5_V90)
if (hadc->Instance == ADC3)
{
/* Analog watchdog thresholds configuration */
if (AnalogWDGConfig->WatchdogNumber != ADC_ANALOGWATCHDOG_1)
{
/* Shift the offset with respect to the selected ADC resolution: */
/* Thresholds have to be left-aligned on bit 7, the LSB (right bits) */
/* are set to 0. */
tmpAWDHighThresholdShifted = ADC_AWD23THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->HighThreshold);
tmpAWDLowThresholdShifted = ADC_AWD23THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->LowThreshold);
}
/* Set ADC analog watchdog thresholds value of both thresholds high and low */
LL_ADC_ConfigAnalogWDThresholds(hadc->Instance, AnalogWDGConfig->WatchdogNumber, tmpAWDHighThresholdShifted, tmpAWDLowThresholdShifted);
}
else
{
if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2)
{
/* Set ADC analog watchdog thresholds value of both thresholds high and low */
MODIFY_REG(hadc->Instance->LTR2_DIFSEL, ADC_LTR_LT, tmpAWDLowThresholdShifted);
MODIFY_REG(hadc->Instance->HTR2_CALFACT, ADC_HTR_HT, tmpAWDHighThresholdShifted);
}
else
{
/* Set ADC analog watchdog thresholds value of both thresholds high and low */
MODIFY_REG(hadc->Instance->LTR3_RES10, ADC_LTR_LT, tmpAWDLowThresholdShifted);
MODIFY_REG(hadc->Instance->HTR3_RES11, ADC_HTR_HT, tmpAWDHighThresholdShifted);
}
}
#else
if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2)
{
/* Set ADC analog watchdog thresholds value of both thresholds high and low */
MODIFY_REG(hadc->Instance->LTR2, ADC_LTR_LT, tmpAWDLowThresholdShifted);
MODIFY_REG(hadc->Instance->HTR2, ADC_HTR_HT, tmpAWDHighThresholdShifted);
}
else
{
/* Set ADC analog watchdog thresholds value of both thresholds high and low */
MODIFY_REG(hadc->Instance->LTR3, ADC_LTR_LT, tmpAWDLowThresholdShifted);
MODIFY_REG(hadc->Instance->HTR3, ADC_HTR_HT, tmpAWDHighThresholdShifted);
}
#endif
if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2)
{
/* Update state, clear previous result related to AWD2 */
CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD2);
/* Clear flag ADC analog watchdog */
/* Note: Flag cleared Clear the ADC Analog watchdog flag to be ready */
/* to use for HAL_ADC_IRQHandler() or HAL_ADC_PollForEvent() */
/* (in case left enabled by previous ADC operations). */
LL_ADC_ClearFlag_AWD2(hadc->Instance);
/* Configure ADC analog watchdog interrupt */
if (AnalogWDGConfig->ITMode == ENABLE)
{
LL_ADC_EnableIT_AWD2(hadc->Instance);
}
else
{
LL_ADC_DisableIT_AWD2(hadc->Instance);
}
}
/* (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_3) */
else
{
/* Update state, clear previous result related to AWD3 */
CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD3);
/* Clear flag ADC analog watchdog */
/* Note: Flag cleared Clear the ADC Analog watchdog flag to be ready */
/* to use for HAL_ADC_IRQHandler() or HAL_ADC_PollForEvent() */
/* (in case left enabled by previous ADC operations). */
LL_ADC_ClearFlag_AWD3(hadc->Instance);
/* Configure ADC analog watchdog interrupt */
if (AnalogWDGConfig->ITMode == ENABLE)
{
LL_ADC_EnableIT_AWD3(hadc->Instance);
}
else
{
LL_ADC_DisableIT_AWD3(hadc->Instance);
}
}
}
}
/* If a conversion is on going on ADC group regular or injected, no update */
/* could be done on neither of the AWD configuration structure parameters. */
else
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
tmp_hal_status = HAL_ERROR;
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmp_hal_status;
}
/**
* @}
*/
/** @defgroup ADC_Exported_Functions_Group4 Peripheral State functions
* @brief ADC Peripheral State functions
*
@verbatim
===============================================================================
##### Peripheral state and errors functions #####
===============================================================================
[..]
