steering-wheel/Drivers/STM32H7xx_HAL_Driver/Inc/stm32h7xx_ll_usart.h

4401 lines
171 KiB
C

/**
******************************************************************************
* @file stm32h7xx_ll_usart.h
* @author MCD Application Team
* @brief Header file of USART LL module.
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32H7xx_LL_USART_H
#define STM32H7xx_LL_USART_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32h7xx.h"
/** @addtogroup STM32H7xx_LL_Driver
* @{
*/
#if defined(USART1) || defined(USART2) || defined(USART3) || defined(USART6) \
|| defined(UART4) || defined(UART5) || defined(UART7) || defined(UART8) || defined(UART9) || defined(USART10)
/** @defgroup USART_LL USART
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/** @defgroup USART_LL_Private_Variables USART Private Variables
* @{
*/
/* Array used to get the USART prescaler division decimal values versus @ref USART_LL_EC_PRESCALER values */
static const uint32_t USART_PRESCALER_TAB[] =
{
1UL,
2UL,
4UL,
6UL,
8UL,
10UL,
12UL,
16UL,
32UL,
64UL,
128UL,
256UL
};
/**
* @}
*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup USART_LL_Private_Constants USART Private Constants
* @{
*/
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup USART_LL_Private_Macros USART Private Macros
* @{
*/
/**
* @}
*/
#endif /*USE_FULL_LL_DRIVER*/
/* Exported types ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup USART_LL_ES_INIT USART Exported Init structures
* @{
*/
/**
* @brief LL USART Init Structure definition
*/
typedef struct
{
uint32_t PrescalerValue; /*!< Specifies the Prescaler to compute the communication baud rate.
This parameter can be a value of @ref USART_LL_EC_PRESCALER.
This feature can be modified afterwards using unitary
function @ref LL_USART_SetPrescaler().*/
uint32_t BaudRate; /*!< This field defines expected Usart communication baud rate.
This feature can be modified afterwards using unitary
function @ref LL_USART_SetBaudRate().*/
uint32_t DataWidth; /*!< Specifies the number of data bits transmitted or received in a frame.
This parameter can be a value of @ref USART_LL_EC_DATAWIDTH.
This feature can be modified afterwards using unitary
function @ref LL_USART_SetDataWidth().*/
uint32_t StopBits; /*!< Specifies the number of stop bits transmitted.
This parameter can be a value of @ref USART_LL_EC_STOPBITS.
This feature can be modified afterwards using unitary
function @ref LL_USART_SetStopBitsLength().*/
uint32_t Parity; /*!< Specifies the parity mode.
This parameter can be a value of @ref USART_LL_EC_PARITY.
This feature can be modified afterwards using unitary
function @ref LL_USART_SetParity().*/
uint32_t TransferDirection; /*!< Specifies whether the Receive and/or Transmit mode is enabled or disabled.
This parameter can be a value of @ref USART_LL_EC_DIRECTION.
This feature can be modified afterwards using unitary
function @ref LL_USART_SetTransferDirection().*/
uint32_t HardwareFlowControl; /*!< Specifies whether the hardware flow control mode is enabled or disabled.
This parameter can be a value of @ref USART_LL_EC_HWCONTROL.
This feature can be modified afterwards using unitary
function @ref LL_USART_SetHWFlowCtrl().*/
uint32_t OverSampling; /*!< Specifies whether USART oversampling mode is 16 or 8.
This parameter can be a value of @ref USART_LL_EC_OVERSAMPLING.
This feature can be modified afterwards using unitary
function @ref LL_USART_SetOverSampling().*/
} LL_USART_InitTypeDef;
/**
* @brief LL USART Clock Init Structure definition
*/
typedef struct
{
uint32_t ClockOutput; /*!< Specifies whether the USART clock is enabled or disabled.
This parameter can be a value of @ref USART_LL_EC_CLOCK.
USART HW configuration can be modified afterwards using unitary functions
@ref LL_USART_EnableSCLKOutput() or @ref LL_USART_DisableSCLKOutput().
For more details, refer to description of this function. */
uint32_t ClockPolarity; /*!< Specifies the steady state of the serial clock.
This parameter can be a value of @ref USART_LL_EC_POLARITY.
USART HW configuration can be modified afterwards using unitary
functions @ref LL_USART_SetClockPolarity().
For more details, refer to description of this function. */
uint32_t ClockPhase; /*!< Specifies the clock transition on which the bit capture is made.
This parameter can be a value of @ref USART_LL_EC_PHASE.
USART HW configuration can be modified afterwards using unitary
functions @ref LL_USART_SetClockPhase().
For more details, refer to description of this function. */
uint32_t LastBitClockPulse; /*!< Specifies whether the clock pulse corresponding to the last transmitted
data bit (MSB) has to be output on the SCLK pin in synchronous mode.
This parameter can be a value of @ref USART_LL_EC_LASTCLKPULSE.
USART HW configuration can be modified afterwards using unitary
functions @ref LL_USART_SetLastClkPulseOutput().
For more details, refer to description of this function. */
} LL_USART_ClockInitTypeDef;
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/* Exported constants --------------------------------------------------------*/
/** @defgroup USART_LL_Exported_Constants USART Exported Constants
* @{
*/
/** @defgroup USART_LL_EC_CLEAR_FLAG Clear Flags Defines
* @brief Flags defines which can be used with LL_USART_WriteReg function
* @{
*/
#define LL_USART_ICR_PECF USART_ICR_PECF /*!< Parity error clear flag */
#define LL_USART_ICR_FECF USART_ICR_FECF /*!< Framing error clear flag */
#define LL_USART_ICR_NECF USART_ICR_NECF /*!< Noise error detected clear flag */
#define LL_USART_ICR_ORECF USART_ICR_ORECF /*!< Overrun error clear flag */
#define LL_USART_ICR_IDLECF USART_ICR_IDLECF /*!< Idle line detected clear flag */
#define LL_USART_ICR_TXFECF USART_ICR_TXFECF /*!< TX FIFO Empty clear flag */
#define LL_USART_ICR_TCCF USART_ICR_TCCF /*!< Transmission complete clear flag */
#define LL_USART_ICR_TCBGTCF USART_ICR_TCBGTCF /*!< Transmission completed before guard time clear flag */
#define LL_USART_ICR_LBDCF USART_ICR_LBDCF /*!< LIN break detection clear flag */
#define LL_USART_ICR_CTSCF USART_ICR_CTSCF /*!< CTS clear flag */
#define LL_USART_ICR_RTOCF USART_ICR_RTOCF /*!< Receiver timeout clear flag */
#define LL_USART_ICR_EOBCF USART_ICR_EOBCF /*!< End of block clear flag */
#define LL_USART_ICR_UDRCF USART_ICR_UDRCF /*!< SPI Slave Underrun clear flag */
#define LL_USART_ICR_CMCF USART_ICR_CMCF /*!< Character match clear flag */
#define LL_USART_ICR_WUCF USART_ICR_WUCF /*!< Wakeup from Stop mode clear flag */
/**
* @}
*/
/** @defgroup USART_LL_EC_GET_FLAG Get Flags Defines
* @brief Flags defines which can be used with LL_USART_ReadReg function
* @{
*/
#define LL_USART_ISR_PE USART_ISR_PE /*!< Parity error flag */
#define LL_USART_ISR_FE USART_ISR_FE /*!< Framing error flag */
#define LL_USART_ISR_NE USART_ISR_NE /*!< Noise detected flag */
#define LL_USART_ISR_ORE USART_ISR_ORE /*!< Overrun error flag */
#define LL_USART_ISR_IDLE USART_ISR_IDLE /*!< Idle line detected flag */
#define LL_USART_ISR_RXNE_RXFNE USART_ISR_RXNE_RXFNE /*!< Read data register or RX FIFO not empty flag */
#define LL_USART_ISR_TC USART_ISR_TC /*!< Transmission complete flag */
#define LL_USART_ISR_TXE_TXFNF USART_ISR_TXE_TXFNF /*!< Transmit data register empty or TX FIFO Not Full flag*/
#define LL_USART_ISR_LBDF USART_ISR_LBDF /*!< LIN break detection flag */
#define LL_USART_ISR_CTSIF USART_ISR_CTSIF /*!< CTS interrupt flag */
#define LL_USART_ISR_CTS USART_ISR_CTS /*!< CTS flag */
#define LL_USART_ISR_RTOF USART_ISR_RTOF /*!< Receiver timeout flag */
#define LL_USART_ISR_EOBF USART_ISR_EOBF /*!< End of block flag */
#define LL_USART_ISR_UDR USART_ISR_UDR /*!< SPI Slave underrun error flag */
#define LL_USART_ISR_ABRE USART_ISR_ABRE /*!< Auto baud rate error flag */
#define LL_USART_ISR_ABRF USART_ISR_ABRF /*!< Auto baud rate flag */
#define LL_USART_ISR_BUSY USART_ISR_BUSY /*!< Busy flag */
#define LL_USART_ISR_CMF USART_ISR_CMF /*!< Character match flag */
#define LL_USART_ISR_SBKF USART_ISR_SBKF /*!< Send break flag */
#define LL_USART_ISR_RWU USART_ISR_RWU /*!< Receiver wakeup from Mute mode flag */
#define LL_USART_ISR_WUF USART_ISR_WUF /*!< Wakeup from Stop mode flag */
#define LL_USART_ISR_TEACK USART_ISR_TEACK /*!< Transmit enable acknowledge flag */
#define LL_USART_ISR_REACK USART_ISR_REACK /*!< Receive enable acknowledge flag */
#define LL_USART_ISR_TXFE USART_ISR_TXFE /*!< TX FIFO empty flag */
#define LL_USART_ISR_RXFF USART_ISR_RXFF /*!< RX FIFO full flag */
#define LL_USART_ISR_TCBGT USART_ISR_TCBGT /*!< Transmission complete before guard time completion flag */
#define LL_USART_ISR_RXFT USART_ISR_RXFT /*!< RX FIFO threshold flag */
#define LL_USART_ISR_TXFT USART_ISR_TXFT /*!< TX FIFO threshold flag */
/**
* @}
*/
/** @defgroup USART_LL_EC_IT IT Defines
* @brief IT defines which can be used with LL_USART_ReadReg and LL_USART_WriteReg functions
* @{
*/
#define LL_USART_CR1_IDLEIE USART_CR1_IDLEIE /*!< IDLE interrupt enable */
#define LL_USART_CR1_RXNEIE_RXFNEIE USART_CR1_RXNEIE_RXFNEIE /*!< Read data register and RXFIFO not empty interrupt enable */
#define LL_USART_CR1_TCIE USART_CR1_TCIE /*!< Transmission complete interrupt enable */
#define LL_USART_CR1_TXEIE_TXFNFIE USART_CR1_TXEIE_TXFNFIE /*!< Transmit data register empty and TX FIFO not full interrupt enable */
#define LL_USART_CR1_PEIE USART_CR1_PEIE /*!< Parity error */
#define LL_USART_CR1_CMIE USART_CR1_CMIE /*!< Character match interrupt enable */
#define LL_USART_CR1_RTOIE USART_CR1_RTOIE /*!< Receiver timeout interrupt enable */
#define LL_USART_CR1_EOBIE USART_CR1_EOBIE /*!< End of Block interrupt enable */
#define LL_USART_CR1_TXFEIE USART_CR1_TXFEIE /*!< TX FIFO empty interrupt enable */
#define LL_USART_CR1_RXFFIE USART_CR1_RXFFIE /*!< RX FIFO full interrupt enable */
#define LL_USART_CR2_LBDIE USART_CR2_LBDIE /*!< LIN break detection interrupt enable */
#define LL_USART_CR3_EIE USART_CR3_EIE /*!< Error interrupt enable */
#define LL_USART_CR3_CTSIE USART_CR3_CTSIE /*!< CTS interrupt enable */
#define LL_USART_CR3_WUFIE USART_CR3_WUFIE /*!< Wakeup from Stop mode interrupt enable */
#define LL_USART_CR3_TXFTIE USART_CR3_TXFTIE /*!< TX FIFO threshold interrupt enable */
#define LL_USART_CR3_TCBGTIE USART_CR3_TCBGTIE /*!< Transmission complete before guard time interrupt enable */
#define LL_USART_CR3_RXFTIE USART_CR3_RXFTIE /*!< RX FIFO threshold interrupt enable */
/**
* @}
*/
/** @defgroup USART_LL_EC_FIFOTHRESHOLD FIFO Threshold
* @{
*/
#define LL_USART_FIFOTHRESHOLD_1_8 0x00000000U /*!< FIFO reaches 1/8 of its depth */
#define LL_USART_FIFOTHRESHOLD_1_4 0x00000001U /*!< FIFO reaches 1/4 of its depth */
#define LL_USART_FIFOTHRESHOLD_1_2 0x00000002U /*!< FIFO reaches 1/2 of its depth */
#define LL_USART_FIFOTHRESHOLD_3_4 0x00000003U /*!< FIFO reaches 3/4 of its depth */
#define LL_USART_FIFOTHRESHOLD_7_8 0x00000004U /*!< FIFO reaches 7/8 of its depth */
#define LL_USART_FIFOTHRESHOLD_8_8 0x00000005U /*!< FIFO becomes empty for TX and full for RX */
/**
* @}
*/
/** @defgroup USART_LL_EC_DIRECTION Communication Direction
* @{
*/
#define LL_USART_DIRECTION_NONE 0x00000000U /*!< Transmitter and Receiver are disabled */
#define LL_USART_DIRECTION_RX USART_CR1_RE /*!< Transmitter is disabled and Receiver is enabled */
#define LL_USART_DIRECTION_TX USART_CR1_TE /*!< Transmitter is enabled and Receiver is disabled */
#define LL_USART_DIRECTION_TX_RX (USART_CR1_TE |USART_CR1_RE) /*!< Transmitter and Receiver are enabled */
/**
* @}
*/
/** @defgroup USART_LL_EC_PARITY Parity Control
* @{
*/
#define LL_USART_PARITY_NONE 0x00000000U /*!< Parity control disabled */
#define LL_USART_PARITY_EVEN USART_CR1_PCE /*!< Parity control enabled and Even Parity is selected */
#define LL_USART_PARITY_ODD (USART_CR1_PCE | USART_CR1_PS) /*!< Parity control enabled and Odd Parity is selected */
/**
* @}
*/
/** @defgroup USART_LL_EC_WAKEUP Wakeup
* @{
*/
#define LL_USART_WAKEUP_IDLELINE 0x00000000U /*!< USART wake up from Mute mode on Idle Line */
#define LL_USART_WAKEUP_ADDRESSMARK USART_CR1_WAKE /*!< USART wake up from Mute mode on Address Mark */
/**
* @}
*/
/** @defgroup USART_LL_EC_DATAWIDTH Datawidth
* @{
*/
#define LL_USART_DATAWIDTH_7B USART_CR1_M1 /*!< 7 bits word length : Start bit, 7 data bits, n stop bits */
#define LL_USART_DATAWIDTH_8B 0x00000000U /*!< 8 bits word length : Start bit, 8 data bits, n stop bits */
#define LL_USART_DATAWIDTH_9B USART_CR1_M0 /*!< 9 bits word length : Start bit, 9 data bits, n stop bits */
/**
* @}
*/
/** @defgroup USART_LL_EC_OVERSAMPLING Oversampling
* @{
*/
#define LL_USART_OVERSAMPLING_16 0x00000000U /*!< Oversampling by 16 */
#define LL_USART_OVERSAMPLING_8 USART_CR1_OVER8 /*!< Oversampling by 8 */
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup USART_LL_EC_CLOCK Clock Signal
* @{
*/
#define LL_USART_CLOCK_DISABLE 0x00000000U /*!< Clock signal not provided */
#define LL_USART_CLOCK_ENABLE USART_CR2_CLKEN /*!< Clock signal provided */
/**
* @}
*/
#endif /*USE_FULL_LL_DRIVER*/
/** @defgroup USART_LL_EC_LASTCLKPULSE Last Clock Pulse
* @{
*/
#define LL_USART_LASTCLKPULSE_NO_OUTPUT 0x00000000U /*!< The clock pulse of the last data bit is not output to the SCLK pin */
#define LL_USART_LASTCLKPULSE_OUTPUT USART_CR2_LBCL /*!< The clock pulse of the last data bit is output to the SCLK pin */
/**
* @}
*/
/** @defgroup USART_LL_EC_PHASE Clock Phase
* @{
*/
#define LL_USART_PHASE_1EDGE 0x00000000U /*!< The first clock transition is the first data capture edge */
#define LL_USART_PHASE_2EDGE USART_CR2_CPHA /*!< The second clock transition is the first data capture edge */
/**
* @}
*/
/** @defgroup USART_LL_EC_POLARITY Clock Polarity
* @{
*/
#define LL_USART_POLARITY_LOW 0x00000000U /*!< Steady low value on SCLK pin outside transmission window*/
#define LL_USART_POLARITY_HIGH USART_CR2_CPOL /*!< Steady high value on SCLK pin outside transmission window */
/**
* @}
*/
/** @defgroup USART_LL_EC_PRESCALER Clock Source Prescaler
* @{
*/
#define LL_USART_PRESCALER_DIV1 0x00000000U /*!< Input clock not divided */
#define LL_USART_PRESCALER_DIV2 (USART_PRESC_PRESCALER_0) /*!< Input clock divided by 2 */
#define LL_USART_PRESCALER_DIV4 (USART_PRESC_PRESCALER_1) /*!< Input clock divided by 4 */
#define LL_USART_PRESCALER_DIV6 (USART_PRESC_PRESCALER_1 | USART_PRESC_PRESCALER_0) /*!< Input clock divided by 6 */
#define LL_USART_PRESCALER_DIV8 (USART_PRESC_PRESCALER_2) /*!< Input clock divided by 8 */
#define LL_USART_PRESCALER_DIV10 (USART_PRESC_PRESCALER_2 | USART_PRESC_PRESCALER_0) /*!< Input clock divided by 10 */
#define LL_USART_PRESCALER_DIV12 (USART_PRESC_PRESCALER_2 | USART_PRESC_PRESCALER_1) /*!< Input clock divided by 12 */
#define LL_USART_PRESCALER_DIV16 (USART_PRESC_PRESCALER_2 | USART_PRESC_PRESCALER_1 | USART_PRESC_PRESCALER_0) /*!< Input clock divided by 16 */
#define LL_USART_PRESCALER_DIV32 (USART_PRESC_PRESCALER_3) /*!< Input clock divided by 32 */
#define LL_USART_PRESCALER_DIV64 (USART_PRESC_PRESCALER_3 | USART_PRESC_PRESCALER_0) /*!< Input clock divided by 64 */
