/** ****************************************************************************** * @file stm32h7xx_hal_adc.c * @author MCD Application Team * @brief This file provides firmware functions to manage the following * functionalities of the Analog to Digital Converter (ADC) * peripheral: * + Peripheral Control functions * + Peripheral State functions * Other functions (extended functions) are available in file * "stm32h7xx_hal_adc_ex.c". * ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** @verbatim ============================================================================== ##### ADC peripheral features ##### ============================================================================== [..] (+) 16-bit, 14-bit, 12-bit, 10-bit or 8-bit configurable resolution. Note: On devices STM32H72xx and STM32H73xx, these resolution are applicable to instances ADC1 and ADC2. ADC3 is featuring resolutions 12-bit, 10-bit, 8-bit, 6-bit. (+) Interrupt generation at the end of regular conversion and in case of analog watchdog or overrun events. (+) Single and continuous conversion modes. (+) Scan mode for conversion of several channels sequentially. (+) Data alignment with in-built data coherency. (+) Programmable sampling time (channel wise) (+) External trigger (timer or EXTI) with configurable polarity (+) DMA request generation for transfer of conversions data of regular group. (+) Configurable delay between conversions in Dual interleaved mode. (+) ADC channels selectable single/differential input. (+) ADC offset shared on 4 offset instances. (+) ADC calibration (+) ADC conversion of regular group. (+) ADC supply requirements: 1.62 V to 3.6 V. (+) ADC input range: from Vref- (connected to Vssa) to Vref+ (connected to Vdda or to an external voltage reference). ##### How to use this driver ##### ============================================================================== [..] *** Configuration of top level parameters related to ADC *** ============================================================ [..] (#) Enable the ADC interface (++) As prerequisite, ADC clock must be configured at RCC top level. (++) Two clock settings are mandatory: (+++) ADC clock (core clock, also possibly conversion clock). (+++) ADC clock (conversions clock). Two possible clock sources: synchronous clock derived from AHB clock or asynchronous clock derived from system clock, the PLL2 or the PLL3 running up to 400MHz. (+++) Example: Into HAL_ADC_MspInit() (recommended code location) or with other device clock parameters configuration: (+++) __HAL_RCC_ADC_CLK_ENABLE(); (mandatory) RCC_ADCCLKSOURCE_PLL2 enable: (optional: if asynchronous clock selected) (+++) RCC_PeriphClkInitTypeDef RCC_PeriphClkInit; (+++) PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC; (+++) PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_PLL2; (+++) HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit); (++) ADC clock source and clock prescaler are configured at ADC level with parameter "ClockPrescaler" using function HAL_ADC_Init(). (#) ADC pins configuration (++) Enable the clock for the ADC GPIOs using macro __HAL_RCC_GPIOx_CLK_ENABLE() (++) Configure these ADC pins in analog mode using function HAL_GPIO_Init() (#) Optionally, in case of usage of ADC with interruptions: (++) Configure the NVIC for ADC using function HAL_NVIC_EnableIRQ(ADCx_IRQn) (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler() into the function of corresponding ADC interruption vector ADCx_IRQHandler(). (#) Optionally, in case of usage of DMA: (++) Configure the DMA (DMA channel, mode normal or circular, ...) using function HAL_DMA_Init(). (++) Configure the NVIC for DMA using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn) (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler() into the function of corresponding DMA interruption vector DMAx_Channelx_IRQHandler(). *** Configuration of ADC, group regular, channels parameters *** ================================================================ [..] (#) Configure the ADC parameters (resolution, data alignment, ...) and regular group parameters (conversion trigger, sequencer, ...) using function HAL_ADC_Init(). (#) Configure the channels for regular group parameters (channel number, channel rank into sequencer, ..., into regular group) using function HAL_ADC_ConfigChannel(). (#) Optionally, configure the analog watchdog parameters (channels monitored, thresholds, ...) using function HAL_ADC_AnalogWDGConfig(). *** Execution of ADC conversions *** ==================================== [..] (#) Optionally, perform an automatic ADC calibration to improve the conversion accuracy using function HAL_ADCEx_Calibration_Start(). (#) ADC driver can be used among three modes: polling, interruption, transfer by DMA. (++) ADC conversion by polling: (+++) Activate the ADC peripheral and start conversions using function HAL_ADC_Start() (+++) Wait for ADC conversion completion using function HAL_ADC_PollForConversion() (+++) Retrieve conversion results using function HAL_ADC_GetValue() (+++) Stop conversion and disable the ADC peripheral using function HAL_ADC_Stop() (++) ADC conversion by interruption: (+++) Activate the ADC peripheral and start conversions using function HAL_ADC_Start_IT() (+++) Wait for ADC conversion completion by call of function HAL_ADC_ConvCpltCallback() (this function must be implemented in user program) (+++) Retrieve conversion results using function HAL_ADC_GetValue() (+++) Stop conversion and disable the ADC peripheral using function HAL_ADC_Stop_IT() (++) ADC conversion with transfer by DMA: (+++) Activate the ADC peripheral and start conversions using function HAL_ADC_Start_DMA() (+++) Wait for ADC conversion completion by call of function HAL_ADC_ConvCpltCallback() or HAL_ADC_ConvHalfCpltCallback() (these functions must be implemented in user program) (+++) Conversion results are automatically transferred by DMA into destination variable address. (+++) Stop conversion and disable the ADC peripheral using function HAL_ADC_Stop_DMA() [..] (@) Callback functions must be implemented in user program: (+@) HAL_ADC_ErrorCallback() (+@) HAL_ADC_LevelOutOfWindowCallback() (callback of analog watchdog) (+@) HAL_ADC_ConvCpltCallback() (+@) HAL_ADC_ConvHalfCpltCallback *** Deinitialization of ADC *** ============================================================ [..] (#) Disable the ADC interface (++) ADC clock can be hard reset and disabled at RCC top level. (++) Hard reset of ADC peripherals using macro __HAL_RCC_ADCx_FORCE_RESET(), __HAL_RCC_ADCx_RELEASE_RESET(). (++) ADC clock disable using the equivalent macro/functions as configuration step. (+++) Example: Into HAL_ADC_MspDeInit() (recommended code location) or with other device clock parameters configuration: (+++) __HAL_RCC_ADC_CLK_DISABLE(); (if not used anymore) RCC_ADCCLKSOURCE_CLKP restore: (optional) (+++) RCC_PeriphClkInitTypeDef RCC_PeriphClkInit; (+++) PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC; (+++) PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_CLKP; (+++) HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit); (#) ADC pins configuration (++) Disable the clock for the ADC GPIOs using macro __HAL_RCC_GPIOx_CLK_DISABLE() (#) Optionally, in case of usage of ADC with interruptions: (++) Disable the NVIC for ADC using function HAL_NVIC_EnableIRQ(ADCx_IRQn) (#) Optionally, in case of usage of DMA: (++) Deinitialize the DMA using function HAL_DMA_Init(). (++) Disable the NVIC for DMA using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn) [..] *** Callback registration *** ============================================= [..] The compilation flag USE_HAL_ADC_REGISTER_CALLBACKS, when set to 1, allows the user to configure dynamically the driver callbacks. Use Functions HAL_ADC_RegisterCallback() to register an interrupt callback. [..] Function HAL_ADC_RegisterCallback() allows to register following callbacks: (+) ConvCpltCallback : ADC conversion complete callback (+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback (+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback (+) ErrorCallback : ADC error callback (+) InjectedConvCpltCallback : ADC group injected conversion complete callback (+) InjectedQueueOverflowCallback : ADC group injected context queue overflow callback (+) LevelOutOfWindow2Callback : ADC analog watchdog 2 callback (+) LevelOutOfWindow3Callback : ADC analog watchdog 3 callback (+) EndOfSamplingCallback : ADC end of sampling callback (+) MspInitCallback : ADC Msp Init callback (+) MspDeInitCallback : ADC Msp DeInit callback This function takes as parameters the HAL peripheral handle, the Callback ID and a pointer to the user callback function. [..] Use function HAL_ADC_UnRegisterCallback to reset a callback to the default weak function. [..] HAL_ADC_UnRegisterCallback takes as parameters the HAL peripheral handle, and the Callback ID. This function allows to reset following callbacks: (+) ConvCpltCallback : ADC conversion complete callback (+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback (+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback (+) ErrorCallback : ADC error callback (+) InjectedConvCpltCallback : ADC group injected conversion complete callback (+) InjectedQueueOverflowCallback : ADC group injected context queue overflow callback (+) LevelOutOfWindow2Callback : ADC analog watchdog 2 callback (+) LevelOutOfWindow3Callback : ADC analog watchdog 3 callback (+) EndOfSamplingCallback : ADC end of sampling callback (+) MspInitCallback : ADC Msp Init callback (+) MspDeInitCallback : ADC Msp DeInit callback [..] By default, after the HAL_ADC_Init() and when the state is HAL_ADC_STATE_RESET all callbacks are set to the corresponding weak functions: examples HAL_ADC_ConvCpltCallback(), HAL_ADC_ErrorCallback(). Exception done for MspInit and MspDeInit functions that are reset to the legacy weak functions in the HAL_ADC_Init()/ HAL_ADC_DeInit() only when these callbacks are null (not registered beforehand). [..] If MspInit or MspDeInit are not null, the HAL_ADC_Init()/ HAL_ADC_DeInit() keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state. [..] Callbacks can be registered/unregistered in HAL_ADC_STATE_READY state only. Exception done MspInit/MspDeInit functions that can be registered/unregistered in HAL_ADC_STATE_READY or HAL_ADC_STATE_RESET state, thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. [..] Then, the user first registers the MspInit/MspDeInit user callbacks using HAL_ADC_RegisterCallback() before calling HAL_ADC_DeInit() or HAL_ADC_Init() function. [..] When the compilation flag USE_HAL_ADC_REGISTER_CALLBACKS is set to 0 or not defined, the callback registration feature is not available and all callbacks are set to the corresponding weak functions. @endverbatim ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32h7xx_hal.h" /** @addtogroup STM32H7xx_HAL_Driver * @{ */ /** @defgroup ADC ADC * @brief ADC HAL module driver * @{ */ #ifdef HAL_ADC_MODULE_ENABLED /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /** @defgroup ADC_Private_Constants ADC Private Constants * @{ */ #define ADC_CFGR_FIELDS_1 ((uint32_t)(ADC_CFGR_RES |\ ADC_CFGR_CONT | ADC_CFGR_OVRMOD |\ ADC_CFGR_DISCEN | ADC_CFGR_DISCNUM |\ ADC_CFGR_EXTEN | ADC_CFGR_EXTSEL)) /*!< ADC_CFGR fields of parameters that can be updated when no regular conversion is on-going */ #if defined(ADC_VER_V5_V90) #define ADC3_CFGR_FIELDS_1 ((ADC3_CFGR_RES | ADC3_CFGR_ALIGN |\ ADC_CFGR_CONT | ADC_CFGR_OVRMOD |\ ADC_CFGR_DISCEN | ADC_CFGR_DISCNUM |\ ADC_CFGR_EXTEN | ADC_CFGR_EXTSEL)) /*!< ADC_CFGR fields of parameters that can be updated when no regular conversion is on-going */ #endif #define ADC_CFGR2_FIELDS ((uint32_t)(ADC_CFGR2_ROVSE | ADC_CFGR2_OVSR |\ ADC_CFGR2_OVSS | ADC_CFGR2_TROVS |\ ADC_CFGR2_ROVSM)) /*!< ADC_CFGR2 fields of parameters that can be updated when no conversion (neither regular nor injected) is on-going */ /* Timeout values for ADC operations (enable settling time, */ /* disable settling time, ...). */ /* Values defined to be higher than worst cases: low clock frequency, */ /* maximum prescalers. */ #define ADC_ENABLE_TIMEOUT (2UL) /*!< ADC enable time-out value */ #define ADC_DISABLE_TIMEOUT (2UL) /*!< ADC disable time-out value */ /* Timeout to wait for current conversion on going to be completed. */ /* Timeout fixed to worst case, for 1 channel. */ /* - maximum sampling time (830.5 adc_clk) */ /* - ADC resolution (Tsar 16 bits= 16.5 adc_clk) */ /* - ADC clock with prescaler 256 */ /* 823 * 256 = 210688 clock cycles max */ /* Unit: cycles of CPU clock. */ #define ADC_CONVERSION_TIME_MAX_CPU_CYCLES (210688UL) /*!< ADC conversion completion time-out value */ /** * @} */ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Exported functions --------------------------------------------------------*/ /** @defgroup ADC_Exported_Functions ADC Exported Functions * @{ */ /** @defgroup ADC_Exported_Functions_Group1 Initialization and de-initialization functions * @brief ADC Initialization and Configuration functions * @verbatim =============================================================================== ##### Initialization and de-initialization functions ##### =============================================================================== [..] This section provides functions allowing to: (+) Initialize and configure the ADC. (+) De-initialize the ADC. @endverbatim * @{ */ /** * @brief Initialize the ADC peripheral and regular group according to * parameters specified in structure "ADC_InitTypeDef". * @note As prerequisite, ADC clock must be configured at RCC top level * (refer to description of RCC configuration for ADC * in header of this file). * @note Possibility to update parameters on the fly: * This function initializes the ADC MSP (HAL_ADC_MspInit()) only when * coming from ADC state reset. Following calls to this function can * be used to reconfigure some parameters of ADC_InitTypeDef * structure on the fly, without modifying MSP configuration. If ADC * MSP has to be modified again, HAL_ADC_DeInit() must be called * before HAL_ADC_Init(). * The setting of these parameters is conditioned to ADC state. * For parameters constraints, see comments of structure * "ADC_InitTypeDef". * @note This function configures the ADC within 2 scopes: scope of entire * ADC and scope of regular group. For parameters details, see comments * of structure "ADC_InitTypeDef". * @note Parameters related to common ADC registers (ADC clock mode) are set * only if all ADCs are disabled. * If this is not the case, these common parameters setting are * bypassed without error reporting: it can be the intended behaviour in * case of update of a parameter of ADC_InitTypeDef on the fly, * without disabling the other ADCs. * @param hadc ADC handle * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef *hadc) { HAL_StatusTypeDef tmp_hal_status = HAL_OK; uint32_t tmpCFGR; uint32_t tmp_adc_reg_is_conversion_on_going; __IO uint32_t wait_loop_index = 0UL; uint32_t tmp_adc_is_conversion_on_going_regular; uint32_t tmp_adc_is_conversion_on_going_injected; /* Check ADC handle */ if (hadc == NULL) { return HAL_ERROR; } /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); assert_param(IS_ADC_CLOCKPRESCALER(hadc->Init.ClockPrescaler)); assert_param(IS_ADC_RESOLUTION(hadc->Init.Resolution)); assert_param(IS_ADC_SCAN_MODE(hadc->Init.ScanConvMode)); assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); assert_param(IS_ADC_EXTTRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); assert_param(IS_ADC_EXTTRIG(hadc->Init.ExternalTrigConv)); assert_param(IS_ADC_CONVERSIONDATAMGT(hadc->Init.ConversionDataManagement)); assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection)); assert_param(IS_ADC_OVERRUN(hadc->Init.Overrun)); assert_param(IS_FUNCTIONAL_STATE(hadc->Init.LowPowerAutoWait)); assert_param(IS_FUNCTIONAL_STATE(hadc->Init.OversamplingMode)); if (hadc->Init.ScanConvMode != ADC_SCAN_DISABLE) { assert_param(IS_ADC_REGULAR_NB_CONV(hadc->Init.NbrOfConversion)); assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode)); if (hadc->Init.DiscontinuousConvMode == ENABLE) { assert_param(IS_ADC_REGULAR_DISCONT_NUMBER(hadc->Init.NbrOfDiscConversion)); } } /* DISCEN and CONT bits cannot be set at the same time */ assert_param(!