3541 lines
129 KiB
C
3541 lines
129 KiB
C
/**
|
|
******************************************************************************
|
|
* @file stm32h7xx_hal_hash.c
|
|
* @author MCD Application Team
|
|
* @brief HASH HAL module driver.
|
|
* This file provides firmware functions to manage the following
|
|
* functionalities of the HASH peripheral:
|
|
* + Initialization and de-initialization methods
|
|
* + HASH or HMAC processing in polling mode
|
|
* + HASH or HMAC processing in interrupt mode
|
|
* + HASH or HMAC processing in DMA mode
|
|
* + Peripheral State methods
|
|
* + HASH or HMAC processing suspension/resumption
|
|
*
|
|
******************************************************************************
|
|
* @attention
|
|
*
|
|
* Copyright (c) 2017 STMicroelectronics.
|
|
* All rights reserved.
|
|
*
|
|
* This software is licensed under terms that can be found in the LICENSE file
|
|
* in the root directory of this software component.
|
|
* If no LICENSE file comes with this software, it is provided AS-IS.
|
|
*
|
|
******************************************************************************
|
|
@verbatim
|
|
===============================================================================
|
|
##### How to use this driver #####
|
|
===============================================================================
|
|
[..]
|
|
The HASH HAL driver can be used as follows:
|
|
|
|
(#)Initialize the HASH low level resources by implementing the HAL_HASH_MspInit():
|
|
(##) Enable the HASH interface clock using __HASH_CLK_ENABLE()
|
|
(##) When resorting to interrupt-based APIs (e.g. HAL_HASH_xxx_Start_IT())
|
|
(+++) Configure the HASH interrupt priority using HAL_NVIC_SetPriority()
|
|
(+++) Enable the HASH IRQ handler using HAL_NVIC_EnableIRQ()
|
|
(+++) In HASH IRQ handler, call HAL_HASH_IRQHandler() API
|
|
(##) When resorting to DMA-based APIs (e.g. HAL_HASH_xxx_Start_DMA())
|
|
(+++) Enable the DMAx interface clock using
|
|
__DMAx_CLK_ENABLE()
|
|
(+++) Configure and enable one DMA stream to manage data transfer from
|
|
memory to peripheral (input stream). Managing data transfer from
|
|
peripheral to memory can be performed only using CPU.
|
|
(+++) Associate the initialized DMA handle to the HASH DMA handle
|
|
using __HAL_LINKDMA()
|
|
(+++) Configure the priority and enable the NVIC for the transfer complete
|
|
interrupt on the DMA stream: use
|
|
HAL_NVIC_SetPriority() and
|
|
HAL_NVIC_EnableIRQ()
|
|
|
|
(#)Initialize the HASH HAL using HAL_HASH_Init(). This function:
|
|
(##) resorts to HAL_HASH_MspInit() for low-level initialization,
|
|
(##) configures the data type: 1-bit, 8-bit, 16-bit or 32-bit.
|
|
|
|
(#)Three processing schemes are available:
|
|
(##) Polling mode: processing APIs are blocking functions
|
|
i.e. they process the data and wait till the digest computation is finished,
|
|
e.g. HAL_HASH_xxx_Start() for HASH or HAL_HMAC_xxx_Start() for HMAC
|
|
(##) Interrupt mode: processing APIs are not blocking functions
|
|
i.e. they process the data under interrupt,
|
|
e.g. HAL_HASH_xxx_Start_IT() for HASH or HAL_HMAC_xxx_Start_IT() for HMAC
|
|
(##) DMA mode: processing APIs are not blocking functions and the CPU is
|
|
not used for data transfer i.e. the data transfer is ensured by DMA,
|
|
e.g. HAL_HASH_xxx_Start_DMA() for HASH or HAL_HMAC_xxx_Start_DMA()
|
|
for HMAC. Note that in DMA mode, a call to HAL_HASH_xxx_Finish()
|
|
is then required to retrieve the digest.
|
|
|
|
(#)When the processing function is called after HAL_HASH_Init(), the HASH peripheral is
|
|
initialized and processes the buffer fed in input. When the input data have all been
|
|
fed to the Peripheral, the digest computation can start.
|
|
|
|
(#)Multi-buffer processing is possible in polling, interrupt and DMA modes.
|
|
(##) In polling mode, only multi-buffer HASH processing is possible.
|
|
API HAL_HASH_xxx_Accumulate() must be called for each input buffer, except for the last one.
|
|
User must resort to HAL_HASH_xxx_Accumulate_End() to enter the last one and retrieve as
|
|
well the computed digest.
|
|
|
|
(##) In interrupt mode, API HAL_HASH_xxx_Accumulate_IT() must be called for each input buffer,
|
|
except for the last one.
|
|
User must resort to HAL_HASH_xxx_Accumulate_End_IT() to enter the last one and retrieve as
|
|
well the computed digest.
|
|
|
|
(##) In DMA mode, multi-buffer HASH and HMAC processing are possible.
|
|
(+++) HASH processing: once initialization is done, MDMAT bit must be set
|
|
through __HAL_HASH_SET_MDMAT() macro.
|
|
From that point, each buffer can be fed to the Peripheral through HAL_HASH_xxx_Start_DMA() API.
|
|
Before entering the last buffer, reset the MDMAT bit with __HAL_HASH_RESET_MDMAT()
|
|
macro then wrap-up the HASH processing in feeding the last input buffer through the
|
|
same API HAL_HASH_xxx_Start_DMA(). The digest can then be retrieved with a call to
|
|
API HAL_HASH_xxx_Finish().
|
|
(+++) HMAC processing (requires to resort to extended functions):
|
|
after initialization, the key and the first input buffer are entered
|
|
in the Peripheral with the API HAL_HMACEx_xxx_Step1_2_DMA(). This carries out HMAC step 1 and
|
|
starts step 2.
|
|
The following buffers are next entered with the API HAL_HMACEx_xxx_Step2_DMA(). At this
|
|
point, the HMAC processing is still carrying out step 2.
|
|
Then, step 2 for the last input buffer and step 3 are carried out by a single call
|
|
to HAL_HMACEx_xxx_Step2_3_DMA().
|
|
|
|
The digest can finally be retrieved with a call to API HAL_HASH_xxx_Finish().
|
|
|
|
|
|
(#)Context swapping.
|
|
(##) Two APIs are available to suspend HASH or HMAC processing:
|
|
(+++) HAL_HASH_SwFeed_ProcessSuspend() when data are entered by software (polling or IT mode),
|
|
(+++) HAL_HASH_DMAFeed_ProcessSuspend() when data are entered by DMA.
|
|
|
|
(##) When HASH or HMAC processing is suspended, HAL_HASH_ContextSaving() allows
|
|
to save in memory the Peripheral context. This context can be restored afterwards
|
|
to resume the HASH processing thanks to HAL_HASH_ContextRestoring().
|
|
|
|
(##) Once the HASH Peripheral has been restored to the same configuration as that at suspension
|
|
time, processing can be restarted with the same API call (same API, same handle,
|
|
same parameters) as done before the suspension. Relevant parameters to restart at
|
|
the proper location are internally saved in the HASH handle.
|
|
|
|
(#)Call HAL_HASH_DeInit() to deinitialize the HASH peripheral.
|
|
|
|
*** Remarks on message length ***
|
|
===================================
|
|
[..]
|
|
(#) HAL in interruption mode (interruptions driven)
|
|
|
|
(##)Due to HASH peripheral hardware design, the peripheral interruption is triggered every 64 bytes.
|
|
This is why, for driver implementation simplicity s sake, user is requested to enter a message the
|
|
length of which is a multiple of 4 bytes.
|
|
|
|
(##) When the message length (in bytes) is not a multiple of words, a specific field exists in HASH_STR
|
|
to specify which bits to discard at the end of the complete message to process only the message bits
|
|
and not extra bits.
|
|
|
|
(##) If user needs to perform a hash computation of a large input buffer that is spread around various places
|
|
in memory and where each piece of this input buffer is not necessarily a multiple of 4 bytes in size, it becomes
|
|
necessary to use a temporary buffer to format the data accordingly before feeding them to the Peripheral.
|
|
It is advised to the user to
|
|
(+++) achieve the first formatting operation by software then enter the data
|
|
(+++) while the Peripheral is processing the first input set, carry out the second formatting
|
|
operation by software, to be ready when DINIS occurs.
|
|
(+++) repeat step 2 until the whole message is processed.
|
|
|
|
[..]
|
|
(#) HAL in DMA mode
|
|
|
|
(##) Again, due to hardware design, the DMA transfer to feed the data can only be done on a word-basis.
|
|
The same field described above in HASH_STR is used to specify which bits to discard at the end of the
|
|
DMA transfer to process only the message bits and not extra bits. Due to hardware implementation,
|
|
this is possible only at the end of the complete message. When several DMA transfers are needed to
|
|
enter the message, this is not applicable at the end of the intermediary transfers.
|
|
|
|
(##) Similarly to the interruption-driven mode, it is suggested to the user to format the consecutive
|
|
chunks of data by software while the DMA transfer and processing is on-going for the first parts of
|
|
the message. Due to the 32-bit alignment required for the DMA transfer, it is underlined that the
|
|
software formatting operation is more complex than in the IT mode.
|
|
|
|
*** Callback registration ***
|
|
===================================
|
|
[..]
|
|
(#) The compilation define USE_HAL_HASH_REGISTER_CALLBACKS when set to 1
|
|
allows the user to configure dynamically the driver callbacks.
|
|
Use function HAL_HASH_RegisterCallback() to register a user callback.
|
|
|
|
(#) Function HAL_HASH_RegisterCallback() allows to register following callbacks:
|
|
(+) InCpltCallback : callback for input completion.
|
|
(+) DgstCpltCallback : callback for digest computation completion.
|
|
(+) ErrorCallback : callback for error.
|
|
(+) MspInitCallback : HASH MspInit.
|
|
(+) MspDeInitCallback : HASH MspDeInit.
|
|
This function takes as parameters the HAL peripheral handle, the Callback ID
|
|
and a pointer to the user callback function.
|
|
|
|
(#) Use function HAL_HASH_UnRegisterCallback() to reset a callback to the default
|
|
weak (surcharged) function.
|
|
HAL_HASH_UnRegisterCallback() takes as parameters the HAL peripheral handle,
|
|
and the Callback ID.
|
|
This function allows to reset following callbacks:
|
|
(+) InCpltCallback : callback for input completion.
|
|
(+) DgstCpltCallback : callback for digest computation completion.
|
|
(+) ErrorCallback : callback for error.
|
|
(+) MspInitCallback : HASH MspInit.
|
|
(+) MspDeInitCallback : HASH MspDeInit.
|
|
|
|
(#) By default, after the HAL_HASH_Init and if the state is HAL_HASH_STATE_RESET
|
|
all callbacks are reset to the corresponding legacy weak (surcharged) functions:
|
|
examples HAL_HASH_InCpltCallback(), HAL_HASH_DgstCpltCallback()
|
|
Exception done for MspInit and MspDeInit callbacks that are respectively
|
|
reset to the legacy weak (surcharged) functions in the HAL_HASH_Init
|
|
and HAL_HASH_DeInit only when these callbacks are null (not registered beforehand)
|
|
If not, MspInit or MspDeInit are not null, the HAL_HASH_Init and HAL_HASH_DeInit
|
|
keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
|
|
|
|
Callbacks can be registered/unregistered in READY state only.
|
|
Exception done for MspInit/MspDeInit callbacks that can be registered/unregistered
|
|
in READY or RESET state, thus registered (user) MspInit/DeInit callbacks can be used
|
|
during the Init/DeInit.
|
|
In that case first register the MspInit/MspDeInit user callbacks
|
|
using HAL_HASH_RegisterCallback before calling HAL_HASH_DeInit
|
|
or HAL_HASH_Init function.
|
|
|
|
When The compilation define USE_HAL_HASH_REGISTER_CALLBACKS is set to 0 or
|
|
not defined, the callback registering feature is not available
|
|
and weak (surcharged) callbacks are used.
|
|
|
|
@endverbatim
|
|
******************************************************************************
|
|
*/
|
|
|
|
/* Includes ------------------------------------------------------------------*/
|
|
#include "stm32h7xx_hal.h"
|
|
|
|
|
|
/** @addtogroup STM32H7xx_HAL_Driver
|
|
* @{
|
|
*/
|
|
#if defined (HASH)
|
|
|
|
/** @defgroup HASH HASH
|
|
* @brief HASH HAL module driver.
|
|
* @{
|
|
*/
|
|
|
|
#ifdef HAL_HASH_MODULE_ENABLED
|
|
|
|
/* Private typedef -----------------------------------------------------------*/
|
|
/* Private define ------------------------------------------------------------*/
|
|
/** @defgroup HASH_Private_Constants HASH Private Constants
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup HASH_Digest_Calculation_Status HASH Digest Calculation Status
|
|
* @{
|
|
*/
|
|
#define HASH_DIGEST_CALCULATION_NOT_STARTED ((uint32_t)0x00000000U) /*!< DCAL not set after input data written in DIN register */
|
|
#define HASH_DIGEST_CALCULATION_STARTED ((uint32_t)0x00000001U) /*!< DCAL set after input data written in DIN register */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup HASH_Number_Of_CSR_Registers HASH Number of Context Swap Registers
|
|
* @{
|
|
*/
|
|
#define HASH_NUMBER_OF_CSR_REGISTERS 54U /*!< Number of Context Swap Registers */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup HASH_TimeOut_Value HASH TimeOut Value
|
|
* @{
|
|
*/
|
|
#define HASH_TIMEOUTVALUE 1000U /*!< Time-out value */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup HASH_DMA_Suspension_Words_Limit HASH DMA suspension words limit
|
|
* @{
|
|
*/
|
|
#define HASH_DMA_SUSPENSION_WORDS_LIMIT 20U /*!< Number of words below which DMA suspension is aborted */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Private macro -------------------------------------------------------------*/
|
|
/* Private variables ---------------------------------------------------------*/
|
|
/* Private function prototypes -----------------------------------------------*/
|
|
/** @defgroup HASH_Private_Functions HASH Private Functions
|
|
* @{
|
|
*/
|
|
static void HASH_DMAXferCplt(DMA_HandleTypeDef *hdma);
|
|
static void HASH_DMAError(DMA_HandleTypeDef *hdma);
|
|
static void HASH_GetDigest(uint8_t *pMsgDigest, uint8_t Size);
|
|
static HAL_StatusTypeDef HASH_WaitOnFlagUntilTimeout(HASH_HandleTypeDef *hhash, uint32_t Flag, FlagStatus Status,
|
|
uint32_t Timeout);
|
|
static HAL_StatusTypeDef HASH_WriteData(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size);
|
|
static HAL_StatusTypeDef HASH_IT(HASH_HandleTypeDef *hhash);
|
|
static uint32_t HASH_Write_Block_Data(HASH_HandleTypeDef *hhash);
|
|
static HAL_StatusTypeDef HMAC_Processing(HASH_HandleTypeDef *hhash, uint32_t Timeout);
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup HASH_Exported_Functions HASH Exported Functions
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup HASH_Exported_Functions_Group1 Initialization and de-initialization functions
|
|
* @brief Initialization, configuration and call-back functions.
