/** ****************************************************************************** * @file stm32h7xx_hal_spdifrx.c * @author MCD Application Team * @brief This file provides firmware functions to manage the following * functionalities of the SPDIFRX audio interface: * + Initialization and Configuration * + Data transfers functions * + DMA transfers management * + Interrupts and flags management * ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** @verbatim =============================================================================== ##### How to use this driver ##### =============================================================================== [..] The SPDIFRX HAL driver can be used as follow: (#) Declare SPDIFRX_HandleTypeDef handle structure. (#) Initialize the SPDIFRX low level resources by implement the HAL_SPDIFRX_MspInit() API: (##) Enable the SPDIFRX interface clock. (##) SPDIFRX pins configuration: (+++) Enable the clock for the SPDIFRX GPIOs. (+++) Configure these SPDIFRX pins as alternate function pull-up. (##) NVIC configuration if you need to use interrupt process (HAL_SPDIFRX_ReceiveCtrlFlow_IT() and HAL_SPDIFRX_ReceiveDataFlow_IT() API's). (+++) Configure the SPDIFRX interrupt priority. (+++) Enable the NVIC SPDIFRX IRQ handle. (##) DMA Configuration if you need to use DMA process (HAL_SPDIFRX_ReceiveDataFlow_DMA() and HAL_SPDIFRX_ReceiveCtrlFlow_DMA() API's). (+++) Declare a DMA handle structure for the reception of the Data Flow channel. (+++) Declare a DMA handle structure for the reception of the Control Flow channel. (+++) Enable the DMAx interface clock. (+++) Configure the declared DMA handle structure CtrlRx/DataRx with the required parameters. (+++) Configure the DMA Channel. (+++) Associate the initialized DMA handle to the SPDIFRX DMA CtrlRx/DataRx handle. (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA CtrlRx/DataRx channel. (#) Program the input selection, re-tries number, wait for activity, channel status selection, data format, stereo mode and masking of user bits using HAL_SPDIFRX_Init() function. -@- The specific SPDIFRX interrupts (RXNE/CSRNE and Error Interrupts) will be managed using the macros __SPDIFRX_ENABLE_IT() and __SPDIFRX_DISABLE_IT() inside the receive process. -@- Make sure that ck_spdif clock is configured. (#) Three operation modes are available within this driver : *** Polling mode for reception operation (for debug purpose) *** ================================================================ [..] (+) Receive data flow in blocking mode using HAL_SPDIFRX_ReceiveDataFlow() (+) Receive control flow of data in blocking mode using HAL_SPDIFRX_ReceiveCtrlFlow() *** Interrupt mode for reception operation *** ========================================= [..] (+) Receive an amount of data (Data Flow) in non blocking mode using HAL_SPDIFRX_ReceiveDataFlow_IT() (+) Receive an amount of data (Control Flow) in non blocking mode using HAL_SPDIFRX_ReceiveCtrlFlow_IT() (+) At reception end of half transfer HAL_SPDIFRX_RxHalfCpltCallback is executed and user can add his own code by customization of function pointer HAL_SPDIFRX_RxHalfCpltCallback (+) At reception end of transfer HAL_SPDIFRX_RxCpltCallback is executed and user can add his own code by customization of function pointer HAL_SPDIFRX_RxCpltCallback (+) In case of transfer Error, HAL_SPDIFRX_ErrorCallback() function is executed and user can add his own code by customization of function pointer HAL_SPDIFRX_ErrorCallback *** DMA mode for reception operation *** ======================================== [..] (+) Receive an amount of data (Data Flow) in non blocking mode (DMA) using HAL_SPDIFRX_ReceiveDataFlow_DMA() (+) Receive