steering-wheel/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_f32.c

233 lines
6.5 KiB
C

/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_mat_add_f32.c
* Description: Floating-point matrix addition
*
* $Date: 18. March 2019
* $Revision: V1.6.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
/**
@ingroup groupMatrix
*/
/**
@defgroup MatrixAdd Matrix Addition
Adds two matrices.
\image html MatrixAddition.gif "Addition of two 3 x 3 matrices"
The functions check to make sure that
<code>pSrcA</code>, <code>pSrcB</code>, and <code>pDst</code> have the same
number of rows and columns.
*/
/**
@addtogroup MatrixAdd
@{
*/
/**
@brief Floating-point matrix addition.
@param[in] pSrcA points to first input matrix structure
@param[in] pSrcB points to second input matrix structure
@param[out] pDst points to output matrix structure
@return execution status
- \ref ARM_MATH_SUCCESS : Operation successful
- \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
*/
#if defined(ARM_MATH_NEON)
/*
Neon version is assuming the matrix is small enough.
So no blocking is used for taking into account cache effects.
For big matrix, there exist better libraries for Neon.
*/
arm_status arm_mat_add_f32(
const arm_matrix_instance_f32 * pSrcA,
const arm_matrix_instance_f32 * pSrcB,
arm_matrix_instance_f32 * pDst)
{
float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
float32_t *pOut = pDst->pData; /* output data matrix pointer */
float32_t inA1, inA2, inB1, inB2, out1, out2; /* temporary variables */
uint32_t numSamples; /* total number of elements in the matrix */
uint32_t blkCnt; /* loop counters */
arm_status status; /* status of matrix addition */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if ((pSrcA->numRows != pSrcB->numRows) ||
(pSrcA->numCols != pSrcB->numCols) ||
(pSrcA->numRows != pDst->numRows) || (pSrcA->numCols != pDst->numCols))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif
{
float32x4_t vec1;
float32x4_t vec2;
float32x4_t res;
/* Total number of samples in the input matrix */
numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols;
blkCnt = numSamples >> 2U;
/* Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while (blkCnt > 0U)
{
/* C(m,n) = A(m,n) + B(m,n) */
/* Add and then store the results in the destination buffer. */
vec1 = vld1q_f32(pIn1);
vec2 = vld1q_f32(pIn2);
res = vaddq_f32(vec1, vec2);
vst1q_f32(pOut, res);
/* update pointers to process next samples */
pIn1 += 4U;
pIn2 += 4U;
pOut += 4U;
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4U;
while (blkCnt > 0U)
{
/* C(m,n) = A(m,n) + B(m,n) */
/* Add and then store the results in the destination buffer. */
*pOut++ = (*pIn1++) + (*pIn2++);
/* Decrement the loop counter */
blkCnt--;
}
/* set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
#else
arm_status arm_mat_add_f32(
const arm_matrix_instance_f32 * pSrcA,
const arm_matrix_instance_f32 * pSrcB,
arm_matrix_instance_f32 * pDst)
{
float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
float32_t *pInB = pSrcB->pData; /* input data matrix pointer B */
float32_t *pOut = pDst->pData; /* output data matrix pointer */
uint32_t numSamples; /* total number of elements in the matrix */
uint32_t blkCnt; /* loop counters */
arm_status status; /* status of matrix addition */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if ((pSrcA->numRows != pSrcB->numRows) ||
(pSrcA->numCols != pSrcB->numCols) ||
(pSrcA->numRows != pDst->numRows) ||
(pSrcA->numCols != pDst->numCols) )
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/* Total number of samples in input matrix */
numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols;
#if defined (ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */
blkCnt = numSamples >> 2U;
while (blkCnt > 0U)
{
/* C(m,n) = A(m,n) + B(m,n) */
/* Add and store result in destination buffer. */
*pOut++ = *pInA++ + *pInB++;
*pOut++ = *pInA++ + *pInB++;
*pOut++ = *pInA++ + *pInB++;
*pOut++ = *pInA++ + *pInB++;
/* Decrement loop counter */
blkCnt--;
}
/* Loop unrolling: Compute remaining outputs */
blkCnt = numSamples % 0x4U;
#else
/* Initialize blkCnt with number of samples */
blkCnt = numSamples;
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U)
{
/* C(m,n) = A(m,n) + B(m,n) */
/* Add and store result in destination buffer. */
*pOut++ = *pInA++ + *pInB++;
/* Decrement loop counter */
blkCnt--;
}
/* Set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
#endif /* #if defined(ARM_MATH_NEON) */
/**
@} end of MatrixAdd group
*/