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Initialization and de-initialization functions #####
|
|
===============================================================================
|
|
[..] This section provides functions allowing to:
|
|
(+) Initialize the HASH according to the specified parameters
|
|
in the HASH_InitTypeDef and create the associated handle
|
|
(+) DeInitialize the HASH peripheral
|
|
(+) Initialize the HASH MCU Specific Package (MSP)
|
|
(+) DeInitialize the HASH MSP
|
|
|
|
[..] This section provides as well call back functions definitions for user
|
|
code to manage:
|
|
(+) Input data transfer to Peripheral completion
|
|
(+) Calculated digest retrieval completion
|
|
(+) Error management
|
|
|
|
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Initialize the HASH according to the specified parameters in the
|
|
HASH_HandleTypeDef and create the associated handle.
|
|
* @note Only MDMAT and DATATYPE bits of HASH Peripheral are set by HAL_HASH_Init(),
|
|
* other configuration bits are set by HASH or HMAC processing APIs.
|
|
* @note MDMAT bit is systematically reset by HAL_HASH_Init(). To set it for
|
|
* multi-buffer HASH processing, user needs to resort to
|
|
* __HAL_HASH_SET_MDMAT() macro. For HMAC multi-buffer processing, the
|
|
* relevant APIs manage themselves the MDMAT bit.
|
|
* @param hhash HASH handle
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_Init(HASH_HandleTypeDef *hhash)
|
|
{
|
|
/* Check the hash handle allocation */
|
|
if (hhash == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_HASH_DATATYPE(hhash->Init.DataType));
|
|
|
|
#if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
|
|
if (hhash->State == HAL_HASH_STATE_RESET)
|
|
{
|
|
/* Allocate lock resource and initialize it */
|
|
hhash->Lock = HAL_UNLOCKED;
|
|
|
|
/* Reset Callback pointers in HAL_HASH_STATE_RESET only */
|
|
hhash->InCpltCallback = HAL_HASH_InCpltCallback; /* Legacy weak (surcharged) input completion callback */
|
|
hhash->DgstCpltCallback = HAL_HASH_DgstCpltCallback; /* Legacy weak (surcharged) digest computation
|
|
completion callback */
|
|
hhash->ErrorCallback = HAL_HASH_ErrorCallback; /* Legacy weak (surcharged) error callback */
|
|
if (hhash->MspInitCallback == NULL)
|
|
{
|
|
hhash->MspInitCallback = HAL_HASH_MspInit;
|
|
}
|
|
|
|
/* Init the low level hardware */
|
|
hhash->MspInitCallback(hhash);
|
|
}
|
|
#else
|
|
if (hhash->State == HAL_HASH_STATE_RESET)
|
|
{
|
|
/* Allocate lock resource and initialize it */
|
|
hhash->Lock = HAL_UNLOCKED;
|
|
|
|
/* Init the low level hardware */
|
|
HAL_HASH_MspInit(hhash);
|
|
}
|
|
#endif /* (USE_HAL_HASH_REGISTER_CALLBACKS) */
|
|
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
|
|
/* Reset HashInCount, HashITCounter, HashBuffSize and NbWordsAlreadyPushed */
|
|
hhash->HashInCount = 0;
|
|
hhash->HashBuffSize = 0;
|
|
hhash->HashITCounter = 0;
|
|
hhash->NbWordsAlreadyPushed = 0;
|
|
/* Reset digest calculation bridle (MDMAT bit control) */
|
|
hhash->DigestCalculationDisable = RESET;
|
|
/* Set phase to READY */
|
|
hhash->Phase = HAL_HASH_PHASE_READY;
|
|
/* Reset suspension request flag */
|
|
hhash->SuspendRequest = HAL_HASH_SUSPEND_NONE;
|
|
|
|
/* Set the data type bit */
|
|
MODIFY_REG(HASH->CR, HASH_CR_DATATYPE, hhash->Init.DataType);
|
|
/* Reset MDMAT bit */
|
|
__HAL_HASH_RESET_MDMAT();
|
|
/* Reset HASH handle status */
|
|
hhash->Status = HAL_OK;
|
|
|
|
/* Set the HASH state to Ready */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
|
|
/* Initialise the error code */
|
|
hhash->ErrorCode = HAL_HASH_ERROR_NONE;
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief DeInitialize the HASH peripheral.
|
|
* @param hhash HASH handle.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_DeInit(HASH_HandleTypeDef *hhash)
|
|
{
|
|
/* Check the HASH handle allocation */
|
|
if (hhash == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
|
|
/* Set the default HASH phase */
|
|
hhash->Phase = HAL_HASH_PHASE_READY;
|
|
|
|
/* Reset HashInCount, HashITCounter and HashBuffSize */
|
|
hhash->HashInCount = 0;
|
|
hhash->HashBuffSize = 0;
|
|
hhash->HashITCounter = 0;
|
|
/* Reset digest calculation bridle (MDMAT bit control) */
|
|
hhash->DigestCalculationDisable = RESET;
|
|
|
|
#if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
|
|
if (hhash->MspDeInitCallback == NULL)
|
|
{
|
|
hhash->MspDeInitCallback = HAL_HASH_MspDeInit;
|
|
}
|
|
|
|
/* DeInit the low level hardware */
|
|
hhash->MspDeInitCallback(hhash);
|
|
#else
|
|
/* DeInit the low level hardware: CLOCK, NVIC */
|
|
HAL_HASH_MspDeInit(hhash);
|
|
#endif /* (USE_HAL_HASH_REGISTER_CALLBACKS) */
|
|
|
|
|
|
/* Reset HASH handle status */
|
|
hhash->Status = HAL_OK;
|
|
|
|
/* Set the HASH state to Ready */
|
|
hhash->State = HAL_HASH_STATE_RESET;
|
|
|
|
/* Initialise the error code */
|
|
hhash->ErrorCode = HAL_HASH_ERROR_NONE;
|
|
|
|
/* Reset multi buffers accumulation flag */
|
|
hhash->Accumulation = 0U;
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Initialize the HASH MSP.
|
|
* @param hhash HASH handle.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_HASH_MspInit(HASH_HandleTypeDef *hhash)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hhash);
|
|
|
|
/* NOTE : This function should not be modified; when the callback is needed,
|
|
HAL_HASH_MspInit() can be implemented in the user file.
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief DeInitialize the HASH MSP.
|
|
* @param hhash HASH handle.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_HASH_MspDeInit(HASH_HandleTypeDef *hhash)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hhash);
|
|
|
|
/* NOTE : This function should not be modified; when the callback is needed,
|
|
HAL_HASH_MspDeInit() can be implemented in the user file.
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Input data transfer complete call back.
|
|
* @note HAL_HASH_InCpltCallback() is called when the complete input message
|
|
* has been fed to the Peripheral. This API is invoked only when input data are
|
|
* entered under interruption or through DMA.
|
|
* @note In case of HASH or HMAC multi-buffer DMA feeding case (MDMAT bit set),
|
|
* HAL_HASH_InCpltCallback() is called at the end of each buffer feeding
|
|
* to the Peripheral.
|
|
* @param hhash HASH handle.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_HASH_InCpltCallback(HASH_HandleTypeDef *hhash)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hhash);
|
|
|
|
/* NOTE : This function should not be modified; when the callback is needed,
|
|
HAL_HASH_InCpltCallback() can be implemented in the user file.
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Digest computation complete call back.
|
|
* @note HAL_HASH_DgstCpltCallback() is used under interruption, is not
|
|
* relevant with DMA.
|
|
* @param hhash HASH handle.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_HASH_DgstCpltCallback(HASH_HandleTypeDef *hhash)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hhash);
|
|
|
|
/* NOTE : This function should not be modified; when the callback is needed,
|
|
HAL_HASH_DgstCpltCallback() can be implemented in the user file.
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Error callback.
|
|
* @note Code user can resort to hhash->Status (HAL_ERROR, HAL_TIMEOUT,...)
|
|
* to retrieve the error type.
|
|
* @param hhash HASH handle.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_HASH_ErrorCallback(HASH_HandleTypeDef *hhash)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hhash);
|
|
|
|
/* NOTE : This function should not be modified; when the callback is needed,
|
|
HAL_HASH_ErrorCallback() can be implemented in the user file.
|
|
*/
|
|
}
|
|
|
|
#if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
|
|
/**
|
|
* @brief Register a User HASH Callback
|
|
* To be used instead of the weak (surcharged) predefined callback
|
|
* @param hhash HASH handle
|
|
* @param CallbackID ID of the callback to be registered
|
|
* This parameter can be one of the following values:
|
|
* @arg @ref HAL_HASH_INPUTCPLT_CB_ID HASH input completion Callback ID
|
|
* @arg @ref HAL_HASH_DGSTCPLT_CB_ID HASH digest computation completion Callback ID
|
|
* @arg @ref HAL_HASH_ERROR_CB_ID HASH error Callback ID
|
|
* @arg @ref HAL_HASH_MSPINIT_CB_ID HASH MspInit callback ID
|
|
* @arg @ref HAL_HASH_MSPDEINIT_CB_ID HASH MspDeInit callback ID
|
|
* @param pCallback pointer to the Callback function
|
|
* @retval status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_RegisterCallback(HASH_HandleTypeDef *hhash, HAL_HASH_CallbackIDTypeDef CallbackID,
|
|
pHASH_CallbackTypeDef pCallback)
|
|
{
|
|
HAL_StatusTypeDef status = HAL_OK;
|
|
|
|
if (pCallback == NULL)
|
|
{
|
|
/* Update the error code */
|
|
hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
|
|
return HAL_ERROR;
|
|
}
|
|
/* Process locked */
|
|
__HAL_LOCK(hhash);
|
|
|
|
if (HAL_HASH_STATE_READY == hhash->State)
|
|
{
|
|
switch (CallbackID)
|
|
{
|
|
case HAL_HASH_INPUTCPLT_CB_ID :
|
|
hhash->InCpltCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_HASH_DGSTCPLT_CB_ID :
|
|
hhash->DgstCpltCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_HASH_ERROR_CB_ID :
|
|
hhash->ErrorCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_HASH_MSPINIT_CB_ID :
|
|
hhash->MspInitCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_HASH_MSPDEINIT_CB_ID :
|
|
hhash->MspDeInitCallback = pCallback;
|
|
break;
|
|
|
|
default :
|
|
/* Update the error code */
|
|
hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
|
|
/* update return status */
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
else if (HAL_HASH_STATE_RESET == hhash->State)
|
|
{
|
|
switch (CallbackID)
|
|
{
|
|
case HAL_HASH_MSPINIT_CB_ID :
|
|
hhash->MspInitCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_HASH_MSPDEINIT_CB_ID :
|
|
hhash->MspDeInitCallback = pCallback;
|
|
break;
|
|
|
|
default :
|
|
/* Update the error code */
|
|
hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
|
|
/* update return status */
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Update the error code */
|
|
hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
|
|
/* update return status */
|
|
status = HAL_ERROR;
|
|
}
|
|
|
|
/* Release Lock */
|
|
__HAL_UNLOCK(hhash);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @brief Unregister a HASH Callback
|
|
* HASH Callback is redirected to the weak (surcharged) predefined callback
|
|
* @param hhash HASH handle
|
|
* @param CallbackID ID of the callback to be unregistered
|
|
* This parameter can be one of the following values:
|
|
* @arg @ref HAL_HASH_INPUTCPLT_CB_ID HASH input completion Callback ID
|
|
* @arg @ref HAL_HASH_DGSTCPLT_CB_ID HASH digest computation completion Callback ID
|
|
* @arg @ref HAL_HASH_ERROR_CB_ID HASH error Callback ID
|
|
* @arg @ref HAL_HASH_MSPINIT_CB_ID HASH MspInit callback ID
|
|
* @arg @ref HAL_HASH_MSPDEINIT_CB_ID HASH MspDeInit callback ID
|
|
* @retval status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_UnRegisterCallback(HASH_HandleTypeDef *hhash, HAL_HASH_CallbackIDTypeDef CallbackID)
|
|
{
|
|
HAL_StatusTypeDef status = HAL_OK;
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hhash);
|
|
|
|
if (HAL_HASH_STATE_READY == hhash->State)
|
|
{
|
|
switch (CallbackID)
|
|
{
|
|
case HAL_HASH_INPUTCPLT_CB_ID :
|
|
hhash->InCpltCallback = HAL_HASH_InCpltCallback; /* Legacy weak (surcharged) input completion callback */
|
|
break;
|
|
|
|
case HAL_HASH_DGSTCPLT_CB_ID :
|
|
hhash->DgstCpltCallback = HAL_HASH_DgstCpltCallback; /* Legacy weak (surcharged) digest computation
|
|
completion callback */
|
|
break;
|
|
|
|
case HAL_HASH_ERROR_CB_ID :
|
|
hhash->ErrorCallback = HAL_HASH_ErrorCallback; /* Legacy weak (surcharged) error callback */
|
|
break;
|
|
|
|
case HAL_HASH_MSPINIT_CB_ID :
|
|
hhash->MspInitCallback = HAL_HASH_MspInit; /* Legacy weak (surcharged) Msp Init */
|
|
break;
|
|
|
|
case HAL_HASH_MSPDEINIT_CB_ID :
|
|
hhash->MspDeInitCallback = HAL_HASH_MspDeInit; /* Legacy weak (surcharged) Msp DeInit */
|
|
break;
|
|
|
|
default :
|
|
/* Update the error code */
|
|
hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
|
|
/* update return status */
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
else if (HAL_HASH_STATE_RESET == hhash->State)
|
|
{
|
|
switch (CallbackID)
|
|
{
|
|
case HAL_HASH_MSPINIT_CB_ID :
|
|
hhash->MspInitCallback = HAL_HASH_MspInit; /* Legacy weak (surcharged) Msp Init */
|
|
break;
|
|
|
|
case HAL_HASH_MSPDEINIT_CB_ID :
|
|
hhash->MspDeInitCallback = HAL_HASH_MspDeInit; /* Legacy weak (surcharged) Msp DeInit */
|
|
break;
|
|
|
|
default :
|
|
/* Update the error code */
|
|
hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
|
|
/* update return status */
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Update the error code */
|
|
hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
|
|
/* update return status */
|
|
status = HAL_ERROR;
|
|
}
|
|
|
|
/* Release Lock */
|
|
__HAL_UNLOCK(hhash);
|
|
return status;
|
|
}
|
|
#endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup HASH_Exported_Functions_Group2 HASH processing functions in polling mode
|
|
* @brief HASH processing functions using polling mode.
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Polling mode HASH processing functions #####
|
|
===============================================================================
|
|
[..] This section provides functions allowing to calculate in polling mode
|
|
the hash value using one of the following algorithms:
|
|
(+) MD5
|
|
(++) HAL_HASH_MD5_Start()
|
|
(++) HAL_HASH_MD5_Accmlt()
|
|
(++) HAL_HASH_MD5_Accmlt_End()
|
|
(+) SHA1
|
|
(++) HAL_HASH_SHA1_Start()
|
|
(++) HAL_HASH_SHA1_Accmlt()
|
|
(++) HAL_HASH_SHA1_Accmlt_End()
|
|
|
|
[..] For a single buffer to be hashed, user can resort to HAL_HASH_xxx_Start().
|
|
|
|
[..] In case of multi-buffer HASH processing (a single digest is computed while
|
|
several buffers are fed to the Peripheral), the user can resort to successive calls
|
|
to HAL_HASH_xxx_Accumulate() and wrap-up the digest computation by a call
|
|
to HAL_HASH_xxx_Accumulate_End().