#define LL_USART_PRESCALER_DIV128 (USART_PRESC_PRESCALER_3 | USART_PRESC_PRESCALER_1) /*!< Input clock divided by 128 */
#define LL_USART_PRESCALER_DIV256 (USART_PRESC_PRESCALER_3 | USART_PRESC_PRESCALER_1 | USART_PRESC_PRESCALER_0) /*!< Input clock divided by 256 */
/**
* @}
*/
/** @defgroup USART_LL_EC_STOPBITS Stop Bits
* @{
*/
#define LL_USART_STOPBITS_0_5 USART_CR2_STOP_0 /*!< 0.5 stop bit */
#define LL_USART_STOPBITS_1 0x00000000U /*!< 1 stop bit */
#define LL_USART_STOPBITS_1_5 (USART_CR2_STOP_0 | USART_CR2_STOP_1) /*!< 1.5 stop bits */
#define LL_USART_STOPBITS_2 USART_CR2_STOP_1 /*!< 2 stop bits */
/**
* @}
*/
/** @defgroup USART_LL_EC_TXRX TX RX Pins Swap
* @{
*/
#define LL_USART_TXRX_STANDARD 0x00000000U /*!< TX/RX pins are used as defined in standard pinout */
#define LL_USART_TXRX_SWAPPED (USART_CR2_SWAP) /*!< TX and RX pins functions are swapped. */
/**
* @}
*/
/** @defgroup USART_LL_EC_RXPIN_LEVEL RX Pin Active Level Inversion
* @{
*/
#define LL_USART_RXPIN_LEVEL_STANDARD 0x00000000U /*!< RX pin signal works using the standard logic levels */
#define LL_USART_RXPIN_LEVEL_INVERTED (USART_CR2_RXINV) /*!< RX pin signal values are inverted. */
/**
* @}
*/
/** @defgroup USART_LL_EC_TXPIN_LEVEL TX Pin Active Level Inversion
* @{
*/
#define LL_USART_TXPIN_LEVEL_STANDARD 0x00000000U /*!< TX pin signal works using the standard logic levels */
#define LL_USART_TXPIN_LEVEL_INVERTED (USART_CR2_TXINV) /*!< TX pin signal values are inverted. */
/**
* @}
*/
/** @defgroup USART_LL_EC_BINARY_LOGIC Binary Data Inversion
* @{
*/
#define LL_USART_BINARY_LOGIC_POSITIVE 0x00000000U /*!< Logical data from the data register are send/received in positive/direct logic. (1=H, 0=L) */
#define LL_USART_BINARY_LOGIC_NEGATIVE USART_CR2_DATAINV /*!< Logical data from the data register are send/received in negative/inverse logic. (1=L, 0=H). The parity bit is also inverted. */
/**
* @}
*/
/** @defgroup USART_LL_EC_BITORDER Bit Order
* @{
*/
#define LL_USART_BITORDER_LSBFIRST 0x00000000U /*!< data is transmitted/received with data bit 0 first, following the start bit */
#define LL_USART_BITORDER_MSBFIRST USART_CR2_MSBFIRST /*!< data is transmitted/received with the MSB first, following the start bit */
/**
* @}
*/
/** @defgroup USART_LL_EC_AUTOBAUD_DETECT_ON Autobaud Detection
* @{
*/
#define LL_USART_AUTOBAUD_DETECT_ON_STARTBIT 0x00000000U /*!< Measurement of the start bit is used to detect the baud rate */
#define LL_USART_AUTOBAUD_DETECT_ON_FALLINGEDGE USART_CR2_ABRMODE_0 /*!< Falling edge to falling edge measurement. Received frame must start with a single bit = 1 -> Frame = Start10xxxxxx */
#define LL_USART_AUTOBAUD_DETECT_ON_7F_FRAME USART_CR2_ABRMODE_1 /*!< 0x7F frame detection */
#define LL_USART_AUTOBAUD_DETECT_ON_55_FRAME (USART_CR2_ABRMODE_1 | USART_CR2_ABRMODE_0) /*!< 0x55 frame detection */
/**
* @}
*/
/** @defgroup USART_LL_EC_ADDRESS_DETECT Address Length Detection
* @{
*/
#define LL_USART_ADDRESS_DETECT_4B 0x00000000U /*!< 4-bit address detection method selected */
#define LL_USART_ADDRESS_DETECT_7B USART_CR2_ADDM7 /*!< 7-bit address detection (in 8-bit data mode) method selected */
/**
* @}
*/
/** @defgroup USART_LL_EC_HWCONTROL Hardware Control
* @{
*/
#define LL_USART_HWCONTROL_NONE 0x00000000U /*!< CTS and RTS hardware flow control disabled */
#define LL_USART_HWCONTROL_RTS USART_CR3_RTSE /*!< RTS output enabled, data is only requested when there is space in the receive buffer */
#define LL_USART_HWCONTROL_CTS USART_CR3_CTSE /*!< CTS mode enabled, data is only transmitted when the nCTS input is asserted (tied to 0) */
#define LL_USART_HWCONTROL_RTS_CTS (USART_CR3_RTSE | USART_CR3_CTSE) /*!< CTS and RTS hardware flow control enabled */
/**
* @}
*/
/** @defgroup USART_LL_EC_WAKEUP_ON Wakeup Activation
* @{
*/
#define LL_USART_WAKEUP_ON_ADDRESS 0x00000000U /*!< Wake up active on address match */
#define LL_USART_WAKEUP_ON_STARTBIT USART_CR3_WUS_1 /*!< Wake up active on Start bit detection */
#define LL_USART_WAKEUP_ON_RXNE (USART_CR3_WUS_0 | USART_CR3_WUS_1) /*!< Wake up active on RXNE */
/**
* @}
*/
/** @defgroup USART_LL_EC_IRDA_POWER IrDA Power
* @{
*/
#define LL_USART_IRDA_POWER_NORMAL 0x00000000U /*!< IrDA normal power mode */
#define LL_USART_IRDA_POWER_LOW USART_CR3_IRLP /*!< IrDA low power mode */
/**
* @}
*/
/** @defgroup USART_LL_EC_LINBREAK_DETECT LIN Break Detection Length
* @{
*/
#define LL_USART_LINBREAK_DETECT_10B 0x00000000U /*!< 10-bit break detection method selected */
#define LL_USART_LINBREAK_DETECT_11B USART_CR2_LBDL /*!< 11-bit break detection method selected */
/**
* @}
*/
/** @defgroup USART_LL_EC_DE_POLARITY Driver Enable Polarity
* @{
*/
#define LL_USART_DE_POLARITY_HIGH 0x00000000U /*!< DE signal is active high */
#define LL_USART_DE_POLARITY_LOW USART_CR3_DEP /*!< DE signal is active low */
/**
* @}
*/
/** @defgroup USART_LL_EC_DMA_REG_DATA DMA Register Data
* @{
*/
#define LL_USART_DMA_REG_DATA_TRANSMIT 0x00000000U /*!< Get address of data register used for transmission */
#define LL_USART_DMA_REG_DATA_RECEIVE 0x00000001U /*!< Get address of data register used for reception */
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup USART_LL_Exported_Macros USART Exported Macros
* @{
*/
/** @defgroup USART_LL_EM_WRITE_READ Common Write and read registers Macros
* @{
*/
/**
* @brief Write a value in USART register
* @param __INSTANCE__ USART Instance
* @param __REG__ Register to be written
* @param __VALUE__ Value to be written in the register
* @retval None
*/
#define LL_USART_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))
/**
* @brief Read a value in USART register
* @param __INSTANCE__ USART Instance
* @param __REG__ Register to be read
* @retval Register value
*/
#define LL_USART_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
/**
* @}
*/
/** @defgroup USART_LL_EM_Exported_Macros_Helper Exported_Macros_Helper
* @{
*/
/**
* @brief Compute USARTDIV value according to Peripheral Clock and
* expected Baud Rate in 8 bits sampling mode (32 bits value of USARTDIV is returned)
* @param __PERIPHCLK__ Peripheral Clock frequency used for USART instance
* @param __PRESCALER__ This parameter can be one of the following values:
* @arg @ref LL_USART_PRESCALER_DIV1
* @arg @ref LL_USART_PRESCALER_DIV2
* @arg @ref LL_USART_PRESCALER_DIV4
* @arg @ref LL_USART_PRESCALER_DIV6
* @arg @ref LL_USART_PRESCALER_DIV8
* @arg @ref LL_USART_PRESCALER_DIV10
* @arg @ref LL_USART_PRESCALER_DIV12
* @arg @ref LL_USART_PRESCALER_DIV16
* @arg @ref LL_USART_PRESCALER_DIV32
* @arg @ref LL_USART_PRESCALER_DIV64
* @arg @ref LL_USART_PRESCALER_DIV128
* @arg @ref LL_USART_PRESCALER_DIV256
* @param __BAUDRATE__ Baud rate value to achieve
* @retval USARTDIV value to be used for BRR register filling in OverSampling_8 case
*/
#define __LL_USART_DIV_SAMPLING8(__PERIPHCLK__, __PRESCALER__, __BAUDRATE__) \
(((((__PERIPHCLK__)/(USART_PRESCALER_TAB[(__PRESCALER__)]))*2U)\
+ ((__BAUDRATE__)/2U))/(__BAUDRATE__))
/**
* @brief Compute USARTDIV value according to Peripheral Clock and
* expected Baud Rate in 16 bits sampling mode (32 bits value of USARTDIV is returned)
* @param __PERIPHCLK__ Peripheral Clock frequency used for USART instance
* @param __PRESCALER__ This parameter can be one of the following values:
* @arg @ref LL_USART_PRESCALER_DIV1
* @arg @ref LL_USART_PRESCALER_DIV2
* @arg @ref LL_USART_PRESCALER_DIV4
* @arg @ref LL_USART_PRESCALER_DIV6
* @arg @ref LL_USART_PRESCALER_DIV8
* @arg @ref LL_USART_PRESCALER_DIV10
* @arg @ref LL_USART_PRESCALER_DIV12
* @arg @ref LL_USART_PRESCALER_DIV16
* @arg @ref LL_USART_PRESCALER_DIV32
* @arg @ref LL_USART_PRESCALER_DIV64
* @arg @ref LL_USART_PRESCALER_DIV128
* @arg @ref LL_USART_PRESCALER_DIV256
* @param __BAUDRATE__ Baud rate value to achieve
* @retval USARTDIV value to be used for BRR register filling in OverSampling_16 case
*/
#define __LL_USART_DIV_SAMPLING16(__PERIPHCLK__, __PRESCALER__, __BAUDRATE__) \
((((__PERIPHCLK__)/(USART_PRESCALER_TAB[(__PRESCALER__)]))\
+ ((__BAUDRATE__)/2U))/(__BAUDRATE__))
/**
* @}
*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup USART_LL_Exported_Functions USART Exported Functions
* @{
*/
/** @defgroup USART_LL_EF_Configuration Configuration functions
* @{
*/
/**
* @brief USART Enable
* @rmtoll CR1 UE LL_USART_Enable
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_Enable(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR1, USART_CR1_UE);
}
/**
* @brief USART Disable (all USART prescalers and outputs are disabled)
* @note When USART is disabled, USART prescalers and outputs are stopped immediately,
* and current operations are discarded. The configuration of the USART is kept, but all the status
* flags, in the USARTx_ISR are set to their default values.
* @rmtoll CR1 UE LL_USART_Disable
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_Disable(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR1, USART_CR1_UE);
}
/**
* @brief Indicate if USART is enabled
* @rmtoll CR1 UE LL_USART_IsEnabled
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabled(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR1, USART_CR1_UE) == (USART_CR1_UE)) ? 1UL : 0UL);
}
/**
* @brief FIFO Mode Enable
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll CR1 FIFOEN LL_USART_EnableFIFO
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableFIFO(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR1, USART_CR1_FIFOEN);
}
/**
* @brief FIFO Mode Disable
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll CR1 FIFOEN LL_USART_DisableFIFO
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableFIFO(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR1, USART_CR1_FIFOEN);
}
/**
* @brief Indicate if FIFO Mode is enabled
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll CR1 FIFOEN LL_USART_IsEnabledFIFO
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledFIFO(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR1, USART_CR1_FIFOEN) == (USART_CR1_FIFOEN)) ? 1UL : 0UL);
}
/**
* @brief Configure TX FIFO Threshold
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll CR3 TXFTCFG LL_USART_SetTXFIFOThreshold
* @param USARTx USART Instance
* @param Threshold This parameter can be one of the following values:
* @arg @ref LL_USART_FIFOTHRESHOLD_1_8
* @arg @ref LL_USART_FIFOTHRESHOLD_1_4
* @arg @ref LL_USART_FIFOTHRESHOLD_1_2
* @arg @ref LL_USART_FIFOTHRESHOLD_3_4
* @arg @ref LL_USART_FIFOTHRESHOLD_7_8
* @arg @ref LL_USART_FIFOTHRESHOLD_8_8
* @retval None
*/
__STATIC_INLINE void LL_USART_SetTXFIFOThreshold(USART_TypeDef *USARTx, uint32_t Threshold)
{
ATOMIC_MODIFY_REG(USARTx->CR3, USART_CR3_TXFTCFG, Threshold << USART_CR3_TXFTCFG_Pos);
}
/**
* @brief Return TX FIFO Threshold Configuration
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll CR3 TXFTCFG LL_USART_GetTXFIFOThreshold
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_FIFOTHRESHOLD_1_8
* @arg @ref LL_USART_FIFOTHRESHOLD_1_4
* @arg @ref LL_USART_FIFOTHRESHOLD_1_2
* @arg @ref LL_USART_FIFOTHRESHOLD_3_4
* @arg @ref LL_USART_FIFOTHRESHOLD_7_8
* @arg @ref LL_USART_FIFOTHRESHOLD_8_8
*/
__STATIC_INLINE uint32_t LL_USART_GetTXFIFOThreshold(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR3, USART_CR3_TXFTCFG) >> USART_CR3_TXFTCFG_Pos);
}
/**
* @brief Configure RX FIFO Threshold
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll CR3 RXFTCFG LL_USART_SetRXFIFOThreshold
* @param USARTx USART Instance
* @param Threshold This parameter can be one of the following values:
* @arg @ref LL_USART_FIFOTHRESHOLD_1_8
* @arg @ref LL_USART_FIFOTHRESHOLD_1_4
* @arg @ref LL_USART_FIFOTHRESHOLD_1_2
* @arg @ref LL_USART_FIFOTHRESHOLD_3_4
* @arg @ref LL_USART_FIFOTHRESHOLD_7_8
* @arg @ref LL_USART_FIFOTHRESHOLD_8_8
* @retval None
*/
__STATIC_INLINE void LL_USART_SetRXFIFOThreshold(USART_TypeDef *USARTx, uint32_t Threshold)
{
ATOMIC_MODIFY_REG(USARTx->CR3, USART_CR3_RXFTCFG, Threshold << USART_CR3_RXFTCFG_Pos);
}
/**
* @brief Return RX FIFO Threshold Configuration
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll CR3 RXFTCFG LL_USART_GetRXFIFOThreshold
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_FIFOTHRESHOLD_1_8
* @arg @ref LL_USART_FIFOTHRESHOLD_1_4
* @arg @ref LL_USART_FIFOTHRESHOLD_1_2
* @arg @ref LL_USART_FIFOTHRESHOLD_3_4
* @arg @ref LL_USART_FIFOTHRESHOLD_7_8
* @arg @ref LL_USART_FIFOTHRESHOLD_8_8
*/
__STATIC_INLINE uint32_t LL_USART_GetRXFIFOThreshold(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR3, USART_CR3_RXFTCFG) >> USART_CR3_RXFTCFG_Pos);
}
/**
* @brief Configure TX and RX FIFOs Threshold
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll CR3 TXFTCFG LL_USART_ConfigFIFOsThreshold\n
* CR3 RXFTCFG LL_USART_ConfigFIFOsThreshold
* @param USARTx USART Instance
* @param TXThreshold This parameter can be one of the following values:
* @arg @ref LL_USART_FIFOTHRESHOLD_1_8
* @arg @ref LL_USART_FIFOTHRESHOLD_1_4
* @arg @ref LL_USART_FIFOTHRESHOLD_1_2
* @arg @ref LL_USART_FIFOTHRESHOLD_3_4
* @arg @ref LL_USART_FIFOTHRESHOLD_7_8
* @arg @ref LL_USART_FIFOTHRESHOLD_8_8
* @param RXThreshold This parameter can be one of the following values:
* @arg @ref LL_USART_FIFOTHRESHOLD_1_8
* @arg @ref LL_USART_FIFOTHRESHOLD_1_4
* @arg @ref LL_USART_FIFOTHRESHOLD_1_2
* @arg @ref LL_USART_FIFOTHRESHOLD_3_4
* @arg @ref LL_USART_FIFOTHRESHOLD_7_8
* @arg @ref LL_USART_FIFOTHRESHOLD_8_8
* @retval None
*/
__STATIC_INLINE void LL_USART_ConfigFIFOsThreshold(USART_TypeDef *USARTx, uint32_t TXThreshold, uint32_t RXThreshold)
{
ATOMIC_MODIFY_REG(USARTx->CR3, USART_CR3_TXFTCFG | USART_CR3_RXFTCFG, (TXThreshold << USART_CR3_TXFTCFG_Pos) |
(RXThreshold << USART_CR3_RXFTCFG_Pos));
}
/**
* @brief USART enabled in STOP Mode.
* @note When this function is enabled, USART is able to wake up the MCU from Stop mode, provided that
* USART clock selection is HSI or LSE in RCC.
* @note Macro IS_UART_WAKEUP_FROMSTOP_INSTANCE(USARTx) can be used to check whether or not
* Wake-up from Stop mode feature is supported by the USARTx instance.
* @rmtoll CR1 UESM LL_USART_EnableInStopMode
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableInStopMode(USART_TypeDef *USARTx)
{
ATOMIC_SET_BIT(USARTx->CR1, USART_CR1_UESM);
}
/**
* @brief USART disabled in STOP Mode.
* @note When this function is disabled, USART is not able to wake up the MCU from Stop mode
* @note Macro IS_UART_WAKEUP_FROMSTOP_INSTANCE(USARTx) can be used to check whether or not
* Wake-up from Stop mode feature is supported by the USARTx instance.
* @rmtoll CR1 UESM LL_USART_DisableInStopMode
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableInStopMode(USART_TypeDef *USARTx)
{
ATOMIC_CLEAR_BIT(USARTx->CR1, USART_CR1_UESM);
}
/**
* @brief Indicate if USART is enabled in STOP Mode (able to wake up MCU from Stop mode or not)
* @note Macro IS_UART_WAKEUP_FROMSTOP_INSTANCE(USARTx) can be used to check whether or not
* Wake-up from Stop mode feature is supported by the USARTx instance.