This subsection provides functions to get in run-time the status of the
peripheral.
(+) Check the ADC state
(+) Check the ADC error code
@endverbatim
* @{
*/
/**
* @brief Return the ADC handle state.
* @note ADC state machine is managed by bitfields, ADC status must be
* compared with states bits.
* For example:
* " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_REG_BUSY) != 0UL) "
* " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD1) != 0UL) "
* @param hadc ADC handle
* @retval ADC handle state (bitfield on 32 bits)
*/
uint32_t HAL_ADC_GetState(ADC_HandleTypeDef *hadc)
{
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Return ADC handle state */
return hadc->State;
}
/**
* @brief Return the ADC error code.
* @param hadc ADC handle
* @retval ADC error code (bitfield on 32 bits)
*/
uint32_t HAL_ADC_GetError(ADC_HandleTypeDef *hadc)
{
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
return hadc->ErrorCode;
}
/**
* @}
*/
/**
* @}
*/
/** @defgroup ADC_Private_Functions ADC Private Functions
* @{
*/
/**
* @brief Stop ADC conversion.
* @param hadc ADC handle
* @param ConversionGroup ADC group regular and/or injected.
* This parameter can be one of the following values:
* @arg @ref ADC_REGULAR_GROUP ADC regular conversion type.
* @arg @ref ADC_INJECTED_GROUP ADC injected conversion type.
* @arg @ref ADC_REGULAR_INJECTED_GROUP ADC regular and injected conversion type.
* @retval HAL status.
*/
HAL_StatusTypeDef ADC_ConversionStop(ADC_HandleTypeDef *hadc, uint32_t ConversionGroup)
{
uint32_t tickstart;
uint32_t Conversion_Timeout_CPU_cycles = 0UL;
uint32_t conversion_group_reassigned = ConversionGroup;
uint32_t tmp_ADC_CR_ADSTART_JADSTART;
uint32_t tmp_adc_is_conversion_on_going_regular;
uint32_t tmp_adc_is_conversion_on_going_injected;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
assert_param(IS_ADC_CONVERSION_GROUP(ConversionGroup));
/* Verification if ADC is not already stopped (on regular and injected */
/* groups) to bypass this function if not needed. */
tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance);
tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance);
if ((tmp_adc_is_conversion_on_going_regular != 0UL)
|| (tmp_adc_is_conversion_on_going_injected != 0UL)
)
{
/* Particular case of continuous auto-injection mode combined with */
/* auto-delay mode. */
/* In auto-injection mode, regular group stop ADC_CR_ADSTP is used (not */
/* injected group stop ADC_CR_JADSTP). */
/* Procedure to be followed: Wait until JEOS=1, clear JEOS, set ADSTP=1 */
/* (see reference manual). */
if (((hadc->Instance->CFGR & ADC_CFGR_JAUTO) != 0UL)
&& (hadc->Init.ContinuousConvMode == ENABLE)
&& (hadc->Init.LowPowerAutoWait == ENABLE)
)
{
/* Use stop of regular group */
conversion_group_reassigned = ADC_REGULAR_GROUP;
/* Wait until JEOS=1 (maximum Timeout: 4 injected conversions) */
while (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOS) == 0UL)
{
if (Conversion_Timeout_CPU_cycles >= (ADC_CONVERSION_TIME_MAX_CPU_CYCLES * 4UL))
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
/* Set ADC error code to ADC peripheral internal error */
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
return HAL_ERROR;
}
Conversion_Timeout_CPU_cycles ++;
}
/* Clear JEOS */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOS);
}
/* Stop potential conversion on going on ADC group regular */
if (conversion_group_reassigned != ADC_INJECTED_GROUP)
{
/* Software is allowed to set ADSTP only when ADSTART=1 and ADDIS=0 */
if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) != 0UL)
{
if (LL_ADC_IsDisableOngoing(hadc->Instance) == 0UL)
{
/* Stop ADC group regular conversion */
LL_ADC_REG_StopConversion(hadc->Instance);
}
}
}
/* Stop potential conversion on going on ADC group injected */