((hadc->Init.DiscontinuousConvMode == ENABLE) && (hadc->Init.ContinuousConvMode == ENABLE))); /* Actions performed only if ADC is coming from state reset: */ /* - Initialization of ADC MSP */ if (hadc->State == HAL_ADC_STATE_RESET) { #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) /* Init the ADC Callback settings */ hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback; /* Legacy weak callback */ hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback; /* Legacy weak callback */ hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback; /* Legacy weak callback */ hadc->ErrorCallback = HAL_ADC_ErrorCallback; /* Legacy weak callback */ hadc->InjectedConvCpltCallback = HAL_ADCEx_InjectedConvCpltCallback; /* Legacy weak callback */ hadc->InjectedQueueOverflowCallback = HAL_ADCEx_InjectedQueueOverflowCallback; /* Legacy weak callback */ hadc->LevelOutOfWindow2Callback = HAL_ADCEx_LevelOutOfWindow2Callback; /* Legacy weak callback */ hadc->LevelOutOfWindow3Callback = HAL_ADCEx_LevelOutOfWindow3Callback; /* Legacy weak callback */ hadc->EndOfSamplingCallback = HAL_ADCEx_EndOfSamplingCallback; /* Legacy weak callback */ if (hadc->MspInitCallback == NULL) { hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ } /* Init the low level hardware */ hadc->MspInitCallback(hadc); #else /* Init the low level hardware */ HAL_ADC_MspInit(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ /* Set ADC error code to none */ ADC_CLEAR_ERRORCODE(hadc); /* Initialize Lock */ hadc->Lock = HAL_UNLOCKED; } /* - Exit from deep-power-down mode and ADC voltage regulator enable */ if (LL_ADC_IsDeepPowerDownEnabled(hadc->Instance) != 0UL) { /* Disable ADC deep power down mode */ LL_ADC_DisableDeepPowerDown(hadc->Instance); /* System was in deep power down mode, calibration must be relaunched or a previously saved calibration factor re-applied once the ADC voltage regulator is enabled */ } if (LL_ADC_IsInternalRegulatorEnabled(hadc->Instance) == 0UL) { /* Enable ADC internal voltage regulator */ LL_ADC_EnableInternalRegulator(hadc->Instance); /* Note: Variable divided by 2 to compensate partially */ /* CPU processing cycles, scaling in us split to not */ /* exceed 32 bits register capacity and handle low frequency. */ wait_loop_index = ((LL_ADC_DELAY_INTERNAL_REGUL_STAB_US / 10UL) * ((SystemCoreClock / (100000UL * 2UL)) + 1UL)); while (wait_loop_index != 0UL) { wait_loop_index--; } } /* Verification that ADC voltage regulator is correctly enabled, whether */ /* or not ADC is coming from state reset (if any potential problem of */ /* clocking, voltage regulator would not be enabled). */ if (LL_ADC_IsInternalRegulatorEnabled(hadc->Instance) == 0UL) { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); /* Set ADC error code to ADC peripheral internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); tmp_hal_status = HAL_ERROR; } /* Configuration of ADC parameters if previous preliminary actions are */ /* correctly completed and if there is no conversion on going on regular */ /* group (ADC may already be enabled at this point if HAL_ADC_Init() is */ /* called to update a parameter on the fly). */ tmp_adc_reg_is_conversion_on_going = LL_ADC_REG_IsConversionOngoing(hadc->Instance); if (((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL) && (tmp_adc_reg_is_conversion_on_going == 0UL) ) { /* Set ADC state */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_REG_BUSY, HAL_ADC_STATE_BUSY_INTERNAL); /* Configuration of common ADC parameters */ /* Parameters update conditioned to ADC state: */ /* Parameters that can be updated only when ADC is disabled: */ /* - clock configuration */ if (LL_ADC_IsEnabled(hadc->Instance) == 0UL) { if (__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) == 0UL) { /* Reset configuration of ADC common register CCR: */ /* */ /* - ADC clock mode and ACC prescaler (CKMODE and PRESC bits)are set */ /* according to adc->Init.ClockPrescaler. It selects the clock */ /* source and sets the clock division factor. */ /* */ /* Some parameters of this register are not reset, since they are set */ /* by other functions and must be kept in case of usage of this */ /* function on the fly (update of a parameter of ADC_InitTypeDef */ /* without needing to reconfigure all other ADC groups/channels */ /* parameters): */ /* - when multimode feature is available, multimode-related */ /* parameters: MDMA, DMACFG, DELAY, DUAL (set by API */ /* HAL_ADCEx_MultiModeConfigChannel() ) */ /* - internal measurement paths: Vbat, temperature sensor, Vref */ /* (set into HAL_ADC_ConfigChannel() or */ /* HAL_ADCEx_InjectedConfigChannel() ) */ LL_ADC_SetCommonClock(__LL_ADC_COMMON_INSTANCE(hadc->Instance), hadc->Init.ClockPrescaler); } } /* Configuration of ADC: */ /* - resolution Init.Resolution */ /* - external trigger to start conversion Init.ExternalTrigConv */ /* - external trigger polarity Init.ExternalTrigConvEdge */ /* - continuous conversion mode Init.ContinuousConvMode */ /* - overrun Init.Overrun */ /* - discontinuous mode Init.DiscontinuousConvMode */ /* - discontinuous mode channel count Init.NbrOfDiscConversion */ #if defined(ADC_VER_V5_3) tmpCFGR = (ADC_CFGR_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode) | hadc->Init.Overrun | hadc->Init.Resolution | ADC_CFGR_REG_DISCONTINUOUS((uint32_t)hadc->Init.DiscontinuousConvMode)); #elif defined(ADC_VER_V5_V90) if (hadc->Instance == ADC3) { tmpCFGR = (ADC_CFGR_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode) | hadc->Init.Overrun | hadc->Init.DataAlign | ((__LL_ADC12_RESOLUTION_TO_ADC3(hadc->Init.Resolution) & (ADC_CFGR_RES_1 | ADC_CFGR_RES_0)) << 1UL) | ADC_CFGR_REG_DISCONTINUOUS((uint32_t)hadc->Init.DiscontinuousConvMode)); } else { tmpCFGR = (ADC_CFGR_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode) | hadc->Init.Overrun | hadc->Init.Resolution | ADC_CFGR_REG_DISCONTINUOUS((uint32_t)hadc->Init.DiscontinuousConvMode)); } #else if ((HAL_GetREVID() > REV_ID_Y) && (ADC_RESOLUTION_8B == hadc->Init.Resolution)) { /* for STM32H7 silicon rev.B and above , ADC_CFGR_RES value for 8bits resolution is : b111 */ tmpCFGR = (ADC_CFGR_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode) | hadc->Init.Overrun | hadc->Init.Resolution | (ADC_CFGR_RES_1 | ADC_CFGR_RES_0) | ADC_CFGR_REG_DISCONTINUOUS((uint32_t)hadc->Init.DiscontinuousConvMode)); } else { tmpCFGR = (ADC_CFGR_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode) | hadc->Init.Overrun | hadc->Init.Resolution | ADC_CFGR_REG_DISCONTINUOUS((uint32_t)hadc->Init.DiscontinuousConvMode)); } #endif /* ADC_VER_V5_3 */ if (hadc->Init.DiscontinuousConvMode == ENABLE) { tmpCFGR |= ADC_CFGR_DISCONTINUOUS_NUM(hadc->Init.NbrOfDiscConversion); } /* Enable external trigger if trigger selection is different of software */ /* start. */ /* Note: This configuration keeps the hardware feature of parameter */ /* ExternalTrigConvEdge "trigger edge none" equivalent to */ /* software start. */ if (hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START) { tmpCFGR |= ((hadc->Init.ExternalTrigConv & ADC_CFGR_EXTSEL) | hadc->Init.ExternalTrigConvEdge ); } #if defined(ADC_VER_V5_V90) if (hadc->Instance == ADC3) { /* Update Configuration Register CFGR */ MODIFY_REG(hadc->Instance->CFGR, ADC3_CFGR_FIELDS_1, tmpCFGR); /* Configuration of sampling mode */ MODIFY_REG(hadc->Instance->CFGR2, ADC3_CFGR2_BULB | ADC3_CFGR2_SMPTRIG, hadc->Init.SamplingMode); } else { /* Update Configuration Register CFGR */ MODIFY_REG(hadc->Instance->CFGR, ADC_CFGR_FIELDS_1, tmpCFGR); } #else /* Update Configuration Register CFGR */ MODIFY_REG(hadc->Instance->CFGR, ADC_CFGR_FIELDS_1, tmpCFGR); #endif /* Parameters update conditioned to ADC state: */ /* Parameters that can be updated when ADC is disabled or enabled without */ /* conversion on going on regular and injected groups: */ /* - Conversion data management Init.ConversionDataManagement */ /* - LowPowerAutoWait feature Init.LowPowerAutoWait */ /* - Oversampling parameters Init.Oversampling */ tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance); tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance); if ((tmp_adc_is_conversion_on_going_regular == 0UL) && (tmp_adc_is_conversion_on_going_injected == 0UL) ) { #if defined(ADC_VER_V5_V90) if (hadc->Instance == ADC3) { tmpCFGR = ( ADC_CFGR_AUTOWAIT((uint32_t)hadc->Init.LowPowerAutoWait) | ADC3_CFGR_DMACONTREQ((uint32_t)hadc->Init.DMAContinuousRequests)); } else { tmpCFGR = ( ADC_CFGR_AUTOWAIT((uint32_t)hadc->Init.LowPowerAutoWait) | ADC_CFGR_DMACONTREQ((uint32_t)hadc->Init.ConversionDataManagement)); } #else tmpCFGR = ( ADC_CFGR_AUTOWAIT((uint32_t)hadc->Init.LowPowerAutoWait) | ADC_CFGR_DMACONTREQ((uint32_t)hadc->Init.ConversionDataManagement)); #endif MODIFY_REG(hadc->Instance->CFGR, ADC_CFGR_FIELDS_2, tmpCFGR); if (hadc->Init.OversamplingMode == ENABLE) { #if defined(ADC_VER_V5_V90) if (hadc->Instance == ADC3) { assert_param(IS_ADC_OVERSAMPLING_RATIO_ADC3(hadc->Init.Oversampling.Ratio)); } else { assert_param(IS_ADC_OVERSAMPLING_RATIO(hadc->Init.Oversampling.Ratio)); } #else assert_param(IS_ADC_OVERSAMPLING_RATIO(hadc->Init.Oversampling.Ratio)); #endif assert_param(IS_ADC_RIGHT_BIT_SHIFT(hadc->Init.Oversampling.RightBitShift)); assert_param(IS_ADC_TRIGGERED_OVERSAMPLING_MODE(hadc->Init.Oversampling.TriggeredMode)); assert_param(IS_ADC_REGOVERSAMPLING_MODE(hadc->Init.Oversampling.OversamplingStopReset)); if ((hadc->Init.ExternalTrigConv == ADC_SOFTWARE_START) || (hadc->Init.ExternalTrigConvEdge == ADC_EXTERNALTRIGCONVEDGE_NONE)) { /* Multi trigger is not applicable to software-triggered conversions */ assert_param((hadc->Init.Oversampling.TriggeredMode == ADC_TRIGGEREDMODE_SINGLE_TRIGGER)); } #if defined(ADC_VER_V5_V90) if (hadc->Instance == ADC3) { /* Configuration of Oversampler: */ /* - Oversampling Ratio */ /* - Right bit shift */ /* - Triggered mode */ /* - Oversampling mode (continued/resumed) */ MODIFY_REG(hadc->Instance->CFGR2, ADC_CFGR2_OVSR | ADC_CFGR2_OVSS | ADC_CFGR2_TROVS | ADC_CFGR2_ROVSM, ADC_CFGR2_ROVSE | hadc->Init.Oversampling.Ratio | hadc->Init.Oversampling.RightBitShift | hadc->Init.Oversampling.TriggeredMode | hadc->Init.Oversampling.OversamplingStopReset ); } else { /* Configuration of Oversampler: */ /* - Oversampling Ratio */ /* - Right bit shift */ /* - Left bit shift */ /* - Triggered mode */ /* - Oversampling mode (continued/resumed) */ MODIFY_REG(hadc->Instance->CFGR2, ADC_CFGR2_FIELDS, ADC_CFGR2_ROVSE | ((hadc->Init.Oversampling.Ratio - 1UL) << ADC_CFGR2_OVSR_Pos) | hadc->Init.Oversampling.RightBitShift | hadc->Init.Oversampling.TriggeredMode | hadc->Init.Oversampling.OversamplingStopReset); } #else /* Configuration of Oversampler: */ /* - Oversampling Ratio */ /* - Right bit shift */ /* - Left bit shift */ /* - Triggered mode */ /* - Oversampling mode (continued/resumed) */ MODIFY_REG(hadc->Instance->CFGR2, ADC_CFGR2_FIELDS, ADC_CFGR2_ROVSE | ((hadc->Init.Oversampling.Ratio - 1UL) << ADC_CFGR2_OVSR_Pos) | hadc->Init.Oversampling.RightBitShift | hadc->Init.Oversampling.TriggeredMode | hadc->Init.Oversampling.OversamplingStopReset); #endif } else { /* Disable ADC oversampling scope on ADC group regular */ CLEAR_BIT(hadc->Instance->CFGR2, ADC_CFGR2_ROVSE); } /* Set the LeftShift parameter: it is applied to the final result with or without oversampling */ MODIFY_REG(hadc->Instance->CFGR2, ADC_CFGR2_LSHIFT, hadc->Init.LeftBitShift); #if defined(ADC_VER_V5_V90) if (hadc->Instance != ADC3) { /* Configure the BOOST Mode */ ADC_ConfigureBoostMode(hadc); } #else /* Configure the BOOST Mode */ ADC_ConfigureBoostMode(hadc); #endif } /* Configuration of regular group sequencer: */ /* - if scan mode is disabled, regular channels sequence length is set to */ /* 0x00: 1 channel converted (channel on regular rank 1) */ /* Parameter "NbrOfConversion" is discarded. */ /* Note: Scan mode is not present by hardware on this device, but */ /* emulated by software for alignment over all STM32 devices. */ /* - if scan mode is enabled, regular channels sequence length is set to */ /* parameter "NbrOfConversion". */ if (hadc->Init.ScanConvMode == ADC_SCAN_ENABLE) { /* Set number of ranks in regular group sequencer */ MODIFY_REG(hadc->Instance->SQR1, ADC_SQR1_L, (hadc->Init.NbrOfConversion - (uint8_t)1)); } else { CLEAR_BIT(hadc->Instance->SQR1, ADC_SQR1_L); } /* Initialize the ADC state */ /* Clear HAL_ADC_STATE_BUSY_INTERNAL bit, set HAL_ADC_STATE_READY bit */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL, HAL_ADC_STATE_READY); } else { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); tmp_hal_status = HAL_ERROR; } /* Return function status */ return tmp_hal_status; } /** * @brief Deinitialize the ADC peripheral registers to their default reset * values, with deinitialization of the ADC MSP. * @note For devices with several ADCs: reset of ADC common registers is done * only if all ADCs sharing the same common group are disabled. * (function "HAL_ADC_MspDeInit()" is also called under the same conditions: * all ADC instances use the same core clock at RCC level, disabling * the core clock reset all ADC instances). * If this is not the case, reset of these common parameters reset is * bypassed without error reporting: it can be the intended behavior in * case of reset of a single ADC while the other ADCs sharing the same * common group is still running. * @note By default, HAL_ADC_DeInit() set ADC in mode deep power-down: * this saves more power by reducing leakage currents * and is particularly interesting before entering MCU low-power modes. * @param hadc ADC handle * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef *hadc) { HAL_StatusTypeDef tmp_hal_status; /* Check ADC handle */ if (hadc == NULL) { return HAL_ERROR; } /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL); /* Stop potential conversion on going */ tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP); /* Disable ADC peripheral if conversions are effectively stopped */ /* Flush register JSQR: reset the queue sequencer when injected */ /* queue sequencer is enabled and ADC disabled. */ /* The software and hardware triggers of the injected sequence are both */ /* internally disabled just after the completion of the last valid */ /* injected sequence. */ SET_BIT(hadc->Instance->CFGR, ADC_CFGR_JQM); /* Disable ADC peripheral if conversions are effectively stopped */ if (tmp_hal_status == HAL_OK) { /* Disable the ADC peripheral */ tmp_hal_status = ADC_Disable(hadc); /* Check if ADC is effectively disabled */ if (tmp_hal_status == HAL_OK) { /* Change ADC state */ hadc->State = HAL_ADC_STATE_READY; } } /* Note: HAL ADC deInit is done independently of ADC conversion stop */ /* and disable return status. In case of status fail, attempt to */ /* perform deinitialization anyway and it is up user code in */ /* in HAL_ADC_MspDeInit() to reset the ADC peripheral using */ /* system RCC hard reset. */ /* ========== Reset ADC registers ========== */ /* Reset register IER */ __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_AWD3 | ADC_IT_AWD2 | ADC_IT_AWD1 | ADC_IT_JQOVF | ADC_IT_OVR | ADC_IT_JEOS | ADC_IT_JEOC | ADC_IT_EOS | ADC_IT_EOC | ADC_IT_EOSMP | ADC_IT_RDY)); /* Reset register ISR */ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_AWD3 | ADC_FLAG_AWD2 | ADC_FLAG_AWD1 | ADC_FLAG_JQOVF | ADC_FLAG_OVR | ADC_FLAG_JEOS | ADC_FLAG_JEOC | ADC_FLAG_EOS | ADC_FLAG_EOC | ADC_FLAG_EOSMP | ADC_FLAG_RDY)); /* Reset register CR */ /* Bits ADC_CR_JADSTP, ADC_CR_ADSTP, ADC_CR_JADSTART, ADC_CR_ADSTART, ADC_CR_ADCAL, ADC_CR_ADDIS and ADC_CR_ADEN are in access mode "read-set": no direct reset applicable. Update CR register to reset value where doable by software */ CLEAR_BIT(hadc->Instance->CR, ADC_CR_ADVREGEN | ADC_CR_ADCALDIF); SET_BIT(hadc->Instance->CR, ADC_CR_DEEPPWD); /* Reset