* @rmtoll CR1 UESM LL_USART_IsEnabledInStopMode
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledInStopMode(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR1, USART_CR1_UESM) == (USART_CR1_UESM)) ? 1UL : 0UL);
}
/**
* @brief Receiver Enable (Receiver is enabled and begins searching for a start bit)
* @rmtoll CR1 RE LL_USART_EnableDirectionRx
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableDirectionRx(USART_TypeDef *USARTx)
{
ATOMIC_SET_BIT(USARTx->CR1, USART_CR1_RE);
}
/**
* @brief Receiver Disable
* @rmtoll CR1 RE LL_USART_DisableDirectionRx
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableDirectionRx(USART_TypeDef *USARTx)
{
ATOMIC_CLEAR_BIT(USARTx->CR1, USART_CR1_RE);
}
/**
* @brief Transmitter Enable
* @rmtoll CR1 TE LL_USART_EnableDirectionTx
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableDirectionTx(USART_TypeDef *USARTx)
{
ATOMIC_SET_BIT(USARTx->CR1, USART_CR1_TE);
}
/**
* @brief Transmitter Disable
* @rmtoll CR1 TE LL_USART_DisableDirectionTx
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableDirectionTx(USART_TypeDef *USARTx)
{
ATOMIC_CLEAR_BIT(USARTx->CR1, USART_CR1_TE);
}
/**
* @brief Configure simultaneously enabled/disabled states
* of Transmitter and Receiver
* @rmtoll CR1 RE LL_USART_SetTransferDirection\n
* CR1 TE LL_USART_SetTransferDirection
* @param USARTx USART Instance
* @param TransferDirection This parameter can be one of the following values:
* @arg @ref LL_USART_DIRECTION_NONE
* @arg @ref LL_USART_DIRECTION_RX
* @arg @ref LL_USART_DIRECTION_TX
* @arg @ref LL_USART_DIRECTION_TX_RX
* @retval None
*/
__STATIC_INLINE void LL_USART_SetTransferDirection(USART_TypeDef *USARTx, uint32_t TransferDirection)
{
ATOMIC_MODIFY_REG(USARTx->CR1, USART_CR1_RE | USART_CR1_TE, TransferDirection);
}
/**
* @brief Return enabled/disabled states of Transmitter and Receiver
* @rmtoll CR1 RE LL_USART_GetTransferDirection\n
* CR1 TE LL_USART_GetTransferDirection
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_DIRECTION_NONE
* @arg @ref LL_USART_DIRECTION_RX
* @arg @ref LL_USART_DIRECTION_TX
* @arg @ref LL_USART_DIRECTION_TX_RX
*/
__STATIC_INLINE uint32_t LL_USART_GetTransferDirection(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_RE | USART_CR1_TE));
}
/**
* @brief Configure Parity (enabled/disabled and parity mode if enabled).
* @note This function selects if hardware parity control (generation and detection) is enabled or disabled.
* When the parity control is enabled (Odd or Even), computed parity bit is inserted at the MSB position
* (9th or 8th bit depending on data width) and parity is checked on the received data.
* @rmtoll CR1 PS LL_USART_SetParity\n
* CR1 PCE LL_USART_SetParity
* @param USARTx USART Instance
* @param Parity This parameter can be one of the following values:
* @arg @ref LL_USART_PARITY_NONE
* @arg @ref LL_USART_PARITY_EVEN
* @arg @ref LL_USART_PARITY_ODD
* @retval None
*/
__STATIC_INLINE void LL_USART_SetParity(USART_TypeDef *USARTx, uint32_t Parity)
{
MODIFY_REG(USARTx->CR1, USART_CR1_PS | USART_CR1_PCE, Parity);
}
/**
* @brief Return Parity configuration (enabled/disabled and parity mode if enabled)
* @rmtoll CR1 PS LL_USART_GetParity\n
* CR1 PCE LL_USART_GetParity
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_PARITY_NONE
* @arg @ref LL_USART_PARITY_EVEN
* @arg @ref LL_USART_PARITY_ODD
*/
__STATIC_INLINE uint32_t LL_USART_GetParity(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_PS | USART_CR1_PCE));
}
/**
* @brief Set Receiver Wake Up method from Mute mode.
* @rmtoll CR1 WAKE LL_USART_SetWakeUpMethod
* @param USARTx USART Instance
* @param Method This parameter can be one of the following values:
* @arg @ref LL_USART_WAKEUP_IDLELINE
* @arg @ref LL_USART_WAKEUP_ADDRESSMARK
* @retval None
*/
__STATIC_INLINE void LL_USART_SetWakeUpMethod(USART_TypeDef *USARTx, uint32_t Method)
{
MODIFY_REG(USARTx->CR1, USART_CR1_WAKE, Method);
}
/**
* @brief Return Receiver Wake Up method from Mute mode
* @rmtoll CR1 WAKE LL_USART_GetWakeUpMethod
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_WAKEUP_IDLELINE
* @arg @ref LL_USART_WAKEUP_ADDRESSMARK
*/
__STATIC_INLINE uint32_t LL_USART_GetWakeUpMethod(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_WAKE));
}
/**
* @brief Set Word length (i.e. nb of data bits, excluding start and stop bits)
* @rmtoll CR1 M0 LL_USART_SetDataWidth\n
* CR1 M1 LL_USART_SetDataWidth
* @param USARTx USART Instance
* @param DataWidth This parameter can be one of the following values:
* @arg @ref LL_USART_DATAWIDTH_7B
* @arg @ref LL_USART_DATAWIDTH_8B
* @arg @ref LL_USART_DATAWIDTH_9B
* @retval None
*/
__STATIC_INLINE void LL_USART_SetDataWidth(USART_TypeDef *USARTx, uint32_t DataWidth)
{
MODIFY_REG(USARTx->CR1, USART_CR1_M, DataWidth);
}
/**
* @brief Return Word length (i.e. nb of data bits, excluding start and stop bits)
* @rmtoll CR1 M0 LL_USART_GetDataWidth\n
* CR1 M1 LL_USART_GetDataWidth
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_DATAWIDTH_7B
* @arg @ref LL_USART_DATAWIDTH_8B
* @arg @ref LL_USART_DATAWIDTH_9B
*/
__STATIC_INLINE uint32_t LL_USART_GetDataWidth(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_M));
}
/**
* @brief Allow switch between Mute Mode and Active mode
* @rmtoll CR1 MME LL_USART_EnableMuteMode
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableMuteMode(USART_TypeDef *USARTx)
{
ATOMIC_SET_BIT(USARTx->CR1, USART_CR1_MME);
}
/**
* @brief Prevent Mute Mode use. Set Receiver in active mode permanently.
* @rmtoll CR1 MME LL_USART_DisableMuteMode
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableMuteMode(USART_TypeDef *USARTx)
{
ATOMIC_CLEAR_BIT(USARTx->CR1, USART_CR1_MME);
}
/**
* @brief Indicate if switch between Mute Mode and Active mode is allowed
* @rmtoll CR1 MME LL_USART_IsEnabledMuteMode
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledMuteMode(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR1, USART_CR1_MME) == (USART_CR1_MME)) ? 1UL : 0UL);
}
/**
* @brief Set Oversampling to 8-bit or 16-bit mode
* @rmtoll CR1 OVER8 LL_USART_SetOverSampling
* @param USARTx USART Instance
* @param OverSampling This parameter can be one of the following values:
* @arg @ref LL_USART_OVERSAMPLING_16
* @arg @ref LL_USART_OVERSAMPLING_8
* @retval None
*/
__STATIC_INLINE void LL_USART_SetOverSampling(USART_TypeDef *USARTx, uint32_t OverSampling)
{
MODIFY_REG(USARTx->CR1, USART_CR1_OVER8, OverSampling);
}
/**
* @brief Return Oversampling mode
* @rmtoll CR1 OVER8 LL_USART_GetOverSampling
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_OVERSAMPLING_16
* @arg @ref LL_USART_OVERSAMPLING_8
*/
__STATIC_INLINE uint32_t LL_USART_GetOverSampling(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_OVER8));
}
/**
* @brief Configure if Clock pulse of the last data bit is output to the SCLK pin or not
* @note Macro IS_USART_INSTANCE(USARTx) can be used to check whether or not
* Synchronous mode is supported by the USARTx instance.
* @rmtoll CR2 LBCL LL_USART_SetLastClkPulseOutput
* @param USARTx USART Instance
* @param LastBitClockPulse This parameter can be one of the following values:
* @arg @ref LL_USART_LASTCLKPULSE_NO_OUTPUT
* @arg @ref LL_USART_LASTCLKPULSE_OUTPUT
* @retval None
*/
__STATIC_INLINE void LL_USART_SetLastClkPulseOutput(USART_TypeDef *USARTx, uint32_t LastBitClockPulse)
{
MODIFY_REG(USARTx->CR2, USART_CR2_LBCL, LastBitClockPulse);
}
/**
* @brief Retrieve Clock pulse of the last data bit output configuration
* (Last bit Clock pulse output to the SCLK pin or not)
* @note Macro IS_USART_INSTANCE(USARTx) can be used to check whether or not
* Synchronous mode is supported by the USARTx instance.
* @rmtoll CR2 LBCL LL_USART_GetLastClkPulseOutput
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_LASTCLKPULSE_NO_OUTPUT
* @arg @ref LL_USART_LASTCLKPULSE_OUTPUT
*/
__STATIC_INLINE uint32_t LL_USART_GetLastClkPulseOutput(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_LBCL));
}
/**
* @brief Select the phase of the clock output on the SCLK pin in synchronous mode
* @note Macro IS_USART_INSTANCE(USARTx) can be used to check whether or not
* Synchronous mode is supported by the USARTx instance.
* @rmtoll CR2 CPHA LL_USART_SetClockPhase
* @param USARTx USART Instance
* @param ClockPhase This parameter can be one of the following values:
* @arg @ref LL_USART_PHASE_1EDGE
* @arg @ref LL_USART_PHASE_2EDGE
* @retval None
*/
__STATIC_INLINE void LL_USART_SetClockPhase(USART_TypeDef *USARTx, uint32_t ClockPhase)
{
MODIFY_REG(USARTx->CR2, USART_CR2_CPHA, ClockPhase);
}
/**
* @brief Return phase of the clock output on the SCLK pin in synchronous mode
* @note Macro IS_USART_INSTANCE(USARTx) can be used to check whether or not
* Synchronous mode is supported by the USARTx instance.
* @rmtoll CR2 CPHA LL_USART_GetClockPhase
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_PHASE_1EDGE
* @arg @ref LL_USART_PHASE_2EDGE
*/
__STATIC_INLINE uint32_t LL_USART_GetClockPhase(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_CPHA));
}
/**
* @brief Select the polarity of the clock output on the SCLK pin in synchronous mode
* @note Macro IS_USART_INSTANCE(USARTx) can be used to check whether or not
* Synchronous mode is supported by the USARTx instance.
* @rmtoll CR2 CPOL LL_USART_SetClockPolarity
* @param USARTx USART Instance
* @param ClockPolarity This parameter can be one of the following values:
* @arg @ref LL_USART_POLARITY_LOW
* @arg @ref LL_USART_POLARITY_HIGH
* @retval None
*/
__STATIC_INLINE void LL_USART_SetClockPolarity(USART_TypeDef *USARTx, uint32_t ClockPolarity)
{
MODIFY_REG(USARTx->CR2, USART_CR2_CPOL, ClockPolarity);
}
/**
* @brief Return polarity of the clock output on the SCLK pin in synchronous mode
* @note Macro IS_USART_INSTANCE(USARTx) can be used to check whether or not
* Synchronous mode is supported by the USARTx instance.
* @rmtoll CR2 CPOL LL_USART_GetClockPolarity
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_POLARITY_LOW
* @arg @ref LL_USART_POLARITY_HIGH
*/
__STATIC_INLINE uint32_t LL_USART_GetClockPolarity(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_CPOL));
}
/**
* @brief Configure Clock signal format (Phase Polarity and choice about output of last bit clock pulse)
* @note Macro IS_USART_INSTANCE(USARTx) can be used to check whether or not
* Synchronous mode is supported by the USARTx instance.
* @note Call of this function is equivalent to following function call sequence :
* - Clock Phase configuration using @ref LL_USART_SetClockPhase() function
* - Clock Polarity configuration using @ref LL_USART_SetClockPolarity() function
* - Output of Last bit Clock pulse configuration using @ref LL_USART_SetLastClkPulseOutput() function
* @rmtoll CR2 CPHA LL_USART_ConfigClock\n
* CR2 CPOL LL_USART_ConfigClock\n
* CR2 LBCL LL_USART_ConfigClock
* @param USARTx USART Instance
* @param Phase This parameter can be one of the following values:
* @arg @ref LL_USART_PHASE_1EDGE
* @arg @ref LL_USART_PHASE_2EDGE
* @param Polarity This parameter can be one of the following values:
* @arg @ref LL_USART_POLARITY_LOW
* @arg @ref LL_USART_POLARITY_HIGH
* @param LBCPOutput This parameter can be one of the following values:
* @arg @ref LL_USART_LASTCLKPULSE_NO_OUTPUT
* @arg @ref LL_USART_LASTCLKPULSE_OUTPUT
* @retval None
*/
__STATIC_INLINE void LL_USART_ConfigClock(USART_TypeDef *USARTx, uint32_t Phase, uint32_t Polarity, uint32_t LBCPOutput)
{
MODIFY_REG(USARTx->CR2, USART_CR2_CPHA | USART_CR2_CPOL | USART_CR2_LBCL, Phase | Polarity | LBCPOutput);
}
/**
* @brief Configure Clock source prescaler for baudrate generator and oversampling
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll PRESC PRESCALER LL_USART_SetPrescaler
* @param USARTx USART Instance
* @param PrescalerValue This parameter can be one of the following values:
* @arg @ref LL_USART_PRESCALER_DIV1
* @arg @ref LL_USART_PRESCALER_DIV2
* @arg @ref LL_USART_PRESCALER_DIV4
* @arg @ref LL_USART_PRESCALER_DIV6
* @arg @ref LL_USART_PRESCALER_DIV8
* @arg @ref LL_USART_PRESCALER_DIV10
* @arg @ref LL_USART_PRESCALER_DIV12
* @arg @ref LL_USART_PRESCALER_DIV16
* @arg @ref LL_USART_PRESCALER_DIV32
* @arg @ref LL_USART_PRESCALER_DIV64
* @arg @ref LL_USART_PRESCALER_DIV128
* @arg @ref LL_USART_PRESCALER_DIV256
* @retval None
*/
__STATIC_INLINE void LL_USART_SetPrescaler(USART_TypeDef *USARTx, uint32_t PrescalerValue)
{
MODIFY_REG(USARTx->PRESC, USART_PRESC_PRESCALER, (uint16_t)PrescalerValue);
}
/**
* @brief Retrieve the Clock source prescaler for baudrate generator and oversampling
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll PRESC PRESCALER LL_USART_GetPrescaler
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_PRESCALER_DIV1
* @arg @ref LL_USART_PRESCALER_DIV2
* @arg @ref LL_USART_PRESCALER_DIV4
* @arg @ref LL_USART_PRESCALER_DIV6
* @arg @ref LL_USART_PRESCALER_DIV8
* @arg @ref LL_USART_PRESCALER_DIV10
* @arg @ref LL_USART_PRESCALER_DIV12
* @arg @ref LL_USART_PRESCALER_DIV16
* @arg @ref LL_USART_PRESCALER_DIV32
* @arg @ref LL_USART_PRESCALER_DIV64
* @arg @ref LL_USART_PRESCALER_DIV128
* @arg @ref LL_USART_PRESCALER_DIV256
*/
__STATIC_INLINE uint32_t LL_USART_GetPrescaler(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->PRESC, USART_PRESC_PRESCALER));
}
/**
* @brief Enable Clock output on SCLK pin
* @note Macro IS_USART_INSTANCE(USARTx) can be used to check whether or not
* Synchronous mode is supported by the USARTx instance.
* @rmtoll CR2 CLKEN LL_USART_EnableSCLKOutput
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableSCLKOutput(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR2, USART_CR2_CLKEN);
}
/**
* @brief Disable Clock output on SCLK pin
* @note Macro IS_USART_INSTANCE(USARTx) can be used to check whether or not
* Synchronous mode is supported by the USARTx instance.
* @rmtoll CR2 CLKEN LL_USART_DisableSCLKOutput
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableSCLKOutput(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR2, USART_CR2_CLKEN);
}
/**
* @brief Indicate if Clock output on SCLK pin is enabled
* @note Macro IS_USART_INSTANCE(USARTx) can be used to check whether or not
* Synchronous mode is supported by the USARTx instance.
* @rmtoll CR2 CLKEN LL_USART_IsEnabledSCLKOutput
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledSCLKOutput(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR2, USART_CR2_CLKEN) == (USART_CR2_CLKEN)) ? 1UL : 0UL);
}
/**
* @brief Set the length of the stop bits
* @rmtoll CR2 STOP LL_USART_SetStopBitsLength
* @param USARTx USART Instance
* @param StopBits This parameter can be one of the following values:
* @arg @ref LL_USART_STOPBITS_0_5
* @arg @ref LL_USART_STOPBITS_1
* @arg @ref LL_USART_STOPBITS_1_5
* @arg @ref LL_USART_STOPBITS_2
* @retval None
*/
__STATIC_INLINE void LL_USART_SetStopBitsLength(USART_TypeDef *USARTx, uint32_t StopBits)
{
MODIFY_REG(USARTx->CR2, USART_CR2_STOP, StopBits);
}
/**
* @brief Retrieve the length of the stop bits
* @rmtoll CR2 STOP LL_USART_GetStopBitsLength
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_STOPBITS_0_5
* @arg @ref LL_USART_STOPBITS_1
* @arg @ref LL_USART_STOPBITS_1_5
* @arg @ref LL_USART_STOPBITS_2
*/
__STATIC_INLINE uint32_t LL_USART_GetStopBitsLength(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_STOP));
}
/**
* @brief Configure Character frame format (Datawidth, Parity control, Stop Bits)
* @note Call of this function is equivalent to following function call sequence :
* - Data Width configuration using @ref LL_USART_SetDataWidth() function
* - Parity Control and mode configuration using @ref LL_USART_SetParity() function
* - Stop bits configuration using @ref LL_USART_SetStopBitsLength() function
* @rmtoll CR1 PS LL_USART_ConfigCharacter\n
* CR1 PCE LL_USART_ConfigCharacter\n
* CR1 M0 LL_USART_ConfigCharacter\n
* CR1 M1 LL_USART_ConfigCharacter\n
* CR2 STOP LL_USART_ConfigCharacter
* @param USARTx USART Instance
* @param DataWidth This parameter can be one of the following values:
* @arg @ref LL_USART_DATAWIDTH_7B
* @arg @ref LL_USART_DATAWIDTH_8B
* @arg @ref LL_USART_DATAWIDTH_9B
* @param Parity This parameter can be one of the following values:
* @arg @ref LL_USART_PARITY_NONE
* @arg @ref LL_USART_PARITY_EVEN
* @arg @ref LL_USART_PARITY_ODD
* @param StopBits This parameter can be one of the following values:
* @arg @ref LL_USART_STOPBITS_0_5
* @arg @ref LL_USART_STOPBITS_1
* @arg @ref LL_USART_STOPBITS_1_5
* @arg @ref LL_USART_STOPBITS_2
* @retval None
*/
__STATIC_INLINE void LL_USART_ConfigCharacter(USART_TypeDef *USARTx, uint32_t DataWidth, uint32_t Parity,
uint32_t StopBits)
{
MODIFY_REG(USARTx->CR1, USART_CR1_PS | USART_CR1_PCE | USART_CR1_M, Parity | DataWidth);
MODIFY_REG(USARTx->CR2, USART_CR2_STOP, StopBits);
}
/**
* @brief Configure TX/RX pins swapping setting.