an amount of data (Control Flow) in non blocking mode (DMA) using HAL_SPDIFRX_ReceiveCtrlFlow_DMA() (+) At reception end of half transfer HAL_SPDIFRX_RxHalfCpltCallback is executed and user can add his own code by customization of function pointer HAL_SPDIFRX_RxHalfCpltCallback (+) At reception end of transfer HAL_SPDIFRX_RxCpltCallback is executed and user can add his own code by customization of function pointer HAL_SPDIFRX_RxCpltCallback (+) In case of transfer Error, HAL_SPDIFRX_ErrorCallback() function is executed and user can add his own code by customization of function pointer HAL_SPDIFRX_ErrorCallback (+) Stop the DMA Transfer using HAL_SPDIFRX_DMAStop() *** SPDIFRX HAL driver macros list *** ============================================= [..] Below the list of most used macros in SPDIFRX HAL driver. (+) __HAL_SPDIFRX_IDLE: Disable the specified SPDIFRX peripheral (IDLE State) (+) __HAL_SPDIFRX_SYNC: Enable the synchronization state of the specified SPDIFRX peripheral (SYNC State) (+) __HAL_SPDIFRX_RCV: Enable the receive state of the specified SPDIFRX peripheral (RCV State) (+) __HAL_SPDIFRX_ENABLE_IT : Enable the specified SPDIFRX interrupts (+) __HAL_SPDIFRX_DISABLE_IT : Disable the specified SPDIFRX interrupts (+) __HAL_SPDIFRX_GET_FLAG: Check whether the specified SPDIFRX flag is set or not. [..] (@) You can refer to the SPDIFRX HAL driver header file for more useful macros *** Callback registration *** ============================================= The compilation define USE_HAL_SPDIFRX_REGISTER_CALLBACKS when set to 1 allows the user to configure dynamically the driver callbacks. Use HAL_SPDIFRX_RegisterCallback() function to register an interrupt callback. The HAL_SPDIFRX_RegisterCallback() function allows to register the following callbacks: (+) RxHalfCpltCallback : SPDIFRX Data flow half completed callback. (+) RxCpltCallback : SPDIFRX Data flow completed callback. (+) CxHalfCpltCallback : SPDIFRX Control flow half completed callback. (+) CxCpltCallback : SPDIFRX Control flow completed callback. (+) ErrorCallback : SPDIFRX error callback. (+) MspInitCallback : SPDIFRX MspInit. (+) MspDeInitCallback : SPDIFRX MspDeInit. This function takes as parameters the HAL peripheral handle, the Callback ID and a pointer to the user callback function. Use HAL_SPDIFRX_UnRegisterCallback() function to reset a callback to the default weak function. The HAL_SPDIFRX_UnRegisterCallback() function takes as parameters the HAL peripheral handle, and the Callback ID. This function allows to reset the following callbacks: (+) RxHalfCpltCallback : SPDIFRX Data flow half completed callback. (+) RxCpltCallback : SPDIFRX Data flow completed callback. (+) CxHalfCpltCallback : SPDIFRX Control flow half completed callback. (+) CxCpltCallback : SPDIFRX Control flow completed callback. (+) ErrorCallback : SPDIFRX error callback. (+) MspInitCallback : SPDIFRX MspInit. (+) MspDeInitCallback : SPDIFRX MspDeInit. By default, after the HAL_SPDIFRX_Init() and when the state is HAL_SPDIFRX_STATE_RESET all callbacks are set to the corresponding weak functions : HAL_SPDIFRX_RxHalfCpltCallback() , HAL_SPDIFRX_RxCpltCallback(), HAL_SPDIFRX_CxHalfCpltCallback(), HAL_SPDIFRX_CxCpltCallback() and HAL_SPDIFRX_ErrorCallback() Exception done for MspInit and MspDeInit functions that are reset to the legacy weak function in the HAL_SPDIFRX_Init()/ HAL_SPDIFRX_DeInit() only when these callbacks pointers are NULL (not registered beforehand). If not, MspInit or MspDeInit callbacks pointers are not null, the HAL_SPDIFRX_Init() / HAL_SPDIFRX_DeInit() keep and use the user MspInit/MspDeInit functions (registered beforehand) Callbacks can