register CFGR */ CLEAR_BIT(hadc->Instance->CFGR, ADC_CFGR_AWD1CH | ADC_CFGR_JAUTO | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL | ADC_CFGR_JQM | ADC_CFGR_JDISCEN | ADC_CFGR_DISCNUM | ADC_CFGR_DISCEN | ADC_CFGR_AUTDLY | ADC_CFGR_CONT | ADC_CFGR_OVRMOD | ADC_CFGR_EXTEN | ADC_CFGR_EXTSEL | ADC_CFGR_RES | ADC_CFGR_DMNGT); SET_BIT(hadc->Instance->CFGR, ADC_CFGR_JQDIS); /* Reset register CFGR2 */ CLEAR_BIT(hadc->Instance->CFGR2, ADC_CFGR2_ROVSM | ADC_CFGR2_TROVS | ADC_CFGR2_OVSS | ADC_CFGR2_OVSR | ADC_CFGR2_JOVSE | ADC_CFGR2_ROVSE); /* Reset register SMPR1 */ CLEAR_BIT(hadc->Instance->SMPR1, ADC_SMPR1_FIELDS); /* Reset register SMPR2 */ CLEAR_BIT(hadc->Instance->SMPR2, ADC_SMPR2_SMP18 | ADC_SMPR2_SMP17 | ADC_SMPR2_SMP16 | ADC_SMPR2_SMP15 | ADC_SMPR2_SMP14 | ADC_SMPR2_SMP13 | ADC_SMPR2_SMP12 | ADC_SMPR2_SMP11 | ADC_SMPR2_SMP10); #if defined(ADC_VER_V5_V90) if (hadc->Instance == ADC3) { /* Reset register LTR1 and HTR1 */ CLEAR_BIT(hadc->Instance->LTR1_TR1, ADC3_TR1_HT1 | ADC3_TR1_LT1); CLEAR_BIT(hadc->Instance->HTR1_TR2, ADC3_TR2_HT2 | ADC3_TR2_LT2); /* Reset register LTR3 and HTR3 */ CLEAR_BIT(hadc->Instance->RES1_TR3, ADC3_TR3_HT3 | ADC3_TR3_LT3); } else { CLEAR_BIT(hadc->Instance->LTR1_TR1, ADC_LTR_LT); CLEAR_BIT(hadc->Instance->HTR1_TR2, ADC_HTR_HT); /* Reset register LTR2 and HTR2*/ CLEAR_BIT(hadc->Instance->LTR2_DIFSEL, ADC_LTR_LT); CLEAR_BIT(hadc->Instance->HTR2_CALFACT, ADC_HTR_HT); /* Reset register LTR3 and HTR3 */ CLEAR_BIT(hadc->Instance->LTR3_RES10, ADC_LTR_LT); CLEAR_BIT(hadc->Instance->HTR3_RES11, ADC_HTR_HT); } #else /* Reset register LTR1 and HTR1 */ CLEAR_BIT(hadc->Instance->LTR1, ADC_LTR_LT); CLEAR_BIT(hadc->Instance->HTR1, ADC_HTR_HT); /* Reset register LTR2 and HTR2*/ CLEAR_BIT(hadc->Instance->LTR2, ADC_LTR_LT); CLEAR_BIT(hadc->Instance->HTR2, ADC_HTR_HT); /* Reset register LTR3 and HTR3 */ CLEAR_BIT(hadc->Instance->LTR3, ADC_LTR_LT); CLEAR_BIT(hadc->Instance->HTR3, ADC_HTR_HT); #endif /* ADC_VER_V5_V90 */ /* Reset register SQR1 */ CLEAR_BIT(hadc->Instance->SQR1, ADC_SQR1_SQ4 | ADC_SQR1_SQ3 | ADC_SQR1_SQ2 | ADC_SQR1_SQ1 | ADC_SQR1_L); /* Reset register SQR2 */ CLEAR_BIT(hadc->Instance->SQR2, ADC_SQR2_SQ9 | ADC_SQR2_SQ8 | ADC_SQR2_SQ7 | ADC_SQR2_SQ6 | ADC_SQR2_SQ5); /* Reset register SQR3 */ CLEAR_BIT(hadc->Instance->SQR3, ADC_SQR3_SQ14 | ADC_SQR3_SQ13 | ADC_SQR3_SQ12 | ADC_SQR3_SQ11 | ADC_SQR3_SQ10); /* Reset register SQR4 */ CLEAR_BIT(hadc->Instance->SQR4, ADC_SQR4_SQ16 | ADC_SQR4_SQ15); /* Register JSQR was reset when the ADC was disabled */ /* Reset register DR */ /* bits in access mode read only, no direct reset applicable*/ /* Reset register OFR1 */ CLEAR_BIT(hadc->Instance->OFR1, ADC_OFR1_SSATE | ADC_OFR1_OFFSET1_CH | ADC_OFR1_OFFSET1); /* Reset register OFR2 */ CLEAR_BIT(hadc->Instance->OFR2, ADC_OFR2_SSATE | ADC_OFR2_OFFSET2_CH | ADC_OFR2_OFFSET2); /* Reset register OFR3 */ CLEAR_BIT(hadc->Instance->OFR3, ADC_OFR3_SSATE | ADC_OFR3_OFFSET3_CH | ADC_OFR3_OFFSET3); /* Reset register OFR4 */ CLEAR_BIT(hadc->Instance->OFR4, ADC_OFR4_SSATE | ADC_OFR4_OFFSET4_CH | ADC_OFR4_OFFSET4); /* Reset registers JDR1, JDR2, JDR3, JDR4 */ /* bits in access mode read only, no direct reset applicable*/ /* Reset register AWD2CR */ CLEAR_BIT(hadc->Instance->AWD2CR, ADC_AWD2CR_AWD2CH); /* Reset register AWD3CR */ CLEAR_BIT(hadc->Instance->AWD3CR, ADC_AWD3CR_AWD3CH); #if defined(ADC_VER_V5_V90) if (hadc->Instance == ADC3) { /* Reset register DIFSEL */ CLEAR_BIT(hadc->Instance->LTR2_DIFSEL, ADC_DIFSEL_DIFSEL); /* Reset register CALFACT */ CLEAR_BIT(hadc->Instance->HTR2_CALFACT, ADC_CALFACT_CALFACT_D | ADC_CALFACT_CALFACT_S); } else { /* Reset register DIFSEL */ CLEAR_BIT(hadc->Instance->DIFSEL_RES12, ADC_DIFSEL_DIFSEL); /* Reset register CALFACT */ CLEAR_BIT(hadc->Instance->CALFACT_RES13, ADC_CALFACT_CALFACT_D | ADC_CALFACT_CALFACT_S); } #else /* Reset register DIFSEL */ CLEAR_BIT(hadc->Instance->DIFSEL, ADC_DIFSEL_DIFSEL); /* Reset register CALFACT */ CLEAR_BIT(hadc->Instance->CALFACT, ADC_CALFACT_CALFACT_D | ADC_CALFACT_CALFACT_S); #endif /* ADC_VER_V5_V90 */ /* ========== Reset common ADC registers ========== */ /* Software is allowed to change common parameters only when all the other ADCs are disabled. */ if (__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) == 0UL) { /* Reset configuration of ADC common register CCR: - clock mode: CKMODE, PRESCEN - multimode related parameters(when this feature is available): DELAY, DUAL (set into HAL_ADCEx_MultiModeConfigChannel() API) - internal measurement paths: Vbat, temperature sensor, Vref (set into HAL_ADC_ConfigChannel() or HAL_ADCEx_InjectedConfigChannel() ) */ ADC_CLEAR_COMMON_CONTROL_REGISTER(hadc); /* ========== Hard reset ADC peripheral ========== */ /* Performs a global reset of the entire ADC peripherals instances */ /* sharing the same common ADC instance: ADC state is forced to */ /* a similar state as after device power-on. */ /* Note: A possible implementation is to add RCC bus reset of ADC */ /* (for example, using macro */ /* __HAL_RCC_ADC..._FORCE_RESET()/..._RELEASE_RESET()/..._CLK_DISABLE()) */ /* in function "void HAL_ADC_MspDeInit(ADC_HandleTypeDef *hadc)": */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) if (hadc->MspDeInitCallback == NULL) { hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ } /* DeInit the low level hardware: RCC clock, NVIC */ hadc->MspDeInitCallback(hadc); #else /* DeInit the low level hardware: RCC clock, NVIC */ HAL_ADC_MspDeInit(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ } /* Set ADC error code to none */ ADC_CLEAR_ERRORCODE(hadc); /* Reset injected channel configuration parameters */ hadc->InjectionConfig.ContextQueue = 0; hadc->InjectionConfig.ChannelCount = 0; /* Set ADC state */ hadc->State = HAL_ADC_STATE_RESET; /* Process unlocked */ __HAL_UNLOCK(hadc); /* Return function status */ return tmp_hal_status; } /** * @brief Initialize the ADC MSP. * @param hadc ADC handle * @retval None */ __weak void HAL_ADC_MspInit(ADC_HandleTypeDef *hadc) { /* Prevent unused argument(s) compilation warning */ UNUSED(hadc); /* NOTE : This function should not be modified. When the callback is needed, function HAL_ADC_MspInit must be implemented in the user file. */ } /** * @brief DeInitialize the ADC MSP. * @param hadc ADC handle * @note All ADC instances use the same core clock at RCC level, disabling * the core clock reset all ADC instances). * @retval None */ __weak void HAL_ADC_MspDeInit(ADC_HandleTypeDef *hadc) { /* Prevent unused argument(s) compilation warning */ UNUSED(hadc); /* NOTE : This function should not be modified. When the callback is needed, function HAL_ADC_MspDeInit must be implemented in the user file. */ } #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) /** * @brief Register a User ADC Callback * To be used instead of the weak predefined callback * @param hadc Pointer to a ADC_HandleTypeDef structure that contains * the configuration information for the specified ADC. * @param CallbackID ID of the callback to be registered * This parameter can be one of the following values: * @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID * @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion DMA half-transfer callback ID * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID * @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID * @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID ADC group injected conversion complete callback ID * @arg @ref HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID ADC group injected context queue overflow callback ID * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID ADC analog watchdog 2 callback ID * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID ADC analog watchdog 3 callback ID * @arg @ref HAL_ADC_END_OF_SAMPLING_CB_ID ADC end of sampling callback ID * @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID * @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID * @param pCallback pointer to the Callback function * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_RegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID, pADC_CallbackTypeDef pCallback) { HAL_StatusTypeDef status = HAL_OK; if (pCallback == NULL) { /* Update the error code */ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; return HAL_ERROR; } if ((hadc->State & HAL_ADC_STATE_READY) != 0UL) { switch (CallbackID) { case HAL_ADC_CONVERSION_COMPLETE_CB_ID : hadc->ConvCpltCallback = pCallback; break; case HAL_ADC_CONVERSION_HALF_CB_ID : hadc->ConvHalfCpltCallback = pCallback; break; case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID : hadc->LevelOutOfWindowCallback = pCallback; break; case HAL_ADC_ERROR_CB_ID : hadc->ErrorCallback = pCallback; break; case HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID : hadc->InjectedConvCpltCallback = pCallback; break; case HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID : hadc->InjectedQueueOverflowCallback = pCallback; break; case HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID : hadc->LevelOutOfWindow2Callback = pCallback; break; case HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID : hadc->LevelOutOfWindow3Callback = pCallback; break; case HAL_ADC_END_OF_SAMPLING_CB_ID : hadc->EndOfSamplingCallback = pCallback; break; case HAL_ADC_MSPINIT_CB_ID : hadc->MspInitCallback = pCallback; break; case HAL_ADC_MSPDEINIT_CB_ID : hadc->MspDeInitCallback = pCallback; break; default : /* Update the error code */ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; break; } } else if (HAL_ADC_STATE_RESET == hadc->State) { switch (CallbackID) { case HAL_ADC_MSPINIT_CB_ID : hadc->MspInitCallback = pCallback; break; case HAL_ADC_MSPDEINIT_CB_ID : hadc->MspDeInitCallback = pCallback; break; default : /* Update the error code */ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; break; } } else { /* Update the error code */ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief Unregister a ADC Callback * ADC callback is redirected to the weak predefined callback * @param hadc Pointer to a ADC_HandleTypeDef structure that contains * the configuration information for the specified ADC. * @param CallbackID ID of the callback to be unregistered * This parameter can be one of the following values: * @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID * @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion DMA half-transfer callback ID * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID * @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID * @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID ADC group injected conversion complete callback ID * @arg @ref HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID ADC group injected context queue overflow callback ID * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID ADC analog watchdog 2 callback ID * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID ADC analog watchdog 3 callback ID * @arg @ref HAL_ADC_END_OF_SAMPLING_CB_ID ADC end of sampling callback ID * @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID * @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_UnRegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID) { HAL_StatusTypeDef status = HAL_OK; if ((hadc->State & HAL_ADC_STATE_READY) != 0UL) { switch (CallbackID) { case HAL_ADC_CONVERSION_COMPLETE_CB_ID : hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback; break; case HAL_ADC_CONVERSION_HALF_CB_ID : hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback; break; case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID : hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback; break; case HAL_ADC_ERROR_CB_ID : hadc->ErrorCallback = HAL_ADC_ErrorCallback; break; case HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID : hadc->InjectedConvCpltCallback = HAL_ADCEx_InjectedConvCpltCallback; break; case HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID : hadc->InjectedQueueOverflowCallback = HAL_ADCEx_InjectedQueueOverflowCallback; break; case HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID : hadc->LevelOutOfWindow2Callback = HAL_ADCEx_LevelOutOfWindow2Callback; break; case HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID : hadc->LevelOutOfWindow3Callback = HAL_ADCEx_LevelOutOfWindow3Callback; break; case HAL_ADC_END_OF_SAMPLING_CB_ID : hadc->EndOfSamplingCallback = HAL_ADCEx_EndOfSamplingCallback; break; case HAL_ADC_MSPINIT_CB_ID : hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ break; case HAL_ADC_MSPDEINIT_CB_ID : hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ break; default : /* Update the error code */ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; break; } } else if (HAL_ADC_STATE_RESET == hadc->State) { switch (CallbackID) { case HAL_ADC_MSPINIT_CB_ID : hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ break; case HAL_ADC_MSPDEINIT_CB_ID : hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ break; default : /* Update the error code */ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; break; } } else { /* Update the error code */ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ /** * @} */ /** @defgroup ADC_Exported_Functions_Group2 ADC Input and Output operation functions * @brief ADC IO operation functions * @verbatim =============================================================================== ##### IO operation functions ##### =============================================================================== [..] This section provides functions allowing to: (+) Start conversion of regular group. (+) Stop conversion of regular group. (+) Poll for conversion complete on regular group. (+) Poll for conversion event. (+) Get result of regular channel conversion. (+) Start conversion of regular group and enable interruptions. (+) Stop conversion of regular group and disable interruptions. (+) Handle ADC interrupt request (+) Start conversion of regular group and enable DMA transfer. (+) Stop conversion of regular group and disable ADC DMA transfer. @endverbatim * @{ */ /** * @brief Enable ADC, start conversion of regular group. * @note Interruptions enabled in this function: None. * @note Case of multimode enabled (when multimode feature is available): * if ADC is Slave, ADC is enabled but conversion is not started, * if ADC is master, ADC is enabled and multimode conversion is started. * @param hadc ADC handle * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef *hadc) { HAL_StatusTypeDef tmp_hal_status; const ADC_TypeDef *tmpADC_Master; uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance)); /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Perform ADC enable and conversion start if no conversion is on going */ if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) { /* Process locked */ __HAL_LOCK(hadc); /* Enable the ADC peripheral */ tmp_hal_status = ADC_Enable(hadc); /* Start conversion if ADC is effectively enabled */ if (tmp_hal_status == HAL_OK) { /* Set ADC state */ /* - Clear state bitfield related to regular group conversion results */ /* - Set state bitfield related to regular operation */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP, HAL_ADC_STATE_REG_BUSY); /* Reset HAL_ADC_STATE_MULTIMODE_SLAVE bit - if ADC instance is master or if multimode feature is not available - if multimode setting is disabled (ADC instance slave in independent mode) */ if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) ) { CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE); } /* Set ADC error code */ /* Check if a conversion is on going on ADC group injected */ if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY)) { /* Reset ADC error code fields related to regular conversions only */ CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA)); } else { /* Reset all ADC error code fields */ ADC_CLEAR_ERRORCODE(hadc); } /* Clear ADC group regular conversion flag and overrun flag */ /* (To ensure of no unknown state from potential previous ADC operations) */ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR)); /* Process