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in MD5 mode, next process pInBuffer then
|
|
* read the computed digest.
|
|
* @note Digest is available in pOutBuffer.
|
|
* @param hhash HASH handle.
|
|
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
|
|
* @param Size length of the input buffer in bytes.
|
|
* @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
|
|
* @param Timeout Timeout value
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_MD5_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
|
|
uint32_t Timeout)
|
|
{
|
|
return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_MD5);
|
|
}
|
|
|
|
/**
|
|
* @brief If not already done, initialize the HASH peripheral in MD5 mode then
|
|
* processes pInBuffer.
|
|
* @note Consecutive calls to HAL_HASH_MD5_Accmlt() can be used to feed
|
|
* several input buffers back-to-back to the Peripheral that will yield a single
|
|
* HASH signature once all buffers have been entered. Wrap-up of input
|
|
* buffers feeding and retrieval of digest is done by a call to
|
|
* HAL_HASH_MD5_Accmlt_End().
|
|
* @note Field hhash->Phase of HASH handle is tested to check whether or not
|
|
* the Peripheral has already been initialized.
|
|
* @note Digest is not retrieved by this API, user must resort to HAL_HASH_MD5_Accmlt_End()
|
|
* to read it, feeding at the same time the last input buffer to the Peripheral.
|
|
* @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the
|
|
* HASH digest computation is corrupted. Only HAL_HASH_MD5_Accmlt_End() is able
|
|
* to manage the ending buffer with a length in bytes not a multiple of 4.
|
|
* @param hhash HASH handle.
|
|
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
|
|
* @param Size length of the input buffer in bytes, must be a multiple of 4.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_MD5_Accmlt(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
|
|
{
|
|
return HASH_Accumulate(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
|
|
}
|
|
|
|
/**
|
|
* @brief End computation of a single HASH signature after several calls to HAL_HASH_MD5_Accmlt() API.
|
|
* @note Digest is available in pOutBuffer.
|
|
* @param hhash HASH handle.
|
|
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
|
|
* @param Size length of the input buffer in bytes.
|
|
* @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
|
|
* @param Timeout Timeout value
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_MD5_Accmlt_End(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
|
|
uint8_t *pOutBuffer, uint32_t Timeout)
|
|
{
|
|
return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_MD5);
|
|
}
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in SHA1 mode, next process pInBuffer then
|
|
* read the computed digest.
|
|
* @note Digest is available in pOutBuffer.
|
|
* @param hhash HASH handle.
|
|
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
|
|
* @param Size length of the input buffer in bytes.
|
|
* @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
|
|
* @param Timeout Timeout value
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_SHA1_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
|
|
uint32_t Timeout)
|
|
{
|
|
return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_SHA1);
|
|
}
|
|
|
|
/**
|
|
* @brief If not already done, initialize the HASH peripheral in SHA1 mode then
|
|
* processes pInBuffer.
|
|
* @note Consecutive calls to HAL_HASH_SHA1_Accmlt() can be used to feed
|
|
* several input buffers back-to-back to the Peripheral that will yield a single
|
|
* HASH signature once all buffers have been entered. Wrap-up of input
|
|
* buffers feeding and retrieval of digest is done by a call to
|
|
* HAL_HASH_SHA1_Accmlt_End().
|
|
* @note Field hhash->Phase of HASH handle is tested to check whether or not
|
|
* the Peripheral has already been initialized.
|
|
* @note Digest is not retrieved by this API, user must resort to HAL_HASH_SHA1_Accmlt_End()
|
|
* to read it, feeding at the same time the last input buffer to the Peripheral.
|
|
* @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the
|
|
* HASH digest computation is corrupted. Only HAL_HASH_SHA1_Accmlt_End() is able
|
|
* to manage the ending buffer with a length in bytes not a multiple of 4.
|
|
* @param hhash HASH handle.
|
|
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
|
|
* @param Size length of the input buffer in bytes, must be a multiple of 4.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
|
|
{
|
|
return HASH_Accumulate(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
|
|
}
|
|
|
|
/**
|
|
* @brief End computation of a single HASH signature after several calls to HAL_HASH_SHA1_Accmlt() API.
|
|
* @note Digest is available in pOutBuffer.
|
|
* @param hhash HASH handle.
|
|
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
|
|
* @param Size length of the input buffer in bytes.
|
|
* @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
|
|
* @param Timeout Timeout value
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt_End(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
|
|
uint8_t *pOutBuffer, uint32_t Timeout)
|
|
{
|
|
return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_SHA1);
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup HASH_Exported_Functions_Group3 HASH processing functions in interrupt mode
|
|
* @brief HASH processing functions using interrupt mode.
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Interruption mode HASH processing functions #####
|
|
===============================================================================
|
|
[..] This section provides functions allowing to calculate in interrupt mode
|
|
the hash value using one of the following algorithms:
|
|
(+) MD5
|
|
(++) HAL_HASH_MD5_Start_IT()
|
|
(++) HAL_HASH_MD5_Accmlt_IT()
|
|
(++) HAL_HASH_MD5_Accmlt_End_IT()
|
|
(+) SHA1
|
|
(++) HAL_HASH_SHA1_Start_IT()
|
|
(++) HAL_HASH_SHA1_Accmlt_IT()
|
|
(++) HAL_HASH_SHA1_Accmlt_End_IT()
|
|
|
|
[..] API HAL_HASH_IRQHandler() manages each HASH interruption.
|
|
|
|
[..] Note that HAL_HASH_IRQHandler() manages as well HASH Peripheral interruptions when in
|
|
HMAC processing mode.
|
|
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in MD5 mode, next process pInBuffer then
|
|
* read the computed digest in interruption mode.
|
|
* @note Digest is available in pOutBuffer.
|
|
* @param hhash HASH handle.
|
|
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
|
|
* @param Size length of the input buffer in bytes.
|
|
* @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_MD5_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
|
|
uint8_t *pOutBuffer)
|
|
{
|
|
return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_MD5);
|
|
}
|
|
|
|
/**
|
|
* @brief If not already done, initialize the HASH peripheral in MD5 mode then
|
|
* processes pInBuffer in interruption mode.
|
|
* @note Consecutive calls to HAL_HASH_MD5_Accmlt_IT() can be used to feed
|
|
* several input buffers back-to-back to the Peripheral that will yield a single
|
|
* HASH signature once all buffers have been entered. Wrap-up of input
|
|
* buffers feeding and retrieval of digest is done by a call to
|
|
* HAL_HASH_MD5_Accmlt_End_IT().
|
|
* @note Field hhash->Phase of HASH handle is tested to check whether or not
|
|
* the Peripheral has already been initialized.
|
|
* @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the
|
|
* HASH digest computation is corrupted. Only HAL_HASH_MD5_Accmlt_End_IT() is able
|
|
* to manage the ending buffer with a length in bytes not a multiple of 4.
|
|
* @param hhash HASH handle.
|
|
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
|
|
* @param Size length of the input buffer in bytes, must be a multiple of 4.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_MD5_Accmlt_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
|
|
{
|
|
return HASH_Accumulate_IT(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
|
|
}
|
|
|
|
/**
|
|
* @brief End computation of a single HASH signature after several calls to HAL_HASH_MD5_Accmlt_IT() API.
|
|
* @note Digest is available in pOutBuffer.
|
|
* @param hhash HASH handle.
|
|
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
|
|
* @param Size length of the input buffer in bytes.
|
|
* @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_MD5_Accmlt_End_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
|
|
uint8_t *pOutBuffer)
|
|
{
|
|
return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_MD5);
|
|
}
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in SHA1 mode, next process pInBuffer then
|
|
* read the computed digest in interruption mode.
|
|
* @note Digest is available in pOutBuffer.
|
|
* @param hhash HASH handle.
|
|
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
|
|
* @param Size length of the input buffer in bytes.
|
|
* @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_SHA1_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
|
|
uint8_t *pOutBuffer)
|
|
{
|
|
return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_SHA1);
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief If not already done, initialize the HASH peripheral in SHA1 mode then
|
|
* processes pInBuffer in interruption mode.
|
|
* @note Consecutive calls to HAL_HASH_SHA1_Accmlt_IT() can be used to feed
|
|
* several input buffers back-to-back to the Peripheral that will yield a single
|
|
* HASH signature once all buffers have been entered. Wrap-up of input
|
|
* buffers feeding and retrieval of digest is done by a call to
|
|
* HAL_HASH_SHA1_Accmlt_End_IT().
|
|
* @note Field hhash->Phase of HASH handle is tested to check whether or not
|
|
* the Peripheral has already been initialized.
|
|
* @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the
|
|
* HASH digest computation is corrupted. Only HAL_HASH_SHA1_Accmlt_End_IT() is able
|
|
* to manage the ending buffer with a length in bytes not a multiple of 4.
|
|
* @param hhash HASH handle.
|
|
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
|
|
* @param Size length of the input buffer in bytes, must be a multiple of 4.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
|
|
{
|
|
return HASH_Accumulate_IT(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
|
|
}
|
|
|
|
/**
|
|
* @brief End computation of a single HASH signature after several calls to HAL_HASH_SHA1_Accmlt_IT() API.
|
|
* @note Digest is available in pOutBuffer.
|
|
* @param hhash HASH handle.
|
|
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
|
|
* @param Size length of the input buffer in bytes.
|
|
* @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt_End_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
|
|
uint8_t *pOutBuffer)
|
|
{
|
|
return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_SHA1);
|
|
}
|
|
|
|
/**
|
|
* @brief Handle HASH interrupt request.
|
|
* @param hhash HASH handle.
|
|
* @note HAL_HASH_IRQHandler() handles interrupts in HMAC processing as well.
|
|
* @note In case of error reported during the HASH interruption processing,
|
|
* HAL_HASH_ErrorCallback() API is called so that user code can
|
|
* manage the error. The error type is available in hhash->Status field.
|
|
* @retval None
|
|
*/
|
|
void HAL_HASH_IRQHandler(HASH_HandleTypeDef *hhash)
|
|
{
|
|
hhash->Status = HASH_IT(hhash);
|
|
if (hhash->Status != HAL_OK)
|
|
{
|
|
hhash->ErrorCode |= HAL_HASH_ERROR_IT;
|
|
#if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
|
|
hhash->ErrorCallback(hhash);
|
|
#else
|
|
HAL_HASH_ErrorCallback(hhash);
|
|
#endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
|
|
/* After error handling by code user, reset HASH handle HAL status */
|
|
hhash->Status = HAL_OK;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup HASH_Exported_Functions_Group4 HASH processing functions in DMA mode
|
|
* @brief HASH processing functions using DMA mode.
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### DMA mode HASH processing functions #####
|
|
===============================================================================
|
|
[..] This section provides functions allowing to calculate in DMA mode
|
|
the hash value using one of the following algorithms:
|
|
(+) MD5
|
|
(++) HAL_HASH_MD5_Start_DMA()
|
|
(++) HAL_HASH_MD5_Finish()
|
|
(+) SHA1
|
|
(++) HAL_HASH_SHA1_Start_DMA()
|
|
(++) HAL_HASH_SHA1_Finish()
|
|
|
|
[..] When resorting to DMA mode to enter the data in the Peripheral, user must resort
|
|
to HAL_HASH_xxx_Start_DMA() then read the resulting digest with
|
|
HAL_HASH_xxx_Finish().
|
|
[..] In case of multi-buffer HASH processing, MDMAT bit must first be set before
|
|
the successive calls to HAL_HASH_xxx_Start_DMA(). Then, MDMAT bit needs to be
|
|
reset before the last call to HAL_HASH_xxx_Start_DMA(). Digest is finally
|
|
retrieved thanks to HAL_HASH_xxx_Finish().
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in MD5 mode then initiate a DMA transfer
|
|
* to feed the input buffer to the Peripheral.
|
|
* @note Once the DMA transfer is finished, HAL_HASH_MD5_Finish() API must
|
|
* be called to retrieve the computed digest.
|
|
* @param hhash HASH handle.
|
|
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
|
|
* @param Size length of the input buffer in bytes.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_MD5_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
|
|
{
|
|
return HASH_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
|
|
}
|
|
|
|
/**
|
|
* @brief Return the computed digest in MD5 mode.
|
|
* @note The API waits for DCIS to be set then reads the computed digest.
|
|
* @note HAL_HASH_MD5_Finish() can be used as well to retrieve the digest in
|
|
* HMAC MD5 mode.
|
|
* @param hhash HASH handle.
|
|
* @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
|
|
* @param Timeout Timeout value.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_MD5_Finish(HASH_HandleTypeDef *hhash, uint8_t *pOutBuffer, uint32_t Timeout)
|
|
{
|
|
return HASH_Finish(hhash, pOutBuffer, Timeout);
|
|
}
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in SHA1 mode then initiate a DMA transfer
|
|
* to feed the input buffer to the Peripheral.
|
|
* @note Once the DMA transfer is finished, HAL_HASH_SHA1_Finish() API must
|
|
* be called to retrieve the computed digest.
|
|
* @param hhash HASH handle.
|
|
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
|
|
* @param Size length of the input buffer in bytes.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_SHA1_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
|
|
{
|
|
return HASH_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Return the computed digest in SHA1 mode.
|
|
* @note The API waits for DCIS to be set then reads the computed digest.
|
|
* @note HAL_HASH_SHA1_Finish() can be used as well to retrieve the digest in
|
|
* HMAC SHA1 mode.
|
|
* @param hhash HASH handle.
|
|
* @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
|
|
* @param Timeout Timeout value.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_SHA1_Finish(HASH_HandleTypeDef *hhash, uint8_t *pOutBuffer, uint32_t Timeout)
|
|
{
|
|
return HASH_Finish(hhash, pOutBuffer, Timeout);
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup HASH_Exported_Functions_Group5 HMAC processing functions in polling mode
|
|
* @brief HMAC processing functions using polling mode.
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Polling mode HMAC processing functions #####
|
|
===============================================================================
|
|
[..] This section provides functions allowing to calculate in polling mode
|
|
the HMAC value using one of the following algorithms:
|
|
(+) MD5
|
|
(++) HAL_HMAC_MD5_Start()
|
|
(+) SHA1
|
|
(++) HAL_HMAC_SHA1_Start()
|
|
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in HMAC MD5 mode, next process pInBuffer then
|
|
* read the computed digest.
|
|
* @note Digest is available in pOutBuffer.
|
|
* @note Same key is used for the inner and the outer hash functions; pointer to key and
|
|
* key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
|
|
* @param hhash HASH handle.
|
|
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
|
|
* @param Size length of the input buffer in bytes.
|
|
* @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
|
|
* @param Timeout Timeout value.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HMAC_MD5_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
|
|
uint32_t Timeout)
|
|
{
|
|
return HMAC_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_MD5);
|
|
}
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in HMAC SHA1 mode, next process pInBuffer then
|
|
* read the computed digest.
|
|
* @note Digest is available in pOutBuffer.
|
|
* @note Same key is used for the inner and the outer hash functions; pointer to key and
|
|
* key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
|
|
* @param hhash HASH handle.
|
|
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
|
|
* @param Size length of the input buffer in bytes.
|
|
* @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
|
|
* @param Timeout Timeout value.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HMAC_SHA1_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
|
|
uint32_t Timeout)
|
|
{
|
|
return HMAC_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_SHA1);
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
|
|
/** @defgroup HASH_Exported_Functions_Group6 HMAC processing functions in interrupt mode
|
|
* @brief HMAC processing functions using interrupt mode.
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Interrupt mode HMAC processing functions #####
|
|
===============================================================================
|
|
[..] This section provides functions allowing to calculate in interrupt mode
|
|
the HMAC value using one of the following algorithms:
|
|
(+) MD5
|
|
(++) HAL_HMAC_MD5_Start_IT()
|
|
(+) SHA1
|
|
(++) HAL_HMAC_SHA1_Start_IT()
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in HMAC MD5 mode, next process pInBuffer then
|
|
* read the computed digest in interrupt mode.
|
|
* @note Digest is available in pOutBuffer.
|
|
* @note Same key is used for the inner and the outer hash functions; pointer to key and
|
|
* key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
|
|
* @param hhash HASH handle.
|
|
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
|
|
* @param Size length of the input buffer in bytes.
|
|
* @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HMAC_MD5_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
|
|
uint8_t *pOutBuffer)
|
|
{
|
|
return HMAC_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_MD5);
|
|
}
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in HMAC SHA1 mode, next process pInBuffer then
|
|
* read the computed digest in interrupt mode.
|
|
* @note Digest is available in pOutBuffer.
|
|
* @note Same key is used for the inner and the outer hash functions; pointer to key and
|
|
* key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
|
|
* @param hhash HASH handle.
|
|
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
|
|
* @param Size length of the input buffer in bytes.
|
|
* @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HMAC_SHA1_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
|
|
uint8_t *pOutBuffer)
|
|
{
|
|
return HMAC_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_SHA1);
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
|
|
|
|
/** @defgroup HASH_Exported_Functions_Group7 HMAC processing functions in DMA mode
|
|
* @brief HMAC processing functions using DMA modes.