* @rmtoll CR2 SWAP LL_USART_SetTXRXSwap
* @param USARTx USART Instance
* @param SwapConfig This parameter can be one of the following values:
* @arg @ref LL_USART_TXRX_STANDARD
* @arg @ref LL_USART_TXRX_SWAPPED
* @retval None
*/
__STATIC_INLINE void LL_USART_SetTXRXSwap(USART_TypeDef *USARTx, uint32_t SwapConfig)
{
MODIFY_REG(USARTx->CR2, USART_CR2_SWAP, SwapConfig);
}
/**
* @brief Retrieve TX/RX pins swapping configuration.
* @rmtoll CR2 SWAP LL_USART_GetTXRXSwap
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_TXRX_STANDARD
* @arg @ref LL_USART_TXRX_SWAPPED
*/
__STATIC_INLINE uint32_t LL_USART_GetTXRXSwap(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_SWAP));
}
/**
* @brief Configure RX pin active level logic
* @rmtoll CR2 RXINV LL_USART_SetRXPinLevel
* @param USARTx USART Instance
* @param PinInvMethod This parameter can be one of the following values:
* @arg @ref LL_USART_RXPIN_LEVEL_STANDARD
* @arg @ref LL_USART_RXPIN_LEVEL_INVERTED
* @retval None
*/
__STATIC_INLINE void LL_USART_SetRXPinLevel(USART_TypeDef *USARTx, uint32_t PinInvMethod)
{
MODIFY_REG(USARTx->CR2, USART_CR2_RXINV, PinInvMethod);
}
/**
* @brief Retrieve RX pin active level logic configuration
* @rmtoll CR2 RXINV LL_USART_GetRXPinLevel
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_RXPIN_LEVEL_STANDARD
* @arg @ref LL_USART_RXPIN_LEVEL_INVERTED
*/
__STATIC_INLINE uint32_t LL_USART_GetRXPinLevel(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_RXINV));
}
/**
* @brief Configure TX pin active level logic
* @rmtoll CR2 TXINV LL_USART_SetTXPinLevel
* @param USARTx USART Instance
* @param PinInvMethod This parameter can be one of the following values:
* @arg @ref LL_USART_TXPIN_LEVEL_STANDARD
* @arg @ref LL_USART_TXPIN_LEVEL_INVERTED
* @retval None
*/
__STATIC_INLINE void LL_USART_SetTXPinLevel(USART_TypeDef *USARTx, uint32_t PinInvMethod)
{
MODIFY_REG(USARTx->CR2, USART_CR2_TXINV, PinInvMethod);
}
/**
* @brief Retrieve TX pin active level logic configuration
* @rmtoll CR2 TXINV LL_USART_GetTXPinLevel
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_TXPIN_LEVEL_STANDARD
* @arg @ref LL_USART_TXPIN_LEVEL_INVERTED
*/
__STATIC_INLINE uint32_t LL_USART_GetTXPinLevel(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_TXINV));
}
/**
* @brief Configure Binary data logic.
* @note Allow to define how Logical data from the data register are send/received :
* either in positive/direct logic (1=H, 0=L) or in negative/inverse logic (1=L, 0=H)
* @rmtoll CR2 DATAINV LL_USART_SetBinaryDataLogic
* @param USARTx USART Instance
* @param DataLogic This parameter can be one of the following values:
* @arg @ref LL_USART_BINARY_LOGIC_POSITIVE
* @arg @ref LL_USART_BINARY_LOGIC_NEGATIVE
* @retval None
*/
__STATIC_INLINE void LL_USART_SetBinaryDataLogic(USART_TypeDef *USARTx, uint32_t DataLogic)
{
MODIFY_REG(USARTx->CR2, USART_CR2_DATAINV, DataLogic);
}
/**
* @brief Retrieve Binary data configuration
* @rmtoll CR2 DATAINV LL_USART_GetBinaryDataLogic
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_BINARY_LOGIC_POSITIVE
* @arg @ref LL_USART_BINARY_LOGIC_NEGATIVE
*/
__STATIC_INLINE uint32_t LL_USART_GetBinaryDataLogic(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_DATAINV));
}
/**
* @brief Configure transfer bit order (either Less or Most Significant Bit First)
* @note MSB First means data is transmitted/received with the MSB first, following the start bit.
* LSB First means data is transmitted/received with data bit 0 first, following the start bit.
* @rmtoll CR2 MSBFIRST LL_USART_SetTransferBitOrder
* @param USARTx USART Instance
* @param BitOrder This parameter can be one of the following values:
* @arg @ref LL_USART_BITORDER_LSBFIRST
* @arg @ref LL_USART_BITORDER_MSBFIRST
* @retval None
*/
__STATIC_INLINE void LL_USART_SetTransferBitOrder(USART_TypeDef *USARTx, uint32_t BitOrder)
{
MODIFY_REG(USARTx->CR2, USART_CR2_MSBFIRST, BitOrder);
}
/**
* @brief Return transfer bit order (either Less or Most Significant Bit First)
* @note MSB First means data is transmitted/received with the MSB first, following the start bit.
* LSB First means data is transmitted/received with data bit 0 first, following the start bit.
* @rmtoll CR2 MSBFIRST LL_USART_GetTransferBitOrder
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_BITORDER_LSBFIRST
* @arg @ref LL_USART_BITORDER_MSBFIRST
*/
__STATIC_INLINE uint32_t LL_USART_GetTransferBitOrder(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_MSBFIRST));
}
/**
* @brief Enable Auto Baud-Rate Detection
* @note Macro IS_USART_AUTOBAUDRATE_DETECTION_INSTANCE(USARTx) can be used to check whether or not
* Auto Baud Rate detection feature is supported by the USARTx instance.
* @rmtoll CR2 ABREN LL_USART_EnableAutoBaudRate
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableAutoBaudRate(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR2, USART_CR2_ABREN);
}
/**
* @brief Disable Auto Baud-Rate Detection
* @note Macro IS_USART_AUTOBAUDRATE_DETECTION_INSTANCE(USARTx) can be used to check whether or not
* Auto Baud Rate detection feature is supported by the USARTx instance.
* @rmtoll CR2 ABREN LL_USART_DisableAutoBaudRate
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableAutoBaudRate(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR2, USART_CR2_ABREN);
}
/**
* @brief Indicate if Auto Baud-Rate Detection mechanism is enabled
* @note Macro IS_USART_AUTOBAUDRATE_DETECTION_INSTANCE(USARTx) can be used to check whether or not
* Auto Baud Rate detection feature is supported by the USARTx instance.
* @rmtoll CR2 ABREN LL_USART_IsEnabledAutoBaud
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledAutoBaud(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR2, USART_CR2_ABREN) == (USART_CR2_ABREN)) ? 1UL : 0UL);
}
/**
* @brief Set Auto Baud-Rate mode bits
* @note Macro IS_USART_AUTOBAUDRATE_DETECTION_INSTANCE(USARTx) can be used to check whether or not
* Auto Baud Rate detection feature is supported by the USARTx instance.
* @rmtoll CR2 ABRMODE LL_USART_SetAutoBaudRateMode
* @param USARTx USART Instance
* @param AutoBaudRateMode This parameter can be one of the following values:
* @arg @ref LL_USART_AUTOBAUD_DETECT_ON_STARTBIT
* @arg @ref LL_USART_AUTOBAUD_DETECT_ON_FALLINGEDGE
* @arg @ref LL_USART_AUTOBAUD_DETECT_ON_7F_FRAME
* @arg @ref LL_USART_AUTOBAUD_DETECT_ON_55_FRAME
* @retval None
*/
__STATIC_INLINE void LL_USART_SetAutoBaudRateMode(USART_TypeDef *USARTx, uint32_t AutoBaudRateMode)
{
MODIFY_REG(USARTx->CR2, USART_CR2_ABRMODE, AutoBaudRateMode);
}
/**
* @brief Return Auto Baud-Rate mode
* @note Macro IS_USART_AUTOBAUDRATE_DETECTION_INSTANCE(USARTx) can be used to check whether or not
* Auto Baud Rate detection feature is supported by the USARTx instance.
* @rmtoll CR2 ABRMODE LL_USART_GetAutoBaudRateMode
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_AUTOBAUD_DETECT_ON_STARTBIT
* @arg @ref LL_USART_AUTOBAUD_DETECT_ON_FALLINGEDGE
* @arg @ref LL_USART_AUTOBAUD_DETECT_ON_7F_FRAME
* @arg @ref LL_USART_AUTOBAUD_DETECT_ON_55_FRAME
*/
__STATIC_INLINE uint32_t LL_USART_GetAutoBaudRateMode(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_ABRMODE));
}
/**
* @brief Enable Receiver Timeout
* @rmtoll CR2 RTOEN LL_USART_EnableRxTimeout
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableRxTimeout(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR2, USART_CR2_RTOEN);
}
/**
* @brief Disable Receiver Timeout
* @rmtoll CR2 RTOEN LL_USART_DisableRxTimeout
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableRxTimeout(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR2, USART_CR2_RTOEN);
}
/**
* @brief Indicate if Receiver Timeout feature is enabled
* @rmtoll CR2 RTOEN LL_USART_IsEnabledRxTimeout
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledRxTimeout(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR2, USART_CR2_RTOEN) == (USART_CR2_RTOEN)) ? 1UL : 0UL);
}
/**
* @brief Set Address of the USART node.
* @note This is used in multiprocessor communication during Mute mode or Stop mode,
* for wake up with address mark detection.
* @note 4bits address node is used when 4-bit Address Detection is selected in ADDM7.
* (b7-b4 should be set to 0)
* 8bits address node is used when 7-bit Address Detection is selected in ADDM7.
* (This is used in multiprocessor communication during Mute mode or Stop mode,
* for wake up with 7-bit address mark detection.
* The MSB of the character sent by the transmitter should be equal to 1.
* It may also be used for character detection during normal reception,
* Mute mode inactive (for example, end of block detection in ModBus protocol).
* In this case, the whole received character (8-bit) is compared to the ADD[7:0]
* value and CMF flag is set on match)
* @rmtoll CR2 ADD LL_USART_ConfigNodeAddress\n
* CR2 ADDM7 LL_USART_ConfigNodeAddress
* @param USARTx USART Instance
* @param AddressLen This parameter can be one of the following values:
* @arg @ref LL_USART_ADDRESS_DETECT_4B
* @arg @ref LL_USART_ADDRESS_DETECT_7B
* @param NodeAddress 4 or 7 bit Address of the USART node.
* @retval None
*/
__STATIC_INLINE void LL_USART_ConfigNodeAddress(USART_TypeDef *USARTx, uint32_t AddressLen, uint32_t NodeAddress)
{
MODIFY_REG(USARTx->CR2, USART_CR2_ADD | USART_CR2_ADDM7,
(uint32_t)(AddressLen | (NodeAddress << USART_CR2_ADD_Pos)));
}
/**
* @brief Return 8 bit Address of the USART node as set in ADD field of CR2.
* @note If 4-bit Address Detection is selected in ADDM7,
* only 4bits (b3-b0) of returned value are relevant (b31-b4 are not relevant)
* If 7-bit Address Detection is selected in ADDM7,
* only 8bits (b7-b0) of returned value are relevant (b31-b8 are not relevant)
* @rmtoll CR2 ADD LL_USART_GetNodeAddress
* @param USARTx USART Instance
* @retval Address of the USART node (Value between Min_Data=0 and Max_Data=255)
*/
__STATIC_INLINE uint32_t LL_USART_GetNodeAddress(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_ADD) >> USART_CR2_ADD_Pos);
}
/**
* @brief Return Length of Node Address used in Address Detection mode (7-bit or 4-bit)
* @rmtoll CR2 ADDM7 LL_USART_GetNodeAddressLen
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_ADDRESS_DETECT_4B
* @arg @ref LL_USART_ADDRESS_DETECT_7B
*/
__STATIC_INLINE uint32_t LL_USART_GetNodeAddressLen(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_ADDM7));
}
/**
* @brief Enable RTS HW Flow Control
* @note Macro IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
* Hardware Flow control feature is supported by the USARTx instance.
* @rmtoll CR3 RTSE LL_USART_EnableRTSHWFlowCtrl
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableRTSHWFlowCtrl(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR3, USART_CR3_RTSE);
}
/**
* @brief Disable RTS HW Flow Control
* @note Macro IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
* Hardware Flow control feature is supported by the USARTx instance.
* @rmtoll CR3 RTSE LL_USART_DisableRTSHWFlowCtrl
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableRTSHWFlowCtrl(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR3, USART_CR3_RTSE);
}
/**
* @brief Enable CTS HW Flow Control
* @note Macro IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
* Hardware Flow control feature is supported by the USARTx instance.
* @rmtoll CR3 CTSE LL_USART_EnableCTSHWFlowCtrl
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableCTSHWFlowCtrl(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR3, USART_CR3_CTSE);
}
/**
* @brief Disable CTS HW Flow Control
* @note Macro IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
* Hardware Flow control feature is supported by the USARTx instance.
* @rmtoll CR3 CTSE LL_USART_DisableCTSHWFlowCtrl
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableCTSHWFlowCtrl(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR3, USART_CR3_CTSE);
}
/**
* @brief Configure HW Flow Control mode (both CTS and RTS)
* @note Macro IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
* Hardware Flow control feature is supported by the USARTx instance.
* @rmtoll CR3 RTSE LL_USART_SetHWFlowCtrl\n
* CR3 CTSE LL_USART_SetHWFlowCtrl
* @param USARTx USART Instance
* @param HardwareFlowControl This parameter can be one of the following values:
* @arg @ref LL_USART_HWCONTROL_NONE
* @arg @ref LL_USART_HWCONTROL_RTS
* @arg @ref LL_USART_HWCONTROL_CTS
* @arg @ref LL_USART_HWCONTROL_RTS_CTS
* @retval None
*/
__STATIC_INLINE void LL_USART_SetHWFlowCtrl(USART_TypeDef *USARTx, uint32_t HardwareFlowControl)
{
MODIFY_REG(USARTx->CR3, USART_CR3_RTSE | USART_CR3_CTSE, HardwareFlowControl);
}
/**
* @brief Return HW Flow Control configuration (both CTS and RTS)
* @note Macro IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
* Hardware Flow control feature is supported by the USARTx instance.
* @rmtoll CR3 RTSE LL_USART_GetHWFlowCtrl\n
* CR3 CTSE LL_USART_GetHWFlowCtrl
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_HWCONTROL_NONE
* @arg @ref LL_USART_HWCONTROL_RTS
* @arg @ref LL_USART_HWCONTROL_CTS
* @arg @ref LL_USART_HWCONTROL_RTS_CTS
*/
__STATIC_INLINE uint32_t LL_USART_GetHWFlowCtrl(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR3, USART_CR3_RTSE | USART_CR3_CTSE));
}
/**
* @brief Enable One bit sampling method
* @rmtoll CR3 ONEBIT LL_USART_EnableOneBitSamp
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableOneBitSamp(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR3, USART_CR3_ONEBIT);
}
/**
* @brief Disable One bit sampling method
* @rmtoll CR3 ONEBIT LL_USART_DisableOneBitSamp
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableOneBitSamp(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR3, USART_CR3_ONEBIT);
}
/**
* @brief Indicate if One bit sampling method is enabled
* @rmtoll CR3 ONEBIT LL_USART_IsEnabledOneBitSamp
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledOneBitSamp(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR3, USART_CR3_ONEBIT) == (USART_CR3_ONEBIT)) ? 1UL : 0UL);
}
/**
* @brief Enable Overrun detection
* @rmtoll CR3 OVRDIS LL_USART_EnableOverrunDetect
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableOverrunDetect(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR3, USART_CR3_OVRDIS);
}
/**
* @brief Disable Overrun detection
* @rmtoll CR3 OVRDIS LL_USART_DisableOverrunDetect
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableOverrunDetect(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR3, USART_CR3_OVRDIS);
}
/**
* @brief Indicate if Overrun detection is enabled
* @rmtoll CR3 OVRDIS LL_USART_IsEnabledOverrunDetect
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledOverrunDetect(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR3, USART_CR3_OVRDIS) != USART_CR3_OVRDIS) ? 1UL : 0UL);
}
/**
* @brief Select event type for Wake UP Interrupt Flag (WUS[1:0] bits)
* @note Macro IS_UART_WAKEUP_FROMSTOP_INSTANCE(USARTx) can be used to check whether or not
* Wake-up from Stop mode feature is supported by the USARTx instance.
* @rmtoll CR3 WUS LL_USART_SetWKUPType
* @param USARTx USART Instance
* @param Type This parameter can be one of the following values:
* @arg @ref LL_USART_WAKEUP_ON_ADDRESS
* @arg @ref LL_USART_WAKEUP_ON_STARTBIT
* @arg @ref LL_USART_WAKEUP_ON_RXNE
* @retval None
*/
__STATIC_INLINE void LL_USART_SetWKUPType(USART_TypeDef *USARTx, uint32_t Type)
{
MODIFY_REG(USARTx->CR3, USART_CR3_WUS, Type);
}
/**
* @brief Return event type for Wake UP Interrupt Flag (WUS[1:0] bits)
* @note Macro IS_UART_WAKEUP_FROMSTOP_INSTANCE(USARTx) can be used to check whether or not
* Wake-up from Stop mode feature is supported by the USARTx instance.
* @rmtoll CR3 WUS LL_USART_GetWKUPType
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_WAKEUP_ON_ADDRESS
* @arg @ref LL_USART_WAKEUP_ON_STARTBIT
* @arg @ref LL_USART_WAKEUP_ON_RXNE
*/
__STATIC_INLINE uint32_t LL_USART_GetWKUPType(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR3, USART_CR3_WUS));
}
/**
* @brief Configure USART BRR register for achieving expected Baud Rate value.
* @note Compute and set USARTDIV value in BRR Register (full BRR content)
* according to used Peripheral Clock, Oversampling mode, and expected Baud Rate values
* @note Peripheral clock and Baud rate values provided as function parameters should be valid
* (Baud rate value != 0)
* @note In case of oversampling by 16 and 8, BRR content must be greater than or equal to 16d.