unlocked */ /* Unlock before starting ADC conversions: in case of potential */ /* interruption, to let the process to ADC IRQ Handler. */ __HAL_UNLOCK(hadc); /* Enable conversion of regular group. */ /* If software start has been selected, conversion starts immediately. */ /* If external trigger has been selected, conversion will start at next */ /* trigger event. */ /* Case of multimode enabled (when multimode feature is available): */ /* - if ADC is slave and dual regular conversions are enabled, ADC is */ /* enabled only (conversion is not started), */ /* - if ADC is master, ADC is enabled and conversion is started. */ if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT) || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN) ) { /* ADC instance is not a multimode slave instance with multimode regular conversions enabled */ if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO) != 0UL) { ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY); } /* Start ADC group regular conversion */ LL_ADC_REG_StartConversion(hadc->Instance); } else { /* ADC instance is a multimode slave instance with multimode regular conversions enabled */ SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE); /* if Master ADC JAUTO bit is set, update Slave State in setting HAL_ADC_STATE_INJ_BUSY bit and in resetting HAL_ADC_STATE_INJ_EOC bit */ tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance); if (READ_BIT(tmpADC_Master->CFGR, ADC_CFGR_JAUTO) != 0UL) { ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY); } } } else { /* Process unlocked */ __HAL_UNLOCK(hadc); } } else { tmp_hal_status = HAL_BUSY; } /* Return function status */ return tmp_hal_status; } /** * @brief Stop ADC conversion of regular group (and injected channels in * case of auto_injection mode), disable ADC peripheral. * @note: ADC peripheral disable is forcing stop of potential * conversion on injected group. If injected group is under use, it * should be preliminarily stopped using HAL_ADCEx_InjectedStop function. * @param hadc ADC handle * @retval HAL status. */ HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef *hadc) { HAL_StatusTypeDef tmp_hal_status; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Process locked */ __HAL_LOCK(hadc); /* 1. Stop potential conversion on going, on ADC groups regular and injected */ tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP); /* Disable ADC peripheral if conversions are effectively stopped */ if (tmp_hal_status == HAL_OK) { /* 2. Disable the ADC peripheral */ tmp_hal_status = ADC_Disable(hadc); /* Check if ADC is effectively disabled */ if (tmp_hal_status == HAL_OK) { /* Set ADC state */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, HAL_ADC_STATE_READY); } } /* Process unlocked */ __HAL_UNLOCK(hadc); /* Return function status */ return tmp_hal_status; } /** * @brief Wait for regular group conversion to be completed. * @note ADC conversion flags EOS (end of sequence) and EOC (end of * conversion) are cleared by this function, with an exception: * if low power feature "LowPowerAutoWait" is enabled, flags are * not cleared to not interfere with this feature until data register * is read using function HAL_ADC_GetValue(). * @note This function cannot be used in a particular setup: ADC configured * in DMA mode and polling for end of each conversion (ADC init * parameter "EOCSelection" set to ADC_EOC_SINGLE_CONV). * In this case, DMA resets the flag EOC and polling cannot be * performed on each conversion. Nevertheless, polling can still * be performed on the complete sequence (ADC init * parameter "EOCSelection" set to ADC_EOC_SEQ_CONV). * @param hadc ADC handle * @param Timeout Timeout value in millisecond. * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef *hadc, uint32_t Timeout) { uint32_t tickstart; uint32_t tmp_Flag_End; uint32_t tmp_cfgr; const ADC_TypeDef *tmpADC_Master; uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance)); /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* If end of conversion selected to end of sequence conversions */ if (hadc->Init.EOCSelection == ADC_EOC_SEQ_CONV) { tmp_Flag_End = ADC_FLAG_EOS; } /* If end of conversion selected to end of unitary conversion */ else /* ADC_EOC_SINGLE_CONV */ { /* Verification that ADC configuration is compliant with polling for */ /* each conversion: */ /* Particular case is ADC configured in DMA mode and ADC sequencer with */ /* several ranks and polling for end of each conversion. */ /* For code simplicity sake, this particular case is generalized to */ /* ADC configured in DMA mode and and polling for end of each conversion. */ if ((tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT) || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN) ) { /* Check DMNGT bit in handle ADC CFGR register */ if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_DMNGT_0) != 0UL) { SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); return HAL_ERROR; } else { tmp_Flag_End = (ADC_FLAG_EOC); } } else { /* Check ADC DMA mode in multimode on ADC group regular */ if (LL_ADC_GetMultiDMATransfer(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) != LL_ADC_MULTI_REG_DMA_EACH_ADC) { SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); return HAL_ERROR; } else { tmp_Flag_End = (ADC_FLAG_EOC); } } } /* Get tick count */ tickstart = HAL_GetTick(); /* Wait until End of unitary conversion or sequence conversions flag is raised */ while ((hadc->Instance->ISR & tmp_Flag_End) == 0UL) { /* Check if timeout is disabled (set to infinite wait) */ if (Timeout != HAL_MAX_DELAY) { if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0UL)) { /* New check to avoid false timeout detection in case of preemption */ if((hadc->Instance->ISR & tmp_Flag_End) == 0UL) { /* Update ADC state machine to timeout */ SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT); /* Process unlocked */ __HAL_UNLOCK(hadc); return HAL_TIMEOUT; } } } } /* Update ADC state machine */ SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); /* Determine whether any further conversion upcoming on group regular */ /* by external trigger, continuous mode or scan sequence on going. */ if ((LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance) != 0UL) && (hadc->Init.ContinuousConvMode == DISABLE) ) { /* Check whether end of sequence is reached */ if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS)) { /* Set ADC state */ CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY); if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) == 0UL) { SET_BIT(hadc->State, HAL_ADC_STATE_READY); } } } /* Get relevant register CFGR in ADC instance of ADC master or slave */ /* in function of multimode state (for devices with multimode */ /* available). */ if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT) || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN) ) { /* Retrieve handle ADC CFGR register */ tmp_cfgr = READ_REG(hadc->Instance->CFGR); } else { /* Retrieve Master ADC CFGR register */ tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance); tmp_cfgr = READ_REG(tmpADC_Master->CFGR); } /* Clear polled flag */ if (tmp_Flag_End == ADC_FLAG_EOS) { __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOS); } else { /* Clear end of conversion EOC flag of regular group if low power feature */ /* "LowPowerAutoWait " is disabled, to not interfere with this feature */ /* until data register is read using function HAL_ADC_GetValue(). */ if (READ_BIT(tmp_cfgr, ADC_CFGR_AUTDLY) == 0UL) { __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS)); } } /* Return function status */ return HAL_OK; } /** * @brief Poll for ADC event. * @param hadc ADC handle * @param EventType the ADC event type. * This parameter can be one of the following values: * @arg @ref ADC_EOSMP_EVENT ADC End of Sampling event * @arg @ref ADC_AWD1_EVENT ADC Analog watchdog 1 event (main analog watchdog, present on all STM32 devices) * @arg @ref ADC_AWD2_EVENT ADC Analog watchdog 2 event (additional analog watchdog, not present on all STM32 families) * @arg @ref ADC_AWD3_EVENT ADC Analog watchdog 3 event (additional analog watchdog, not present on all STM32 families) * @arg @ref ADC_OVR_EVENT ADC Overrun event * @arg @ref ADC_JQOVF_EVENT ADC Injected context queue overflow event * @param Timeout Timeout value in millisecond. * @note The relevant flag is cleared if found to be set, except for ADC_FLAG_OVR. * Indeed, the latter is reset only if hadc->Init.Overrun field is set * to ADC_OVR_DATA_OVERWRITTEN. Otherwise, data register may be potentially overwritten * by a new converted data as soon as OVR is cleared. * To reset OVR flag once the preserved data is retrieved, the user can resort * to macro __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef *hadc, uint32_t EventType, uint32_t Timeout) { uint32_t tickstart; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); assert_param(IS_ADC_EVENT_TYPE(EventType)); /* Get tick count */ tickstart = HAL_GetTick(); /* Check selected event flag */ while (__HAL_ADC_GET_FLAG(hadc, EventType) == 0UL) { /* Check if timeout is disabled (set to infinite wait) */ if (Timeout != HAL_MAX_DELAY) { if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0UL)) { /* New check to avoid false timeout detection in case of preemption */ if(__HAL_ADC_GET_FLAG(hadc, EventType) == 0UL) { /* Update ADC state machine to timeout */ SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT); /* Process unlocked */ __HAL_UNLOCK(hadc); return HAL_TIMEOUT; } } } } switch (EventType) { /* End Of Sampling event */ case ADC_EOSMP_EVENT: /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOSMP); /* Clear the End Of Sampling flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP); break; /* Analog watchdog (level out of window) event */ /* Note: In case of several analog watchdog enabled, if needed to know */ /* which one triggered and on which ADCx, test ADC state of analog watchdog */ /* flags HAL_ADC_STATE_AWD1/2/3 using function "HAL_ADC_GetState()". */ /* For example: */ /* " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD1) != 0UL) " */ /* " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD2) != 0UL) " */ /* " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD3) != 0UL) " */ /* Check analog watchdog 1 flag */ case ADC_AWD_EVENT: /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_AWD1); /* Clear ADC analog watchdog flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD1); break; /* Check analog watchdog 2 flag */ case ADC_AWD2_EVENT: /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_AWD2); /* Clear ADC analog watchdog flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD2); break; /* Check analog watchdog 3 flag */ case ADC_AWD3_EVENT: /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_AWD3); /* Clear ADC analog watchdog flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD3); break; /* Injected context queue overflow event */ case ADC_JQOVF_EVENT: /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_INJ_JQOVF); /* Set ADC error code to Injected context queue overflow */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_JQOVF); /* Clear ADC Injected context queue overflow flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JQOVF); break; /* Overrun event */ default: /* Case ADC_OVR_EVENT */ /* If overrun is set to overwrite previous data, overrun event is not */ /* considered as an error. */ /* (cf ref manual "Managing conversions without using the DMA and without */ /* overrun ") */ if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED) { /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR); /* Set ADC error code to overrun */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR); } else { /* Clear ADC Overrun flag only if Overrun is set to ADC_OVR_DATA_OVERWRITTEN otherwise, data register is potentially overwritten by new converted data as soon as OVR is cleared. */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); } break; } /* Return function status */ return HAL_OK; } /** * @brief Enable ADC, start conversion of regular group with interruption. * @note Interruptions enabled in this function according to initialization * setting : EOC (end of conversion), EOS (end of sequence), * OVR overrun. * Each of these interruptions has its dedicated callback function. * @note Case of multimode enabled (when multimode feature is available): * HAL_ADC_Start_IT() must be called for ADC Slave first, then for * ADC Master. * For ADC Slave, ADC is enabled only (conversion is not started). * For ADC Master, ADC is enabled and multimode conversion is started. * @note To guarantee a proper reset of all interruptions once all the needed * conversions are obtained, HAL_ADC_Stop_IT() must be called to ensure * a correct stop of the IT-based conversions. * @note By default, HAL_ADC_Start_IT() does not enable the End Of Sampling * interruption. If required (e.g. in case of oversampling with trigger * mode), the user must: * 1. first clear the EOSMP flag if set with macro __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP) * 2. then enable the EOSMP interrupt with macro __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOSMP) * before calling HAL_ADC_Start_IT(). * @param hadc ADC handle * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef *hadc) { HAL_StatusTypeDef tmp_hal_status; const ADC_TypeDef *tmpADC_Master; uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance)); /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Perform ADC enable and conversion start if no conversion is on going */ if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) { /* Process locked */ __HAL_LOCK(hadc); /* Enable the ADC peripheral */ tmp_hal_status = ADC_Enable(hadc); /* Start conversion if ADC is effectively enabled */ if (tmp_hal_status == HAL_OK) { /* Set ADC state */ /* - Clear state bitfield related to regular group conversion results */ /* - Set state bitfield related to regular operation */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP, HAL_ADC_STATE_REG_BUSY); /* Reset HAL_ADC_STATE_MULTIMODE_SLAVE bit - if ADC instance is master or if multimode feature is not available - if multimode setting is disabled (ADC instance slave in independent mode) */ if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) ) { CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE); } /* Set ADC error code */ /* Check if a conversion is on going on ADC group injected */ if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) != 0UL) { /* Reset ADC error code fields related to regular conversions only */ CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA)); } else { /* Reset all ADC error code fields */ ADC_CLEAR_ERRORCODE(hadc); } /* Clear ADC group regular conversion flag and overrun flag */ /* (To ensure of no unknown state from potential previous ADC operations) */ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR)); /* Process unlocked */ /* Unlock before starting ADC conversions: in case of potential */ /* interruption, to let the process to ADC IRQ Handler. */ __HAL_UNLOCK(hadc); /* Disable all interruptions before enabling the desired ones */ __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR)); /* Enable ADC end of conversion interrupt */ switch (hadc->Init.EOCSelection) { case ADC_EOC_SEQ_CONV: __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOS); break; /* case ADC_EOC_SINGLE_CONV */ default: __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOC); break; } /* Enable ADC overrun interrupt */ /* If hadc->Init.Overrun is set to ADC_OVR_DATA_PRESERVED, only then is ADC_IT_OVR enabled; otherwise data overwrite is considered as normal behavior and no CPU time is lost for a non-processed interruption */ if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED) { __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR); } /* Enable conversion of regular group. */ /* If software start has been selected, conversion starts immediately. */ /* If external trigger has been selected, conversion will