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### DMA mode HMAC processing functions #####
|
|
===============================================================================
|
|
[..] This section provides functions allowing to calculate in DMA mode
|
|
the HMAC value using one of the following algorithms:
|
|
(+) MD5
|
|
(++) HAL_HMAC_MD5_Start_DMA()
|
|
(+) SHA1
|
|
(++) HAL_HMAC_SHA1_Start_DMA()
|
|
|
|
[..] When resorting to DMA mode to enter the data in the Peripheral for HMAC processing,
|
|
user must resort to HAL_HMAC_xxx_Start_DMA() then read the resulting digest
|
|
with HAL_HASH_xxx_Finish().
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in HMAC MD5 mode then initiate the required
|
|
* DMA transfers to feed the key and the input buffer to the Peripheral.
|
|
* @note Once the DMA transfers are finished (indicated by hhash->State set back
|
|
* to HAL_HASH_STATE_READY), HAL_HASH_MD5_Finish() API must be called to retrieve
|
|
* the computed digest.
|
|
* @note Same key is used for the inner and the outer hash functions; pointer to key and
|
|
* key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
|
|
* @note If MDMAT bit is set before calling this function (multi-buffer
|
|
* HASH processing case), the input buffer size (in bytes) must be
|
|
* a multiple of 4 otherwise, the HASH digest computation is corrupted.
|
|
* For the processing of the last buffer of the thread, MDMAT bit must
|
|
* be reset and the buffer length (in bytes) doesn't have to be a
|
|
* multiple of 4.
|
|
* @param hhash HASH handle.
|
|
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
|
|
* @param Size length of the input buffer in bytes.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HMAC_MD5_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
|
|
{
|
|
return HMAC_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in HMAC SHA1 mode then initiate the required
|
|
* DMA transfers to feed the key and the input buffer to the Peripheral.
|
|
* @note Once the DMA transfers are finished (indicated by hhash->State set back
|
|
* to HAL_HASH_STATE_READY), HAL_HASH_SHA1_Finish() API must be called to retrieve
|
|
* the computed digest.
|
|
* @note Same key is used for the inner and the outer hash functions; pointer to key and
|
|
* key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
|
|
* @note If MDMAT bit is set before calling this function (multi-buffer
|
|
* HASH processing case), the input buffer size (in bytes) must be
|
|
* a multiple of 4 otherwise, the HASH digest computation is corrupted.
|
|
* For the processing of the last buffer of the thread, MDMAT bit must
|
|
* be reset and the buffer length (in bytes) doesn't have to be a
|
|
* multiple of 4.
|
|
* @param hhash HASH handle.
|
|
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
|
|
* @param Size length of the input buffer in bytes.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HMAC_SHA1_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
|
|
{
|
|
return HMAC_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup HASH_Exported_Functions_Group8 Peripheral states functions
|
|
* @brief Peripheral State functions.
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Peripheral State methods #####
|
|
===============================================================================
|
|
[..]
|
|
This section permits to get in run-time the state and the peripheral handle
|
|
status of the peripheral:
|
|
(+) HAL_HASH_GetState()
|
|
(+) HAL_HASH_GetStatus()
|
|
|
|
[..]
|
|
Additionally, this subsection provides functions allowing to save and restore
|
|
the HASH or HMAC processing context in case of calculation suspension:
|
|
(+) HAL_HASH_ContextSaving()
|
|
(+) HAL_HASH_ContextRestoring()
|
|
|
|
[..]
|
|
This subsection provides functions allowing to suspend the HASH processing
|
|
(+) when input are fed to the Peripheral by software
|
|
(++) HAL_HASH_SwFeed_ProcessSuspend()
|
|
(+) when input are fed to the Peripheral by DMA
|
|
(++) HAL_HASH_DMAFeed_ProcessSuspend()
|
|
|
|
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Return the HASH handle state.
|
|
* @note The API yields the current state of the handle (BUSY, READY,...).
|
|
* @param hhash HASH handle.
|
|
* @retval HAL HASH state
|
|
*/
|
|
HAL_HASH_StateTypeDef HAL_HASH_GetState(HASH_HandleTypeDef *hhash)
|
|
{
|
|
return hhash->State;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Return the HASH HAL status.
|
|
* @note The API yields the HAL status of the handle: it is the result of the
|
|
* latest HASH processing and allows to report any issue (e.g. HAL_TIMEOUT).
|
|
* @param hhash HASH handle.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_GetStatus(HASH_HandleTypeDef *hhash)
|
|
{
|
|
return hhash->Status;
|
|
}
|
|
|
|
/**
|
|
* @brief Save the HASH context in case of processing suspension.
|
|
* @param hhash HASH handle.
|
|
* @param pMemBuffer pointer to the memory buffer where the HASH context
|
|
* is saved.
|
|
* @note The IMR, STR, CR then all the CSR registers are saved
|
|
* in that order. Only the r/w bits are read to be restored later on.
|
|
* @note By default, all the context swap registers (there are
|
|
* HASH_NUMBER_OF_CSR_REGISTERS of those) are saved.
|
|
* @note pMemBuffer points to a buffer allocated by the user. The buffer size
|
|
* must be at least (HASH_NUMBER_OF_CSR_REGISTERS + 3) * 4 uint8 long.
|
|
* @retval None
|
|
*/
|
|
void HAL_HASH_ContextSaving(HASH_HandleTypeDef *hhash, uint8_t *pMemBuffer)
|
|
{
|
|
uint32_t mem_ptr = (uint32_t)pMemBuffer;
|
|
uint32_t csr_ptr = (uint32_t)HASH->CSR;
|
|
uint32_t i;
|
|
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hhash);
|
|
|
|
/* Save IMR register content */
|
|
*(uint32_t *)(mem_ptr) = READ_BIT(HASH->IMR, HASH_IT_DINI | HASH_IT_DCI);
|
|
mem_ptr += 4U;
|
|
/* Save STR register content */
|
|
*(uint32_t *)(mem_ptr) = READ_BIT(HASH->STR, HASH_STR_NBLW);
|
|
mem_ptr += 4U;
|
|
/* Save CR register content */
|
|
*(uint32_t *)(mem_ptr) = READ_BIT(HASH->CR, HASH_CR_DMAE | HASH_CR_DATATYPE | HASH_CR_MODE | HASH_CR_ALGO |
|
|
HASH_CR_LKEY | HASH_CR_MDMAT);
|
|
mem_ptr += 4U;
|
|
/* By default, save all CSRs registers */
|
|
for (i = HASH_NUMBER_OF_CSR_REGISTERS; i > 0U; i--)
|
|
{
|
|
*(uint32_t *)(mem_ptr) = *(uint32_t *)(csr_ptr);
|
|
mem_ptr += 4U;
|
|
csr_ptr += 4U;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Restore the HASH context in case of processing resumption.
|
|
* @param hhash HASH handle.
|
|
* @param pMemBuffer pointer to the memory buffer where the HASH context
|
|
* is stored.
|
|
* @note The IMR, STR, CR then all the CSR registers are restored
|
|
* in that order. Only the r/w bits are restored.
|
|
* @note By default, all the context swap registers (HASH_NUMBER_OF_CSR_REGISTERS
|
|
* of those) are restored (all of them have been saved by default
|
|
* beforehand).
|
|
* @retval None
|
|
*/
|
|
void HAL_HASH_ContextRestoring(HASH_HandleTypeDef *hhash, uint8_t *pMemBuffer)
|
|
{
|
|
uint32_t mem_ptr = (uint32_t)pMemBuffer;
|
|
uint32_t csr_ptr = (uint32_t)HASH->CSR;
|
|
uint32_t i;
|
|
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hhash);
|
|
|
|
/* Restore IMR register content */
|
|
WRITE_REG(HASH->IMR, (*(uint32_t *)(mem_ptr)));
|
|
mem_ptr += 4U;
|
|
/* Restore STR register content */
|
|
WRITE_REG(HASH->STR, (*(uint32_t *)(mem_ptr)));
|
|
mem_ptr += 4U;
|
|
/* Restore CR register content */
|
|
WRITE_REG(HASH->CR, (*(uint32_t *)(mem_ptr)));
|
|
mem_ptr += 4U;
|
|
|
|
/* Reset the HASH processor before restoring the Context
|
|
Swap Registers (CSR) */
|
|
__HAL_HASH_INIT();
|
|
|
|
/* By default, restore all CSR registers */
|
|
for (i = HASH_NUMBER_OF_CSR_REGISTERS; i > 0U; i--)
|
|
{
|
|
WRITE_REG((*(uint32_t *)(csr_ptr)), (*(uint32_t *)(mem_ptr)));
|
|
mem_ptr += 4U;
|
|
csr_ptr += 4U;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Initiate HASH processing suspension when in polling or interruption mode.
|
|
* @param hhash HASH handle.
|
|
* @note Set the handle field SuspendRequest to the appropriate value so that
|
|
* the on-going HASH processing is suspended as soon as the required
|
|
* conditions are met. Note that the actual suspension is carried out
|
|
* by the functions HASH_WriteData() in polling mode and HASH_IT() in
|
|
* interruption mode.
|
|
* @retval None
|
|
*/
|
|
void HAL_HASH_SwFeed_ProcessSuspend(HASH_HandleTypeDef *hhash)
|
|
{
|
|
/* Set Handle Suspend Request field */
|
|
hhash->SuspendRequest = HAL_HASH_SUSPEND;
|
|
}
|
|
|
|
/**
|
|
* @brief Suspend the HASH processing when in DMA mode.
|
|
* @param hhash HASH handle.
|
|
* @note When suspension attempt occurs at the very end of a DMA transfer and
|
|
* all the data have already been entered in the Peripheral, hhash->State is
|
|
* set to HAL_HASH_STATE_READY and the API returns HAL_ERROR. It is
|
|
* recommended to wrap-up the processing in reading the digest as usual.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_DMAFeed_ProcessSuspend(HASH_HandleTypeDef *hhash)
|
|
{
|
|
uint32_t tmp_remaining_DMATransferSize_inWords;
|
|
uint32_t tmp_initial_DMATransferSize_inWords;
|
|
uint32_t tmp_words_already_pushed;
|
|
|
|
if (hhash->State == HAL_HASH_STATE_READY)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
else
|
|
{
|
|
|
|
/* Make sure there is enough time to suspend the processing */
|
|
tmp_remaining_DMATransferSize_inWords = ((DMA_Stream_TypeDef *)hhash->hdmain->Instance)->NDTR;
|
|
|
|
if (tmp_remaining_DMATransferSize_inWords <= HASH_DMA_SUSPENSION_WORDS_LIMIT)
|
|
{
|
|
/* No suspension attempted since almost to the end of the transferred data. */
|
|
/* Best option for user code is to wrap up low priority message hashing */
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Wait for BUSY flag to be reset */
|
|
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
|
|
if (__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS) != RESET)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Wait for BUSY flag to be set */
|
|
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, RESET, HASH_TIMEOUTVALUE) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
/* Disable DMA channel */
|
|
/* Note that the Abort function will
|
|
- Clear the transfer error flags
|
|
- Unlock
|
|
- Set the State
|
|
*/
|
|
if (HAL_DMA_Abort(hhash->hdmain) != HAL_OK)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Clear DMAE bit */
|
|
CLEAR_BIT(HASH->CR, HASH_CR_DMAE);
|
|
|
|
/* Wait for BUSY flag to be reset */
|
|
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
|
|
if (__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS) != RESET)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* At this point, DMA interface is disabled and no transfer is on-going */
|
|
/* Retrieve from the DMA handle how many words remain to be written */
|
|
tmp_remaining_DMATransferSize_inWords = ((DMA_Stream_TypeDef *)hhash->hdmain->Instance)->NDTR;
|
|
|
|
if (tmp_remaining_DMATransferSize_inWords == 0U)
|
|
{
|
|
/* All the DMA transfer is actually done. Suspension occurred at the very end
|
|
of the transfer. Either the digest computation is about to start (HASH case)
|
|
or processing is about to move from one step to another (HMAC case).
|
|
In both cases, the processing can't be suspended at this point. It is
|
|
safer to
|
|
- retrieve the low priority block digest before starting the high
|
|
priority block processing (HASH case)
|
|
- re-attempt a new suspension (HMAC case)
|
|
*/
|
|
return HAL_ERROR;
|
|
}
|
|
else
|
|
{
|
|
|
|
/* Compute how many words were supposed to be transferred by DMA */
|
|
tmp_initial_DMATransferSize_inWords = (((hhash->HashInCount % 4U) != 0U) ? \
|
|
((hhash->HashInCount + 3U) / 4U) : (hhash->HashInCount / 4U));
|
|
|
|
/* If discrepancy between the number of words reported by DMA Peripheral and
|
|
the numbers of words entered as reported by HASH Peripheral, correct it */
|
|
/* tmp_words_already_pushed reflects the number of words that were already pushed before
|
|
the start of DMA transfer (multi-buffer processing case) */
|
|
tmp_words_already_pushed = hhash->NbWordsAlreadyPushed;
|
|
if (((tmp_words_already_pushed + tmp_initial_DMATransferSize_inWords - \
|
|
tmp_remaining_DMATransferSize_inWords) % 16U) != HASH_NBW_PUSHED())
|
|
{
|
|
tmp_remaining_DMATransferSize_inWords--; /* one less word to be transferred again */
|
|
}
|
|
|
|
/* Accordingly, update the input pointer that points at the next word to be
|
|
transferred to the Peripheral by DMA */
|
|
hhash->pHashInBuffPtr += 4U * (tmp_initial_DMATransferSize_inWords - tmp_remaining_DMATransferSize_inWords) ;
|
|
|
|
/* And store in HashInCount the remaining size to transfer (in bytes) */
|
|
hhash->HashInCount = 4U * tmp_remaining_DMATransferSize_inWords;
|
|
|
|
}
|
|
|
|
/* Set State as suspended */
|
|
hhash->State = HAL_HASH_STATE_SUSPENDED;
|
|
|
|
return HAL_OK;
|
|
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Return the HASH handle error code.
|
|
* @param hhash pointer to a HASH_HandleTypeDef structure.
|
|
* @retval HASH Error Code
|
|
*/
|
|
uint32_t HAL_HASH_GetError(HASH_HandleTypeDef *hhash)
|
|
{
|
|
/* Return HASH Error Code */
|
|
return hhash->ErrorCode;
|
|
}
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup HASH_Private_Functions HASH Private Functions
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief DMA HASH Input Data transfer completion callback.
|
|
* @param hdma DMA handle.
|
|
* @note In case of HMAC processing, HASH_DMAXferCplt() initiates
|
|
* the next DMA transfer for the following HMAC step.