* @rmtoll BRR BRR LL_USART_SetBaudRate
* @param USARTx USART Instance
* @param PeriphClk Peripheral Clock
* @param PrescalerValue This parameter can be one of the following values:
* @arg @ref LL_USART_PRESCALER_DIV1
* @arg @ref LL_USART_PRESCALER_DIV2
* @arg @ref LL_USART_PRESCALER_DIV4
* @arg @ref LL_USART_PRESCALER_DIV6
* @arg @ref LL_USART_PRESCALER_DIV8
* @arg @ref LL_USART_PRESCALER_DIV10
* @arg @ref LL_USART_PRESCALER_DIV12
* @arg @ref LL_USART_PRESCALER_DIV16
* @arg @ref LL_USART_PRESCALER_DIV32
* @arg @ref LL_USART_PRESCALER_DIV64
* @arg @ref LL_USART_PRESCALER_DIV128
* @arg @ref LL_USART_PRESCALER_DIV256
* @param OverSampling This parameter can be one of the following values:
* @arg @ref LL_USART_OVERSAMPLING_16
* @arg @ref LL_USART_OVERSAMPLING_8
* @param BaudRate Baud Rate
* @retval None
*/
__STATIC_INLINE void LL_USART_SetBaudRate(USART_TypeDef *USARTx, uint32_t PeriphClk, uint32_t PrescalerValue,
uint32_t OverSampling,
uint32_t BaudRate)
{
uint32_t usartdiv;
uint32_t brrtemp;
if (PrescalerValue > LL_USART_PRESCALER_DIV256)
{
/* Do not overstep the size of USART_PRESCALER_TAB */
}
else if (BaudRate == 0U)
{
/* Can Not divide per 0 */
}
else if (OverSampling == LL_USART_OVERSAMPLING_8)
{
usartdiv = (uint16_t)(__LL_USART_DIV_SAMPLING8(PeriphClk, (uint8_t)PrescalerValue, BaudRate));
brrtemp = usartdiv & 0xFFF0U;
brrtemp |= (uint16_t)((usartdiv & (uint16_t)0x000FU) >> 1U);
USARTx->BRR = brrtemp;
}
else
{
USARTx->BRR = (uint16_t)(__LL_USART_DIV_SAMPLING16(PeriphClk, (uint8_t)PrescalerValue, BaudRate));
}
}
/**
* @brief Return current Baud Rate value, according to USARTDIV present in BRR register
* (full BRR content), and to used Peripheral Clock and Oversampling mode values
* @note In case of non-initialized or invalid value stored in BRR register, value 0 will be returned.
* @note In case of oversampling by 16 and 8, BRR content must be greater than or equal to 16d.
* @rmtoll BRR BRR LL_USART_GetBaudRate
* @param USARTx USART Instance
* @param PeriphClk Peripheral Clock
* @param PrescalerValue This parameter can be one of the following values:
* @arg @ref LL_USART_PRESCALER_DIV1
* @arg @ref LL_USART_PRESCALER_DIV2
* @arg @ref LL_USART_PRESCALER_DIV4
* @arg @ref LL_USART_PRESCALER_DIV6
* @arg @ref LL_USART_PRESCALER_DIV8
* @arg @ref LL_USART_PRESCALER_DIV10
* @arg @ref LL_USART_PRESCALER_DIV12
* @arg @ref LL_USART_PRESCALER_DIV16
* @arg @ref LL_USART_PRESCALER_DIV32
* @arg @ref LL_USART_PRESCALER_DIV64
* @arg @ref LL_USART_PRESCALER_DIV128
* @arg @ref LL_USART_PRESCALER_DIV256
* @param OverSampling This parameter can be one of the following values:
* @arg @ref LL_USART_OVERSAMPLING_16
* @arg @ref LL_USART_OVERSAMPLING_8
* @retval Baud Rate
*/
__STATIC_INLINE uint32_t LL_USART_GetBaudRate(const USART_TypeDef *USARTx, uint32_t PeriphClk, uint32_t PrescalerValue,
uint32_t OverSampling)
{
uint32_t usartdiv;
uint32_t brrresult = 0x0U;
uint32_t periphclkpresc = (uint32_t)(PeriphClk / (USART_PRESCALER_TAB[(uint8_t)PrescalerValue]));
usartdiv = USARTx->BRR;
if (usartdiv == 0U)
{
/* Do not perform a division by 0 */
}
else if (OverSampling == LL_USART_OVERSAMPLING_8)
{
usartdiv = (uint16_t)((usartdiv & 0xFFF0U) | ((usartdiv & 0x0007U) << 1U)) ;
if (usartdiv != 0U)
{
brrresult = (periphclkpresc * 2U) / usartdiv;
}
}
else
{
if ((usartdiv & 0xFFFFU) != 0U)
{
brrresult = periphclkpresc / usartdiv;
}
}
return (brrresult);
}
/**
* @brief Set Receiver Time Out Value (expressed in nb of bits duration)
* @rmtoll RTOR RTO LL_USART_SetRxTimeout
* @param USARTx USART Instance
* @param Timeout Value between Min_Data=0x00 and Max_Data=0x00FFFFFF
* @retval None
*/
__STATIC_INLINE void LL_USART_SetRxTimeout(USART_TypeDef *USARTx, uint32_t Timeout)
{
MODIFY_REG(USARTx->RTOR, USART_RTOR_RTO, Timeout);
}
/**
* @brief Get Receiver Time Out Value (expressed in nb of bits duration)
* @rmtoll RTOR RTO LL_USART_GetRxTimeout
* @param USARTx USART Instance
* @retval Value between Min_Data=0x00 and Max_Data=0x00FFFFFF
*/
__STATIC_INLINE uint32_t LL_USART_GetRxTimeout(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->RTOR, USART_RTOR_RTO));
}
/**
* @brief Set Block Length value in reception
* @rmtoll RTOR BLEN LL_USART_SetBlockLength
* @param USARTx USART Instance
* @param BlockLength Value between Min_Data=0x00 and Max_Data=0xFF
* @retval None
*/
__STATIC_INLINE void LL_USART_SetBlockLength(USART_TypeDef *USARTx, uint32_t BlockLength)
{
MODIFY_REG(USARTx->RTOR, USART_RTOR_BLEN, BlockLength << USART_RTOR_BLEN_Pos);
}
/**
* @brief Get Block Length value in reception
* @rmtoll RTOR BLEN LL_USART_GetBlockLength
* @param USARTx USART Instance
* @retval Value between Min_Data=0x00 and Max_Data=0xFF
*/
__STATIC_INLINE uint32_t LL_USART_GetBlockLength(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->RTOR, USART_RTOR_BLEN) >> USART_RTOR_BLEN_Pos);
}
/**
* @}
*/
/** @defgroup USART_LL_EF_Configuration_IRDA Configuration functions related to Irda feature
* @{
*/
/**
* @brief Enable IrDA mode
* @note Macro IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
* IrDA feature is supported by the USARTx instance.
* @rmtoll CR3 IREN LL_USART_EnableIrda
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableIrda(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR3, USART_CR3_IREN);
}
/**
* @brief Disable IrDA mode
* @note Macro IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
* IrDA feature is supported by the USARTx instance.
* @rmtoll CR3 IREN LL_USART_DisableIrda
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableIrda(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR3, USART_CR3_IREN);
}
/**
* @brief Indicate if IrDA mode is enabled
* @note Macro IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
* IrDA feature is supported by the USARTx instance.
* @rmtoll CR3 IREN LL_USART_IsEnabledIrda
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledIrda(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR3, USART_CR3_IREN) == (USART_CR3_IREN)) ? 1UL : 0UL);
}
/**
* @brief Configure IrDA Power Mode (Normal or Low Power)
* @note Macro IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
* IrDA feature is supported by the USARTx instance.
* @rmtoll CR3 IRLP LL_USART_SetIrdaPowerMode
* @param USARTx USART Instance
* @param PowerMode This parameter can be one of the following values:
* @arg @ref LL_USART_IRDA_POWER_NORMAL
* @arg @ref LL_USART_IRDA_POWER_LOW
* @retval None
*/
__STATIC_INLINE void LL_USART_SetIrdaPowerMode(USART_TypeDef *USARTx, uint32_t PowerMode)
{
MODIFY_REG(USARTx->CR3, USART_CR3_IRLP, PowerMode);
}
/**
* @brief Retrieve IrDA Power Mode configuration (Normal or Low Power)
* @note Macro IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
* IrDA feature is supported by the USARTx instance.
* @rmtoll CR3 IRLP LL_USART_GetIrdaPowerMode
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_IRDA_POWER_NORMAL
* @arg @ref LL_USART_PHASE_2EDGE
*/
__STATIC_INLINE uint32_t LL_USART_GetIrdaPowerMode(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR3, USART_CR3_IRLP));
}
/**
* @brief Set Irda prescaler value, used for dividing the USART clock source
* to achieve the Irda Low Power frequency (8 bits value)
* @note Macro IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
* IrDA feature is supported by the USARTx instance.
* @rmtoll GTPR PSC LL_USART_SetIrdaPrescaler
* @param USARTx USART Instance
* @param PrescalerValue Value between Min_Data=0x00 and Max_Data=0xFF
* @retval None
*/
__STATIC_INLINE void LL_USART_SetIrdaPrescaler(USART_TypeDef *USARTx, uint32_t PrescalerValue)
{
MODIFY_REG(USARTx->GTPR, USART_GTPR_PSC, (uint16_t)PrescalerValue);
}
/**
* @brief Return Irda prescaler value, used for dividing the USART clock source
* to achieve the Irda Low Power frequency (8 bits value)
* @note Macro IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
* IrDA feature is supported by the USARTx instance.
* @rmtoll GTPR PSC LL_USART_GetIrdaPrescaler
* @param USARTx USART Instance
* @retval Irda prescaler value (Value between Min_Data=0x00 and Max_Data=0xFF)
*/
__STATIC_INLINE uint32_t LL_USART_GetIrdaPrescaler(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->GTPR, USART_GTPR_PSC));
}
/**
* @}
*/
/** @defgroup USART_LL_EF_Configuration_Smartcard Configuration functions related to Smartcard feature
* @{
*/
/**
* @brief Enable Smartcard NACK transmission
* @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @rmtoll CR3 NACK LL_USART_EnableSmartcardNACK
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableSmartcardNACK(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR3, USART_CR3_NACK);
}
/**
* @brief Disable Smartcard NACK transmission
* @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @rmtoll CR3 NACK LL_USART_DisableSmartcardNACK
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableSmartcardNACK(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR3, USART_CR3_NACK);
}
/**
* @brief Indicate if Smartcard NACK transmission is enabled
* @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @rmtoll CR3 NACK LL_USART_IsEnabledSmartcardNACK
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledSmartcardNACK(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR3, USART_CR3_NACK) == (USART_CR3_NACK)) ? 1UL : 0UL);
}
/**
* @brief Enable Smartcard mode
* @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @rmtoll CR3 SCEN LL_USART_EnableSmartcard
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableSmartcard(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR3, USART_CR3_SCEN);
}
/**
* @brief Disable Smartcard mode
* @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @rmtoll CR3 SCEN LL_USART_DisableSmartcard
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableSmartcard(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR3, USART_CR3_SCEN);
}
/**
* @brief Indicate if Smartcard mode is enabled
* @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @rmtoll CR3 SCEN LL_USART_IsEnabledSmartcard
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledSmartcard(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR3, USART_CR3_SCEN) == (USART_CR3_SCEN)) ? 1UL : 0UL);
}
/**
* @brief Set Smartcard Auto-Retry Count value (SCARCNT[2:0] bits)
* @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @note This bit-field specifies the number of retries in transmit and receive, in Smartcard mode.
* In transmission mode, it specifies the number of automatic retransmission retries, before
* generating a transmission error (FE bit set).
* In reception mode, it specifies the number or erroneous reception trials, before generating a
* reception error (RXNE and PE bits set)
* @rmtoll CR3 SCARCNT LL_USART_SetSmartcardAutoRetryCount
* @param USARTx USART Instance
* @param AutoRetryCount Value between Min_Data=0 and Max_Data=7
* @retval None
*/
__STATIC_INLINE void LL_USART_SetSmartcardAutoRetryCount(USART_TypeDef *USARTx, uint32_t AutoRetryCount)
{
MODIFY_REG(USARTx->CR3, USART_CR3_SCARCNT, AutoRetryCount << USART_CR3_SCARCNT_Pos);
}
/**
* @brief Return Smartcard Auto-Retry Count value (SCARCNT[2:0] bits)
* @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @rmtoll CR3 SCARCNT LL_USART_GetSmartcardAutoRetryCount
* @param USARTx USART Instance
* @retval Smartcard Auto-Retry Count value (Value between Min_Data=0 and Max_Data=7)
*/
__STATIC_INLINE uint32_t LL_USART_GetSmartcardAutoRetryCount(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR3, USART_CR3_SCARCNT) >> USART_CR3_SCARCNT_Pos);
}
/**
* @brief Set Smartcard prescaler value, used for dividing the USART clock
* source to provide the SMARTCARD Clock (5 bits value)
* @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @rmtoll GTPR PSC LL_USART_SetSmartcardPrescaler
* @param USARTx USART Instance
* @param PrescalerValue Value between Min_Data=0 and Max_Data=31
* @retval None
*/
__STATIC_INLINE void LL_USART_SetSmartcardPrescaler(USART_TypeDef *USARTx, uint32_t PrescalerValue)
{
MODIFY_REG(USARTx->GTPR, USART_GTPR_PSC, (uint16_t)PrescalerValue);
}
/**
* @brief Return Smartcard prescaler value, used for dividing the USART clock
* source to provide the SMARTCARD Clock (5 bits value)
* @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @rmtoll GTPR PSC LL_USART_GetSmartcardPrescaler
* @param USARTx USART Instance
* @retval Smartcard prescaler value (Value between Min_Data=0 and Max_Data=31)
*/
__STATIC_INLINE uint32_t LL_USART_GetSmartcardPrescaler(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->GTPR, USART_GTPR_PSC));
}
/**
* @brief Set Smartcard Guard time value, expressed in nb of baud clocks periods
* (GT[7:0] bits : Guard time value)
* @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @rmtoll GTPR GT LL_USART_SetSmartcardGuardTime
* @param USARTx USART Instance
* @param GuardTime Value between Min_Data=0x00 and Max_Data=0xFF
* @retval None
*/
__STATIC_INLINE void LL_USART_SetSmartcardGuardTime(USART_TypeDef *USARTx, uint32_t GuardTime)
{
MODIFY_REG(USARTx->GTPR, USART_GTPR_GT, (uint16_t)(GuardTime << USART_GTPR_GT_Pos));
}
/**
* @brief Return Smartcard Guard time value, expressed in nb of baud clocks periods
* (GT[7:0] bits : Guard time value)
* @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @rmtoll GTPR GT LL_USART_GetSmartcardGuardTime
* @param USARTx USART Instance
* @retval Smartcard Guard time value (Value between Min_Data=0x00 and Max_Data=0xFF)
*/
__STATIC_INLINE uint32_t LL_USART_GetSmartcardGuardTime(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->GTPR, USART_GTPR_GT) >> USART_GTPR_GT_Pos);
}
/**
* @}
*/
/** @defgroup USART_LL_EF_Configuration_HalfDuplex Configuration functions related to Half Duplex feature
* @{
*/
/**
* @brief Enable Single Wire Half-Duplex mode
* @note Macro IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not
* Half-Duplex mode is supported by the USARTx instance.
* @rmtoll CR3 HDSEL LL_USART_EnableHalfDuplex
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableHalfDuplex(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR3, USART_CR3_HDSEL);
}
/**
* @brief Disable Single Wire Half-Duplex mode
* @note Macro IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not
* Half-Duplex mode is supported by the USARTx instance.
* @rmtoll CR3 HDSEL LL_USART_DisableHalfDuplex
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableHalfDuplex(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR3, USART_CR3_HDSEL);
}
/**
* @brief Indicate if Single Wire Half-Duplex mode is enabled
* @note Macro IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not
* Half-Duplex mode is supported by the USARTx instance.
* @rmtoll CR3 HDSEL LL_USART_IsEnabledHalfDuplex
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledHalfDuplex(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR3, USART_CR3_HDSEL) == (USART_CR3_HDSEL)) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup USART_LL_EF_Configuration_SPI_SLAVE Configuration functions related to SPI Slave feature
* @{
*/
/**
* @brief Enable SPI Synchronous Slave mode
* @note Macro IS_UART_SPI_SLAVE_INSTANCE(USARTx) can be used to check whether or not
* SPI Slave mode feature is supported by the USARTx instance.
* @rmtoll CR2 SLVEN LL_USART_EnableSPISlave
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableSPISlave(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR2, USART_CR2_SLVEN);
}
/**
* @brief Disable SPI Synchronous Slave mode
* @note Macro IS_UART_SPI_SLAVE_INSTANCE(USARTx) can be used to check whether or not
* SPI Slave mode feature is supported by the USARTx instance.
* @rmtoll CR2 SLVEN LL_USART_DisableSPISlave
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableSPISlave(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR2, USART_CR2_SLVEN);
}
/**
* @brief Indicate if SPI Synchronous Slave mode is enabled
* @note Macro IS_UART_SPI_SLAVE_INSTANCE(USARTx) can be used to check whether or not
* SPI Slave mode feature is supported by the USARTx instance.
* @rmtoll CR2 SLVEN LL_USART_IsEnabledSPISlave
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledSPISlave(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR2, USART_CR2_SLVEN) == (USART_CR2_SLVEN)) ? 1UL : 0UL);
}
/**
* @brief Enable SPI Slave Selection using NSS input pin
* @note Macro IS_UART_SPI_SLAVE_INSTANCE(USARTx) can be used to check whether or not
* SPI Slave mode feature is supported by the USARTx instance.
* @note SPI Slave Selection depends on NSS input pin
* (The slave is selected when NSS is low and deselected when NSS is high).
* @rmtoll CR2 DIS_NSS LL_USART_EnableSPISlaveSelect
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableSPISlaveSelect(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR2, USART_CR2_DIS_NSS);
}
/**
* @brief Disable SPI Slave Selection using NSS input pin
* @note Macro IS_UART_SPI_SLAVE_INSTANCE(USARTx) can be used to check whether or not
* SPI Slave mode feature is supported by the USARTx instance.
* @note SPI Slave will be always selected and NSS input pin will be ignored.
* @rmtoll CR2 DIS_NSS LL_USART_DisableSPISlaveSelect
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableSPISlaveSelect(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR2, USART_CR2_DIS_NSS);
}
/**
* @brief Indicate if SPI Slave Selection depends on NSS input pin
* @note Macro IS_UART_SPI_SLAVE_INSTANCE(USARTx) can be used to check whether or not
* SPI Slave mode feature is supported by the USARTx instance.
* @rmtoll CR2 DIS_NSS LL_USART_IsEnabledSPISlaveSelect
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledSPISlaveSelect(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR2, USART_CR2_DIS_NSS) != (USART_CR2_DIS_NSS)) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup USART_LL_EF_Configuration_LIN Configuration functions related to LIN feature
* @{
*/
/**
* @brief Set LIN Break Detection Length
* @note Macro IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
* LIN feature is supported by the USARTx instance.