start at next */ /* trigger event. */ /* Case of multimode enabled (when multimode feature is available): */ /* - if ADC is slave and dual regular conversions are enabled, ADC is */ /* enabled only (conversion is not started), */ /* - if ADC is master, ADC is enabled and conversion is started. */ if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT) || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN) ) { /* ADC instance is not a multimode slave instance with multimode regular conversions enabled */ if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO) != 0UL) { ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY); /* Enable as well injected interruptions in case HAL_ADCEx_InjectedStart_IT() has not been called beforehand. This allows to start regular and injected conversions when JAUTO is set with a single call to HAL_ADC_Start_IT() */ switch (hadc->Init.EOCSelection) { case ADC_EOC_SEQ_CONV: __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC); __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOS); break; /* case ADC_EOC_SINGLE_CONV */ default: __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOS); __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOC); break; } } /* Start ADC group regular conversion */ LL_ADC_REG_StartConversion(hadc->Instance); } else { /* ADC instance is a multimode slave instance with multimode regular conversions enabled */ SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE); /* if Master ADC JAUTO bit is set, Slave injected interruptions are enabled nevertheless (for same reason as above) */ tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance); if (READ_BIT(tmpADC_Master->CFGR, ADC_CFGR_JAUTO) != 0UL) { /* First, update Slave State in setting HAL_ADC_STATE_INJ_BUSY bit and in resetting HAL_ADC_STATE_INJ_EOC bit */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY); /* Next, set Slave injected interruptions */ switch (hadc->Init.EOCSelection) { case ADC_EOC_SEQ_CONV: __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC); __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOS); break; /* case ADC_EOC_SINGLE_CONV */ default: __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOS); __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOC); break; } } } } else { /* Process unlocked */ __HAL_UNLOCK(hadc); } } else { tmp_hal_status = HAL_BUSY; } /* Return function status */ return tmp_hal_status; } /** * @brief Stop ADC conversion of regular group (and injected group in * case of auto_injection mode), disable interrution of * end-of-conversion, disable ADC peripheral. * @param hadc ADC handle * @retval HAL status. */ HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef *hadc) { HAL_StatusTypeDef tmp_hal_status; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Process locked */ __HAL_LOCK(hadc); /* 1. Stop potential conversion on going, on ADC groups regular and injected */ tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP); /* Disable ADC peripheral if conversions are effectively stopped */ if (tmp_hal_status == HAL_OK) { /* Disable ADC end of conversion interrupt for regular group */ /* Disable ADC overrun interrupt */ __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR)); /* 2. Disable the ADC peripheral */ tmp_hal_status = ADC_Disable(hadc); /* Check if ADC is effectively disabled */ if (tmp_hal_status == HAL_OK) { /* Set ADC state */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, HAL_ADC_STATE_READY); } } /* Process unlocked */ __HAL_UNLOCK(hadc); /* Return function status */ return tmp_hal_status; } /** * @brief Enable ADC, start conversion of regular group and transfer result through DMA. * @note Interruptions enabled in this function: * overrun (if applicable), DMA half transfer, DMA transfer complete. * Each of these interruptions has its dedicated callback function. * @note Case of multimode enabled (when multimode feature is available): HAL_ADC_Start_DMA() * is designed for single-ADC mode only. For multimode, the dedicated * HAL_ADCEx_MultiModeStart_DMA() function must be used. * @param hadc ADC handle * @param pData Destination Buffer address. * @param Length Number of data to be transferred from ADC peripheral to memory * @retval HAL status. */ HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef *hadc, uint32_t *pData, uint32_t Length) { HAL_StatusTypeDef tmp_hal_status; uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance)); /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Perform ADC enable and conversion start if no conversion is on going */ if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) { /* Process locked */ __HAL_LOCK(hadc); /* Ensure that multimode regular conversions are not enabled. */ /* Otherwise, dedicated API HAL_ADCEx_MultiModeStart_DMA() must be used. */ if ((tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT) || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN) ) { /* Enable the ADC peripheral */ tmp_hal_status = ADC_Enable(hadc); /* Start conversion if ADC is effectively enabled */ if (tmp_hal_status == HAL_OK) { /* Set ADC state */ /* - Clear state bitfield related to regular group conversion results */ /* - Set state bitfield related to regular operation */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP, HAL_ADC_STATE_REG_BUSY); /* Reset HAL_ADC_STATE_MULTIMODE_SLAVE bit - if ADC instance is master or if multimode feature is not available - if multimode setting is disabled (ADC instance slave in independent mode) */ if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) ) { CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE); } /* Check if a conversion is on going on ADC group injected */ if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) != 0UL) { /* Reset ADC error code fields related to regular conversions only */ CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA)); } else { /* Reset all ADC error code fields */ ADC_CLEAR_ERRORCODE(hadc); } /* Set the DMA transfer complete callback */ hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt; /* Set the DMA half transfer complete callback */ hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt; /* Set the DMA error callback */ hadc->DMA_Handle->XferErrorCallback = ADC_DMAError; /* Manage ADC and DMA start: ADC overrun interruption, DMA start, */ /* ADC start (in case of SW start): */ /* Clear regular group conversion flag and overrun flag */ /* (To ensure of no unknown state from potential previous ADC */ /* operations) */ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR)); /* Process unlocked */ /* Unlock before starting ADC conversions: in case of potential */ /* interruption, to let the process to ADC IRQ Handler. */ __HAL_UNLOCK(hadc); /* With DMA, overrun event is always considered as an error even if hadc->Init.Overrun is set to ADC_OVR_DATA_OVERWRITTEN. Therefore, ADC_IT_OVR is enabled. */ __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR); /* Enable ADC DMA mode*/ #if defined(ADC_VER_V5_V90) if (hadc->Instance == ADC3) { LL_ADC_REG_SetDMATransferMode(hadc->Instance, ADC3_CFGR_DMACONTREQ((uint32_t)hadc->Init.DMAContinuousRequests)); LL_ADC_EnableDMAReq(hadc->Instance); } else { LL_ADC_REG_SetDataTransferMode(hadc->Instance, ADC_CFGR_DMACONTREQ((uint32_t)hadc->Init.ConversionDataManagement)); } #else LL_ADC_REG_SetDataTransferMode(hadc->Instance, (uint32_t)hadc->Init.ConversionDataManagement); #endif /* Start the DMA channel */ tmp_hal_status = HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length); /* Enable conversion of regular group. */ /* If software start has been selected, conversion starts immediately. */ /* If external trigger has been selected, conversion will start at next */ /* trigger event. */ /* Start ADC group regular conversion */ LL_ADC_REG_StartConversion(hadc->Instance); } else { /* Process unlocked */ __HAL_UNLOCK(hadc); } } else { tmp_hal_status = HAL_ERROR; /* Process unlocked */ __HAL_UNLOCK(hadc); } } else { tmp_hal_status = HAL_BUSY; } /* Return function status */ return tmp_hal_status; } /** * @brief Stop ADC conversion of regular group (and injected group in * case of auto_injection mode), disable ADC DMA transfer, disable * ADC peripheral. * @note: ADC peripheral disable is forcing stop of potential * conversion on ADC group injected. If ADC group injected is under use, it * should be preliminarily stopped using HAL_ADCEx_InjectedStop function. * @note Case of multimode enabled (when multimode feature is available): * HAL_ADC_Stop_DMA() function is dedicated to single-ADC mode only. * For multimode, the dedicated HAL_ADCEx_MultiModeStop_DMA() API must be used. * @param hadc ADC handle * @retval HAL status. */ HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef *hadc) { HAL_StatusTypeDef tmp_hal_status; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Process locked */ __HAL_LOCK(hadc); /* 1. Stop potential ADC group regular conversion on going */ tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP); /* Disable ADC peripheral if conversions are effectively stopped */ if (tmp_hal_status == HAL_OK) { /* Disable ADC DMA (ADC DMA configuration of continuous requests is kept) */ MODIFY_REG(hadc->Instance->CFGR, ADC_CFGR_DMNGT_0 | ADC_CFGR_DMNGT_1, 0UL); /* Disable the DMA channel (in case of DMA in circular mode or stop */ /* while DMA transfer is on going) */ if (hadc->DMA_Handle->State == HAL_DMA_STATE_BUSY) { tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle); /* Check if DMA channel effectively disabled */ if (tmp_hal_status != HAL_OK) { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA); } } /* Disable ADC overrun interrupt */ __HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR); /* 2. Disable the ADC peripheral */ /* Update "tmp_hal_status" only if DMA channel disabling passed, */ /* to keep in memory a potential failing status. */ if (tmp_hal_status == HAL_OK) { tmp_hal_status = ADC_Disable(hadc); } else { (void)ADC_Disable(hadc); } /* Check if ADC is effectively disabled */ if (tmp_hal_status == HAL_OK) { /* Set ADC state */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, HAL_ADC_STATE_READY); } } /* Process unlocked */ __HAL_UNLOCK(hadc); /* Return function status */ return tmp_hal_status; } /** * @brief Get ADC regular group conversion result. * @note Reading register DR automatically clears ADC flag EOC * (ADC group regular end of unitary conversion). * @note This function does not clear ADC flag EOS * (ADC group regular end of sequence conversion). * Occurrence of flag EOS rising: * - If sequencer is composed of 1 rank, flag EOS is equivalent * to flag EOC. * - If sequencer is composed of several ranks, during the scan * sequence flag EOC only is raised, at the end of the scan sequence * both flags EOC and EOS are raised. * To clear this flag, either use function: * in programming model IT: @ref HAL_ADC_IRQHandler(), in programming * model polling: @ref HAL_ADC_PollForConversion() * or @ref __HAL_ADC_CLEAR_FLAG(&hadc, ADC_FLAG_EOS). * @param hadc ADC handle * @retval ADC group regular conversion data */ uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef *hadc) { /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Note: EOC flag is not cleared here by software because automatically */ /* cleared by hardware when reading register DR. */ /* Return ADC converted value */ return hadc->Instance->DR; } /** * @brief Handle ADC interrupt request. * @param hadc ADC handle * @retval None */ void HAL_ADC_IRQHandler(ADC_HandleTypeDef *hadc) { uint32_t overrun_error = 0UL; /* flag set if overrun occurrence has to be considered as an error */ uint32_t tmp_isr = hadc->Instance->ISR; uint32_t tmp_ier = hadc->Instance->IER; uint32_t tmp_adc_inj_is_trigger_source_sw_start; uint32_t tmp_adc_reg_is_trigger_source_sw_start; uint32_t tmp_cfgr; const ADC_TypeDef *tmpADC_Master; uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance)); /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection)); /* ========== Check End of Sampling flag for ADC group regular ========== */ if (((tmp_isr & ADC_FLAG_EOSMP) == ADC_FLAG_EOSMP) && ((tmp_ier & ADC_IT_EOSMP) == ADC_IT_EOSMP)) { /* Update state machine on end of sampling status if not in error state */ if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL) { /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOSMP); } /* End Of Sampling callback */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) hadc->EndOfSamplingCallback(hadc); #else HAL_ADCEx_EndOfSamplingCallback(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ /* Clear regular group conversion flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP); } /* ====== Check ADC group regular end of unitary conversion sequence conversions ===== */ if ((((tmp_isr & ADC_FLAG_EOC) == ADC_FLAG_EOC) && ((tmp_ier & ADC_IT_EOC) == ADC_IT_EOC)) || (((tmp_isr & ADC_FLAG_EOS) == ADC_FLAG_EOS) && ((tmp_ier & ADC_IT_EOS) == ADC_IT_EOS))) { /* Update state machine on conversion status if not in error state */ if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL) { /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); } /* Determine whether any further conversion upcoming on group regular */ /* by external trigger, continuous mode or scan sequence on going */ /* to disable interruption. */ if (LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance) != 0UL) { /* Get relevant register CFGR in ADC instance of ADC master or slave */ /* in function of multimode state (for devices with multimode */ /* available). */ if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT) || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN) ) { /* check CONT bit directly in handle ADC CFGR register */ tmp_cfgr = READ_REG(hadc->Instance->CFGR); } else { /* else need to check Master ADC CONT bit */ tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance); tmp_cfgr = READ_REG(tmpADC_Master->CFGR); } /* Carry on if continuous mode is disabled */ if (READ_BIT(tmp_cfgr, ADC_CFGR_CONT) != ADC_CFGR_CONT) { /* If End of Sequence is reached, disable interrupts */ if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS)) { /* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit */ /* ADSTART==0 (no conversion on going) */ if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) { /* Disable ADC end of sequence conversion interrupt */ /* Note: Overrun interrupt was enabled with EOC interrupt in */ /* HAL_Start_IT(), but is not disabled here because can be used */ /* by overrun IRQ process below. */ __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS); /* Set ADC state */ CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY); if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) == 0UL) { SET_BIT(hadc->State, HAL_ADC_STATE_READY); } } else { /* Change ADC state to error state */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); /* Set ADC error code to ADC peripheral internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); } } } } /* Conversion complete callback */ /* Note: Into callback function "HAL_ADC_ConvCpltCallback()", */ /* to determine if conversion has been triggered from EOC or EOS, */ /* possibility to use: */ /* " if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_EOS)) " */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) hadc->ConvCpltCallback(hadc); #else HAL_ADC_ConvCpltCallback(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ /* Clear regular group conversion flag */ /* Note: in case of overrun set to ADC_OVR_DATA_PRESERVED, end of */ /* conversion flags clear induces the release of the preserved data.