|
|
* @retval None
|
|
*/
|
|
static void HASH_DMAXferCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
HASH_HandleTypeDef *hhash = (HASH_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
|
|
uint32_t inputaddr;
|
|
uint32_t buffersize;
|
|
HAL_StatusTypeDef status;
|
|
|
|
if (hhash->State != HAL_HASH_STATE_SUSPENDED)
|
|
{
|
|
|
|
/* Disable the DMA transfer */
|
|
CLEAR_BIT(HASH->CR, HASH_CR_DMAE);
|
|
|
|
if (READ_BIT(HASH->CR, HASH_CR_MODE) == 0U)
|
|
{
|
|
/* If no HMAC processing, input data transfer is now over */
|
|
|
|
/* Change the HASH state to ready */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
|
|
/* Call Input data transfer complete call back */
|
|
#if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
|
|
hhash->InCpltCallback(hhash);
|
|
#else
|
|
HAL_HASH_InCpltCallback(hhash);
|
|
#endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
|
|
|
|
}
|
|
else
|
|
{
|
|
/* HMAC processing: depending on the current HMAC step and whether or
|
|
not multi-buffer processing is on-going, the next step is initiated
|
|
and MDMAT bit is set. */
|
|
|
|
|
|
if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3)
|
|
{
|
|
/* This is the end of HMAC processing */
|
|
|
|
/* Change the HASH state to ready */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
|
|
/* Call Input data transfer complete call back
|
|
(note that the last DMA transfer was that of the key
|
|
for the outer HASH operation). */
|
|
#if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
|
|
hhash->InCpltCallback(hhash);
|
|
#else
|
|
HAL_HASH_InCpltCallback(hhash);
|
|
#endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
|
|
|
|
return;
|
|
}
|
|
else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1)
|
|
{
|
|
inputaddr = (uint32_t)hhash->pHashMsgBuffPtr; /* DMA transfer start address */
|
|
buffersize = hhash->HashBuffSize; /* DMA transfer size (in bytes) */
|
|
hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_2; /* Move phase from Step 1 to Step 2 */
|
|
|
|
/* In case of suspension request, save the new starting parameters */
|
|
hhash->HashInCount = hhash->HashBuffSize; /* Initial DMA transfer size (in bytes) */
|
|
hhash->pHashInBuffPtr = hhash->pHashMsgBuffPtr ; /* DMA transfer start address */
|
|
|
|
hhash->NbWordsAlreadyPushed = 0U; /* Reset number of words already pushed */
|
|
/* Check whether or not digest calculation must be disabled (in case of multi-buffer HMAC processing) */
|
|
if (hhash->DigestCalculationDisable != RESET)
|
|
{
|
|
/* Digest calculation is disabled: Step 2 must start with MDMAT bit set,
|
|
no digest calculation will be triggered at the end of the input buffer feeding to the Peripheral */
|
|
__HAL_HASH_SET_MDMAT();
|
|
}
|
|
}
|
|
else /*case (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)*/
|
|
{
|
|
if (hhash->DigestCalculationDisable != RESET)
|
|
{
|
|
/* No automatic move to Step 3 as a new message buffer will be fed to the Peripheral
|
|
(case of multi-buffer HMAC processing):
|
|
DCAL must not be set.
|
|
Phase remains in Step 2, MDMAT remains set at this point.
|
|
Change the HASH state to ready and call Input data transfer complete call back. */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
#if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
|
|
hhash->InCpltCallback(hhash);
|
|
#else
|
|
HAL_HASH_InCpltCallback(hhash);
|
|
#endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
|
|
return ;
|
|
}
|
|
else
|
|
{
|
|
/* Digest calculation is not disabled (case of single buffer input or last buffer
|
|
of multi-buffer HMAC processing) */
|
|
inputaddr = (uint32_t)hhash->Init.pKey; /* DMA transfer start address */
|
|
buffersize = hhash->Init.KeySize; /* DMA transfer size (in bytes) */
|
|
hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_3; /* Move phase from Step 2 to Step 3 */
|
|
/* In case of suspension request, save the new starting parameters */
|
|
hhash->HashInCount = hhash->Init.KeySize; /* Initial size for second DMA transfer (input data) */
|
|
hhash->pHashInBuffPtr = hhash->Init.pKey ; /* address passed to DMA, now entering data message */
|
|
|
|
hhash->NbWordsAlreadyPushed = 0U; /* Reset number of words already pushed */
|
|
}
|
|
}
|
|
|
|
/* Configure the Number of valid bits in last word of the message */
|
|
__HAL_HASH_SET_NBVALIDBITS(buffersize);
|
|
|
|
/* Set the HASH DMA transfer completion call back */
|
|
hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt;
|
|
|
|
/* Enable the DMA In DMA stream */
|
|
status = HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, \
|
|
(((buffersize % 4U) != 0U) ? ((buffersize + (4U - (buffersize % 4U))) / 4U) : \
|
|
(buffersize / 4U)));
|
|
|
|
/* Enable DMA requests */
|
|
SET_BIT(HASH->CR, HASH_CR_DMAE);
|
|
|
|
/* Return function status */
|
|
if (status != HAL_OK)
|
|
{
|
|
/* Update HASH state machine to error */
|
|
hhash->State = HAL_HASH_STATE_ERROR;
|
|
}
|
|
else
|
|
{
|
|
/* Change HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
}
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* @brief DMA HASH communication error callback.
|
|
* @param hdma DMA handle.
|
|
* @note HASH_DMAError() callback invokes HAL_HASH_ErrorCallback() that
|
|
* can contain user code to manage the error.
|
|
* @retval None
|
|
*/
|
|
static void HASH_DMAError(DMA_HandleTypeDef *hdma)
|
|
{
|
|
HASH_HandleTypeDef *hhash = (HASH_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
|
|
|
|
if (hhash->State != HAL_HASH_STATE_SUSPENDED)
|
|
{
|
|
hhash->ErrorCode |= HAL_HASH_ERROR_DMA;
|
|
/* Set HASH state to ready to prevent any blocking issue in user code
|
|
present in HAL_HASH_ErrorCallback() */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
/* Set HASH handle status to error */
|
|
hhash->Status = HAL_ERROR;
|
|
#if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
|
|
hhash->ErrorCallback(hhash);
|
|
#else
|
|
HAL_HASH_ErrorCallback(hhash);
|
|
#endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
|
|
/* After error handling by code user, reset HASH handle HAL status */
|
|
hhash->Status = HAL_OK;
|
|
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Feed the input buffer to the HASH Peripheral.
|
|
* @param hhash HASH handle.
|
|
* @param pInBuffer pointer to input buffer.
|
|
* @param Size the size of input buffer in bytes.
|
|
* @note HASH_WriteData() regularly reads hhash->SuspendRequest to check whether
|
|
* or not the HASH processing must be suspended. If this is the case, the
|
|
* processing is suspended when possible and the Peripheral feeding point reached at
|
|
* suspension time is stored in the handle for resumption later on.
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef HASH_WriteData(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
|
|
{
|
|
uint32_t buffercounter;
|
|
__IO uint32_t inputaddr = (uint32_t) pInBuffer;
|
|
uint32_t tmp;
|
|
|
|
for (buffercounter = 0U; buffercounter < (Size / 4U); buffercounter++)
|
|
{
|
|
/* Write input data 4 bytes at a time */
|
|
HASH->DIN = *(uint32_t *)inputaddr;
|
|
inputaddr += 4U;
|
|
|
|
/* If the suspension flag has been raised and if the processing is not about
|
|
to end, suspend processing */
|
|
if ((hhash->SuspendRequest == HAL_HASH_SUSPEND) && (((buffercounter * 4U) + 4U) < Size))
|
|
{
|
|
/* wait for flag BUSY not set before Wait for DINIS = 1*/
|
|
if ((buffercounter * 4U) >= 64U)
|
|
{
|
|
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
/* Wait for DINIS = 1, which occurs when 16 32-bit locations are free
|
|
in the input buffer */
|
|
if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))
|
|
{
|
|
/* Reset SuspendRequest */
|
|
hhash->SuspendRequest = HAL_HASH_SUSPEND_NONE;
|
|
|
|
/* Depending whether the key or the input data were fed to the Peripheral, the feeding point
|
|
reached at suspension time is not saved in the same handle fields */
|
|
if ((hhash->Phase == HAL_HASH_PHASE_PROCESS) || (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2))
|
|
{
|
|
/* Save current reading and writing locations of Input and Output buffers */
|
|
hhash->pHashInBuffPtr = (uint8_t *)inputaddr;
|
|
/* Save the number of bytes that remain to be processed at this point */
|
|
hhash->HashInCount = Size - ((buffercounter * 4U) + 4U);
|
|
}
|
|
else if ((hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1) || (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3))
|
|
{
|
|
/* Save current reading and writing locations of Input and Output buffers */
|
|
hhash->pHashKeyBuffPtr = (uint8_t *)inputaddr;
|
|
/* Save the number of bytes that remain to be processed at this point */
|
|
hhash->HashKeyCount = Size - ((buffercounter * 4U) + 4U);
|
|
}
|
|
else
|
|
{
|
|
/* Unexpected phase: unlock process and report error */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
__HAL_UNLOCK(hhash);
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Set the HASH state to Suspended and exit to stop entering data */
|
|
hhash->State = HAL_HASH_STATE_SUSPENDED;
|
|
|
|
return HAL_OK;
|
|
} /* if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS)) */
|
|
} /* if ((hhash->SuspendRequest == HAL_HASH_SUSPEND) && ((buffercounter+4) < Size)) */
|
|
} /* for(buffercounter = 0; buffercounter < Size; buffercounter+=4) */
|
|
|
|
/* At this point, all the data have been entered to the Peripheral: exit */
|
|
|
|
if ((Size % 4U) != 0U)
|
|
{
|
|
if (hhash->Init.DataType == HASH_DATATYPE_16B)
|
|
{
|
|
/* Write remaining input data */
|
|
|
|
if ((Size % 4U) <= 2U)
|
|
{
|
|
HASH->DIN = (uint32_t) * (uint16_t *)inputaddr;
|
|
}
|
|
if ((Size % 4U) == 3U)
|
|
{
|
|
HASH->DIN = *(uint32_t *)inputaddr;
|
|
}
|
|
|
|
}
|
|
else if ((hhash->Init.DataType == HASH_DATATYPE_8B)
|
|
|| (hhash->Init.DataType == HASH_DATATYPE_1B)) /* byte swap or bit swap or */
|
|
{
|
|
/* Write remaining input data */
|
|
if ((Size % 4U) == 1U)
|
|
{
|
|
HASH->DIN = (uint32_t) * (uint8_t *)inputaddr;
|
|
}
|
|
if ((Size % 4U) == 2U)
|
|
{
|
|
HASH->DIN = (uint32_t) * (uint16_t *)inputaddr;
|
|
}
|
|
if ((Size % 4U) == 3U)
|
|
{
|
|
tmp = *(uint8_t *)inputaddr;
|
|
tmp |= (uint32_t)*(uint8_t *)(inputaddr + 1U) << 8U;
|
|
tmp |= (uint32_t)*(uint8_t *)(inputaddr + 2U) << 16U;
|
|
HASH->DIN = tmp;
|
|
}
|
|
|
|
}
|
|
else
|
|
{
|
|
HASH->DIN = *(uint32_t *)inputaddr;
|
|
}
|
|
/*hhash->HashInCount += 4U;*/
|
|
}
|
|
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Retrieve the message digest.
|
|
* @param pMsgDigest pointer to the computed digest.
|
|
* @param Size message digest size in bytes.
|
|
* @retval None
|
|
*/
|
|
static void HASH_GetDigest(uint8_t *pMsgDigest, uint8_t Size)
|
|
{
|
|
uint32_t msgdigest = (uint32_t)pMsgDigest;
|
|
|
|
switch (Size)
|
|
{
|
|
/* Read the message digest */
|
|
case 16: /* MD5 */
|
|
*(uint32_t *)(msgdigest) = __REV(HASH->HR[0]);
|
|
msgdigest += 4U;
|
|
*(uint32_t *)(msgdigest) = __REV(HASH->HR[1]);
|
|
msgdigest += 4U;
|
|
*(uint32_t *)(msgdigest) = __REV(HASH->HR[2]);
|
|
msgdigest += 4U;
|
|
*(uint32_t *)(msgdigest) = __REV(HASH->HR[3]);
|
|
break;
|
|
case 20: /* SHA1 */
|
|
*(uint32_t *)(msgdigest) = __REV(HASH->HR[0]);
|
|
msgdigest += 4U;
|
|
*(uint32_t *)(msgdigest) = __REV(HASH->HR[1]);
|
|
msgdigest += 4U;
|
|
*(uint32_t *)(msgdigest) = __REV(HASH->HR[2]);
|
|
msgdigest += 4U;
|
|
*(uint32_t *)(msgdigest) = __REV(HASH->HR[3]);
|
|
msgdigest += 4U;
|
|
*(uint32_t *)(msgdigest) = __REV(HASH->HR[4]);
|
|
break;
|
|
case 28: /* SHA224 */
|
|
*(uint32_t *)(msgdigest) = __REV(HASH->HR[0]);
|
|
msgdigest += 4U;
|
|
*(uint32_t *)(msgdigest) = __REV(HASH->HR[1]);
|
|
msgdigest += 4U;
|
|
*(uint32_t *)(msgdigest) = __REV(HASH->HR[2]);
|
|
msgdigest += 4U;
|
|
*(uint32_t *)(msgdigest) = __REV(HASH->HR[3]);
|
|
msgdigest += 4U;
|
|
*(uint32_t *)(msgdigest) = __REV(HASH->HR[4]);
|
|
msgdigest += 4U;
|
|
*(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[5]);
|
|
msgdigest += 4U;
|
|
*(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[6]);
|
|
break;
|
|
case 32: /* SHA256 */
|
|
*(uint32_t *)(msgdigest) = __REV(HASH->HR[0]);
|
|
msgdigest += 4U;
|
|
*(uint32_t *)(msgdigest) = __REV(HASH->HR[1]);
|
|
msgdigest += 4U;
|
|
*(uint32_t *)(msgdigest) = __REV(HASH->HR[2]);
|
|
msgdigest += 4U;
|
|
*(uint32_t *)(msgdigest) = __REV(HASH->HR[3]);
|
|
msgdigest += 4U;
|
|
*(uint32_t *)(msgdigest) = __REV(HASH->HR[4]);
|
|
msgdigest += 4U;
|
|
*(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[5]);
|
|
msgdigest += 4U;
|
|
*(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[6]);
|
|
msgdigest += 4U;
|
|
*(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[7]);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* @brief Handle HASH processing Timeout.
|
|
* @param hhash HASH handle.
|
|
* @param Flag specifies the HASH flag to check.
|
|
* @param Status the Flag status (SET or RESET).
|
|
* @param Timeout Timeout duration.
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef HASH_WaitOnFlagUntilTimeout(HASH_HandleTypeDef *hhash, uint32_t Flag, FlagStatus Status,
|
|
uint32_t Timeout)
|
|
{
|
|
uint32_t tickstart = HAL_GetTick();
|
|
|
|
/* Wait until flag is set */
|
|
if (Status == RESET)
|
|
{
|
|
while (__HAL_HASH_GET_FLAG(Flag) == RESET)
|
|
{
|
|
/* Check for the Timeout */
|
|
if (Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
|
|
{
|
|
/* Set State to Ready to be able to restart later on */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
/* Store time out issue in handle status */
|
|
hhash->Status = HAL_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
while (__HAL_HASH_GET_FLAG(Flag) != RESET)
|
|
{
|
|
/* Check for the Timeout */
|
|
if (Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
|
|
{
|
|
/* Set State to Ready to be able to restart later on */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
/* Store time out issue in handle status */
|
|
hhash->Status = HAL_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return HAL_OK;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief HASH processing in interruption mode.
|
|
* @param hhash HASH handle.
|
|
* @note HASH_IT() regularly reads hhash->SuspendRequest to check whether
|
|
* or not the HASH processing must be suspended. If this is the case, the
|
|
* processing is suspended when possible and the Peripheral feeding point reached at
|
|
* suspension time is stored in the handle for resumption later on.