* @rmtoll CR2 LBDL LL_USART_SetLINBrkDetectionLen
* @param USARTx USART Instance
* @param LINBDLength This parameter can be one of the following values:
* @arg @ref LL_USART_LINBREAK_DETECT_10B
* @arg @ref LL_USART_LINBREAK_DETECT_11B
* @retval None
*/
__STATIC_INLINE void LL_USART_SetLINBrkDetectionLen(USART_TypeDef *USARTx, uint32_t LINBDLength)
{
MODIFY_REG(USARTx->CR2, USART_CR2_LBDL, LINBDLength);
}
/**
* @brief Return LIN Break Detection Length
* @note Macro IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
* LIN feature is supported by the USARTx instance.
* @rmtoll CR2 LBDL LL_USART_GetLINBrkDetectionLen
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_LINBREAK_DETECT_10B
* @arg @ref LL_USART_LINBREAK_DETECT_11B
*/
__STATIC_INLINE uint32_t LL_USART_GetLINBrkDetectionLen(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_LBDL));
}
/**
* @brief Enable LIN mode
* @note Macro IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
* LIN feature is supported by the USARTx instance.
* @rmtoll CR2 LINEN LL_USART_EnableLIN
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableLIN(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR2, USART_CR2_LINEN);
}
/**
* @brief Disable LIN mode
* @note Macro IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
* LIN feature is supported by the USARTx instance.
* @rmtoll CR2 LINEN LL_USART_DisableLIN
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableLIN(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR2, USART_CR2_LINEN);
}
/**
* @brief Indicate if LIN mode is enabled
* @note Macro IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
* LIN feature is supported by the USARTx instance.
* @rmtoll CR2 LINEN LL_USART_IsEnabledLIN
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledLIN(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR2, USART_CR2_LINEN) == (USART_CR2_LINEN)) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup USART_LL_EF_Configuration_DE Configuration functions related to Driver Enable feature
* @{
*/
/**
* @brief Set DEDT (Driver Enable De-Assertion Time), Time value expressed on 5 bits ([4:0] bits).
* @note Macro IS_UART_DRIVER_ENABLE_INSTANCE(USARTx) can be used to check whether or not
* Driver Enable feature is supported by the USARTx instance.
* @rmtoll CR1 DEDT LL_USART_SetDEDeassertionTime
* @param USARTx USART Instance
* @param Time Value between Min_Data=0 and Max_Data=31
* @retval None
*/
__STATIC_INLINE void LL_USART_SetDEDeassertionTime(USART_TypeDef *USARTx, uint32_t Time)
{
MODIFY_REG(USARTx->CR1, USART_CR1_DEDT, Time << USART_CR1_DEDT_Pos);
}
/**
* @brief Return DEDT (Driver Enable De-Assertion Time)
* @note Macro IS_UART_DRIVER_ENABLE_INSTANCE(USARTx) can be used to check whether or not
* Driver Enable feature is supported by the USARTx instance.
* @rmtoll CR1 DEDT LL_USART_GetDEDeassertionTime
* @param USARTx USART Instance
* @retval Time value expressed on 5 bits ([4:0] bits) : Value between Min_Data=0 and Max_Data=31
*/
__STATIC_INLINE uint32_t LL_USART_GetDEDeassertionTime(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_DEDT) >> USART_CR1_DEDT_Pos);
}
/**
* @brief Set DEAT (Driver Enable Assertion Time), Time value expressed on 5 bits ([4:0] bits).
* @note Macro IS_UART_DRIVER_ENABLE_INSTANCE(USARTx) can be used to check whether or not
* Driver Enable feature is supported by the USARTx instance.
* @rmtoll CR1 DEAT LL_USART_SetDEAssertionTime
* @param USARTx USART Instance
* @param Time Value between Min_Data=0 and Max_Data=31
* @retval None
*/
__STATIC_INLINE void LL_USART_SetDEAssertionTime(USART_TypeDef *USARTx, uint32_t Time)
{
MODIFY_REG(USARTx->CR1, USART_CR1_DEAT, Time << USART_CR1_DEAT_Pos);
}
/**
* @brief Return DEAT (Driver Enable Assertion Time)
* @note Macro IS_UART_DRIVER_ENABLE_INSTANCE(USARTx) can be used to check whether or not
* Driver Enable feature is supported by the USARTx instance.
* @rmtoll CR1 DEAT LL_USART_GetDEAssertionTime
* @param USARTx USART Instance
* @retval Time value expressed on 5 bits ([4:0] bits) : Value between Min_Data=0 and Max_Data=31
*/
__STATIC_INLINE uint32_t LL_USART_GetDEAssertionTime(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_DEAT) >> USART_CR1_DEAT_Pos);
}
/**
* @brief Enable Driver Enable (DE) Mode
* @note Macro IS_UART_DRIVER_ENABLE_INSTANCE(USARTx) can be used to check whether or not
* Driver Enable feature is supported by the USARTx instance.
* @rmtoll CR3 DEM LL_USART_EnableDEMode
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableDEMode(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR3, USART_CR3_DEM);
}
/**
* @brief Disable Driver Enable (DE) Mode
* @note Macro IS_UART_DRIVER_ENABLE_INSTANCE(USARTx) can be used to check whether or not
* Driver Enable feature is supported by the USARTx instance.
* @rmtoll CR3 DEM LL_USART_DisableDEMode
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableDEMode(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR3, USART_CR3_DEM);
}
/**
* @brief Indicate if Driver Enable (DE) Mode is enabled
* @note Macro IS_UART_DRIVER_ENABLE_INSTANCE(USARTx) can be used to check whether or not
* Driver Enable feature is supported by the USARTx instance.
* @rmtoll CR3 DEM LL_USART_IsEnabledDEMode
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledDEMode(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR3, USART_CR3_DEM) == (USART_CR3_DEM)) ? 1UL : 0UL);
}
/**
* @brief Select Driver Enable Polarity
* @note Macro IS_UART_DRIVER_ENABLE_INSTANCE(USARTx) can be used to check whether or not
* Driver Enable feature is supported by the USARTx instance.
* @rmtoll CR3 DEP LL_USART_SetDESignalPolarity
* @param USARTx USART Instance
* @param Polarity This parameter can be one of the following values:
* @arg @ref LL_USART_DE_POLARITY_HIGH
* @arg @ref LL_USART_DE_POLARITY_LOW
* @retval None
*/
__STATIC_INLINE void LL_USART_SetDESignalPolarity(USART_TypeDef *USARTx, uint32_t Polarity)
{
MODIFY_REG(USARTx->CR3, USART_CR3_DEP, Polarity);
}
/**
* @brief Return Driver Enable Polarity
* @note Macro IS_UART_DRIVER_ENABLE_INSTANCE(USARTx) can be used to check whether or not
* Driver Enable feature is supported by the USARTx instance.
* @rmtoll CR3 DEP LL_USART_GetDESignalPolarity
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_DE_POLARITY_HIGH
* @arg @ref LL_USART_DE_POLARITY_LOW
*/
__STATIC_INLINE uint32_t LL_USART_GetDESignalPolarity(const USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR3, USART_CR3_DEP));
}
/**
* @}
*/
/** @defgroup USART_LL_EF_AdvancedConfiguration Advanced Configurations services
* @{
*/
/**
* @brief Perform basic configuration of USART for enabling use in Asynchronous Mode (UART)
* @note In UART mode, the following bits must be kept cleared:
* - LINEN bit in the USART_CR2 register,
* - CLKEN bit in the USART_CR2 register,
* - SCEN bit in the USART_CR3 register,
* - IREN bit in the USART_CR3 register,
* - HDSEL bit in the USART_CR3 register.
* @note Call of this function is equivalent to following function call sequence :
* - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
* - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
* - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
* - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
* - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
* @note Other remaining configurations items related to Asynchronous Mode
* (as Baud Rate, Word length, Parity, ...) should be set using
* dedicated functions
* @rmtoll CR2 LINEN LL_USART_ConfigAsyncMode\n
* CR2 CLKEN LL_USART_ConfigAsyncMode\n
* CR3 SCEN LL_USART_ConfigAsyncMode\n
* CR3 IREN LL_USART_ConfigAsyncMode\n
* CR3 HDSEL LL_USART_ConfigAsyncMode
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ConfigAsyncMode(USART_TypeDef *USARTx)
{
/* In Asynchronous mode, the following bits must be kept cleared:
- LINEN, CLKEN bits in the USART_CR2 register,
- SCEN, IREN and HDSEL bits in the USART_CR3 register.
*/
CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_IREN | USART_CR3_HDSEL));
}
/**
* @brief Perform basic configuration of USART for enabling use in Synchronous Mode
* @note In Synchronous mode, the following bits must be kept cleared:
* - LINEN bit in the USART_CR2 register,
* - SCEN bit in the USART_CR3 register,
* - IREN bit in the USART_CR3 register,
* - HDSEL bit in the USART_CR3 register.
* This function also sets the USART in Synchronous mode.
* @note Macro IS_USART_INSTANCE(USARTx) can be used to check whether or not
* Synchronous mode is supported by the USARTx instance.
* @note Call of this function is equivalent to following function call sequence :
* - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
* - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
* - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
* - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
* - Set CLKEN in CR2 using @ref LL_USART_EnableSCLKOutput() function
* @note Other remaining configurations items related to Synchronous Mode
* (as Baud Rate, Word length, Parity, Clock Polarity, ...) should be set using
* dedicated functions
* @rmtoll CR2 LINEN LL_USART_ConfigSyncMode\n
* CR2 CLKEN LL_USART_ConfigSyncMode\n
* CR3 SCEN LL_USART_ConfigSyncMode\n
* CR3 IREN LL_USART_ConfigSyncMode\n
* CR3 HDSEL LL_USART_ConfigSyncMode
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ConfigSyncMode(USART_TypeDef *USARTx)
{
/* In Synchronous mode, the following bits must be kept cleared:
- LINEN bit in the USART_CR2 register,
- SCEN, IREN and HDSEL bits in the USART_CR3 register.
*/
CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN));
CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_IREN | USART_CR3_HDSEL));
/* set the UART/USART in Synchronous mode */
SET_BIT(USARTx->CR2, USART_CR2_CLKEN);
}
/**
* @brief Perform basic configuration of USART for enabling use in LIN Mode
* @note In LIN mode, the following bits must be kept cleared:
* - STOP and CLKEN bits in the USART_CR2 register,
* - SCEN bit in the USART_CR3 register,
* - IREN bit in the USART_CR3 register,
* - HDSEL bit in the USART_CR3 register.
* This function also set the UART/USART in LIN mode.
* @note Macro IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
* LIN feature is supported by the USARTx instance.
* @note Call of this function is equivalent to following function call sequence :
* - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
* - Clear STOP in CR2 using @ref LL_USART_SetStopBitsLength() function
* - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
* - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
* - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
* - Set LINEN in CR2 using @ref LL_USART_EnableLIN() function
* @note Other remaining configurations items related to LIN Mode
* (as Baud Rate, Word length, LIN Break Detection Length, ...) should be set using
* dedicated functions
* @rmtoll CR2 CLKEN LL_USART_ConfigLINMode\n
* CR2 STOP LL_USART_ConfigLINMode\n
* CR2 LINEN LL_USART_ConfigLINMode\n
* CR3 IREN LL_USART_ConfigLINMode\n
* CR3 SCEN LL_USART_ConfigLINMode\n
* CR3 HDSEL LL_USART_ConfigLINMode
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ConfigLINMode(USART_TypeDef *USARTx)
{
/* In LIN mode, the following bits must be kept cleared:
- STOP and CLKEN bits in the USART_CR2 register,
- IREN, SCEN and HDSEL bits in the USART_CR3 register.
*/
CLEAR_BIT(USARTx->CR2, (USART_CR2_CLKEN | USART_CR2_STOP));
CLEAR_BIT(USARTx->CR3, (USART_CR3_IREN | USART_CR3_SCEN | USART_CR3_HDSEL));
/* Set the UART/USART in LIN mode */
SET_BIT(USARTx->CR2, USART_CR2_LINEN);
}
/**
* @brief Perform basic configuration of USART for enabling use in Half Duplex Mode
* @note In Half Duplex mode, the following bits must be kept cleared:
* - LINEN bit in the USART_CR2 register,
* - CLKEN bit in the USART_CR2 register,
* - SCEN bit in the USART_CR3 register,
* - IREN bit in the USART_CR3 register,
* This function also sets the UART/USART in Half Duplex mode.
* @note Macro IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not
* Half-Duplex mode is supported by the USARTx instance.
* @note Call of this function is equivalent to following function call sequence :
* - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
* - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
* - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
* - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
* - Set HDSEL in CR3 using @ref LL_USART_EnableHalfDuplex() function
* @note Other remaining configurations items related to Half Duplex Mode
* (as Baud Rate, Word length, Parity, ...) should be set using
* dedicated functions
* @rmtoll CR2 LINEN LL_USART_ConfigHalfDuplexMode\n
* CR2 CLKEN LL_USART_ConfigHalfDuplexMode\n
* CR3 HDSEL LL_USART_ConfigHalfDuplexMode\n
* CR3 SCEN LL_USART_ConfigHalfDuplexMode\n
* CR3 IREN LL_USART_ConfigHalfDuplexMode
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ConfigHalfDuplexMode(USART_TypeDef *USARTx)
{
/* In Half Duplex mode, the following bits must be kept cleared:
- LINEN and CLKEN bits in the USART_CR2 register,
- SCEN and IREN bits in the USART_CR3 register.
*/
CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_IREN));
/* set the UART/USART in Half Duplex mode */
SET_BIT(USARTx->CR3, USART_CR3_HDSEL);
}
/**
* @brief Perform basic configuration of USART for enabling use in Smartcard Mode
* @note In Smartcard mode, the following bits must be kept cleared:
* - LINEN bit in the USART_CR2 register,
* - IREN bit in the USART_CR3 register,
* - HDSEL bit in the USART_CR3 register.
* This function also configures Stop bits to 1.5 bits and
* sets the USART in Smartcard mode (SCEN bit).
* Clock Output is also enabled (CLKEN).
* @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @note Call of this function is equivalent to following function call sequence :
* - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
* - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
* - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
* - Configure STOP in CR2 using @ref LL_USART_SetStopBitsLength() function
* - Set CLKEN in CR2 using @ref LL_USART_EnableSCLKOutput() function
* - Set SCEN in CR3 using @ref LL_USART_EnableSmartcard() function
* @note Other remaining configurations items related to Smartcard Mode
* (as Baud Rate, Word length, Parity, ...) should be set using
* dedicated functions
* @rmtoll CR2 LINEN LL_USART_ConfigSmartcardMode\n
* CR2 STOP LL_USART_ConfigSmartcardMode\n
* CR2 CLKEN LL_USART_ConfigSmartcardMode\n
* CR3 HDSEL LL_USART_ConfigSmartcardMode\n
* CR3 SCEN LL_USART_ConfigSmartcardMode
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ConfigSmartcardMode(USART_TypeDef *USARTx)
{
/* In Smartcard mode, the following bits must be kept cleared:
- LINEN bit in the USART_CR2 register,
- IREN and HDSEL bits in the USART_CR3 register.
*/
CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN));
CLEAR_BIT(USARTx->CR3, (USART_CR3_IREN | USART_CR3_HDSEL));
/* Configure Stop bits to 1.5 bits */
/* Synchronous mode is activated by default */
SET_BIT(USARTx->CR2, (USART_CR2_STOP_0 | USART_CR2_STOP_1 | USART_CR2_CLKEN));
/* set the UART/USART in Smartcard mode */
SET_BIT(USARTx->CR3, USART_CR3_SCEN);
}
/**
* @brief Perform basic configuration of USART for enabling use in Irda Mode
* @note In IRDA mode, the following bits must be kept cleared:
* - LINEN bit in the USART_CR2 register,
* - STOP and CLKEN bits in the USART_CR2 register,
* - SCEN bit in the USART_CR3 register,
* - HDSEL bit in the USART_CR3 register.
* This function also sets the UART/USART in IRDA mode (IREN bit).
* @note Macro IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
* IrDA feature is supported by the USARTx instance.
* @note Call of this function is equivalent to following function call sequence :
* - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
* - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
* - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
* - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
* - Configure STOP in CR2 using @ref LL_USART_SetStopBitsLength() function
* - Set IREN in CR3 using @ref LL_USART_EnableIrda() function
* @note Other remaining configurations items related to Irda Mode
* (as Baud Rate, Word length, Power mode, ...) should be set using
* dedicated functions
* @rmtoll CR2 LINEN LL_USART_ConfigIrdaMode\n
* CR2 CLKEN LL_USART_ConfigIrdaMode\n
* CR2 STOP LL_USART_ConfigIrdaMode\n
* CR3 SCEN LL_USART_ConfigIrdaMode\n
* CR3 HDSEL LL_USART_ConfigIrdaMode\n
* CR3 IREN LL_USART_ConfigIrdaMode
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ConfigIrdaMode(USART_TypeDef *USARTx)
{
/* In IRDA mode, the following bits must be kept cleared:
- LINEN, STOP and CLKEN bits in the USART_CR2 register,
- SCEN and HDSEL bits in the USART_CR3 register.
*/
CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN | USART_CR2_STOP));
CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL));
/* set the UART/USART in IRDA mode */
SET_BIT(USARTx->CR3, USART_CR3_IREN);
}
/**
* @brief Perform basic configuration of USART for enabling use in Multi processor Mode
* (several USARTs connected in a network, one of the USARTs can be the master,
* its TX output connected to the RX inputs of the other slaves USARTs).
* @note In MultiProcessor mode, the following bits must be kept cleared:
* - LINEN bit in the USART_CR2 register,
* - CLKEN bit in the USART_CR2 register,
* - SCEN bit in the USART_CR3 register,
* - IREN bit in the USART_CR3 register,
* - HDSEL bit in the USART_CR3 register.
* @note Call of this function is equivalent to following function call sequence :
* - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
* - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
* - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
* - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
* - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
* @note Other remaining configurations items related to Multi processor Mode
* (as Baud Rate, Wake Up Method, Node address, ...) should be set using
* dedicated functions
* @rmtoll CR2 LINEN LL_USART_ConfigMultiProcessMode\n
* CR2 CLKEN LL_USART_ConfigMultiProcessMode\n
* CR3 SCEN LL_USART_ConfigMultiProcessMode\n
* CR3 HDSEL LL_USART_ConfigMultiProcessMode\n
* CR3 IREN LL_USART_ConfigMultiProcessMode
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ConfigMultiProcessMode(USART_TypeDef *USARTx)
{
/* In Multi Processor mode, the following bits must be kept cleared:
- LINEN and CLKEN bits in the USART_CR2 register,
- IREN, SCEN and HDSEL bits in the USART_CR3 register.