if (conversion_group_reassigned != ADC_REGULAR_GROUP)
{
/* Software is allowed to set JADSTP only when JADSTART=1 and ADDIS=0 */
if (LL_ADC_INJ_IsConversionOngoing(hadc->Instance) != 0UL)
{
if (LL_ADC_IsDisableOngoing(hadc->Instance) == 0UL)
{
/* Stop ADC group injected conversion */
LL_ADC_INJ_StopConversion(hadc->Instance);
}
}
}
/* Selection of start and stop bits with respect to the regular or injected group */
switch (conversion_group_reassigned)
{
case ADC_REGULAR_INJECTED_GROUP:
tmp_ADC_CR_ADSTART_JADSTART = (ADC_CR_ADSTART | ADC_CR_JADSTART);
break;
case ADC_INJECTED_GROUP:
tmp_ADC_CR_ADSTART_JADSTART = ADC_CR_JADSTART;
break;
/* Case ADC_REGULAR_GROUP only*/
default:
tmp_ADC_CR_ADSTART_JADSTART = ADC_CR_ADSTART;
break;
}
/* Wait for conversion effectively stopped */
tickstart = HAL_GetTick();
while ((hadc->Instance->CR & tmp_ADC_CR_ADSTART_JADSTART) != 0UL)
{
if ((HAL_GetTick() - tickstart) > ADC_STOP_CONVERSION_TIMEOUT)
{
/* New check to avoid false timeout detection in case of preemption */
if((hadc->Instance->CR & tmp_ADC_CR_ADSTART_JADSTART) != 0UL)
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
/* Set ADC error code to ADC peripheral internal error */
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
return HAL_ERROR;
}
}
}
}
/* Return HAL status */
return HAL_OK;
}
/**
* @brief Enable the selected ADC.
* @note Prerequisite condition to use this function: ADC must be disabled
* and voltage regulator must be enabled (done into HAL_ADC_Init()).
* @param hadc ADC handle
* @retval HAL status.
*/
HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef *hadc)
{
uint32_t tickstart;
/* ADC enable and wait for ADC ready (in case of ADC is disabled or */
/* enabling phase not yet completed: flag ADC ready not yet set). */
/* Timeout implemented to not be stuck if ADC cannot be enabled (possible */
/* causes: ADC clock not running, ...). */
if (LL_ADC_IsEnabled(hadc->Instance) == 0UL)
{
/* Check if conditions to enable the ADC are fulfilled */
if ((hadc->Instance->CR & (ADC_CR_ADCAL | ADC_CR_JADSTP | ADC_CR_ADSTP | ADC_CR_JADSTART | ADC_CR_ADSTART | ADC_CR_ADDIS | ADC_CR_ADEN)) != 0UL)
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
/* Set ADC error code to ADC peripheral internal error */
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
return HAL_ERROR;
}
/* Enable the ADC peripheral */
LL_ADC_Enable(hadc->Instance);
/* Wait for ADC effectively enabled */
tickstart = HAL_GetTick();
/* Poll for ADC ready flag raised except case of multimode enabled
and ADC slave selected. */
uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance));
if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
|| (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
)
{
while (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_RDY) == 0UL)
{
/* If ADEN bit is set less than 4 ADC clock cycles after the ADCAL bit
has been cleared (after a calibration), ADEN bit is reset by the
calibration logic.
The workaround is to continue setting ADEN until ADRDY is becomes 1.
Additionally, ADC_ENABLE_TIMEOUT is defined to encompass this
4 ADC clock cycle duration */
/* Note: Test of ADC enabled required due to hardware constraint to */
/* not enable ADC if already enabled. */
if (LL_ADC_IsEnabled(hadc->Instance) == 0UL)
{
LL_ADC_Enable(hadc->Instance);
}
if ((HAL_GetTick() - tickstart) > ADC_ENABLE_TIMEOUT)
{
/* New check to avoid false timeout detection in case of preemption */
if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_RDY) == 0UL)
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
/* Set ADC error code to ADC peripheral internal error */
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
return HAL_ERROR;
}
}
}
}
}
/* Return HAL status */
return HAL_OK;
}
/**
* @brief Disable the selected ADC.