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef HASH_IT(HASH_HandleTypeDef *hhash)
|
|
{
|
|
if (hhash->State == HAL_HASH_STATE_BUSY)
|
|
{
|
|
/* ITCounter must not be equal to 0 at this point. Report an error if this is the case. */
|
|
if (hhash->HashITCounter == 0U)
|
|
{
|
|
/* Disable Interrupts */
|
|
__HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
|
|
/* HASH state set back to Ready to prevent any issue in user code
|
|
present in HAL_HASH_ErrorCallback() */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
return HAL_ERROR;
|
|
}
|
|
else if (hhash->HashITCounter == 1U)
|
|
{
|
|
/* This is the first call to HASH_IT, the first input data are about to be
|
|
entered in the Peripheral. A specific processing is carried out at this point to
|
|
start-up the processing. */
|
|
hhash->HashITCounter = 2U;
|
|
}
|
|
else
|
|
{
|
|
/* Cruise speed reached, HashITCounter remains equal to 3 until the end of
|
|
the HASH processing or the end of the current step for HMAC processing. */
|
|
hhash->HashITCounter = 3U;
|
|
}
|
|
|
|
/* If digest is ready */
|
|
if (__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS))
|
|
{
|
|
/* Read the digest */
|
|
HASH_GetDigest(hhash->pHashOutBuffPtr, HASH_DIGEST_LENGTH());
|
|
|
|
/* Disable Interrupts */
|
|
__HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
/* Reset HASH state machine */
|
|
hhash->Phase = HAL_HASH_PHASE_READY;
|
|
/* Call digest computation complete call back */
|
|
#if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
|
|
hhash->DgstCpltCallback(hhash);
|
|
#else
|
|
HAL_HASH_DgstCpltCallback(hhash);
|
|
#endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/* If Peripheral ready to accept new data */
|
|
if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))
|
|
{
|
|
|
|
/* If the suspension flag has been raised and if the processing is not about
|
|
to end, suspend processing */
|
|
if ((hhash->HashInCount != 0U) && (hhash->SuspendRequest == HAL_HASH_SUSPEND))
|
|
{
|
|
/* Disable Interrupts */
|
|
__HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
|
|
|
|
/* Reset SuspendRequest */
|
|
hhash->SuspendRequest = HAL_HASH_SUSPEND_NONE;
|
|
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_SUSPENDED;
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/* Enter input data in the Peripheral through HASH_Write_Block_Data() call and
|
|
check whether the digest calculation has been triggered */
|
|
if (HASH_Write_Block_Data(hhash) == HASH_DIGEST_CALCULATION_STARTED)
|
|
{
|
|
/* Call Input data transfer complete call back
|
|
(called at the end of each step for HMAC) */
|
|
#if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
|
|
hhash->InCpltCallback(hhash);
|
|
#else
|
|
HAL_HASH_InCpltCallback(hhash);
|
|
#endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
|
|
|
|
if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1)
|
|
{
|
|
/* Wait until Peripheral is not busy anymore */
|
|
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
|
|
{
|
|
/* Disable Interrupts */
|
|
__HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
|
|
return HAL_TIMEOUT;
|
|
}
|
|
/* Initialization start for HMAC STEP 2 */
|
|
hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_2; /* Move phase from Step 1 to Step 2 */
|
|
__HAL_HASH_SET_NBVALIDBITS(hhash->HashBuffSize); /* Set NBLW for the input message */
|
|
hhash->HashInCount = hhash->HashBuffSize; /* Set the input data size (in bytes) */
|
|
hhash->pHashInBuffPtr = hhash->pHashMsgBuffPtr; /* Set the input data address */
|
|
hhash->HashITCounter = 1; /* Set ITCounter to 1 to indicate the start
|
|
of a new phase */
|
|
__HAL_HASH_ENABLE_IT(HASH_IT_DINI); /* Enable IT (was disabled in HASH_Write_Block_Data) */
|
|
}
|
|
else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
|
|
{
|
|
/* Wait until Peripheral is not busy anymore */
|
|
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
|
|
{
|
|
/* Disable Interrupts */
|
|
__HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
|
|
return HAL_TIMEOUT;
|
|
}
|
|
/* Initialization start for HMAC STEP 3 */
|
|
hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_3; /* Move phase from Step 2 to Step 3 */
|
|
__HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); /* Set NBLW for the key */
|
|
hhash->HashInCount = hhash->Init.KeySize; /* Set the key size (in bytes) */
|
|
hhash->pHashInBuffPtr = hhash->Init.pKey; /* Set the key address */
|
|
hhash->HashITCounter = 1; /* Set ITCounter to 1 to indicate the start
|
|
of a new phase */
|
|
__HAL_HASH_ENABLE_IT(HASH_IT_DINI); /* Enable IT (was disabled in HASH_Write_Block_Data) */
|
|
}
|
|
else
|
|
{
|
|
/* Nothing to do */
|
|
}
|
|
} /* if (HASH_Write_Block_Data(hhash) == HASH_DIGEST_CALCULATION_STARTED) */
|
|
} /* if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))*/
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Write a block of data in HASH Peripheral in interruption mode.
|
|
* @param hhash HASH handle.
|
|
* @note HASH_Write_Block_Data() is called under interruption by HASH_IT().
|
|
* @retval HAL status
|
|
*/
|
|
static uint32_t HASH_Write_Block_Data(HASH_HandleTypeDef *hhash)
|
|
{
|
|
uint32_t inputaddr;
|
|
uint32_t buffercounter;
|
|
uint32_t inputcounter;
|
|
uint32_t ret = HASH_DIGEST_CALCULATION_NOT_STARTED;
|
|
|
|
/* If there are more than 64 bytes remaining to be entered */
|
|
if (hhash->HashInCount > 64U)
|
|
{
|
|
inputaddr = (uint32_t)hhash->pHashInBuffPtr;
|
|
/* Write the Input block in the Data IN register
|
|
(16 32-bit words, or 64 bytes are entered) */
|
|
for (buffercounter = 0U; buffercounter < 64U; buffercounter += 4U)
|
|
{
|
|
HASH->DIN = *(uint32_t *)inputaddr;
|
|
inputaddr += 4U;
|
|
}
|
|
/* If this is the start of input data entering, an additional word
|
|
must be entered to start up the HASH processing */
|
|
if (hhash->HashITCounter == 2U)
|
|
{
|
|
HASH->DIN = *(uint32_t *)inputaddr;
|
|
if (hhash->HashInCount >= 68U)
|
|
{
|
|
/* There are still data waiting to be entered in the Peripheral.
|
|
Decrement buffer counter and set pointer to the proper
|
|
memory location for the next data entering round. */
|
|
hhash->HashInCount -= 68U;
|
|
hhash->pHashInBuffPtr += 68U;
|
|
}
|
|
else
|
|
{
|
|
/* All the input buffer has been fed to the HW. */
|
|
hhash->HashInCount = 0U;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* 64 bytes have been entered and there are still some remaining:
|
|
Decrement buffer counter and set pointer to the proper
|
|
memory location for the next data entering round.*/
|
|
hhash->HashInCount -= 64U;
|
|
hhash->pHashInBuffPtr += 64U;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* 64 or less bytes remain to be entered. This is the last
|
|
data entering round. */
|
|
|
|
/* Get the buffer address */
|
|
inputaddr = (uint32_t)hhash->pHashInBuffPtr;
|
|
/* Get the buffer counter */
|
|
inputcounter = hhash->HashInCount;
|
|
/* Disable Interrupts */
|
|
__HAL_HASH_DISABLE_IT(HASH_IT_DINI);
|
|
|
|
/* Write the Input block in the Data IN register */
|
|
for (buffercounter = 0U; buffercounter < ((inputcounter + 3U) / 4U); buffercounter++)
|
|
{
|
|
HASH->DIN = *(uint32_t *)inputaddr;
|
|
inputaddr += 4U;
|
|
}
|
|
|
|
if (hhash->Accumulation == 1U)
|
|
{
|
|
/* Field accumulation is set, API only feeds data to the Peripheral and under interruption.
|
|
The digest computation will be started when the last buffer data are entered. */
|
|
|
|
/* Reset multi buffers accumulation flag */
|
|
hhash->Accumulation = 0U;
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
/* Call Input data transfer complete call back */
|
|
#if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
|
|
hhash->InCpltCallback(hhash);
|
|
#else
|
|
HAL_HASH_InCpltCallback(hhash);
|
|
#endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
|
|
}
|
|
else
|
|
{
|
|
/* Start the Digest calculation */
|
|
__HAL_HASH_START_DIGEST();
|
|
/* Return indication that digest calculation has started:
|
|
this return value triggers the call to Input data transfer
|
|
complete call back as well as the proper transition from
|
|
one step to another in HMAC mode. */
|
|
ret = HASH_DIGEST_CALCULATION_STARTED;
|
|
}
|
|
/* Reset buffer counter */
|
|
hhash->HashInCount = 0;
|
|
}
|
|
|
|
/* Return whether or digest calculation has started */
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* @brief HMAC processing in polling mode.
|
|
* @param hhash HASH handle.
|
|
* @param Timeout Timeout value.
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef HMAC_Processing(HASH_HandleTypeDef *hhash, uint32_t Timeout)
|
|
{
|
|
/* Ensure first that Phase is correct */
|
|
if ((hhash->Phase != HAL_HASH_PHASE_HMAC_STEP_1) && (hhash->Phase != HAL_HASH_PHASE_HMAC_STEP_2)
|
|
&& (hhash->Phase != HAL_HASH_PHASE_HMAC_STEP_3))
|
|
{
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
|
|
/* Process Unlock */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Return function status */
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* HMAC Step 1 processing */
|
|
if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1)
|
|
{
|
|
/************************** STEP 1 ******************************************/
|
|
/* Configure the Number of valid bits in last word of the message */
|
|
__HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
|
|
|
|
/* Write input buffer in Data register */
|
|
hhash->Status = HASH_WriteData(hhash, hhash->pHashKeyBuffPtr, hhash->HashKeyCount);
|
|
if (hhash->Status != HAL_OK)
|
|
{
|
|
return hhash->Status;
|
|
}
|
|
|
|
/* Check whether or not key entering process has been suspended */
|
|
if (hhash->State == HAL_HASH_STATE_SUSPENDED)
|
|
{
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Stop right there and return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/* No processing suspension at this point: set DCAL bit. */
|
|
__HAL_HASH_START_DIGEST();
|
|
|
|
/* Wait for BUSY flag to be cleared */
|
|
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, Timeout) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
|
|
/* Move from Step 1 to Step 2 */
|
|
hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_2;
|
|
|
|
}
|
|
|
|
/* HMAC Step 2 processing.
|
|
After phase check, HMAC_Processing() may
|
|
- directly start up from this point in resumption case
|
|
if the same Step 2 processing was suspended previously
|
|
- or fall through from the Step 1 processing carried out hereabove */
|
|
if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
|
|
{
|
|
/************************** STEP 2 ******************************************/
|
|
/* Configure the Number of valid bits in last word of the message */
|
|
__HAL_HASH_SET_NBVALIDBITS(hhash->HashBuffSize);
|
|
|
|
/* Write input buffer in Data register */
|
|
hhash->Status = HASH_WriteData(hhash, hhash->pHashInBuffPtr, hhash->HashInCount);
|
|
if (hhash->Status != HAL_OK)
|
|
{
|
|
return hhash->Status;
|
|
}
|
|
|
|
/* Check whether or not data entering process has been suspended */
|
|
if (hhash->State == HAL_HASH_STATE_SUSPENDED)
|
|
{
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Stop right there and return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/* No processing suspension at this point: set DCAL bit. */
|
|
__HAL_HASH_START_DIGEST();
|
|
|
|
/* Wait for BUSY flag to be cleared */
|
|
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, Timeout) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
|
|
/* Move from Step 2 to Step 3 */
|
|
hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_3;
|
|
/* In case Step 1 phase was suspended then resumed,
|
|
set again Key input buffers and size before moving to
|
|
next step */
|
|
hhash->pHashKeyBuffPtr = hhash->Init.pKey;
|
|
hhash->HashKeyCount = hhash->Init.KeySize;
|
|
}
|
|
|
|
|
|
/* HMAC Step 3 processing.
|
|
After phase check, HMAC_Processing() may
|
|
- directly start up from this point in resumption case
|
|
if the same Step 3 processing was suspended previously
|
|
- or fall through from the Step 2 processing carried out hereabove */
|
|
if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3)
|
|
{
|
|
/************************** STEP 3 ******************************************/
|
|
/* Configure the Number of valid bits in last word of the message */
|
|
__HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
|
|
|
|
/* Write input buffer in Data register */
|
|
hhash->Status = HASH_WriteData(hhash, hhash->pHashKeyBuffPtr, hhash->HashKeyCount);
|
|
if (hhash->Status != HAL_OK)
|
|
{
|
|
return hhash->Status;
|
|
}
|
|
|
|
/* Check whether or not key entering process has been suspended */
|
|
if (hhash->State == HAL_HASH_STATE_SUSPENDED)
|
|
{
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Stop right there and return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/* No processing suspension at this point: start the Digest calculation. */
|
|
__HAL_HASH_START_DIGEST();
|
|
|
|
/* Wait for DCIS flag to be set */
|
|
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_DCIS, RESET, Timeout) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
|
|
/* Read the message digest */
|
|
HASH_GetDigest(hhash->pHashOutBuffPtr, HASH_DIGEST_LENGTH());
|
|
|
|
/* Reset HASH state machine */
|
|
hhash->Phase = HAL_HASH_PHASE_READY;
|
|
}
|
|
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
|
|
/* Process Unlock */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral, next process pInBuffer then
|
|
* read the computed digest.
|
|
* @note Digest is available in pOutBuffer.
|
|
* @param hhash HASH handle.
|
|
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
|
|
* @param Size length of the input buffer in bytes.
|
|
* @param pOutBuffer pointer to the computed digest.
|
|
* @param Timeout Timeout value.