*/ /* Therefore, if the preserved data value is needed, it must be */ /* read preliminarily into HAL_ADC_ConvCpltCallback(). */ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS)); } /* ====== Check ADC group injected end of unitary conversion sequence conversions ===== */ if ((((tmp_isr & ADC_FLAG_JEOC) == ADC_FLAG_JEOC) && ((tmp_ier & ADC_IT_JEOC) == ADC_IT_JEOC)) || (((tmp_isr & ADC_FLAG_JEOS) == ADC_FLAG_JEOS) && ((tmp_ier & ADC_IT_JEOS) == ADC_IT_JEOS))) { /* Update state machine on conversion status if not in error state */ if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL) { /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_INJ_EOC); } /* Retrieve ADC configuration */ tmp_adc_inj_is_trigger_source_sw_start = LL_ADC_INJ_IsTriggerSourceSWStart(hadc->Instance); tmp_adc_reg_is_trigger_source_sw_start = LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance); /* Get relevant register CFGR in ADC instance of ADC master or slave */ /* in function of multimode state (for devices with multimode */ /* available). */ if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) || (tmp_multimode_config == LL_ADC_MULTI_DUAL_REG_SIMULT) || (tmp_multimode_config == LL_ADC_MULTI_DUAL_REG_INTERL) ) { tmp_cfgr = READ_REG(hadc->Instance->CFGR); } else { tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance); tmp_cfgr = READ_REG(tmpADC_Master->CFGR); } /* Disable interruption if no further conversion upcoming by injected */ /* external trigger or by automatic injected conversion with regular */ /* group having no further conversion upcoming (same conditions as */ /* regular group interruption disabling above), */ /* and if injected scan sequence is completed. */ if (tmp_adc_inj_is_trigger_source_sw_start != 0UL) { if ((READ_BIT(tmp_cfgr, ADC_CFGR_JAUTO) == 0UL) || ((tmp_adc_reg_is_trigger_source_sw_start != 0UL) && (READ_BIT(tmp_cfgr, ADC_CFGR_CONT) == 0UL))) { /* If End of Sequence is reached, disable interrupts */ if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOS)) { /* Particular case if injected contexts queue is enabled: */ /* when the last context has been fully processed, JSQR is reset */ /* by the hardware. Even if no injected conversion is planned to come */ /* (queue empty, triggers are ignored), it can start again */ /* immediately after setting a new context (JADSTART is still set). */ /* Therefore, state of HAL ADC injected group is kept to busy. */ if (READ_BIT(tmp_cfgr, ADC_CFGR_JQM) == 0UL) { /* Allowed to modify bits ADC_IT_JEOC/ADC_IT_JEOS only if bit */ /* JADSTART==0 (no conversion on going) */ if (LL_ADC_INJ_IsConversionOngoing(hadc->Instance) == 0UL) { /* Disable ADC end of sequence conversion interrupt */ __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC | ADC_IT_JEOS); /* Set ADC state */ CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY); if ((hadc->State & HAL_ADC_STATE_REG_BUSY) == 0UL) { SET_BIT(hadc->State, HAL_ADC_STATE_READY); } } else { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); /* Set ADC error code to ADC peripheral internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); } } } } } /* Injected Conversion complete callback */ /* Note: HAL_ADCEx_InjectedConvCpltCallback can resort to if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_JEOS)) or if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_JEOC)) to determine whether interruption has been triggered by end of conversion or end of sequence. */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) hadc->InjectedConvCpltCallback(hadc); #else HAL_ADCEx_InjectedConvCpltCallback(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ /* Clear injected group conversion flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOC | ADC_FLAG_JEOS); } /* ========== Check Analog watchdog 1 flag ========== */ if (((tmp_isr & ADC_FLAG_AWD1) == ADC_FLAG_AWD1) && ((tmp_ier & ADC_IT_AWD1) == ADC_IT_AWD1)) { /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_AWD1); /* Level out of window 1 callback */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) hadc->LevelOutOfWindowCallback(hadc); #else HAL_ADC_LevelOutOfWindowCallback(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ /* Clear ADC analog watchdog flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD1); } /* ========== Check analog watchdog 2 flag ========== */ if (((tmp_isr & ADC_FLAG_AWD2) == ADC_FLAG_AWD2) && ((tmp_ier & ADC_IT_AWD2) == ADC_IT_AWD2)) { /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_AWD2); /* Level out of window 2 callback */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) hadc->LevelOutOfWindow2Callback(hadc); #else HAL_ADCEx_LevelOutOfWindow2Callback(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ /* Clear ADC analog watchdog flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD2); } /* ========== Check analog watchdog 3 flag ========== */ if (((tmp_isr & ADC_FLAG_AWD3) == ADC_FLAG_AWD3) && ((tmp_ier & ADC_IT_AWD3) == ADC_IT_AWD3)) { /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_AWD3); /* Level out of window 3 callback */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) hadc->LevelOutOfWindow3Callback(hadc); #else HAL_ADCEx_LevelOutOfWindow3Callback(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ /* Clear ADC analog watchdog flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD3); } /* ========== Check Overrun flag ========== */ if (((tmp_isr & ADC_FLAG_OVR) == ADC_FLAG_OVR) && ((tmp_ier & ADC_IT_OVR) == ADC_IT_OVR)) { /* If overrun is set to overwrite previous data (default setting), */ /* overrun event is not considered as an error. */ /* (cf ref manual "Managing conversions without using the DMA and without */ /* overrun ") */ /* Exception for usage with DMA overrun event always considered as an */ /* error. */ if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED) { overrun_error = 1UL; } else { /* Check DMA configuration */ if (tmp_multimode_config != LL_ADC_MULTI_INDEPENDENT) { /* Multimode (when feature is available) is enabled, Common Control Register MDMA bits must be checked. */ if (LL_ADC_GetMultiDMATransfer(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) != LL_ADC_MULTI_REG_DMA_EACH_ADC) { overrun_error = 1UL; } } else { /* Multimode not set or feature not available or ADC independent */ if ((hadc->Instance->CFGR & ADC_CFGR_DMNGT) != 0UL) { overrun_error = 1UL; } } } if (overrun_error == 1UL) { /* Change ADC state to error state */ SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR); /* Set ADC error code to overrun */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR); /* Error callback */ /* Note: In case of overrun, ADC conversion data is preserved until */ /* flag OVR is reset. */ /* Therefore, old ADC conversion data can be retrieved in */ /* function "HAL_ADC_ErrorCallback()". */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) hadc->ErrorCallback(hadc); #else HAL_ADC_ErrorCallback(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ } /* Clear ADC overrun flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); } /* ========== Check Injected context queue overflow flag ========== */ if (((tmp_isr & ADC_FLAG_JQOVF) == ADC_FLAG_JQOVF) && ((tmp_ier & ADC_IT_JQOVF) == ADC_IT_JQOVF)) { /* Change ADC state to overrun state */ SET_BIT(hadc->State, HAL_ADC_STATE_INJ_JQOVF); /* Set ADC error code to Injected context queue overflow */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_JQOVF); /* Clear the Injected context queue overflow flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JQOVF); /* Injected context queue overflow callback */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) hadc->InjectedQueueOverflowCallback(hadc); #else HAL_ADCEx_InjectedQueueOverflowCallback(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ } } /** * @brief Conversion complete callback in non-blocking mode. * @param hadc ADC handle * @retval None */ __weak void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc) { /* Prevent unused argument(s) compilation warning */ UNUSED(hadc); /* NOTE : This function should not be modified. When the callback is needed, function HAL_ADC_ConvCpltCallback must be implemented in the user file. */ } /** * @brief Conversion DMA half-transfer callback in non-blocking mode. * @param hadc ADC handle * @retval None */ __weak void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef *hadc) { /* Prevent unused argument(s) compilation warning */ UNUSED(hadc); /* NOTE : This function should not be modified. When the callback is needed, function HAL_ADC_ConvHalfCpltCallback must be implemented in the user file. */ } /** * @brief Analog watchdog 1 callback in non-blocking mode. * @param hadc ADC handle * @retval None */ __weak void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef *hadc) { /* Prevent unused argument(s) compilation warning */ UNUSED(hadc); /* NOTE : This function should not be modified. When the callback is needed, function HAL_ADC_LevelOutOfWindowCallback must be implemented in the user file. */ } /** * @brief ADC error callback in non-blocking mode * (ADC conversion with interruption or transfer by DMA). * @note In case of error due to overrun when using ADC with DMA transfer * (HAL ADC handle parameter "ErrorCode" to state "HAL_ADC_ERROR_OVR"): * - Reinitialize the DMA using function "HAL_ADC_Stop_DMA()". * - If needed, restart a new ADC conversion using function * "HAL_ADC_Start_DMA()" * (this function is also clearing overrun flag) * @param hadc ADC handle * @retval None */ __weak void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc) { /* Prevent unused argument(s) compilation warning */ UNUSED(hadc); /* NOTE : This function should not be modified. When the callback is needed, function HAL_ADC_ErrorCallback must be implemented in the user file. */ } /** * @} */ /** @defgroup ADC_Exported_Functions_Group3 Peripheral Control functions * @brief Peripheral Control functions * @verbatim =============================================================================== ##### Peripheral Control functions ##### =============================================================================== [..] This section provides functions allowing to: (+) Configure channels on regular group (+) Configure the analog watchdog @endverbatim * @{ */ /** * @brief Configure a channel to be assigned to ADC group regular. * @note In case of usage of internal measurement channels: * Vbat/VrefInt/TempSensor. * These internal paths can be disabled using function * HAL_ADC_DeInit(). * @note Possibility to update parameters on the fly: * This function initializes channel into ADC group regular, * following calls to this function can be used to reconfigure * some parameters of structure "ADC_ChannelConfTypeDef" on the fly, * without resetting the ADC. * The setting of these parameters is conditioned to ADC state: * Refer to comments of structure "ADC_ChannelConfTypeDef". * @param hadc ADC handle * @param sConfig Structure of ADC channel assigned to ADC group regular. * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef *hadc, ADC_ChannelConfTypeDef *sConfig) { HAL_StatusTypeDef tmp_hal_status = HAL_OK; uint32_t tmpOffsetShifted; uint32_t tmp_config_internal_channel; __IO uint32_t wait_loop_index = 0; uint32_t tmp_adc_is_conversion_on_going_regular; uint32_t tmp_adc_is_conversion_on_going_injected; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); assert_param(IS_ADC_REGULAR_RANK(sConfig->Rank)); assert_param(IS_ADC_SAMPLE_TIME(sConfig->SamplingTime)); assert_param(IS_ADC_SINGLE_DIFFERENTIAL(sConfig->SingleDiff)); assert_param(IS_ADC_OFFSET_NUMBER(sConfig->OffsetNumber)); /* Check offset range according to oversampling setting */ if (hadc->Init.OversamplingMode == ENABLE) { assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), sConfig->Offset / (hadc->Init.Oversampling.Ratio + 1U))); } else { #if defined(ADC_VER_V5_V90) if (hadc->Instance == ADC3) { assert_param(IS_ADC3_RANGE(ADC_GET_RESOLUTION(hadc), sConfig->Offset)); } else #endif /* ADC_VER_V5_V90 */ { assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), sConfig->Offset)); } } /* if ROVSE is set, the value of the OFFSETy_EN bit in ADCx_OFRy register is ignored (considered as reset) */ assert_param(!((sConfig->OffsetNumber != ADC_OFFSET_NONE) && (hadc->Init.OversamplingMode == ENABLE))); /* Verification of channel number */ if (sConfig->SingleDiff != ADC_DIFFERENTIAL_ENDED) { assert_param(IS_ADC_CHANNEL(sConfig->Channel)); } else { if (hadc->Instance == ADC1) { assert_param(IS_ADC1_DIFF_CHANNEL(sConfig->Channel)); } if (hadc->Instance == ADC2) { assert_param(IS_ADC2_DIFF_CHANNEL(sConfig->Channel)); } #if defined(ADC3) /* ADC3 is not available on some STM32H7 products */ if (hadc->Instance == ADC3) { assert_param(IS_ADC3_DIFF_CHANNEL(sConfig->Channel)); } #endif } /* Process locked */ __HAL_LOCK(hadc); /* Parameters update conditioned to ADC state: */ /* Parameters that can be updated when ADC is disabled or enabled without */ /* conversion on going on regular group: */ /* - Channel number */ /* - Channel rank */ if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) { if (!(__LL_ADC_IS_CHANNEL_INTERNAL(sConfig->Channel))) { #if defined(ADC_VER_V5_V90) if (hadc->Instance != ADC3) { /* ADC channels preselection */ hadc->Instance->PCSEL_RES0 |= (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB((uint32_t)sConfig->Channel) & 0x1FUL)); } #else /* ADC channels preselection */ hadc->Instance->PCSEL |= (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB((uint32_t)sConfig->Channel) & 0x1FUL)); #endif /* ADC_VER_V5_V90 */ } /* Set ADC group regular sequence: channel on the selected scan sequence rank */ LL_ADC_REG_SetSequencerRanks(hadc->Instance, sConfig->Rank, sConfig->Channel); /* Parameters update conditioned to ADC state: */ /* Parameters that can be updated when ADC is disabled or enabled without */ /* conversion on going on regular group: */ /* - Channel sampling time */ /* - Channel offset */ tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance); tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance); if ((tmp_adc_is_conversion_on_going_regular == 0UL) && (tmp_adc_is_conversion_on_going_injected == 0UL) ) { /* Set sampling time of the selected ADC channel */ LL_ADC_SetChannelSamplingTime(hadc->Instance, sConfig->Channel, sConfig->SamplingTime); /* Configure the offset: offset enable/disable, channel, offset value */ /* Shift the offset with respect to the selected ADC resolution. */ /* Offset has to be left-aligned on bit 11, the LSB (right bits) are set to 0 */ #if defined(ADC_VER_V5_V90) if (hadc->Instance == ADC3) { tmpOffsetShifted = ADC3_OFFSET_SHIFT_RESOLUTION(hadc, (uint32_t)sConfig->Offset); } else #endif /* ADC_VER_V5_V90 */ { tmpOffsetShifted = ADC_OFFSET_SHIFT_RESOLUTION(hadc, (uint32_t)sConfig->Offset); } if (sConfig->OffsetNumber != ADC_OFFSET_NONE) { /* Set ADC selected offset number */ LL_ADC_SetOffset(hadc->Instance, sConfig->OffsetNumber, sConfig->Channel, tmpOffsetShifted); #if defined(ADC_VER_V5_V90) if (hadc->Instance == ADC3) { assert_param(IS_ADC3_OFFSET_SIGN(sConfig->OffsetSign)); assert_param(IS_FUNCTIONAL_STATE(sConfig->OffsetSaturation)); /* Set ADC selected offset sign & saturation */ LL_ADC_SetOffsetSign(hadc->Instance, sConfig->OffsetNumber, sConfig->OffsetSign); LL_ADC_SetOffsetSaturation(hadc->Instance, sConfig->OffsetNumber, (sConfig->OffsetSaturation == ENABLE) ? LL_ADC_OFFSET_SATURATION_ENABLE : LL_ADC_OFFSET_SATURATION_DISABLE); } else #endif /* ADC_VER_V5_V90 */ { assert_param(IS_FUNCTIONAL_STATE(sConfig->OffsetSignedSaturation)); /* Set ADC selected offset signed saturation */ LL_ADC_SetOffsetSignedSaturation(hadc->Instance, sConfig->OffsetNumber, (sConfig->OffsetSignedSaturation == ENABLE) ? LL_ADC_OFFSET_SIGNED_SATURATION_ENABLE : LL_ADC_OFFSET_SIGNED_SATURATION_DISABLE); assert_param(IS_FUNCTIONAL_STATE(sConfig->OffsetRightShift)); /* Set ADC selected offset right shift */ LL_ADC_SetDataRightShift(hadc->Instance, sConfig->OffsetNumber, (sConfig->OffsetRightShift == ENABLE) ? LL_ADC_OFFSET_RSHIFT_ENABLE : LL_ADC_OFFSET_RSHIFT_DISABLE); } } else { /* Scan OFR1, OFR2, OFR3, OFR4 to check if the selected channel is enabled. If this is the case, offset OFRx is disabled since sConfig->OffsetNumber = ADC_OFFSET_NONE. */ #if defined(ADC_VER_V5_V90) if (hadc->Instance == ADC3) { if (__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_1)) == __LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfig->Channel)) { LL_ADC_SetOffsetState(hadc->Instance, LL_ADC_OFFSET_1, LL_ADC_OFFSET_DISABLE); } if (__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_2)) == __LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfig->Channel)) { LL_ADC_SetOffsetState(hadc->Instance, LL_ADC_OFFSET_2, LL_ADC_OFFSET_DISABLE); } if (__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_3)) == __LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfig->Channel)) { LL_ADC_SetOffsetState(hadc->Instance, LL_ADC_OFFSET_3, LL_ADC_OFFSET_DISABLE); } if (__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_4)) == __LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfig->Channel)) { LL_ADC_SetOffsetState(hadc->Instance, LL_ADC_OFFSET_4, LL_ADC_OFFSET_DISABLE); } } else #endif /* ADC_VER_V5_V90 */ { if (((hadc->Instance->OFR1) & ADC_OFR1_OFFSET1_CH) == ADC_OFR_CHANNEL(sConfig->Channel)) { CLEAR_BIT(hadc->Instance->OFR1, ADC_OFR1_SSATE); } if (((hadc->Instance->OFR2) & ADC_OFR2_OFFSET2_CH) == ADC_OFR_CHANNEL(sConfig->Channel)) { CLEAR_BIT(hadc->Instance->OFR2, ADC_OFR2_SSATE); } if (((hadc->Instance->OFR3) & ADC_OFR3_OFFSET3_CH) == ADC_OFR_CHANNEL(sConfig->Channel)) { CLEAR_BIT(hadc->Instance->OFR3, ADC_OFR3_SSATE); } if (((hadc->Instance->OFR4) & ADC_OFR4_OFFSET4_CH) == ADC_OFR_CHANNEL(sConfig->Channel)) { CLEAR_BIT(hadc->Instance->OFR4, ADC_OFR4_SSATE); } } } } /* Parameters update conditioned to ADC state: */ /* Parameters that can be updated only when ADC is disabled: */ /* - Single or differential mode */ /* - Internal measurement channels: Vbat/VrefInt/TempSensor */ if (LL_ADC_IsEnabled(hadc->Instance) == 0UL) { /* Set mode single-ended or differential input of the selected ADC channel */ LL_ADC_SetChannelSingleDiff(hadc->Instance, sConfig->Channel, sConfig->SingleDiff); /* Configuration of differential mode */ if (sConfig->SingleDiff == ADC_DIFFERENTIAL_ENDED) { /* Set sampling time of the selected ADC channel */ /* Note: ADC channel number masked with value "0x1F" to ensure shift value within 32 bits range */ LL_ADC_SetChannelSamplingTime(hadc->Instance, (uint32_t)(__LL_ADC_DECIMAL_NB_TO_CHANNEL((__LL_ADC_CHANNEL_TO_DECIMAL_NB((uint32_t)sConfig->Channel) + 1UL) & 0x1FUL)), sConfig->SamplingTime); } /* Management of internal measurement channels: Vbat/VrefInt/TempSensor. */ /* If internal channel selected, enable dedicated internal buffers and */ /* paths. */ /* Note: these internal measurement paths can be disabled using */ /* HAL_ADC_DeInit(). */ if (__LL_ADC_IS_CHANNEL_INTERNAL(sConfig->Channel)) { /* Configuration of common ADC parameters */ tmp_config_internal_channel = LL_ADC_GetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance)); /* Software is allowed to change common parameters only when all ADCs */ /* of the common group are disabled. */ if (__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) == 0UL) { /* If the requested internal measurement path has already been enabled, */ /* bypass the configuration processing. */ if ((sConfig->Channel == ADC_CHANNEL_TEMPSENSOR) && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_TEMPSENSOR) == 0UL)) { if (ADC_TEMPERATURE_SENSOR_INSTANCE(hadc)) { LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), LL_ADC_PATH_INTERNAL_TEMPSENSOR | tmp_config_internal_channel); /* Delay for temperature sensor stabilization time */ /* Wait loop initialization and execution */ /* Note: Variable divided by 2 to compensate partially */ /* CPU processing cycles, scaling in us split to not */ /* exceed 32 bits register capacity and handle low frequency. */ wait_loop_index = ((LL_ADC_DELAY_TEMPSENSOR_STAB_US / 10UL) * ((SystemCoreClock / (100000UL * 2UL)) + 1UL)); while (wait_loop_index != 0UL) { wait_loop_index--; } } } else if ((sConfig->Channel == ADC_CHANNEL_VBAT) && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_VBAT) == 0UL)) { if (ADC_BATTERY_VOLTAGE_INSTANCE(hadc)) { LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), LL_ADC_PATH_INTERNAL_VBAT | tmp_config_internal_channel); } } else if ((sConfig->Channel == ADC_CHANNEL_VREFINT) && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_VREFINT) == 0UL)) { if (ADC_VREFINT_INSTANCE(hadc)) { LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), LL_ADC_PATH_INTERNAL_VREFINT | tmp_config_internal_channel); } } else { /* nothing to do */ } } /* If the requested internal measurement path has already been */ /* enabled and other ADC of the common group are enabled, internal */ /* measurement paths cannot be enabled. */ else { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); tmp_hal_status = HAL_ERROR; } } } } /* If a conversion is on going on regular group, no update on regular */ /* channel could be done on neither of the channel configuration structure */ /* parameters. */ else { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); tmp_hal_status = HAL_ERROR; } /* Process unlocked */ __HAL_UNLOCK(hadc); /* Return function status */ return tmp_hal_status; } /** * @brief Configure the analog watchdog. * @note Possibility to update parameters on the fly: * This function initializes the selected analog watchdog, successive * calls to this function can be used to reconfigure some parameters * of structure "ADC_AnalogWDGConfTypeDef" on the fly, without resetting * the ADC. * The setting of these parameters is conditioned to ADC state. * For parameters constraints, see comments of structure * "ADC_AnalogWDGConfTypeDef". * @note On this STM32 series, analog watchdog thresholds cannot be modified * while ADC conversion is on going. * @param hadc ADC handle * @param AnalogWDGConfig Structure of ADC analog watchdog configuration * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef *hadc, ADC_AnalogWDGConfTypeDef *AnalogWDGConfig) { HAL_StatusTypeDef tmp_hal_status = HAL_OK; uint32_t tmpAWDHighThresholdShifted; uint32_t tmpAWDLowThresholdShifted; uint32_t tmp_adc_is_conversion_on_going_regular; uint32_t tmp_adc_is_conversion_on_going_injected; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); assert_param(IS_ADC_ANALOG_WATCHDOG_NUMBER(AnalogWDGConfig->WatchdogNumber)); assert_param(IS_ADC_ANALOG_WATCHDOG_MODE(AnalogWDGConfig->WatchdogMode)); assert_param(IS_FUNCTIONAL_STATE(AnalogWDGConfig->ITMode)); if ((AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REG) || (AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_INJEC) || (AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REGINJEC)) { assert_param(IS_ADC_CHANNEL(AnalogWDGConfig->Channel)); } #if defined(ADC_VER_V5_V90) if (hadc->Instance == ADC3) { /* Verify thresholds range */ if (hadc->Init.OversamplingMode == ENABLE) { /* Case of oversampling enabled: thresholds are compared to oversampling intermediate computation (after ratio, before shift application) */ assert_param(IS_ADC3_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->HighThreshold / (hadc->Init.Oversampling.Ratio + 1UL))); assert_param(IS_ADC3_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->LowThreshold / (hadc->Init.Oversampling.Ratio + 1UL))); } else { /* Verify if thresholds are within the selected ADC resolution */ assert_param(IS_ADC3_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->HighThreshold)); assert_param(IS_ADC3_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->LowThreshold)); } } else #endif /* ADC_VER_V5_V90 */ { /* Verify thresholds range */ if (hadc->Init.OversamplingMode == ENABLE) { /* Case of oversampling enabled: thresholds are compared to oversampling intermediate computation (after ratio, before shift application) */ assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->HighThreshold / (hadc->Init.Oversampling.Ratio + 1UL))); assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->LowThreshold / (hadc->Init.Oversampling.Ratio + 1UL))); } else { /* Verify if thresholds are within the selected ADC resolution */ assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->HighThreshold)); assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->LowThreshold)); } } /* Process locked */ __HAL_LOCK(hadc); /* Parameters update conditioned to ADC state: */ /* Parameters that can be updated when ADC is disabled or enabled without */ /* conversion on going on ADC groups regular and injected: */ /* - Analog watchdog channels */ /* - Analog watchdog thresholds */ tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance); tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance); if ((tmp_adc_is_conversion_on_going_regular == 0UL) && (tmp_adc_is_conversion_on_going_injected == 0UL) ) { /* Analog watchdog configuration */ if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_1) { /* Configuration of analog watchdog: */ /* - Set the analog watchdog enable mode: one or overall group of */ /* channels, on groups regular and-or injected. */ switch (AnalogWDGConfig->WatchdogMode) { case ADC_ANALOGWATCHDOG_SINGLE_REG: LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, __LL_ADC_ANALOGWD_CHANNEL_GROUP(AnalogWDGConfig->Channel, LL_ADC_GROUP_REGULAR)); break; case ADC_ANALOGWATCHDOG_SINGLE_INJEC: LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, __LL_ADC_ANALOGWD_CHANNEL_GROUP(AnalogWDGConfig->Channel, LL_ADC_GROUP_INJECTED)); break; case ADC_ANALOGWATCHDOG_SINGLE_REGINJEC: LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, __LL_ADC_ANALOGWD_CHANNEL_GROUP(AnalogWDGConfig->Channel, LL_ADC_GROUP_REGULAR_INJECTED)); break; case ADC_ANALOGWATCHDOG_ALL_REG: LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_ALL_CHANNELS_REG); break; case ADC_ANALOGWATCHDOG_ALL_INJEC: LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_ALL_CHANNELS_INJ); break; case ADC_ANALOGWATCHDOG_ALL_REGINJEC: LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_ALL_CHANNELS_REG_INJ); break; default: /* ADC_ANALOGWATCHDOG_NONE */ LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_DISABLE); break; } /* Shift the offset in function of the selected ADC resolution: */ /* Thresholds have to be left-aligned on bit 11, the LSB (right bits) */ /* are set to 0 */ tmpAWDHighThresholdShifted = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->HighThreshold); tmpAWDLowThresholdShifted = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->LowThreshold); /* Set the high and low thresholds */ #if defined(ADC_VER_V5_V90) if (hadc->Instance == ADC3) { MODIFY_REG(hadc->Instance->LTR1_TR1, ADC3_TR1_AWDFILT, AnalogWDGConfig->FilteringConfig); MODIFY_REG(hadc->Instance->LTR1_TR1, ADC3_TR1_LT1, tmpAWDLowThresholdShifted); MODIFY_REG(hadc->Instance->LTR1_TR1, ADC3_TR1_HT1, (tmpAWDHighThresholdShifted << ADC3_TR1_HT1_Pos)); } else { MODIFY_REG(hadc->Instance->LTR1_TR1, ADC_LTR_LT, tmpAWDLowThresholdShifted); MODIFY_REG(hadc->Instance->HTR1_TR2, ADC_HTR_HT, tmpAWDHighThresholdShifted); } #else MODIFY_REG(hadc->Instance->LTR1, ADC_LTR_LT, tmpAWDLowThresholdShifted); MODIFY_REG(hadc->Instance->HTR1, ADC_HTR_HT, tmpAWDHighThresholdShifted); #endif /* Update state, clear previous result related to AWD1 */ CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD1); /* Clear flag ADC analog watchdog */ /* Note: Flag cleared Clear the ADC Analog watchdog flag to be ready */ /* to use for HAL_ADC_IRQHandler() or HAL_ADC_PollForEvent() */ /* (in case left enabled by previous ADC operations). */ LL_ADC_ClearFlag_AWD1(hadc->Instance); /* Configure ADC analog watchdog interrupt */ if (AnalogWDGConfig->ITMode == ENABLE) { LL_ADC_EnableIT_AWD1(hadc->Instance); } else { LL_ADC_DisableIT_AWD1(hadc->Instance); } } /* Case of ADC_ANALOGWATCHDOG_2 or ADC_ANALOGWATCHDOG_3 */ else { switch (AnalogWDGConfig->WatchdogMode) { case ADC_ANALOGWATCHDOG_SINGLE_REG: case ADC_ANALOGWATCHDOG_SINGLE_INJEC: case ADC_ANALOGWATCHDOG_SINGLE_REGINJEC: /* Update AWD by bitfield to keep the possibility to monitor */ /* several channels by successive calls of this function. */ if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2) { SET_BIT(hadc->Instance->AWD2CR, (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB(AnalogWDGConfig->Channel) & 0x1FUL))); } else { SET_BIT(hadc->Instance->AWD3CR, (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB(AnalogWDGConfig->Channel) & 0x1FUL))); } break; case ADC_ANALOGWATCHDOG_ALL_REG: case ADC_ANALOGWATCHDOG_ALL_INJEC: case ADC_ANALOGWATCHDOG_ALL_REGINJEC: #if defined(ADC_VER_V5_V90) if (hadc->Instance == ADC3) { LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, AnalogWDGConfig->WatchdogNumber, LL_ADC_AWD_ALL_CHANNELS_REG_INJ); } else { #endif /*ADC_VER_V5_V90*/ /* Update AWD by bitfield to keep the possibility to monitor */ /* several channels by successive calls of this function. */ if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2) { SET_BIT(hadc->Instance->AWD2CR, (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB(AnalogWDGConfig->Channel) & 0x1FUL))); } else { SET_BIT(hadc->Instance->AWD3CR, (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB(AnalogWDGConfig->Channel) & 0x1FUL))); } #if defined(ADC_VER_V5_V90) } #endif /*ADC_VER_V5_V90*/ break; default: /* ADC_ANALOGWATCHDOG_NONE */ LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, AnalogWDGConfig->WatchdogNumber, LL_ADC_AWD_DISABLE); break; } /* Shift the thresholds in function of the selected ADC resolution */ /* have to be left-aligned on bit 15, the LSB (right bits) are set to 0 */ tmpAWDHighThresholdShifted = ADC_AWD23THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->HighThreshold); tmpAWDLowThresholdShifted = ADC_AWD23THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->LowThreshold); #if defined(ADC_VER_V5_V90) if (hadc->Instance == ADC3) { /* Analog watchdog thresholds configuration */ if (AnalogWDGConfig->WatchdogNumber != ADC_ANALOGWATCHDOG_1) { /* Shift the offset with respect to the selected ADC resolution: */ /* Thresholds have to be left-aligned on bit 7, the LSB (right bits) */ /* are set to 0. */ tmpAWDHighThresholdShifted = ADC_AWD23THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->HighThreshold); tmpAWDLowThresholdShifted = ADC_AWD23THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->LowThreshold); } /* Set ADC analog watchdog thresholds value of both thresholds high and low */ LL_ADC_ConfigAnalogWDThresholds(hadc->Instance, AnalogWDGConfig->WatchdogNumber, tmpAWDHighThresholdShifted, tmpAWDLowThresholdShifted); } else { if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2) { /* Set ADC analog watchdog thresholds value of both thresholds high and low */ MODIFY_REG(hadc->Instance->LTR2_DIFSEL, ADC_LTR_LT, tmpAWDLowThresholdShifted); MODIFY_REG(hadc->Instance->HTR2_CALFACT, ADC_HTR_HT, tmpAWDHighThresholdShifted); } else { /* Set ADC analog watchdog thresholds value of both thresholds high and low */ MODIFY_REG(hadc->Instance->LTR3_RES10, ADC_LTR_LT, tmpAWDLowThresholdShifted); MODIFY_REG(hadc->Instance->HTR3_RES11, ADC_HTR_HT, tmpAWDHighThresholdShifted); } } #else if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2) { /* Set ADC analog watchdog thresholds value of both thresholds high and low */ MODIFY_REG(hadc->Instance->LTR2, ADC_LTR_LT, tmpAWDLowThresholdShifted); MODIFY_REG(hadc->Instance->HTR2, ADC_HTR_HT, tmpAWDHighThresholdShifted); } else { /* Set ADC analog watchdog thresholds value of both thresholds high and low */ MODIFY_REG(hadc->Instance->LTR3, ADC_LTR_LT, tmpAWDLowThresholdShifted); MODIFY_REG(hadc->Instance->HTR3, ADC_HTR_HT, tmpAWDHighThresholdShifted); } #endif if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2) { /* Update state, clear previous result related to AWD2 */ CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD2); /* Clear flag ADC analog watchdog */ /* Note: Flag cleared Clear the ADC Analog watchdog flag to be ready */ /* to use for HAL_ADC_IRQHandler() or HAL_ADC_PollForEvent() */ /* (in case left enabled by previous ADC operations). */ LL_ADC_ClearFlag_AWD2(hadc->Instance); /* Configure ADC analog watchdog interrupt */ if (AnalogWDGConfig->ITMode == ENABLE) { LL_ADC_EnableIT_AWD2(hadc->Instance); } else { LL_ADC_DisableIT_AWD2(hadc->Instance); } } /* (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_3) */ else { /* Update state, clear previous result