*/
CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
}
/**
* @}
*/
/** @defgroup USART_LL_EF_FLAG_Management FLAG_Management
* @{
*/
/**
* @brief Check if the USART Parity Error Flag is set or not
* @rmtoll ISR PE LL_USART_IsActiveFlag_PE
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_PE(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->ISR, USART_ISR_PE) == (USART_ISR_PE)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART Framing Error Flag is set or not
* @rmtoll ISR FE LL_USART_IsActiveFlag_FE
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_FE(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->ISR, USART_ISR_FE) == (USART_ISR_FE)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART Noise error detected Flag is set or not
* @rmtoll ISR NE LL_USART_IsActiveFlag_NE
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_NE(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->ISR, USART_ISR_NE) == (USART_ISR_NE)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART OverRun Error Flag is set or not
* @rmtoll ISR ORE LL_USART_IsActiveFlag_ORE
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_ORE(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->ISR, USART_ISR_ORE) == (USART_ISR_ORE)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART IDLE line detected Flag is set or not
* @rmtoll ISR IDLE LL_USART_IsActiveFlag_IDLE
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_IDLE(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->ISR, USART_ISR_IDLE) == (USART_ISR_IDLE)) ? 1UL : 0UL);
}
#define LL_USART_IsActiveFlag_RXNE LL_USART_IsActiveFlag_RXNE_RXFNE /* Redefinition for legacy purpose */
/**
* @brief Check if the USART Read Data Register or USART RX FIFO Not Empty Flag is set or not
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll ISR RXNE_RXFNE LL_USART_IsActiveFlag_RXNE_RXFNE
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_RXNE_RXFNE(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->ISR, USART_ISR_RXNE_RXFNE) == (USART_ISR_RXNE_RXFNE)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART Transmission Complete Flag is set or not
* @rmtoll ISR TC LL_USART_IsActiveFlag_TC
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_TC(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->ISR, USART_ISR_TC) == (USART_ISR_TC)) ? 1UL : 0UL);
}
#define LL_USART_IsActiveFlag_TXE LL_USART_IsActiveFlag_TXE_TXFNF /* Redefinition for legacy purpose */
/**
* @brief Check if the USART Transmit Data Register Empty or USART TX FIFO Not Full Flag is set or not
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll ISR TXE_TXFNF LL_USART_IsActiveFlag_TXE_TXFNF
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_TXE_TXFNF(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->ISR, USART_ISR_TXE_TXFNF) == (USART_ISR_TXE_TXFNF)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART LIN Break Detection Flag is set or not
* @note Macro IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
* LIN feature is supported by the USARTx instance.
* @rmtoll ISR LBDF LL_USART_IsActiveFlag_LBD
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_LBD(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->ISR, USART_ISR_LBDF) == (USART_ISR_LBDF)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART CTS interrupt Flag is set or not
* @note Macro IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
* Hardware Flow control feature is supported by the USARTx instance.
* @rmtoll ISR CTSIF LL_USART_IsActiveFlag_nCTS
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_nCTS(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->ISR, USART_ISR_CTSIF) == (USART_ISR_CTSIF)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART CTS Flag is set or not
* @note Macro IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
* Hardware Flow control feature is supported by the USARTx instance.
* @rmtoll ISR CTS LL_USART_IsActiveFlag_CTS
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_CTS(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->ISR, USART_ISR_CTS) == (USART_ISR_CTS)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART Receiver Time Out Flag is set or not
* @rmtoll ISR RTOF LL_USART_IsActiveFlag_RTO
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_RTO(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->ISR, USART_ISR_RTOF) == (USART_ISR_RTOF)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART End Of Block Flag is set or not
* @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @rmtoll ISR EOBF LL_USART_IsActiveFlag_EOB
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_EOB(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->ISR, USART_ISR_EOBF) == (USART_ISR_EOBF)) ? 1UL : 0UL);
}
/**
* @brief Check if the SPI Slave Underrun error flag is set or not
* @note Macro IS_UART_SPI_SLAVE_INSTANCE(USARTx) can be used to check whether or not
* SPI Slave mode feature is supported by the USARTx instance.
* @rmtoll ISR UDR LL_USART_IsActiveFlag_UDR
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_UDR(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->ISR, USART_ISR_UDR) == (USART_ISR_UDR)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART Auto-Baud Rate Error Flag is set or not
* @note Macro IS_USART_AUTOBAUDRATE_DETECTION_INSTANCE(USARTx) can be used to check whether or not
* Auto Baud Rate detection feature is supported by the USARTx instance.
* @rmtoll ISR ABRE LL_USART_IsActiveFlag_ABRE
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_ABRE(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->ISR, USART_ISR_ABRE) == (USART_ISR_ABRE)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART Auto-Baud Rate Flag is set or not
* @note Macro IS_USART_AUTOBAUDRATE_DETECTION_INSTANCE(USARTx) can be used to check whether or not
* Auto Baud Rate detection feature is supported by the USARTx instance.
* @rmtoll ISR ABRF LL_USART_IsActiveFlag_ABR
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_ABR(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->ISR, USART_ISR_ABRF) == (USART_ISR_ABRF)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART Busy Flag is set or not
* @rmtoll ISR BUSY LL_USART_IsActiveFlag_BUSY
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_BUSY(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->ISR, USART_ISR_BUSY) == (USART_ISR_BUSY)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART Character Match Flag is set or not
* @rmtoll ISR CMF LL_USART_IsActiveFlag_CM
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_CM(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->ISR, USART_ISR_CMF) == (USART_ISR_CMF)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART Send Break Flag is set or not
* @rmtoll ISR SBKF LL_USART_IsActiveFlag_SBK
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_SBK(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->ISR, USART_ISR_SBKF) == (USART_ISR_SBKF)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART Receive Wake Up from mute mode Flag is set or not
* @rmtoll ISR RWU LL_USART_IsActiveFlag_RWU
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_RWU(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->ISR, USART_ISR_RWU) == (USART_ISR_RWU)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART Wake Up from stop mode Flag is set or not
* @note Macro IS_UART_WAKEUP_FROMSTOP_INSTANCE(USARTx) can be used to check whether or not
* Wake-up from Stop mode feature is supported by the USARTx instance.
* @rmtoll ISR WUF LL_USART_IsActiveFlag_WKUP
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_WKUP(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->ISR, USART_ISR_WUF) == (USART_ISR_WUF)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART Transmit Enable Acknowledge Flag is set or not
* @rmtoll ISR TEACK LL_USART_IsActiveFlag_TEACK
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_TEACK(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->ISR, USART_ISR_TEACK) == (USART_ISR_TEACK)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART Receive Enable Acknowledge Flag is set or not
* @rmtoll ISR REACK LL_USART_IsActiveFlag_REACK
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_REACK(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->ISR, USART_ISR_REACK) == (USART_ISR_REACK)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART TX FIFO Empty Flag is set or not
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll ISR TXFE LL_USART_IsActiveFlag_TXFE
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_TXFE(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->ISR, USART_ISR_TXFE) == (USART_ISR_TXFE)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART RX FIFO Full Flag is set or not
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll ISR RXFF LL_USART_IsActiveFlag_RXFF
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_RXFF(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->ISR, USART_ISR_RXFF) == (USART_ISR_RXFF)) ? 1UL : 0UL);
}
/**
* @brief Check if the Smartcard Transmission Complete Before Guard Time Flag is set or not
* @rmtoll ISR TCBGT LL_USART_IsActiveFlag_TCBGT
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_TCBGT(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->ISR, USART_ISR_TCBGT) == (USART_ISR_TCBGT)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART TX FIFO Threshold Flag is set or not
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll ISR TXFT LL_USART_IsActiveFlag_TXFT
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_TXFT(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->ISR, USART_ISR_TXFT) == (USART_ISR_TXFT)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART RX FIFO Threshold Flag is set or not
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll ISR RXFT LL_USART_IsActiveFlag_RXFT
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_RXFT(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->ISR, USART_ISR_RXFT) == (USART_ISR_RXFT)) ? 1UL : 0UL);
}
/**
* @brief Clear Parity Error Flag
* @rmtoll ICR PECF LL_USART_ClearFlag_PE
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ClearFlag_PE(USART_TypeDef *USARTx)
{
WRITE_REG(USARTx->ICR, USART_ICR_PECF);
}
/**
* @brief Clear Framing Error Flag
* @rmtoll ICR FECF LL_USART_ClearFlag_FE
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ClearFlag_FE(USART_TypeDef *USARTx)
{
WRITE_REG(USARTx->ICR, USART_ICR_FECF);
}
/**
* @brief Clear Noise Error detected Flag
* @rmtoll ICR NECF LL_USART_ClearFlag_NE
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ClearFlag_NE(USART_TypeDef *USARTx)
{
WRITE_REG(USARTx->ICR, USART_ICR_NECF);
}
/**
* @brief Clear OverRun Error Flag
* @rmtoll ICR ORECF LL_USART_ClearFlag_ORE
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ClearFlag_ORE(USART_TypeDef *USARTx)
{
WRITE_REG(USARTx->ICR, USART_ICR_ORECF);
}
/**
* @brief Clear IDLE line detected Flag
* @rmtoll ICR IDLECF LL_USART_ClearFlag_IDLE
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ClearFlag_IDLE(USART_TypeDef *USARTx)
{
WRITE_REG(USARTx->ICR, USART_ICR_IDLECF);
}
/**
* @brief Clear TX FIFO Empty Flag
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll ICR TXFECF LL_USART_ClearFlag_TXFE
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ClearFlag_TXFE(USART_TypeDef *USARTx)
{
WRITE_REG(USARTx->ICR, USART_ICR_TXFECF);
}
/**
* @brief Clear Transmission Complete Flag
* @rmtoll ICR TCCF LL_USART_ClearFlag_TC
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ClearFlag_TC(USART_TypeDef *USARTx)
{
WRITE_REG(USARTx->ICR, USART_ICR_TCCF);
}
/**
* @brief Clear Smartcard Transmission Complete Before Guard Time Flag
* @rmtoll ICR TCBGTCF LL_USART_ClearFlag_TCBGT
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ClearFlag_TCBGT(USART_TypeDef *USARTx)
{
WRITE_REG(USARTx->ICR, USART_ICR_TCBGTCF);
}
/**
* @brief Clear LIN Break Detection Flag
* @note Macro IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
* LIN feature is supported by the USARTx instance.
* @rmtoll ICR LBDCF LL_USART_ClearFlag_LBD
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ClearFlag_LBD(USART_TypeDef *USARTx)
{
WRITE_REG(USARTx->ICR, USART_ICR_LBDCF);
}
/**
* @brief Clear CTS Interrupt Flag
* @note Macro IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
* Hardware Flow control feature is supported by the USARTx instance.
* @rmtoll ICR CTSCF LL_USART_ClearFlag_nCTS
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ClearFlag_nCTS(USART_TypeDef *USARTx)
{
WRITE_REG(USARTx->ICR, USART_ICR_CTSCF);
}
/**
* @brief Clear Receiver Time Out Flag
* @rmtoll ICR RTOCF LL_USART_ClearFlag_RTO
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ClearFlag_RTO(USART_TypeDef *USARTx)
{
WRITE_REG(USARTx->ICR, USART_ICR_RTOCF);
}
/**
* @brief Clear End Of Block Flag
* @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @rmtoll ICR EOBCF LL_USART_ClearFlag_EOB
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ClearFlag_EOB(USART_TypeDef *USARTx)
{
WRITE_REG(USARTx->ICR, USART_ICR_EOBCF);
}
/**
* @brief Clear SPI Slave Underrun Flag
* @note Macro IS_UART_SPI_SLAVE_INSTANCE(USARTx) can be used to check whether or not
* SPI Slave mode feature is supported by the USARTx instance.
* @rmtoll ICR UDRCF LL_USART_ClearFlag_UDR
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ClearFlag_UDR(USART_TypeDef *USARTx)
{
WRITE_REG(USARTx->ICR, USART_ICR_UDRCF);
}
/**
* @brief Clear Character Match Flag
* @rmtoll ICR CMCF LL_USART_ClearFlag_CM
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ClearFlag_CM(USART_TypeDef *USARTx)
{
WRITE_REG(USARTx->ICR, USART_ICR_CMCF);
}
/**
* @brief Clear Wake Up from stop mode Flag
* @note Macro IS_UART_WAKEUP_FROMSTOP_INSTANCE(USARTx) can be used to check whether or not
* Wake-up from Stop mode feature is supported by the USARTx instance.
* @rmtoll ICR WUCF LL_USART_ClearFlag_WKUP
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ClearFlag_WKUP(USART_TypeDef *USARTx)
{
WRITE_REG(USARTx->ICR, USART_ICR_WUCF);
}
/**
* @}
*/
/** @defgroup USART_LL_EF_IT_Management IT_Management
* @{
*/
/**
* @brief Enable IDLE Interrupt
* @rmtoll CR1 IDLEIE LL_USART_EnableIT_IDLE
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableIT_IDLE(USART_TypeDef *USARTx)
{
ATOMIC_SET_BIT(USARTx->CR1, USART_CR1_IDLEIE);
}
#define LL_USART_EnableIT_RXNE LL_USART_EnableIT_RXNE_RXFNE /* Redefinition for legacy purpose */
/**
* @brief Enable RX Not Empty and RX FIFO Not Empty Interrupt
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll CR1 RXNEIE_RXFNEIE LL_USART_EnableIT_RXNE_RXFNE
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableIT_RXNE_RXFNE(USART_TypeDef *USARTx)
{
ATOMIC_SET_BIT(USARTx->CR1, USART_CR1_RXNEIE_RXFNEIE);
}
/**
* @brief Enable Transmission Complete Interrupt
* @rmtoll CR1 TCIE LL_USART_EnableIT_TC
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableIT_TC(USART_TypeDef *USARTx)
{
ATOMIC_SET_BIT(USARTx->CR1, USART_CR1_TCIE);
}
#define LL_USART_EnableIT_TXE LL_USART_EnableIT_TXE_TXFNF /* Redefinition for legacy purpose */
/**
* @brief Enable TX Empty and TX FIFO Not Full Interrupt
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll CR1 TXEIE_TXFNFIE LL_USART_EnableIT_TXE_TXFNF
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableIT_TXE_TXFNF(USART_TypeDef *USARTx)
{
ATOMIC_SET_BIT(USARTx->CR1, USART_CR1_TXEIE_TXFNFIE);
}
/**
* @brief Enable Parity Error Interrupt
* @rmtoll CR1 PEIE LL_USART_EnableIT_PE
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableIT_PE(USART_TypeDef *USARTx)
{
ATOMIC_SET_BIT(USARTx->CR1, USART_CR1_PEIE);
}
/**
* @brief Enable Character Match Interrupt
* @rmtoll CR1 CMIE LL_USART_EnableIT_CM
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableIT_CM(USART_TypeDef *USARTx)
{
ATOMIC_SET_BIT(USARTx->CR1, USART_CR1_CMIE);
}
/**
* @brief Enable Receiver Timeout Interrupt
* @rmtoll CR1 RTOIE LL_USART_EnableIT_RTO
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableIT_RTO(USART_TypeDef *USARTx)
{
ATOMIC_SET_BIT(USARTx->CR1, USART_CR1_RTOIE);
}
/**
* @brief Enable End Of Block Interrupt
* @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @rmtoll CR1 EOBIE LL_USART_EnableIT_EOB
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableIT_EOB(USART_TypeDef *USARTx)
{
ATOMIC_SET_BIT(USARTx->CR1, USART_CR1_EOBIE);
}
/**
* @brief Enable TX FIFO Empty Interrupt
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll CR1 TXFEIE LL_USART_EnableIT_TXFE
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableIT_TXFE(USART_TypeDef *USARTx)
{
ATOMIC_SET_BIT(USARTx->CR1, USART_CR1_TXFEIE);
}
/**
* @brief Enable RX FIFO Full Interrupt
* @rmtoll CR1 RXFFIE LL_USART_EnableIT_RXFF
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableIT_RXFF(USART_TypeDef *USARTx)
{
ATOMIC_SET_BIT(USARTx->CR1, USART_CR1_RXFFIE);
}
/**
* @brief Enable LIN Break Detection Interrupt
* @note Macro IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
* LIN feature is supported by the USARTx instance.
* @rmtoll CR2 LBDIE LL_USART_EnableIT_LBD
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableIT_LBD(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR2, USART_CR2_LBDIE);
}
/**
* @brief Enable Error Interrupt
* @note When set, Error Interrupt Enable Bit is enabling interrupt generation in case of a framing
* error, overrun error or noise flag (FE=1 or ORE=1 or NF=1 in the USARTx_ISR register).
* 0: Interrupt is inhibited
* 1: An interrupt is generated when FE=1 or ORE=1 or NF=1 in the USARTx_ISR register.
* @rmtoll CR3 EIE LL_USART_EnableIT_ERROR
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableIT_ERROR(USART_TypeDef *USARTx)
{
ATOMIC_SET_BIT(USARTx->CR3, USART_CR3_EIE);
}
/**
* @brief Enable CTS Interrupt
* @note Macro IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
* Hardware Flow control feature is supported by the USARTx instance.
* @rmtoll CR3 CTSIE LL_USART_EnableIT_CTS
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableIT_CTS(USART_TypeDef *USARTx)
{
ATOMIC_SET_BIT(USARTx->CR3, USART_CR3_CTSIE);
}
/**
* @brief Enable Wake Up from Stop Mode Interrupt
* @note Macro IS_UART_WAKEUP_FROMSTOP_INSTANCE(USARTx) can be used to check whether or not
* Wake-up from Stop mode feature is supported by the USARTx instance.