* @note Prerequisite condition to use this function: ADC conversions must be
* stopped.
* @param hadc ADC handle
* @retval HAL status.
*/
HAL_StatusTypeDef ADC_Disable(ADC_HandleTypeDef *hadc)
{
uint32_t tickstart;
const uint32_t tmp_adc_is_disable_on_going = LL_ADC_IsDisableOngoing(hadc->Instance);
/* Verification if ADC is not already disabled: */
/* Note: forbidden to disable ADC (set bit ADC_CR_ADDIS) if ADC is already */
/* disabled. */
if ((LL_ADC_IsEnabled(hadc->Instance) != 0UL)
&& (tmp_adc_is_disable_on_going == 0UL)
)
{
/* Check if conditions to disable the ADC are fulfilled */
if ((hadc->Instance->CR & (ADC_CR_JADSTART | ADC_CR_ADSTART | ADC_CR_ADEN)) == ADC_CR_ADEN)
{
/* Disable the ADC peripheral */
LL_ADC_Disable(hadc->Instance);
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOSMP | ADC_FLAG_RDY));
}
else
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
/* Set ADC error code to ADC peripheral internal error */
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
return HAL_ERROR;
}
/* Wait for ADC effectively disabled */
/* Get tick count */
tickstart = HAL_GetTick();
while ((hadc->Instance->CR & ADC_CR_ADEN) != 0UL)
{
if ((HAL_GetTick() - tickstart) > ADC_DISABLE_TIMEOUT)
{
/* New check to avoid false timeout detection in case of preemption */
if ((hadc->Instance->CR & ADC_CR_ADEN) != 0UL)
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
/* Set ADC error code to ADC peripheral internal error */
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
return HAL_ERROR;
}
}
}
}
/* Return HAL status */
return HAL_OK;
}
/**
* @brief DMA transfer complete callback.
* @param hdma pointer to DMA handle.
* @retval None
*/
void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma)
{
/* Retrieve ADC handle corresponding to current DMA handle */
ADC_HandleTypeDef *hadc = (ADC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
/* Update state machine on conversion status if not in error state */
if ((hadc->State & (HAL_ADC_STATE_ERROR_INTERNAL | HAL_ADC_STATE_ERROR_DMA)) == 0UL)
{
/* Set ADC state */
SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
/* Determine whether any further conversion upcoming on group regular */
/* by external trigger, continuous mode or scan sequence on going */
/* to disable interruption. */
/* Is it the end of the regular sequence ? */
if ((hadc->Instance->ISR & ADC_FLAG_EOS) != 0UL)
{
/* Are conversions software-triggered ? */
if (LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance) != 0UL)
{
/* Is CONT bit set ? */
if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_CONT) == 0UL)
{
/* CONT bit is not set, no more conversions expected */
CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) == 0UL)
{
SET_BIT(hadc->State, HAL_ADC_STATE_READY);
}
}
}
}
else
{
/* DMA End of Transfer interrupt was triggered but conversions sequence
is not over. If DMACFG is set to 0, conversions are stopped. */
if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_DMNGT) == 0UL)
{
/* DMACFG bit is not set, conversions are stopped. */
CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) == 0UL)
{
SET_BIT(hadc->State, HAL_ADC_STATE_READY);
}
}
}
/* Conversion complete callback */
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
hadc->ConvCpltCallback(hadc);
#else
HAL_ADC_ConvCpltCallback(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
}
else /* DMA and-or internal error occurred */
{
if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) != 0UL)
{
/* Call HAL ADC Error Callback function */
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
hadc->ErrorCallback(hadc);
#else
HAL_ADC_ErrorCallback(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
}
else
{
/* Call ADC DMA error callback */
hadc->DMA_Handle->XferErrorCallback(hdma);
}
}
}
/**
* @brief DMA half transfer complete callback.
* @param hdma pointer to DMA handle.
