/* FT_2018_STW_CAN.cpp */ #include "FT_2018_STW_CAN.h" #include "Arduino.h" #include "DueTimer.h" #include "FT18_STW_INIT.h" #include "due_can.h" CAN_FRAME can_0_msg; // can_1_msg.id = 0x110; int can_0_temp_data = 0; int leds[] = {led1, led2, led3, led4, led5, led6, led7, led8, led9, led10, led11, led12, led13, led14, led15, led16}; void Init_Can_0() { Can0.begin(1000000); // set CAN0 baud to 1kbit/s and don`t use enable pin! Can0.setNumTXBoxes(1); // reserves mailbox 0 for tx only 8 mailboxes are // available (the other 7 mailboxes are for rx) // We only have 7 mailboxes, but want to receive 9 messages. This trick should // allow us to receive BCU_APS_BRAKE, BCU_ETC and BCU_SHIFT_CTRL in the same // mailbox. It will also let through 0x506, but that shouldn't be much of an // issue. Can0.watchFor(CAN_ID_BCU_APS_BRAKE & CAN_ID_BCU_ETC & CAN_ID_BCU_SHIFT_CTRL, 0x7FC); Can0.watchFor(CAN_ID_BCU_TIRES); Can0.watchFor(CAN_ID_BCU_LAP_TIME); Can0.watchFor(CAN_ID_MS4_IGN_REV_ATH); Can0.watchFor(CAN_ID_MS4_SPEED); Can0.watchFor(CAN_ID_MS4_ETC); Can0.watchFor(CAN_ID_MS4_STATES_TEMP_PRESS); Can0.setGeneralCallback(Receive_Can_0); Timer3.attachInterrupt(Send_0x110); // set send interrupt Timer3.start(10000); // Calls every 10ms } void Send_0x110() { read_buttons(); read_rotary(); can_0_msg.id = 0x110; can_0_msg.fid = 0; can_0_msg.rtr = 0; can_0_msg.priority = 0; can_0_msg.length = 2; can_0_msg.extended = 0; can_0_temp_data = 0; can_0_temp_data |= Stw_data.Stw_shift_up & 0b00000001; can_0_temp_data |= Stw_data.Stw_shift_down << 1 & 0b00000010; can_0_temp_data |= Stw_data.Stw_neutral << 2 & 0b00000100; can_0_temp_data |= Stw_data.Stw_auto_shift << 3 & 0b00001000; can_0_temp_data |= Stw_data.buttonStateEnc1 << 5 & 0b00100000; // pitlane can_0_msg.data.byte[0] = can_0_temp_data; can_0_msg.data.byte[1] = Stw_data.trc & 0b00001111; can_0_msg.data.byte[2] = Stw_data.mode & 0b00000111; if ((Stw_data.Stw_auto_shift << 3 & 0b00001000)) { if (Vehicle_data.g_auto) { Vehicle_data.g_auto = false; } else { Vehicle_data.g_auto = true; } } Can0.sendFrame(can_0_msg); } void Receive_Can_0(CAN_FRAME *temp_message) { switch (temp_message->id) { case CAN_ID_BCU_APS_BRAKE: { Vehicle_data.p_brake_front = temp_message->data.byte[1]; Vehicle_data.p_brake_rear = temp_message->data.byte[2]; Vehicle_data.drs_active = ((temp_message->data.byte[0] >> 7) & 0b00000001); break; } case CAN_ID_BCU_ETC: { // eDrossel error bit Vehicle_data.e_thro = (temp_message->data.byte[0] & 0xF0); // bit 4-7 if (temp_message->data.byte[0] & 0x80) { Stw_data.error_type = 1; //"pc_error"; } if (temp_message->data.byte[0] & 0x40) { Stw_data.error_type = 2; //"bse_error"; } if (temp_message->data.byte[0] & 0x20) { Stw_data.error_type = 3; //"aps_error"; } if (temp_message->data.byte[0] & 0x10) { Stw_data.error_type = 4; //"etb_error"; } break; } case CAN_ID_BCU_SHIFT_CTRL: { // autoshift+gear Vehicle_data.gear = (temp_message->data.byte[1]) >> 5; break; } case CAN_ID_BCU_TIRES: { // Tire temps Vehicle_data.t_trl = temp_message->data.byte[1]; Vehicle_data.t_trr = temp_message->data.byte[4]; Vehicle_data.t_tfl = temp_message->data.byte[5]; Vehicle_data.t_tfr = temp_message->data.byte[6]; break; } case CAN_ID_BCU_LAP_TIME: { // lap time Vehicle_data.lap_time_sec = temp_message->data.byte[1]; Vehicle_data.lap_time_msec = temp_message->data.byte[2] | ((temp_message->data.byte[3] & 0b11) << 8); break; } case CAN_ID_MS4_IGN_REV_ATH: { // rpm Vehicle_data.revol = (temp_message->data.byte[4] | temp_message->data.byte[3] << 