|
|
* @param Algorithm HASH algorithm.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HASH_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
|
|
uint32_t Timeout, uint32_t Algorithm)
|
|
{
|
|
uint8_t *pInBuffer_tmp; /* input data address, input parameter of HASH_WriteData() */
|
|
uint32_t Size_tmp; /* input data size (in bytes), input parameter of HASH_WriteData() */
|
|
HAL_HASH_StateTypeDef State_tmp = hhash->State;
|
|
|
|
|
|
/* Initiate HASH processing in case of start or resumption */
|
|
if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
|
|
{
|
|
/* Check input parameters */
|
|
if ((pInBuffer == NULL) || (pOutBuffer == NULL))
|
|
{
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hhash);
|
|
|
|
/* Check if initialization phase has not been already performed */
|
|
if (hhash->Phase == HAL_HASH_PHASE_READY)
|
|
{
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
|
|
/* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
|
|
MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
|
|
|
|
/* Configure the number of valid bits in last word of the message */
|
|
__HAL_HASH_SET_NBVALIDBITS(Size);
|
|
|
|
/* pInBuffer_tmp and Size_tmp are initialized to be used afterwards as
|
|
input parameters of HASH_WriteData() */
|
|
pInBuffer_tmp = pInBuffer; /* pInBuffer_tmp is set to the input data address */
|
|
Size_tmp = Size; /* Size_tmp contains the input data size in bytes */
|
|
|
|
/* Set the phase */
|
|
hhash->Phase = HAL_HASH_PHASE_PROCESS;
|
|
}
|
|
else if (hhash->Phase == HAL_HASH_PHASE_PROCESS)
|
|
{
|
|
/* if the Peripheral has already been initialized, two cases are possible */
|
|
|
|
/* Process resumption time ... */
|
|
if (hhash->State == HAL_HASH_STATE_SUSPENDED)
|
|
{
|
|
/* Since this is resumption, pInBuffer_tmp and Size_tmp are not set
|
|
to the API input parameters but to those saved beforehand by HASH_WriteData()
|
|
when the processing was suspended */
|
|
pInBuffer_tmp = hhash->pHashInBuffPtr;
|
|
Size_tmp = hhash->HashInCount;
|
|
}
|
|
/* ... or multi-buffer HASH processing end */
|
|
else
|
|
{
|
|
/* pInBuffer_tmp and Size_tmp are initialized to be used afterwards as
|
|
input parameters of HASH_WriteData() */
|
|
pInBuffer_tmp = pInBuffer;
|
|
Size_tmp = Size;
|
|
/* Configure the number of valid bits in last word of the message */
|
|
__HAL_HASH_SET_NBVALIDBITS(Size);
|
|
}
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
}
|
|
else
|
|
{
|
|
/* Phase error */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Return function status */
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
|
|
/* Write input buffer in Data register */
|
|
hhash->Status = HASH_WriteData(hhash, pInBuffer_tmp, Size_tmp);
|
|
if (hhash->Status != HAL_OK)
|
|
{
|
|
return hhash->Status;
|
|
}
|
|
|
|
/* If the process has not been suspended, carry on to digest calculation */
|
|
if (hhash->State != HAL_HASH_STATE_SUSPENDED)
|
|
{
|
|
/* Start the Digest calculation */
|
|
__HAL_HASH_START_DIGEST();
|
|
|
|
/* Wait for DCIS flag to be set */
|
|
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_DCIS, RESET, Timeout) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
|
|
/* Read the message digest */
|
|
HASH_GetDigest(pOutBuffer, HASH_DIGEST_LENGTH());
|
|
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
|
|
/* Reset HASH state machine */
|
|
hhash->Phase = HAL_HASH_PHASE_READY;
|
|
|
|
}
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief If not already done, initialize the HASH peripheral then
|
|
* processes pInBuffer.
|
|
* @note Field hhash->Phase of HASH handle is tested to check whether or not
|
|
* the Peripheral has already been initialized.
|
|
* @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the
|
|
* HASH digest computation is corrupted.
|
|
* @param hhash HASH handle.
|
|
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
|
|
* @param Size length of the input buffer in bytes, must be a multiple of 4.
|
|
* @param Algorithm HASH algorithm.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HASH_Accumulate(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
|
|
{
|
|
uint8_t *pInBuffer_tmp; /* input data address, input parameter of HASH_WriteData() */
|
|
uint32_t Size_tmp; /* input data size (in bytes), input parameter of HASH_WriteData() */
|
|
HAL_HASH_StateTypeDef State_tmp = hhash->State;
|
|
|
|
/* Make sure the input buffer size (in bytes) is a multiple of 4 */
|
|
if ((Size % 4U) != 0U)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Initiate HASH processing in case of start or resumption */
|
|
if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
|
|
{
|
|
/* Check input parameters */
|
|
if ((pInBuffer == NULL) || (Size == 0U))
|
|
{
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hhash);
|
|
|
|
/* If resuming the HASH processing */
|
|
if (hhash->State == HAL_HASH_STATE_SUSPENDED)
|
|
{
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
|
|
/* Since this is resumption, pInBuffer_tmp and Size_tmp are not set
|
|
to the API input parameters but to those saved beforehand by HASH_WriteData()
|
|
when the processing was suspended */
|
|
pInBuffer_tmp = hhash->pHashInBuffPtr; /* pInBuffer_tmp is set to the input data address */
|
|
Size_tmp = hhash->HashInCount; /* Size_tmp contains the input data size in bytes */
|
|
|
|
}
|
|
else
|
|
{
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
|
|
/* pInBuffer_tmp and Size_tmp are initialized to be used afterwards as
|
|
input parameters of HASH_WriteData() */
|
|
pInBuffer_tmp = pInBuffer; /* pInBuffer_tmp is set to the input data address */
|
|
Size_tmp = Size; /* Size_tmp contains the input data size in bytes */
|
|
|
|
/* Check if initialization phase has already be performed */
|
|
if (hhash->Phase == HAL_HASH_PHASE_READY)
|
|
{
|
|
/* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
|
|
MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
|
|
}
|
|
|
|
/* Set the phase */
|
|
hhash->Phase = HAL_HASH_PHASE_PROCESS;
|
|
|
|
}
|
|
|
|
/* Write input buffer in Data register */
|
|
hhash->Status = HASH_WriteData(hhash, pInBuffer_tmp, Size_tmp);
|
|
if (hhash->Status != HAL_OK)
|
|
{
|
|
return hhash->Status;
|
|
}
|
|
|
|
/* If the process has not been suspended, move the state to Ready */
|
|
if (hhash->State != HAL_HASH_STATE_SUSPENDED)
|
|
{
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
}
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief If not already done, initialize the HASH peripheral then
|
|
* processes pInBuffer in interruption mode.
|
|
* @note Field hhash->Phase of HASH handle is tested to check whether or not
|
|
* the Peripheral has already been initialized.
|
|
* @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the
|
|
* HASH digest computation is corrupted.
|
|
* @param hhash HASH handle.
|
|
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
|
|
* @param Size length of the input buffer in bytes, must be a multiple of 4.
|
|
* @param Algorithm HASH algorithm.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HASH_Accumulate_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
|
|
{
|
|
HAL_HASH_StateTypeDef State_tmp = hhash->State;
|
|
__IO uint32_t inputaddr = (uint32_t) pInBuffer;
|
|
uint32_t SizeVar = Size;
|
|
|
|
/* Make sure the input buffer size (in bytes) is a multiple of 4 */
|
|
if ((Size % 4U) != 0U)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Initiate HASH processing in case of start or resumption */
|
|
if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
|
|
{
|
|
/* Check input parameters */
|
|
if ((pInBuffer == NULL) || (Size == 0U))
|
|
{
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hhash);
|
|
|
|
/* If resuming the HASH processing */
|
|
if (hhash->State == HAL_HASH_STATE_SUSPENDED)
|
|
{
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
}
|
|
else
|
|
{
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
|
|
/* Check if initialization phase has already be performed */
|
|
if (hhash->Phase == HAL_HASH_PHASE_READY)
|
|
{
|
|
/* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
|
|
MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
|
|
hhash->HashITCounter = 1;
|
|
}
|
|
else
|
|
{
|
|
hhash->HashITCounter = 3; /* 'cruise-speed' reached during a previous buffer processing */
|
|
}
|
|
|
|
/* Set the phase */
|
|
hhash->Phase = HAL_HASH_PHASE_PROCESS;
|
|
|
|
/* If DINIS is equal to 0 (for example if an incomplete block has been previously
|
|
fed to the Peripheral), the DINIE interruption won't be triggered when DINIE is set.
|
|
Therefore, first words are manually entered until DINIS raises, or until there
|
|
is not more data to enter. */
|
|
while ((!(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))) && (SizeVar > 0U))
|
|
{
|
|
|
|
/* Write input data 4 bytes at a time */
|
|
HASH->DIN = *(uint32_t *)inputaddr;
|
|
inputaddr += 4U;
|
|
SizeVar -= 4U;
|
|
}
|
|
|
|
/* If DINIS is still not set or if all the data have been fed, stop here */
|
|
if ((!(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))) || (SizeVar == 0U))
|
|
{
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
|
|
/* Process Unlock */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/* otherwise, carry on in interrupt-mode */
|
|
hhash->HashInCount = SizeVar; /* Counter used to keep track of number of data
|
|
to be fed to the Peripheral */
|
|
hhash->pHashInBuffPtr = (uint8_t *)inputaddr; /* Points at data which will be fed to the Peripheral at
|
|
the next interruption */
|
|
/* In case of suspension, hhash->HashInCount and hhash->pHashInBuffPtr contain
|
|
the information describing where the HASH process is stopped.
|
|
These variables are used later on to resume the HASH processing at the
|
|
correct location. */
|
|
|
|
}
|
|
|
|
/* Set multi buffers accumulation flag */
|
|
hhash->Accumulation = 1U;
|
|
|
|
/* Process Unlock */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Enable Data Input interrupt */
|
|
__HAL_HASH_ENABLE_IT(HASH_IT_DINI);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral, next process pInBuffer then
|
|
* read the computed digest in interruption mode.
|
|
* @note Digest is available in pOutBuffer.
|
|
* @param hhash HASH handle.
|
|
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
|
|
* @param Size length of the input buffer in bytes.
|
|
* @param pOutBuffer pointer to the computed digest.
|
|
* @param Algorithm HASH algorithm.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HASH_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
|
|
uint32_t Algorithm)
|
|
{
|
|
HAL_HASH_StateTypeDef State_tmp = hhash->State;
|
|
__IO uint32_t inputaddr = (uint32_t) pInBuffer;
|
|
uint32_t polling_step = 0U;
|
|
uint32_t initialization_skipped = 0U;
|
|
uint32_t SizeVar = Size;
|
|
|
|
/* If State is ready or suspended, start or resume IT-based HASH processing */
|
|
if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
|
|
{
|
|
/* Check input parameters */
|
|
if ((pInBuffer == NULL) || (Size == 0U) || (pOutBuffer == NULL))
|
|
{
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hhash);
|
|
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
|
|
/* Initialize IT counter */
|
|
hhash->HashITCounter = 1;
|
|
|
|
/* Check if initialization phase has already be performed */
|
|
if (hhash->Phase == HAL_HASH_PHASE_READY)
|
|
{
|
|
/* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
|
|
MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
|
|
|
|
/* Configure the number of valid bits in last word of the message */
|
|
__HAL_HASH_SET_NBVALIDBITS(SizeVar);
|
|
|
|
|
|
hhash->HashInCount = SizeVar; /* Counter used to keep track of number of data
|
|
to be fed to the Peripheral */
|
|
hhash->pHashInBuffPtr = pInBuffer; /* Points at data which will be fed to the Peripheral at
|
|
the next interruption */
|
|
/* In case of suspension, hhash->HashInCount and hhash->pHashInBuffPtr contain
|
|
the information describing where the HASH process is stopped.
|
|
These variables are used later on to resume the HASH processing at the
|
|
correct location. */
|
|
|
|
hhash->pHashOutBuffPtr = pOutBuffer; /* Points at the computed digest */
|
|
}
|
|
else
|
|
{
|
|
initialization_skipped = 1; /* info user later on in case of multi-buffer */
|
|
}
|
|
|
|
/* Set the phase */
|
|
hhash->Phase = HAL_HASH_PHASE_PROCESS;
|
|
|
|
/* If DINIS is equal to 0 (for example if an incomplete block has been previously
|
|
fed to the Peripheral), the DINIE interruption won't be triggered when DINIE is set.
|
|
Therefore, first words are manually entered until DINIS raises. */
|
|
while ((!(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))) && (SizeVar > 3U))
|
|
{
|
|
polling_step = 1U; /* note that some words are entered before enabling the interrupt */
|
|
|
|
/* Write input data 4 bytes at a time */
|
|
HASH->DIN = *(uint32_t *)inputaddr;
|
|
inputaddr += 4U;
|
|
SizeVar -= 4U;
|
|
}
|
|
|
|
if (polling_step == 1U)
|
|
{
|
|
if (SizeVar == 0U)
|
|
{
|
|
/* If all the data have been entered at this point, it only remains to
|
|
read the digest */
|
|
hhash->pHashOutBuffPtr = pOutBuffer; /* Points at the computed digest */
|
|
|
|
/* Start the Digest calculation */
|
|
__HAL_HASH_START_DIGEST();
|
|
/* Process Unlock */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Enable Interrupts */
|
|
__HAL_HASH_ENABLE_IT(HASH_IT_DCI);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
else if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))
|
|
{
|
|
/* It remains data to enter and the Peripheral is ready to trigger DINIE,
|
|
carry on as usual.
|
|
Update HashInCount and pHashInBuffPtr accordingly. */
|
|
hhash->HashInCount = SizeVar;
|
|
hhash->pHashInBuffPtr = (uint8_t *)inputaddr;
|
|
/* Update the configuration of the number of valid bits in last word of the message */
|
|
__HAL_HASH_SET_NBVALIDBITS(SizeVar);
|
|
hhash->pHashOutBuffPtr = pOutBuffer; /* Points at the computed digest */
|
|
if (initialization_skipped == 1U)
|
|
{
|
|
hhash->HashITCounter = 3; /* 'cruise-speed' reached during a previous buffer processing */
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* DINIS is not set but it remains a few data to enter (not enough for a full word).
|
|
Manually enter the last bytes before enabling DCIE. */
|
|
__HAL_HASH_SET_NBVALIDBITS(SizeVar);
|
|
HASH->DIN = *(uint32_t *)inputaddr;
|
|
|
|
/* Start the Digest calculation */
|
|
hhash->pHashOutBuffPtr = pOutBuffer; /* Points at the computed digest */
|
|
__HAL_HASH_START_DIGEST();
|
|
/* Process Unlock */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Enable Interrupts */
|
|
__HAL_HASH_ENABLE_IT(HASH_IT_DCI);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
} /* if (polling_step == 1) */
|
|
|
|
|
|
/* Process Unlock */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Enable Interrupts */
|
|
__HAL_HASH_ENABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral then initiate a DMA transfer
|
|
* to feed the input buffer to the Peripheral.
|
|
* @note If MDMAT bit is set before calling this function (multi-buffer
|
|
* HASH processing case), the input buffer size (in bytes) must be
|
|
* a multiple of 4 otherwise, the HASH digest computation is corrupted.
|
|
* For the processing of the last buffer of the thread, MDMAT bit must
|
|
* be reset and the buffer length (in bytes) doesn't have to be a
|
|
* multiple of 4.
|
|
* @param hhash HASH handle.
|
|
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
|
|
* @param Size length of the input buffer in bytes.
|
|
* @param Algorithm HASH algorithm.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HASH_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
|
|
{
|
|
uint32_t inputaddr;
|
|
uint32_t inputSize;
|
|
HAL_StatusTypeDef status ;
|
|
HAL_HASH_StateTypeDef State_tmp = hhash->State;
|
|
|
|
|
|
/* Make sure the input buffer size (in bytes) is a multiple of 4 when MDMAT bit is set
|
|
(case of multi-buffer HASH processing) */
|
|
assert_param(IS_HASH_DMA_MULTIBUFFER_SIZE(Size));
|
|
|
|
/* If State is ready or suspended, start or resume polling-based HASH processing */
|
|
if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
|
|
{
|
|
/* Check input parameters */
|
|
if ((pInBuffer == NULL) || (Size == 0U) ||
|
|
/* Check phase coherency. Phase must be
|
|
either READY (fresh start)
|
|
or PROCESS (multi-buffer HASH management) */
|
|
((hhash->Phase != HAL_HASH_PHASE_READY) && (!(IS_HASH_PROCESSING(hhash)))))
|
|
{
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hhash);
|
|
|
|
/* If not a resumption case */
|
|
if (hhash->State == HAL_HASH_STATE_READY)
|
|
{
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
|
|
/* Check if initialization phase has already been performed.