* @retval None
*/
void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma)
{
/* Retrieve ADC handle corresponding to current DMA handle */
ADC_HandleTypeDef *hadc = (ADC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
/* Half conversion callback */
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
hadc->ConvHalfCpltCallback(hadc);
#else
HAL_ADC_ConvHalfCpltCallback(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
}
/**
* @brief DMA error callback.
* @param hdma pointer to DMA handle.
* @retval None
*/
void ADC_DMAError(DMA_HandleTypeDef *hdma)
{
/* Retrieve ADC handle corresponding to current DMA handle */
ADC_HandleTypeDef *hadc = (ADC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
/* Set ADC state */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA);
/* Set ADC error code to DMA error */
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_DMA);
/* Error callback */
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
hadc->ErrorCallback(hadc);
#else
HAL_ADC_ErrorCallback(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
}
/**
* @brief Configure boost mode of selected ADC.
* @note Prerequisite condition to use this function: ADC conversions must be
* stopped.
* @param hadc ADC handle
* @retval None.
*/
void ADC_ConfigureBoostMode(ADC_HandleTypeDef *hadc)
{
uint32_t freq;
if (ADC_IS_SYNCHRONOUS_CLOCK_MODE(hadc))
{
freq = HAL_RCC_GetHCLKFreq();
switch (hadc->Init.ClockPrescaler)
{
case ADC_CLOCK_SYNC_PCLK_DIV1:
case ADC_CLOCK_SYNC_PCLK_DIV2:
freq /= (hadc->Init.ClockPrescaler >> ADC_CCR_CKMODE_Pos);
break;
case ADC_CLOCK_SYNC_PCLK_DIV4:
freq /= 4UL;
break;
default:
break;
}
}
else
{
freq = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_ADC);
switch (hadc->Init.ClockPrescaler)
{
case ADC_CLOCK_ASYNC_DIV2:
case ADC_CLOCK_ASYNC_DIV4:
case ADC_CLOCK_ASYNC_DIV6:
case ADC_CLOCK_ASYNC_DIV8:
case ADC_CLOCK_ASYNC_DIV10:
case ADC_CLOCK_ASYNC_DIV12:
freq /= ((hadc->Init.ClockPrescaler >> ADC_CCR_PRESC_Pos) << 1UL);
break;
case ADC_CLOCK_ASYNC_DIV16:
freq /= 16UL;
break;
case ADC_CLOCK_ASYNC_DIV32:
freq /= 32UL;
break;
case ADC_CLOCK_ASYNC_DIV64:
freq /= 64UL;
break;
case ADC_CLOCK_ASYNC_DIV128:
freq /= 128UL;
break;
case ADC_CLOCK_ASYNC_DIV256:
freq /= 256UL;
break;
default:
break;
}
}
#if defined(ADC_VER_V5_3) || defined(ADC_VER_V5_V90)
freq /= 2U;
if (freq <= 6250000UL)
{
MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, 0UL);
}
else if (freq <= 12500000UL)
{
MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_0);
}
else if (freq <= 25000000UL)
{
MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_1);
}
else /* if(freq > 25000000UL) */
{
MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_1 | ADC_CR_BOOST_0);
}
#else
if (HAL_GetREVID() <= REV_ID_Y) /* STM32H7 silicon Rev.Y */
{
if (freq > 20000000UL)
{
SET_BIT(hadc->Instance->CR, ADC_CR_BOOST_0);
}
else
{
CLEAR_BIT(hadc->Instance->CR, ADC_CR_BOOST_0);
}
}
else /* STM32H7 silicon Rev.V */
{
freq /= 2U; /* divider by 2 for Rev.V */
if (freq <= 6250000UL)
{
MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, 0UL);
}
else if (freq <= 12500000UL)
{
MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_0);
}
else if (freq <= 25000000UL)
{
MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_1);
}
else /* if(freq > 25000000UL) */
{
MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_1 | ADC_CR_BOOST_0);
}
}
#endif /* ADC_VER_V5_3 */
}
/**
* @}
*/
#endif /* HAL_ADC_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/