related to AWD3 */ CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD3); /* Clear flag ADC analog watchdog */ /* Note: Flag cleared Clear the ADC Analog watchdog flag to be ready */ /* to use for HAL_ADC_IRQHandler() or HAL_ADC_PollForEvent() */ /* (in case left enabled by previous ADC operations). */ LL_ADC_ClearFlag_AWD3(hadc->Instance); /* Configure ADC analog watchdog interrupt */ if (AnalogWDGConfig->ITMode == ENABLE) { LL_ADC_EnableIT_AWD3(hadc->Instance); } else { LL_ADC_DisableIT_AWD3(hadc->Instance); } } } } /* If a conversion is on going on ADC group regular or injected, no update */ /* could be done on neither of the AWD configuration structure parameters. */ else { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); tmp_hal_status = HAL_ERROR; } /* Process unlocked */ __HAL_UNLOCK(hadc); /* Return function status */ return tmp_hal_status; } /** * @} */ /** @defgroup ADC_Exported_Functions_Group4 Peripheral State functions * @brief ADC Peripheral State functions * @verbatim =============================================================================== ##### Peripheral state and errors functions ##### =============================================================================== [..] This subsection provides functions to get in run-time the status of the peripheral. (+) Check the ADC state (+) Check the ADC error code @endverbatim * @{ */ /** * @brief Return the ADC handle state. * @note ADC state machine is managed by bitfields, ADC status must be * compared with states bits. * For example: * " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_REG_BUSY) != 0UL) " * " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD1) != 0UL) " * @param hadc ADC handle * @retval ADC handle state (bitfield on 32 bits) */ uint32_t HAL_ADC_GetState(ADC_HandleTypeDef *hadc) { /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Return ADC handle state */ return hadc->State; } /** * @brief Return the ADC error code. * @param hadc ADC handle * @retval ADC error code (bitfield on 32 bits) */ uint32_t HAL_ADC_GetError(ADC_HandleTypeDef *hadc) { /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); return hadc->ErrorCode; } /** * @} */ /** * @} */ /** @defgroup ADC_Private_Functions ADC Private Functions * @{ */ /** * @brief Stop ADC conversion. * @param hadc ADC handle * @param ConversionGroup ADC group regular and/or injected. * This parameter can be one of the following values: * @arg @ref ADC_REGULAR_GROUP ADC regular conversion type. * @arg @ref ADC_INJECTED_GROUP ADC injected conversion type. * @arg @ref ADC_REGULAR_INJECTED_GROUP ADC regular and injected conversion type. * @retval HAL status. */ HAL_StatusTypeDef ADC_ConversionStop(ADC_HandleTypeDef *hadc, uint32_t ConversionGroup) { uint32_t tickstart; uint32_t Conversion_Timeout_CPU_cycles = 0UL; uint32_t conversion_group_reassigned = ConversionGroup; uint32_t tmp_ADC_CR_ADSTART_JADSTART; uint32_t tmp_adc_is_conversion_on_going_regular; uint32_t tmp_adc_is_conversion_on_going_injected; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); assert_param(IS_ADC_CONVERSION_GROUP(ConversionGroup)); /* Verification if ADC is not already stopped (on regular and injected */ /* groups) to bypass this function if not needed. */ tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance); tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance); if ((tmp_adc_is_conversion_on_going_regular != 0UL) || (tmp_adc_is_conversion_on_going_injected != 0UL) ) { /* Particular case of continuous auto-injection mode combined with */ /* auto-delay mode. */ /* In auto-injection mode, regular group stop ADC_CR_ADSTP is used (not */ /* injected group stop ADC_CR_JADSTP). */ /* Procedure to be followed: Wait until JEOS=1, clear JEOS, set ADSTP=1 */ /* (see reference manual). */ if (((hadc->Instance->CFGR & ADC_CFGR_JAUTO) != 0UL) && (hadc->Init.ContinuousConvMode == ENABLE) && (hadc->Init.LowPowerAutoWait == ENABLE) ) { /* Use stop of regular group */ conversion_group_reassigned = ADC_REGULAR_GROUP; /* Wait until JEOS=1 (maximum Timeout: 4 injected conversions) */ while (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOS) == 0UL) { if (Conversion_Timeout_CPU_cycles >= (ADC_CONVERSION_TIME_MAX_CPU_CYCLES * 4UL)) { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); /* Set ADC error code to ADC peripheral internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); return HAL_ERROR; } Conversion_Timeout_CPU_cycles ++; } /* Clear JEOS */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOS); } /* Stop potential conversion on going on ADC group regular */ if (conversion_group_reassigned != ADC_INJECTED_GROUP) { /* Software is allowed to set ADSTP only when ADSTART=1 and ADDIS=0 */ if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) != 0UL) { if (LL_ADC_IsDisableOngoing(hadc->Instance) == 0UL) { /* Stop ADC group regular conversion */ LL_ADC_REG_StopConversion(hadc->Instance); } } } /* Stop potential conversion on going on ADC group injected */ if (conversion_group_reassigned != ADC_REGULAR_GROUP) { /* Software is allowed to set JADSTP only when JADSTART=1 and ADDIS=0 */ if (LL_ADC_INJ_IsConversionOngoing(hadc->Instance) != 0UL) { if (LL_ADC_IsDisableOngoing(hadc->Instance) == 0UL) { /* Stop ADC group injected conversion */ LL_ADC_INJ_StopConversion(hadc->Instance); } } } /* Selection of start and stop bits with respect to the regular or injected group */ switch (conversion_group_reassigned) { case ADC_REGULAR_INJECTED_GROUP: tmp_ADC_CR_ADSTART_JADSTART = (ADC_CR_ADSTART | ADC_CR_JADSTART); break; case ADC_INJECTED_GROUP: tmp_ADC_CR_ADSTART_JADSTART = ADC_CR_JADSTART; break; /* Case ADC_REGULAR_GROUP only*/ default: tmp_ADC_CR_ADSTART_JADSTART = ADC_CR_ADSTART; break; } /* Wait for conversion effectively stopped */ tickstart = HAL_GetTick(); while ((hadc->Instance->CR & tmp_ADC_CR_ADSTART_JADSTART) != 0UL) { if ((HAL_GetTick() - tickstart) > ADC_STOP_CONVERSION_TIMEOUT) { /* New check to avoid false timeout detection in case of preemption */ if((hadc->Instance->CR & tmp_ADC_CR_ADSTART_JADSTART) != 0UL) { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); /* Set ADC error code to ADC peripheral internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); return HAL_ERROR; } } } } /* Return HAL status */ return HAL_OK; } /** * @brief Enable the selected ADC. * @note Prerequisite condition to use this function: ADC must be disabled * and voltage regulator must be enabled (done into HAL_ADC_Init()). * @param hadc ADC handle * @retval HAL status. */ HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef *hadc) { uint32_t tickstart; /* ADC enable and wait for ADC ready (in case of ADC is disabled or */ /* enabling phase not yet completed: flag ADC ready not yet set). */ /* Timeout implemented to not be stuck if ADC cannot be enabled (possible */ /* causes: ADC clock not running, ...). */ if (LL_ADC_IsEnabled(hadc->Instance) == 0UL) { /* Check if conditions to enable the ADC are fulfilled */ if ((hadc->Instance->CR & (ADC_CR_ADCAL | ADC_CR_JADSTP | ADC_CR_ADSTP | ADC_CR_JADSTART | ADC_CR_ADSTART | ADC_CR_ADDIS | ADC_CR_ADEN)) != 0UL) { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); /* Set ADC error code to ADC peripheral internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); return HAL_ERROR; } /* Enable the ADC peripheral */ LL_ADC_Enable(hadc->Instance); /* Wait for ADC effectively enabled */ tickstart = HAL_GetTick(); /* Poll for ADC ready flag raised except case of multimode enabled and ADC slave selected. */ uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance)); if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) ) { while (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_RDY) == 0UL) { /* If ADEN bit is set less than 4 ADC clock cycles after the ADCAL bit has been cleared (after a calibration), ADEN bit is reset by the calibration logic. The workaround is to continue setting ADEN until ADRDY is becomes 1. Additionally, ADC_ENABLE_TIMEOUT is defined to encompass this 4 ADC clock cycle duration */ /* Note: Test of ADC enabled required due to hardware constraint to */ /* not enable ADC if already enabled. */ if (LL_ADC_IsEnabled(hadc->Instance) == 0UL) { LL_ADC_Enable(hadc->Instance); } if ((HAL_GetTick() - tickstart) > ADC_ENABLE_TIMEOUT) { /* New check to avoid false timeout detection in case of preemption */ if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_RDY) == 0UL) { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); /* Set ADC error code to ADC peripheral internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); return HAL_ERROR; } } } } } /* Return HAL status */ return HAL_OK; } /** * @brief Disable the selected ADC. * @note Prerequisite condition to use this function: ADC conversions must be * stopped. * @param hadc ADC handle * @retval HAL status. */ HAL_StatusTypeDef ADC_Disable(ADC_HandleTypeDef *hadc) { uint32_t tickstart; const uint32_t tmp_adc_is_disable_on_going = LL_ADC_IsDisableOngoing(hadc->Instance); /* Verification if ADC is not already disabled: */ /* Note: forbidden to disable ADC (set bit ADC_CR_ADDIS) if ADC is already */ /* disabled. */ if ((LL_ADC_IsEnabled(hadc->Instance) != 0UL) && (tmp_adc_is_disable_on_going == 0UL) ) { /* Check if conditions to disable the ADC are fulfilled */ if ((hadc->Instance->CR & (ADC_CR_JADSTART | ADC_CR_ADSTART | ADC_CR_ADEN)) == ADC_CR_ADEN) { /* Disable the ADC peripheral */ LL_ADC_Disable(hadc->Instance); __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOSMP | ADC_FLAG_RDY)); } else { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); /* Set ADC error code to ADC peripheral internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); return HAL_ERROR; } /* Wait for ADC effectively disabled */ /* Get tick count */ tickstart = HAL_GetTick(); while ((hadc->Instance->CR & ADC_CR_ADEN) != 0UL) { if ((HAL_GetTick() - tickstart) > ADC_DISABLE_TIMEOUT) { /* New check to avoid false timeout detection in case of preemption */ if ((hadc->Instance->CR & ADC_CR_ADEN) != 0UL) { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); /* Set ADC error code to ADC peripheral internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); return HAL_ERROR; } } } } /* Return HAL status */ return HAL_OK; } /** * @brief DMA transfer complete callback. * @param hdma pointer to DMA handle. * @retval None */ void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma) { /* Retrieve ADC handle corresponding to current DMA handle */ ADC_HandleTypeDef *hadc = (ADC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; /* Update state machine on conversion status if not in error state */ if ((hadc->State & (HAL_ADC_STATE_ERROR_INTERNAL | HAL_ADC_STATE_ERROR_DMA)) == 0UL) { /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); /* Determine whether any further conversion upcoming on group regular */ /* by external trigger, continuous mode or scan sequence on going */ /* to disable interruption. */ /* Is it the end of the regular sequence ? */ if ((hadc->Instance->ISR & ADC_FLAG_EOS) != 0UL) { /* Are conversions software-triggered ? */ if (LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance) != 0UL) { /* Is CONT bit set ? */ if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_CONT) == 0UL) { /* CONT bit is not set, no more conversions expected */ CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY); if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) == 0UL) { SET_BIT(hadc->State, HAL_ADC_STATE_READY); } } } } else { /* DMA End of Transfer interrupt was triggered but conversions sequence is not over. If DMACFG is set to 0, conversions are stopped. */ if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_DMNGT) == 0UL) { /* DMACFG bit is not set, conversions are stopped. */ CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY); if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) == 0UL) { SET_BIT(hadc->State, HAL_ADC_STATE_READY); } } } /* Conversion complete callback */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) hadc->ConvCpltCallback(hadc); #else HAL_ADC_ConvCpltCallback(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ } else /* DMA and-or internal error occurred */ { if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) != 0UL) { /* Call HAL ADC Error Callback function */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) hadc->ErrorCallback(hadc); #else HAL_ADC_ErrorCallback(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ } else { /* Call ADC DMA error callback */ hadc->DMA_Handle->XferErrorCallback(hdma); } } } /** * @brief DMA half transfer complete callback. * @param hdma pointer to DMA handle. * @retval None */ void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma) { /* Retrieve ADC handle corresponding to current DMA handle */ ADC_HandleTypeDef *hadc = (ADC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; /* Half conversion callback */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) hadc->ConvHalfCpltCallback(hadc); #else HAL_ADC_ConvHalfCpltCallback(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ } /** * @brief DMA error callback. * @param hdma pointer to DMA handle. * @retval None */ void ADC_DMAError(DMA_HandleTypeDef *hdma) { /* Retrieve ADC handle corresponding to current DMA handle */ ADC_HandleTypeDef *hadc = (ADC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA); /* Set ADC error code to DMA error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_DMA); /* Error callback */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) hadc->ErrorCallback(hadc); #else HAL_ADC_ErrorCallback(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ } /** * @brief Configure boost mode of selected ADC. * @note Prerequisite condition to use this function: ADC conversions must be * stopped. * @param hadc ADC handle * @retval None. */ void ADC_ConfigureBoostMode(ADC_HandleTypeDef *hadc) { uint32_t freq; if (ADC_IS_SYNCHRONOUS_CLOCK_MODE(hadc)) { freq = HAL_RCC_GetHCLKFreq(); switch (hadc->Init.ClockPrescaler) { case ADC_CLOCK_SYNC_PCLK_DIV1: case ADC_CLOCK_SYNC_PCLK_DIV2: freq /= (hadc->Init.ClockPrescaler >> ADC_CCR_CKMODE_Pos); break; case ADC_CLOCK_SYNC_PCLK_DIV4: freq /= 4UL; break; default: break; } } else { freq = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_ADC); switch (hadc->Init.ClockPrescaler) { case ADC_CLOCK_ASYNC_DIV2: case ADC_CLOCK_ASYNC_DIV4: case ADC_CLOCK_ASYNC_DIV6: case ADC_CLOCK_ASYNC_DIV8: case ADC_CLOCK_ASYNC_DIV10: case ADC_CLOCK_ASYNC_DIV12: freq /= ((hadc->Init.ClockPrescaler >> ADC_CCR_PRESC_Pos) << 1UL); break; case ADC_CLOCK_ASYNC_DIV16: freq /= 16UL; break; case ADC_CLOCK_ASYNC_DIV32: freq /= 32UL; break; case ADC_CLOCK_ASYNC_DIV64: freq /= 64UL; break; case ADC_CLOCK_ASYNC_DIV128: freq /= 128UL; break; case ADC_CLOCK_ASYNC_DIV256: freq /= 256UL; break; default: break; } } #if defined(ADC_VER_V5_3) || defined(ADC_VER_V5_V90) freq /= 2U; if (freq <= 6250000UL) { MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, 0UL); } else if (freq <= 12500000UL) { MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_0); } else if (freq <= 25000000UL) { MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_1); } else /* if(freq > 25000000UL) */ { MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_1 | ADC_CR_BOOST_0); } #else if (HAL_GetREVID() <= REV_ID_Y) /* STM32H7 silicon Rev.Y */ { if (freq > 20000000UL) { SET_BIT(hadc->Instance->CR, ADC_CR_BOOST_0); } else { CLEAR_BIT(hadc->Instance->CR, ADC_CR_BOOST_0); } } else /* STM32H7 silicon Rev.V */ { freq /= 2U; /* divider by 2 for Rev.V */ if (freq <= 6250000UL) { MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, 0UL); } else if (freq <= 12500000UL) { MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_0); } else if (freq <= 25000000UL) { MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_1); } else /* if(freq > 25000000UL) */ { MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_1 | ADC_CR_BOOST_0); } } #endif /* ADC_VER_V5_3 */ } /** * @} */ #endif /* HAL_ADC_MODULE_ENABLED */ /** * @} */ /** * @} */