|
|
If Phase is already set to HAL_HASH_PHASE_PROCESS, this means the
|
|
API is processing a new input data message in case of multi-buffer HASH
|
|
computation. */
|
|
if (hhash->Phase == HAL_HASH_PHASE_READY)
|
|
{
|
|
/* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
|
|
MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
|
|
|
|
/* Set the phase */
|
|
hhash->Phase = HAL_HASH_PHASE_PROCESS;
|
|
}
|
|
|
|
/* Configure the Number of valid bits in last word of the message */
|
|
__HAL_HASH_SET_NBVALIDBITS(Size);
|
|
|
|
inputaddr = (uint32_t)pInBuffer; /* DMA transfer start address */
|
|
inputSize = Size; /* DMA transfer size (in bytes) */
|
|
|
|
/* In case of suspension request, save the starting parameters */
|
|
hhash->pHashInBuffPtr = pInBuffer; /* DMA transfer start address */
|
|
hhash->HashInCount = Size; /* DMA transfer size (in bytes) */
|
|
|
|
}
|
|
/* If resumption case */
|
|
else
|
|
{
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
|
|
/* Resumption case, inputaddr and inputSize are not set to the API input parameters
|
|
but to those saved beforehand by HAL_HASH_DMAFeed_ProcessSuspend() when the
|
|
processing was suspended */
|
|
inputaddr = (uint32_t)hhash->pHashInBuffPtr; /* DMA transfer start address */
|
|
inputSize = hhash->HashInCount; /* DMA transfer size (in bytes) */
|
|
|
|
}
|
|
|
|
/* Set the HASH DMA transfer complete callback */
|
|
hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt;
|
|
/* Set the DMA error callback */
|
|
hhash->hdmain->XferErrorCallback = HASH_DMAError;
|
|
|
|
/* Store number of words already pushed to manage proper DMA processing suspension */
|
|
hhash->NbWordsAlreadyPushed = HASH_NBW_PUSHED();
|
|
|
|
/* Enable the DMA In DMA stream */
|
|
status = HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, \
|
|
(((inputSize % 4U) != 0U) ? ((inputSize + (4U - (inputSize % 4U))) / 4U) : \
|
|
(inputSize / 4U)));
|
|
|
|
/* Enable DMA requests */
|
|
SET_BIT(HASH->CR, HASH_CR_DMAE);
|
|
|
|
/* Process Unlock */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Return function status */
|
|
if (status != HAL_OK)
|
|
{
|
|
/* Update HASH state machine to error */
|
|
hhash->State = HAL_HASH_STATE_ERROR;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Return the computed digest.
|
|
* @note The API waits for DCIS to be set then reads the computed digest.
|
|
* @param hhash HASH handle.
|
|
* @param pOutBuffer pointer to the computed digest.
|
|
* @param Timeout Timeout value.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HASH_Finish(HASH_HandleTypeDef *hhash, uint8_t *pOutBuffer, uint32_t Timeout)
|
|
{
|
|
|
|
if (hhash->State == HAL_HASH_STATE_READY)
|
|
{
|
|
/* Check parameter */
|
|
if (pOutBuffer == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hhash);
|
|
|
|
/* Change the HASH state to busy */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
|
|
/* Wait for DCIS flag to be set */
|
|
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_DCIS, RESET, Timeout) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
|
|
/* Read the message digest */
|
|
HASH_GetDigest(pOutBuffer, HASH_DIGEST_LENGTH());
|
|
|
|
/* Change the HASH state to ready */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
|
|
/* Reset HASH state machine */
|
|
hhash->Phase = HAL_HASH_PHASE_READY;
|
|
|
|
/* Process UnLock */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in HMAC mode, next process pInBuffer then
|
|
* read the computed digest.
|
|
* @note Digest is available in pOutBuffer.
|
|
* @note Same key is used for the inner and the outer hash functions; pointer to key and
|
|
* key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
|
|
* @param hhash HASH handle.
|
|
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
|
|
* @param Size length of the input buffer in bytes.
|
|
* @param pOutBuffer pointer to the computed digest.
|
|
* @param Timeout Timeout value.
|
|
* @param Algorithm HASH algorithm.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HMAC_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
|
|
uint32_t Timeout, uint32_t Algorithm)
|
|
{
|
|
HAL_HASH_StateTypeDef State_tmp = hhash->State;
|
|
|
|
/* If State is ready or suspended, start or resume polling-based HASH processing */
|
|
if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
|
|
{
|
|
/* Check input parameters */
|
|
if ((pInBuffer == NULL) || (Size == 0U) || (hhash->Init.pKey == NULL) || (hhash->Init.KeySize == 0U)
|
|
|| (pOutBuffer == NULL))
|
|
{
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hhash);
|
|
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
|
|
/* Check if initialization phase has already be performed */
|
|
if (hhash->Phase == HAL_HASH_PHASE_READY)
|
|
{
|
|
/* Check if key size is larger than 64 bytes, accordingly set LKEY and the other setting bits */
|
|
if (hhash->Init.KeySize > 64U)
|
|
{
|
|
MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
|
|
Algorithm | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT);
|
|
}
|
|
else
|
|
{
|
|
MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
|
|
Algorithm | HASH_ALGOMODE_HMAC | HASH_CR_INIT);
|
|
}
|
|
/* Set the phase to Step 1 */
|
|
hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_1;
|
|
/* Resort to hhash internal fields to feed the Peripheral.
|
|
Parameters will be updated in case of suspension to contain the proper
|
|
information at resumption time. */
|
|
hhash->pHashOutBuffPtr = pOutBuffer; /* Output digest address */
|
|
hhash->pHashInBuffPtr = pInBuffer; /* Input data address, HMAC_Processing input
|
|
parameter for Step 2 */
|
|
hhash->HashInCount = Size; /* Input data size, HMAC_Processing input
|
|
parameter for Step 2 */
|
|
hhash->HashBuffSize = Size; /* Store the input buffer size for the whole HMAC process*/
|
|
hhash->pHashKeyBuffPtr = hhash->Init.pKey; /* Key address, HMAC_Processing input parameter for Step
|
|
1 and Step 3 */
|
|
hhash->HashKeyCount = hhash->Init.KeySize; /* Key size, HMAC_Processing input parameter for Step 1
|
|
and Step 3 */
|
|
}
|
|
|
|
/* Carry out HMAC processing */
|
|
return HMAC_Processing(hhash, Timeout);
|
|
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in HMAC mode, next process pInBuffer then
|
|
* read the computed digest in interruption mode.
|
|
* @note Digest is available in pOutBuffer.
|
|
* @note Same key is used for the inner and the outer hash functions; pointer to key and
|
|
* key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
|
|
* @param hhash HASH handle.
|
|
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
|
|
* @param Size length of the input buffer in bytes.
|
|
* @param pOutBuffer pointer to the computed digest.
|
|
* @param Algorithm HASH algorithm.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HMAC_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
|
|
uint32_t Algorithm)
|
|
{
|
|
HAL_HASH_StateTypeDef State_tmp = hhash->State;
|
|
|
|
/* If State is ready or suspended, start or resume IT-based HASH processing */
|
|
if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
|
|
{
|
|
/* Check input parameters */
|
|
if ((pInBuffer == NULL) || (Size == 0U) || (hhash->Init.pKey == NULL) || (hhash->Init.KeySize == 0U)
|
|
|| (pOutBuffer == NULL))
|
|
{
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hhash);
|
|
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
|
|
/* Initialize IT counter */
|
|
hhash->HashITCounter = 1;
|
|
|
|
/* Check if initialization phase has already be performed */
|
|
if (hhash->Phase == HAL_HASH_PHASE_READY)
|
|
{
|
|
/* Check if key size is larger than 64 bytes, accordingly set LKEY and the other setting bits */
|
|
if (hhash->Init.KeySize > 64U)
|
|
{
|
|
MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
|
|
Algorithm | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT);
|
|
}
|
|
else
|
|
{
|
|
MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
|
|
Algorithm | HASH_ALGOMODE_HMAC | HASH_CR_INIT);
|
|
}
|
|
|
|
/* Resort to hhash internal fields hhash->pHashInBuffPtr and hhash->HashInCount
|
|
to feed the Peripheral whatever the HMAC step.
|
|
Lines below are set to start HMAC Step 1 processing where key is entered first. */
|
|
hhash->HashInCount = hhash->Init.KeySize; /* Key size */
|
|
hhash->pHashInBuffPtr = hhash->Init.pKey ; /* Key address */
|
|
|
|
/* Store input and output parameters in handle fields to manage steps transition
|
|
or possible HMAC suspension/resumption */
|
|
hhash->pHashKeyBuffPtr = hhash->Init.pKey; /* Key address */
|
|
hhash->pHashMsgBuffPtr = pInBuffer; /* Input message address */
|
|
hhash->HashBuffSize = Size; /* Input message size (in bytes) */
|
|
hhash->pHashOutBuffPtr = pOutBuffer; /* Output digest address */
|
|
|
|
/* Configure the number of valid bits in last word of the key */
|
|
__HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
|
|
|
|
/* Set the phase to Step 1 */
|
|
hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_1;
|
|
}
|
|
else if ((hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1) || (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3))
|
|
{
|
|
/* Restart IT-based HASH processing after Step 1 or Step 3 suspension */
|
|
|
|
}
|
|
else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
|
|
{
|
|
/* Restart IT-based HASH processing after Step 2 suspension */
|
|
|
|
}
|
|
else
|
|
{
|
|
/* Error report as phase incorrect */
|
|
/* Process Unlock */
|
|
__HAL_UNLOCK(hhash);
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Process Unlock */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Enable Interrupts */
|
|
__HAL_HASH_ENABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in HMAC mode then initiate the required
|
|
* DMA transfers to feed the key and the input buffer to the Peripheral.
|
|
* @note Same key is used for the inner and the outer hash functions; pointer to key and
|
|
* key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
|
|
* @note In case of multi-buffer HMAC processing, the input buffer size (in bytes) must
|
|
* be a multiple of 4 otherwise, the HASH digest computation is corrupted.
|
|
* Only the length of the last buffer of the thread doesn't have to be a
|
|
* multiple of 4.
|
|
* @param hhash HASH handle.
|
|
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
|
|
* @param Size length of the input buffer in bytes.
|
|
* @param Algorithm HASH algorithm.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HMAC_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
|
|
{
|
|
uint32_t inputaddr;
|
|
uint32_t inputSize;
|
|
HAL_StatusTypeDef status ;
|
|
HAL_HASH_StateTypeDef State_tmp = hhash->State;
|
|
/* Make sure the input buffer size (in bytes) is a multiple of 4 when digest calculation
|
|
is disabled (multi-buffer HMAC processing, MDMAT bit to be set) */
|
|
assert_param(IS_HMAC_DMA_MULTIBUFFER_SIZE(hhash, Size));
|
|
/* If State is ready or suspended, start or resume DMA-based HASH processing */
|
|
if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
|
|
{
|
|
/* Check input parameters */
|
|
if ((pInBuffer == NULL) || (Size == 0U) || (hhash->Init.pKey == NULL) || (hhash->Init.KeySize == 0U) ||
|
|
/* Check phase coherency. Phase must be
|
|
either READY (fresh start)
|
|
or one of HMAC PROCESS steps (multi-buffer HASH management) */
|
|
((hhash->Phase != HAL_HASH_PHASE_READY) && (!(IS_HMAC_PROCESSING(hhash)))))
|
|
{
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hhash);
|
|
|
|
/* If not a case of resumption after suspension */
|
|
if (hhash->State == HAL_HASH_STATE_READY)
|
|
{
|
|
/* Check whether or not initialization phase has already be performed */
|
|
if (hhash->Phase == HAL_HASH_PHASE_READY)
|
|
{
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
/* Check if key size is larger than 64 bytes, accordingly set LKEY and the other setting bits.
|
|
At the same time, ensure MDMAT bit is cleared. */
|
|
if (hhash->Init.KeySize > 64U)
|
|
{
|
|
MODIFY_REG(HASH->CR, HASH_CR_MDMAT | HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
|
|
Algorithm | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT);
|
|
}
|
|
else
|
|
{
|
|
MODIFY_REG(HASH->CR, HASH_CR_MDMAT | HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
|
|
Algorithm | HASH_ALGOMODE_HMAC | HASH_CR_INIT);
|
|
}
|
|
/* Store input aparameters in handle fields to manage steps transition
|
|
or possible HMAC suspension/resumption */
|
|
hhash->HashInCount = hhash->Init.KeySize; /* Initial size for first DMA transfer (key size) */
|
|
hhash->pHashKeyBuffPtr = hhash->Init.pKey; /* Key address */
|
|
hhash->pHashInBuffPtr = hhash->Init.pKey ; /* First address passed to DMA (key address at Step 1) */
|
|
hhash->pHashMsgBuffPtr = pInBuffer; /* Input data address */
|
|
hhash->HashBuffSize = Size; /* input data size (in bytes) */
|
|
|
|
/* Set DMA input parameters */
|
|
inputaddr = (uint32_t)(hhash->Init.pKey); /* Address passed to DMA (start by entering Key message) */
|
|
inputSize = hhash->Init.KeySize; /* Size for first DMA transfer (in bytes) */
|
|
|
|
/* Configure the number of valid bits in last word of the key */
|
|
__HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
|
|
|
|
/* Set the phase to Step 1 */
|
|
hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_1;
|
|
|
|
}
|
|
else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
|
|
{
|
|
/* Process a new input data message in case of multi-buffer HMAC processing
|
|
(this is not a resumption case) */
|
|
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
|
|
/* Save input parameters to be able to manage possible suspension/resumption */
|
|
hhash->HashInCount = Size; /* Input message address */
|
|
hhash->pHashInBuffPtr = pInBuffer; /* Input message size in bytes */
|
|
|
|
/* Set DMA input parameters */
|
|
inputaddr = (uint32_t)pInBuffer; /* Input message address */
|
|
inputSize = Size; /* Input message size in bytes */
|
|
|
|
if (hhash->DigestCalculationDisable == RESET)
|
|
{
|
|
/* This means this is the last buffer of the multi-buffer sequence: DCAL needs to be set. */
|
|
__HAL_HASH_RESET_MDMAT();
|
|
__HAL_HASH_SET_NBVALIDBITS(inputSize);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Phase not aligned with handle READY state */
|
|
__HAL_UNLOCK(hhash);
|
|
/* Return function status */
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Resumption case (phase may be Step 1, 2 or 3) */
|
|
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
|
|
/* Set DMA input parameters at resumption location;
|
|
inputaddr and inputSize are not set to the API input parameters
|
|
but to those saved beforehand by HAL_HASH_DMAFeed_ProcessSuspend() when the
|
|
processing was suspended. */
|
|
inputaddr = (uint32_t)(hhash->pHashInBuffPtr); /* Input message address */
|
|
inputSize = hhash->HashInCount; /* Input message size in bytes */
|
|
}
|
|
|
|
|
|
/* Set the HASH DMA transfer complete callback */
|
|
hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt;
|
|
/* Set the DMA error callback */
|
|
hhash->hdmain->XferErrorCallback = HASH_DMAError;
|
|
|
|
/* Store number of words already pushed to manage proper DMA processing suspension */
|
|
hhash->NbWordsAlreadyPushed = HASH_NBW_PUSHED();
|
|
|
|
/* Enable the DMA In DMA stream */
|
|
status = HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, \
|
|
(((inputSize % 4U) != 0U) ? ((inputSize + (4U - (inputSize % 4U))) / 4U) \
|
|
: (inputSize / 4U)));
|
|
|
|
/* Enable DMA requests */
|
|
SET_BIT(HASH->CR, HASH_CR_DMAE);
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Return function status */
|
|
if (status != HAL_OK)
|
|
{
|
|
/* Update HASH state machine to error */
|
|
hhash->State = HAL_HASH_STATE_ERROR;
|
|
}
|
|
|
|
/* Return function status */
|
|
return status;
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
}
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
#endif /* HAL_HASH_MODULE_ENABLED */
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
#endif /* HASH*/
|
|
/**
|
|
* @}
|
|
*/
|
|
|