* @rmtoll CR3 WUFIE LL_USART_EnableIT_WKUP
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableIT_WKUP(USART_TypeDef *USARTx)
{
ATOMIC_SET_BIT(USARTx->CR3, USART_CR3_WUFIE);
}
/**
* @brief Enable TX FIFO Threshold Interrupt
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll CR3 TXFTIE LL_USART_EnableIT_TXFT
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableIT_TXFT(USART_TypeDef *USARTx)
{
ATOMIC_SET_BIT(USARTx->CR3, USART_CR3_TXFTIE);
}
/**
* @brief Enable Smartcard Transmission Complete Before Guard Time Interrupt
* @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @rmtoll CR3 TCBGTIE LL_USART_EnableIT_TCBGT
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableIT_TCBGT(USART_TypeDef *USARTx)
{
ATOMIC_SET_BIT(USARTx->CR3, USART_CR3_TCBGTIE);
}
/**
* @brief Enable RX FIFO Threshold Interrupt
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll CR3 RXFTIE LL_USART_EnableIT_RXFT
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableIT_RXFT(USART_TypeDef *USARTx)
{
ATOMIC_SET_BIT(USARTx->CR3, USART_CR3_RXFTIE);
}
/**
* @brief Disable IDLE Interrupt
* @rmtoll CR1 IDLEIE LL_USART_DisableIT_IDLE
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableIT_IDLE(USART_TypeDef *USARTx)
{
ATOMIC_CLEAR_BIT(USARTx->CR1, USART_CR1_IDLEIE);
}
#define LL_USART_DisableIT_RXNE LL_USART_DisableIT_RXNE_RXFNE /* Redefinition for legacy purpose */
/**
* @brief Disable RX Not Empty and RX FIFO Not Empty Interrupt
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll CR1 RXNEIE_RXFNEIE LL_USART_DisableIT_RXNE_RXFNE
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableIT_RXNE_RXFNE(USART_TypeDef *USARTx)
{
ATOMIC_CLEAR_BIT(USARTx->CR1, USART_CR1_RXNEIE_RXFNEIE);
}
/**
* @brief Disable Transmission Complete Interrupt
* @rmtoll CR1 TCIE LL_USART_DisableIT_TC
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableIT_TC(USART_TypeDef *USARTx)
{
ATOMIC_CLEAR_BIT(USARTx->CR1, USART_CR1_TCIE);
}
#define LL_USART_DisableIT_TXE LL_USART_DisableIT_TXE_TXFNF /* Redefinition for legacy purpose */
/**
* @brief Disable TX Empty and TX FIFO Not Full Interrupt
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll CR1 TXEIE_TXFNFIE LL_USART_DisableIT_TXE_TXFNF
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableIT_TXE_TXFNF(USART_TypeDef *USARTx)
{
ATOMIC_CLEAR_BIT(USARTx->CR1, USART_CR1_TXEIE_TXFNFIE);
}
/**
* @brief Disable Parity Error Interrupt
* @rmtoll CR1 PEIE LL_USART_DisableIT_PE
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableIT_PE(USART_TypeDef *USARTx)
{
ATOMIC_CLEAR_BIT(USARTx->CR1, USART_CR1_PEIE);
}
/**
* @brief Disable Character Match Interrupt
* @rmtoll CR1 CMIE LL_USART_DisableIT_CM
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableIT_CM(USART_TypeDef *USARTx)
{
ATOMIC_CLEAR_BIT(USARTx->CR1, USART_CR1_CMIE);
}
/**
* @brief Disable Receiver Timeout Interrupt
* @rmtoll CR1 RTOIE LL_USART_DisableIT_RTO
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableIT_RTO(USART_TypeDef *USARTx)
{
ATOMIC_CLEAR_BIT(USARTx->CR1, USART_CR1_RTOIE);
}
/**
* @brief Disable End Of Block Interrupt
* @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @rmtoll CR1 EOBIE LL_USART_DisableIT_EOB
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableIT_EOB(USART_TypeDef *USARTx)
{
ATOMIC_CLEAR_BIT(USARTx->CR1, USART_CR1_EOBIE);
}
/**
* @brief Disable TX FIFO Empty Interrupt
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll CR1 TXFEIE LL_USART_DisableIT_TXFE
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableIT_TXFE(USART_TypeDef *USARTx)
{
ATOMIC_CLEAR_BIT(USARTx->CR1, USART_CR1_TXFEIE);
}
/**
* @brief Disable RX FIFO Full Interrupt
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll CR1 RXFFIE LL_USART_DisableIT_RXFF
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableIT_RXFF(USART_TypeDef *USARTx)
{
ATOMIC_CLEAR_BIT(USARTx->CR1, USART_CR1_RXFFIE);
}
/**
* @brief Disable LIN Break Detection Interrupt
* @note Macro IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
* LIN feature is supported by the USARTx instance.
* @rmtoll CR2 LBDIE LL_USART_DisableIT_LBD
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableIT_LBD(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR2, USART_CR2_LBDIE);
}
/**
* @brief Disable Error Interrupt
* @note When set, Error Interrupt Enable Bit is enabling interrupt generation in case of a framing
* error, overrun error or noise flag (FE=1 or ORE=1 or NF=1 in the USARTx_ISR register).
* 0: Interrupt is inhibited
* 1: An interrupt is generated when FE=1 or ORE=1 or NF=1 in the USARTx_ISR register.
* @rmtoll CR3 EIE LL_USART_DisableIT_ERROR
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableIT_ERROR(USART_TypeDef *USARTx)
{
ATOMIC_CLEAR_BIT(USARTx->CR3, USART_CR3_EIE);
}
/**
* @brief Disable CTS Interrupt
* @note Macro IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
* Hardware Flow control feature is supported by the USARTx instance.
* @rmtoll CR3 CTSIE LL_USART_DisableIT_CTS
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableIT_CTS(USART_TypeDef *USARTx)
{
ATOMIC_CLEAR_BIT(USARTx->CR3, USART_CR3_CTSIE);
}
/**
* @brief Disable Wake Up from Stop Mode Interrupt
* @note Macro IS_UART_WAKEUP_FROMSTOP_INSTANCE(USARTx) can be used to check whether or not
* Wake-up from Stop mode feature is supported by the USARTx instance.
* @rmtoll CR3 WUFIE LL_USART_DisableIT_WKUP
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableIT_WKUP(USART_TypeDef *USARTx)
{
ATOMIC_CLEAR_BIT(USARTx->CR3, USART_CR3_WUFIE);
}
/**
* @brief Disable TX FIFO Threshold Interrupt
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll CR3 TXFTIE LL_USART_DisableIT_TXFT
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableIT_TXFT(USART_TypeDef *USARTx)
{
ATOMIC_CLEAR_BIT(USARTx->CR3, USART_CR3_TXFTIE);
}
/**
* @brief Disable Smartcard Transmission Complete Before Guard Time Interrupt
* @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @rmtoll CR3 TCBGTIE LL_USART_DisableIT_TCBGT
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableIT_TCBGT(USART_TypeDef *USARTx)
{
ATOMIC_CLEAR_BIT(USARTx->CR3, USART_CR3_TCBGTIE);
}
/**
* @brief Disable RX FIFO Threshold Interrupt
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll CR3 RXFTIE LL_USART_DisableIT_RXFT
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableIT_RXFT(USART_TypeDef *USARTx)
{
ATOMIC_CLEAR_BIT(USARTx->CR3, USART_CR3_RXFTIE);
}
/**
* @brief Check if the USART IDLE Interrupt source is enabled or disabled.
* @rmtoll CR1 IDLEIE LL_USART_IsEnabledIT_IDLE
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_IDLE(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR1, USART_CR1_IDLEIE) == (USART_CR1_IDLEIE)) ? 1UL : 0UL);
}
#define LL_USART_IsEnabledIT_RXNE LL_USART_IsEnabledIT_RXNE_RXFNE /* Redefinition for legacy purpose */
/**
* @brief Check if the USART RX Not Empty and USART RX FIFO Not Empty Interrupt is enabled or disabled.
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll CR1 RXNEIE_RXFNEIE LL_USART_IsEnabledIT_RXNE_RXFNE
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_RXNE_RXFNE(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR1, USART_CR1_RXNEIE_RXFNEIE) == (USART_CR1_RXNEIE_RXFNEIE)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART Transmission Complete Interrupt is enabled or disabled.
* @rmtoll CR1 TCIE LL_USART_IsEnabledIT_TC
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_TC(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR1, USART_CR1_TCIE) == (USART_CR1_TCIE)) ? 1UL : 0UL);
}
#define LL_USART_IsEnabledIT_TXE LL_USART_IsEnabledIT_TXE_TXFNF /* Redefinition for legacy purpose */
/**
* @brief Check if the USART TX Empty and USART TX FIFO Not Full Interrupt is enabled or disabled
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll CR1 TXEIE_TXFNFIE LL_USART_IsEnabledIT_TXE_TXFNF
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_TXE_TXFNF(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR1, USART_CR1_TXEIE_TXFNFIE) == (USART_CR1_TXEIE_TXFNFIE)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART Parity Error Interrupt is enabled or disabled.
* @rmtoll CR1 PEIE LL_USART_IsEnabledIT_PE
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_PE(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR1, USART_CR1_PEIE) == (USART_CR1_PEIE)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART Character Match Interrupt is enabled or disabled.
* @rmtoll CR1 CMIE LL_USART_IsEnabledIT_CM
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_CM(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR1, USART_CR1_CMIE) == (USART_CR1_CMIE)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART Receiver Timeout Interrupt is enabled or disabled.
* @rmtoll CR1 RTOIE LL_USART_IsEnabledIT_RTO
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_RTO(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR1, USART_CR1_RTOIE) == (USART_CR1_RTOIE)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART End Of Block Interrupt is enabled or disabled.
* @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @rmtoll CR1 EOBIE LL_USART_IsEnabledIT_EOB
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_EOB(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR1, USART_CR1_EOBIE) == (USART_CR1_EOBIE)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART TX FIFO Empty Interrupt is enabled or disabled
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll CR1 TXFEIE LL_USART_IsEnabledIT_TXFE
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_TXFE(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR1, USART_CR1_TXFEIE) == (USART_CR1_TXFEIE)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART RX FIFO Full Interrupt is enabled or disabled
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll CR1 RXFFIE LL_USART_IsEnabledIT_RXFF
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_RXFF(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR1, USART_CR1_RXFFIE) == (USART_CR1_RXFFIE)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART LIN Break Detection Interrupt is enabled or disabled.
* @note Macro IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
* LIN feature is supported by the USARTx instance.
* @rmtoll CR2 LBDIE LL_USART_IsEnabledIT_LBD
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_LBD(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR2, USART_CR2_LBDIE) == (USART_CR2_LBDIE)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART Error Interrupt is enabled or disabled.
* @rmtoll CR3 EIE LL_USART_IsEnabledIT_ERROR
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_ERROR(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR3, USART_CR3_EIE) == (USART_CR3_EIE)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART CTS Interrupt is enabled or disabled.
* @note Macro IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
* Hardware Flow control feature is supported by the USARTx instance.
* @rmtoll CR3 CTSIE LL_USART_IsEnabledIT_CTS
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_CTS(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR3, USART_CR3_CTSIE) == (USART_CR3_CTSIE)) ? 1UL : 0UL);
}
/**
* @brief Check if the USART Wake Up from Stop Mode Interrupt is enabled or disabled.
* @note Macro IS_UART_WAKEUP_FROMSTOP_INSTANCE(USARTx) can be used to check whether or not
* Wake-up from Stop mode feature is supported by the USARTx instance.
* @rmtoll CR3 WUFIE LL_USART_IsEnabledIT_WKUP
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_WKUP(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR3, USART_CR3_WUFIE) == (USART_CR3_WUFIE)) ? 1UL : 0UL);
}
/**
* @brief Check if USART TX FIFO Threshold Interrupt is enabled or disabled
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll CR3 TXFTIE LL_USART_IsEnabledIT_TXFT
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_TXFT(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR3, USART_CR3_TXFTIE) == (USART_CR3_TXFTIE)) ? 1UL : 0UL);
}
/**
* @brief Check if the Smartcard Transmission Complete Before Guard Time Interrupt is enabled or disabled.
* @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @rmtoll CR3 TCBGTIE LL_USART_IsEnabledIT_TCBGT
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_TCBGT(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR3, USART_CR3_TCBGTIE) == (USART_CR3_TCBGTIE)) ? 1UL : 0UL);
}
/**
* @brief Check if USART RX FIFO Threshold Interrupt is enabled or disabled
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll CR3 RXFTIE LL_USART_IsEnabledIT_RXFT
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_RXFT(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR3, USART_CR3_RXFTIE) == (USART_CR3_RXFTIE)) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup USART_LL_EF_DMA_Management DMA_Management
* @{
*/
/**
* @brief Enable DMA Mode for reception
* @rmtoll CR3 DMAR LL_USART_EnableDMAReq_RX
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableDMAReq_RX(USART_TypeDef *USARTx)
{
ATOMIC_SET_BIT(USARTx->CR3, USART_CR3_DMAR);
}
/**
* @brief Disable DMA Mode for reception
* @rmtoll CR3 DMAR LL_USART_DisableDMAReq_RX
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableDMAReq_RX(USART_TypeDef *USARTx)
{
ATOMIC_CLEAR_BIT(USARTx->CR3, USART_CR3_DMAR);
}
/**
* @brief Check if DMA Mode is enabled for reception
* @rmtoll CR3 DMAR LL_USART_IsEnabledDMAReq_RX
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledDMAReq_RX(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR3, USART_CR3_DMAR) == (USART_CR3_DMAR)) ? 1UL : 0UL);
}
/**
* @brief Enable DMA Mode for transmission
* @rmtoll CR3 DMAT LL_USART_EnableDMAReq_TX
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableDMAReq_TX(USART_TypeDef *USARTx)
{
ATOMIC_SET_BIT(USARTx->CR3, USART_CR3_DMAT);
}
/**
* @brief Disable DMA Mode for transmission
* @rmtoll CR3 DMAT LL_USART_DisableDMAReq_TX
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableDMAReq_TX(USART_TypeDef *USARTx)
{
ATOMIC_CLEAR_BIT(USARTx->CR3, USART_CR3_DMAT);
}
/**
* @brief Check if DMA Mode is enabled for transmission
* @rmtoll CR3 DMAT LL_USART_IsEnabledDMAReq_TX
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledDMAReq_TX(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR3, USART_CR3_DMAT) == (USART_CR3_DMAT)) ? 1UL : 0UL);
}
/**
* @brief Enable DMA Disabling on Reception Error
* @rmtoll CR3 DDRE LL_USART_EnableDMADeactOnRxErr
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableDMADeactOnRxErr(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR3, USART_CR3_DDRE);
}
/**
* @brief Disable DMA Disabling on Reception Error
* @rmtoll CR3 DDRE LL_USART_DisableDMADeactOnRxErr
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableDMADeactOnRxErr(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR3, USART_CR3_DDRE);
}
/**
* @brief Indicate if DMA Disabling on Reception Error is disabled
* @rmtoll CR3 DDRE LL_USART_IsEnabledDMADeactOnRxErr
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledDMADeactOnRxErr(const USART_TypeDef *USARTx)
{
return ((READ_BIT(USARTx->CR3, USART_CR3_DDRE) == (USART_CR3_DDRE)) ? 1UL : 0UL);
}
/**
* @brief Get the data register address used for DMA transfer
* @rmtoll RDR RDR LL_USART_DMA_GetRegAddr\n
* @rmtoll TDR TDR LL_USART_DMA_GetRegAddr
* @param USARTx USART Instance
* @param Direction This parameter can be one of the following values:
* @arg @ref LL_USART_DMA_REG_DATA_TRANSMIT
* @arg @ref LL_USART_DMA_REG_DATA_RECEIVE
* @retval Address of data register
*/
__STATIC_INLINE uint32_t LL_USART_DMA_GetRegAddr(const USART_TypeDef *USARTx, uint32_t Direction)
{
uint32_t data_reg_addr;
if (Direction == LL_USART_DMA_REG_DATA_TRANSMIT)
{
/* return address of TDR register */
data_reg_addr = (uint32_t) &(USARTx->TDR);
}
else
{
/* return address of RDR register */
data_reg_addr = (uint32_t) &(USARTx->RDR);
}
return data_reg_addr;
}
/**
* @}
*/
/** @defgroup USART_LL_EF_Data_Management Data_Management
* @{
*/
/**
* @brief Read Receiver Data register (Receive Data value, 8 bits)
* @rmtoll RDR RDR LL_USART_ReceiveData8
* @param USARTx USART Instance
* @retval Value between Min_Data=0x00 and Max_Data=0xFF
*/
__STATIC_INLINE uint8_t LL_USART_ReceiveData8(const USART_TypeDef *USARTx)
{
return (uint8_t)(READ_BIT(USARTx->RDR, USART_RDR_RDR) & 0xFFU);
}
/**
* @brief Read Receiver Data register (Receive Data value, 9 bits)
* @rmtoll RDR RDR LL_USART_ReceiveData9
* @param USARTx USART Instance
* @retval Value between Min_Data=0x00 and Max_Data=0x1FF
*/
__STATIC_INLINE uint16_t LL_USART_ReceiveData9(const USART_TypeDef *USARTx)
{
return (uint16_t)(READ_BIT(USARTx->RDR, USART_RDR_RDR));
}
/**
* @brief Write in Transmitter Data Register (Transmit Data value, 8 bits)
* @rmtoll TDR TDR LL_USART_TransmitData8
* @param USARTx USART Instance
* @param Value between Min_Data=0x00 and Max_Data=0xFF
* @retval None
*/
__STATIC_INLINE void LL_USART_TransmitData8(USART_TypeDef *USARTx, uint8_t Value)
{
USARTx->TDR = Value;
}
/**
* @brief Write in Transmitter Data Register (Transmit Data value, 9 bits)
* @rmtoll TDR TDR LL_USART_TransmitData9
* @param USARTx USART Instance
* @param Value between Min_Data=0x00 and Max_Data=0x1FF
* @retval None
*/
__STATIC_INLINE void LL_USART_TransmitData9(USART_TypeDef *USARTx, uint16_t Value)
{
USARTx->TDR = (uint16_t)(Value & 0x1FFUL);
}
/**
* @}
*/
/** @defgroup USART_LL_EF_Execution Execution
* @{
*/
/**
* @brief Request an Automatic Baud Rate measurement on next received data frame
* @note Macro IS_USART_AUTOBAUDRATE_DETECTION_INSTANCE(USARTx) can be used to check whether or not
* Auto Baud Rate detection feature is supported by the USARTx instance.
* @rmtoll RQR ABRRQ LL_USART_RequestAutoBaudRate
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_RequestAutoBaudRate(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->RQR, (uint16_t)USART_RQR_ABRRQ);
}
/**
* @brief Request Break sending
* @rmtoll RQR SBKRQ LL_USART_RequestBreakSending
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_RequestBreakSending(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->RQR, (uint16_t)USART_RQR_SBKRQ);
}
/**
* @brief Put USART in mute mode and set the RWU flag
* @rmtoll RQR MMRQ LL_USART_RequestEnterMuteMode
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_RequestEnterMuteMode(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->RQR, (uint16_t)USART_RQR_MMRQ);
}
/**
* @brief Request a Receive Data and FIFO flush
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @note Allows to discard the received data without reading them, and avoid an overrun
* condition.
* @rmtoll RQR RXFRQ LL_USART_RequestRxDataFlush
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_RequestRxDataFlush(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->RQR, (uint16_t)USART_RQR_RXFRQ);
}
/**
* @brief Request a Transmit data and FIFO flush
* @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
* FIFO mode feature is supported by the USARTx instance.
* @rmtoll RQR TXFRQ LL_USART_RequestTxDataFlush
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_RequestTxDataFlush(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->RQR, (uint16_t)USART_RQR_TXFRQ);
}
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup USART_LL_EF_Init Initialization and de-initialization functions
* @{
*/
ErrorStatus LL_USART_DeInit(const USART_TypeDef *USARTx);
ErrorStatus LL_USART_Init(USART_TypeDef *USARTx, const LL_USART_InitTypeDef *USART_InitStruct);
void LL_USART_StructInit(LL_USART_InitTypeDef *USART_InitStruct);
ErrorStatus LL_USART_ClockInit(USART_TypeDef *USARTx, const LL_USART_ClockInitTypeDef *USART_ClockInitStruct);
void LL_USART_ClockStructInit(LL_USART_ClockInitTypeDef *USART_ClockInitStruct);
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/**
* @}
*/
/**
* @}
*/
#endif /* USART1 || USART2 || USART3 || USART6 || UART4 || UART5 || UART7 || UART8 || UART9 || USART10 */
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32H7xx_LL_USART_H */