8); break; } case CAN_ID_MS4_SPEED: { // speed Vehicle_data.speed_fl = 2 * (temp_message->data.byte[2]); Vehicle_data.speed_fr = 2 * (temp_message->data.byte[3]); Vehicle_data.speed = (Vehicle_data.speed_fl + Vehicle_data.speed_fr) / 2; break; } case CAN_ID_MS4_ETC: { // battery voltage Vehicle_data.u_batt = temp_message->data.byte[6]; break; } case CAN_ID_MS4_STATES_TEMP_PRESS: { // temp und p if (temp_message->data.byte[0] == 1) { Vehicle_data.p_oil = temp_message->data.byte[5]; Vehicle_data.p_fuel = temp_message->data.byte[7]; } else if (temp_message->data.byte[0] == 2) { Vehicle_data.t_air = temp_message->data.byte[7]; } else if (temp_message->data.byte[0] == 4) { Vehicle_data.t_oil = temp_message->data.byte[5]; } else if (temp_message->data.byte[0] == 5) { Vehicle_data.t_mot = temp_message->data.byte[4]; } break; } } } void update_LED() { // Copyright Michael Dietzel // m.dietzel@fasttube.de // Edit Michael Witt 05-2015 // m.witt@fasttube.de // EDIT BAHA ZARROUKI 05-2107 // z.baha@fasttube.de // alle Werte als Hex-Werte angegeben bool t_oil = (Vehicle_data.t_oil - 40) >= 0x96; // 150°C temp.oil bool t_air = (Vehicle_data.t_air - 40) >= 0x3C; // 60°C temp.llk bool t_mot = ((Vehicle_data.t_mot - 40) >= 0x69) and ((Vehicle_data.t_mot - 40) != 0xC8); // 105°C temp.water und !=200 bool g_auto = Vehicle_data.drs_active; bool u_batt = Vehicle_data.u_batt <= 0xA9; // 11.95V batt.spann. bool e_dros = Vehicle_data.e_thro; // error-bit bool rev_lim = Vehicle_data.rev_lim; uint16_t rev = Vehicle_data.revol; /*if(Vehicle_data.rev_lim){ for (int j = 0; j < 10; j++){ digitalWrite(leds[j], HIGH); //analogWrite(leds[j], STW_data.br); //nur eine der zwei zeilen } delay(100); for (int j = 0; j < 10; j++){ digitalWrite(leds[j], LOW); } delay(100); }else{*/ /*uint8_t helligkeit = 20; if(RPM_THRES_1 <= rev){ analogWrite(led1, helligkeit); }else{ analogWrite(led1, 0); } if(RPM_THRES_2 <= rev){ analogWrite(led2, helligkeit); }else{ analogWrite(led2, 0); } if(RPM_THRES_3 <= rev){ analogWrite(led3, helligkeit); }else{ analogWrite(led3, 0); } if(RPM_THRES_4 <= rev){ analogWrite(led4, helligkeit); }else{ analogWrite(led4, 0); } if(RPM_THRES_5 <= rev){ analogWrite(led5, helligkeit); }else{ analogWrite(led5, 0); } if(RPM_THRES_6 <= rev){ analogWrite(led6, helligkeit); }else{ analogWrite(led6, 0); } if(RPM_THRES_7 <= rev){ analogWrite(led7, helligkeit); }else{ analogWrite(led7, 0); } if(RPM_THRES_8 <= rev){ analogWrite(led8, helligkeit); }else{ analogWrite(led8, 0); } if(RPM_THRES_9 <= rev){ analogWrite(led9, helligkeit); }else{ analogWrite(led9, 0); } if(RPM_THRES_10 <= rev){ analogWrite(led10, helligkeit); }else{ analogWrite(led10, 0); }*/ digitalWrite(led1, RPM_THRES_1 <= rev); digitalWrite(led2, RPM_THRES_2 <= rev); digitalWrite(led3, RPM_THRES_3 <= rev); digitalWrite(led4, RPM_THRES_4 <= rev); digitalWrite(led5, RPM_THRES_5 <= rev); digitalWrite(led6, RPM_THRES_6 <= rev); digitalWrite(led7, RPM_THRES_7 <= rev); digitalWrite(led8, RPM_THRES_8 <= rev); digitalWrite(led9, RPM_THRES_9 <= rev); digitalWrite(led10, RPM_THRES_10 <= rev); digitalWrite(led11, t_mot); // rot, links, oben digitalWrite(led12, t_air); // rot, links, mitte digitalWrite(led13, t_oil); // rot, links, unten digitalWrite(led14, e_dros); // rot, rechts, oben digitalWrite(led15, u_batt); // rot rechts, mitte digitalWrite(led16, g_auto); // blau rechts, unten /*if(Vehicle_data.g_auto){ digitalWrite(led16, HIGH); }else{ digitalWrite(led16, LOW); }*/ }