be registered/unregistered in HAL_SPDIFRX_STATE_READY state only. Exception done MspInit/MspDeInit callbacks that can be registered/unregistered in HAL_SPDIFRX_STATE_READY or HAL_SPDIFRX_STATE_RESET state, thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. In that case first register the MspInit/MspDeInit user callbacks using HAL_SPDIFRX_RegisterCallback() before calling HAL_SPDIFRX_DeInit() or HAL_SPDIFRX_Init() function. When The compilation define USE_HAL_SPDIFRX_REGISTER_CALLBACKS is set to 0 or not defined, the callback registration feature is not available and all callbacks are set to the corresponding weak functions. @endverbatim */ /* Includes ------------------------------------------------------------------*/ #include "stm32h7xx_hal.h" /** @addtogroup STM32H7xx_HAL_Driver * @{ */ /** @defgroup SPDIFRX SPDIFRX * @brief SPDIFRX HAL module driver * @{ */ #ifdef HAL_SPDIFRX_MODULE_ENABLED #if defined (SPDIFRX) /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /** @defgroup SPDIFRX_Private_Defines SPDIFRX Private Defines * @{ */ #define SPDIFRX_TIMEOUT_VALUE 10U /** * @} */ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /** @addtogroup SPDIFRX_Private_Functions * @{ */ static void SPDIFRX_DMARxCplt(DMA_HandleTypeDef *hdma); static void SPDIFRX_DMARxHalfCplt(DMA_HandleTypeDef *hdma); static void SPDIFRX_DMACxCplt(DMA_HandleTypeDef *hdma); static void SPDIFRX_DMACxHalfCplt(DMA_HandleTypeDef *hdma); static void SPDIFRX_DMAError(DMA_HandleTypeDef *hdma); static void SPDIFRX_ReceiveControlFlow_IT(SPDIFRX_HandleTypeDef *hspdif); static void SPDIFRX_ReceiveDataFlow_IT(SPDIFRX_HandleTypeDef *hspdif); static HAL_StatusTypeDef SPDIFRX_WaitOnFlagUntilTimeout(SPDIFRX_HandleTypeDef *hspdif, uint32_t Flag, FlagStatus Status, uint32_t Timeout, uint32_t tickstart); /** * @} */ /* Exported functions ---------------------------------------------------------*/ /** @defgroup SPDIFRX_Exported_Functions SPDIFRX Exported Functions * @{ */ /** @defgroup SPDIFRX_Exported_Functions_Group1 Initialization and de-initialization functions * @brief Initialization and Configuration functions * @verbatim =============================================================================== ##### Initialization and de-initialization functions ##### =============================================================================== [..] This subsection provides a set of functions allowing to initialize and de-initialize the SPDIFRX peripheral: (+) User must Implement HAL_SPDIFRX_MspInit() function in which he configures all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ). (+) Call the function HAL_SPDIFRX_Init() to configure the SPDIFRX peripheral with the selected configuration: (++) Input Selection (IN0, IN1,...) (++) Maximum allowed re-tries during synchronization phase (++) Wait for activity on SPDIF selected input (++) Channel status selection (from channel A or B) (++) Data format (LSB, MSB, ...) (++) Stereo mode (++) User bits masking (PT,C,U,V,...) (+) Call the function HAL_SPDIFRX_DeInit() to restore the default configuration of the selected SPDIFRXx peripheral. @endverbatim * @{ */ /** * @brief Initializes the SPDIFRX according to the specified parameters * in the SPDIFRX_InitTypeDef and create the associated handle. * @param hspdif SPDIFRX handle * @retval HAL status */ HAL_StatusTypeDef HAL_SPDIFRX_Init(SPDIFRX_HandleTypeDef *hspdif) { uint32_t tmpreg; /* Check the SPDIFRX handle allocation */ if (hspdif == NULL) { return HAL_ERROR; } /* Check the SPDIFRX parameters */ assert_param(IS_STEREO_MODE(hspdif->Init.StereoMode)); assert_param(IS_SPDIFRX_INPUT_SELECT(hspdif->Init.InputSelection)); assert_param(IS_SPDIFRX_MAX_RETRIES(hspdif->Init.Retries)); assert_param(IS_SPDIFRX_WAIT_FOR_ACTIVITY(hspdif->Init.WaitForActivity)); assert_param(IS_SPDIFRX_CHANNEL(hspdif->Init.ChannelSelection)); assert_param(IS_SPDIFRX_DATA_FORMAT(hspdif->Init.DataFormat)); assert_param(IS_PREAMBLE_TYPE_MASK(hspdif->Init.PreambleTypeMask)); assert_param(IS_CHANNEL_STATUS_MASK(hspdif->Init.ChannelStatusMask)); assert_param(IS_VALIDITY_MASK(hspdif->Init.ValidityBitMask)); assert_param(IS_PARITY_ERROR_MASK(hspdif->Init.ParityErrorMask)); assert_param(IS_SYMBOL_CLOCK_GEN(hspdif->Init.SymbolClockGen)); assert_param(IS_SYMBOL_CLOCK_GEN(hspdif->Init.BackupSymbolClockGen)); #if (USE_HAL_SPDIFRX_REGISTER_CALLBACKS == 1) if (hspdif->State == HAL_SPDIFRX_STATE_RESET) { /* Allocate lock resource and initialize it */ hspdif->Lock = HAL_UNLOCKED; hspdif->RxHalfCpltCallback = HAL_SPDIFRX_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ hspdif->RxCpltCallback = HAL_SPDIFRX_RxCpltCallback; /* Legacy weak RxCpltCallback */ hspdif->CxHalfCpltCallback = HAL_SPDIFRX_CxHalfCpltCallback; /* Legacy weak CxHalfCpltCallback */ hspdif->CxCpltCallback = HAL_SPDIFRX_CxCpltCallback; /* Legacy weak CxCpltCallback */ hspdif->ErrorCallback = HAL_SPDIFRX_ErrorCallback; /* Legacy weak ErrorCallback */ if (hspdif->MspInitCallback == NULL) { hspdif->MspInitCallback = HAL_SPDIFRX_MspInit; /* Legacy weak MspInit */ } /* Init the low level hardware */ hspdif->MspInitCallback(hspdif); } #else if (hspdif->State == HAL_SPDIFRX_STATE_RESET) { /* Allocate lock resource and initialize it */ hspdif->Lock = HAL_UNLOCKED; /* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */ HAL_SPDIFRX_MspInit(hspdif); } #endif /* USE_HAL_SPDIFRX_REGISTER_CALLBACKS */ /* SPDIFRX peripheral state is BUSY */ hspdif->State = HAL_SPDIFRX_STATE_BUSY; /* Disable SPDIFRX interface (IDLE State) */ __HAL_SPDIFRX_IDLE(hspdif); /* Reset the old SPDIFRX CR configuration */ tmpreg = hspdif->Instance->CR; tmpreg &= ~(SPDIFRX_CR_RXSTEO | SPDIFRX_CR_DRFMT | SPDIFRX_CR_PMSK | SPDIFRX_CR_VMSK | SPDIFRX_CR_CUMSK | SPDIFRX_CR_PTMSK | SPDIFRX_CR_CHSEL | SPDIFRX_CR_NBTR | SPDIFRX_CR_WFA | SPDIFRX_CR_CKSEN | SPDIFRX_CR_CKSBKPEN | SPDIFRX_CR_INSEL); /* Sets the new configuration of the SPDIFRX peripheral */ tmpreg |= (hspdif->Init.StereoMode | hspdif->Init.InputSelection | hspdif->Init.Retries | hspdif->Init.WaitForActivity | hspdif->Init.ChannelSelection | hspdif->Init.DataFormat | hspdif->Init.PreambleTypeMask | hspdif->Init.ChannelStatusMask | hspdif->Init.ValidityBitMask | hspdif->Init.ParityErrorMask ); if (hspdif->Init.SymbolClockGen == ENABLE) { tmpreg |= SPDIFRX_CR_CKSEN; } if (hspdif->Init.BackupSymbolClockGen == ENABLE) { tmpreg |= SPDIFRX_CR_CKSBKPEN; } hspdif->Instance->CR = tmpreg; hspdif->ErrorCode = HAL_SPDIFRX_ERROR_NONE; /* SPDIFRX peripheral state is READY*/ hspdif->State = HAL_SPDIFRX_STATE_READY; return HAL_OK; } /** * @brief DeInitializes the SPDIFRX peripheral * @param hspdif SPDIFRX handle * @retval HAL status */ HAL_StatusTypeDef HAL_SPDIFRX_DeInit(SPDIFRX_HandleTypeDef *hspdif) { /* Check the SPDIFRX handle allocation */ if (hspdif == NULL) { return HAL_ERROR; } /* Check the parameters */ assert_param(IS_SPDIFRX_ALL_INSTANCE(hspdif->Instance)); hspdif->State = HAL_SPDIFRX_STATE_BUSY; /* Disable SPDIFRX interface (IDLE state) */ __HAL_SPDIFRX_IDLE(hspdif); #if (USE_HAL_SPDIFRX_REGISTER_CALLBACKS == 1) if (hspdif->MspDeInitCallback == NULL) { hspdif->MspDeInitCallback = HAL_SPDIFRX_MspDeInit; /* Legacy weak MspDeInit */ } /* DeInit the low level hardware */ hspdif->MspDeInitCallback(hspdif); #else /* DeInit the low level hardware: GPIO, CLOCK, NVIC... */ HAL_SPDIFRX_MspDeInit(hspdif); #endif /* USE_HAL_SPDIFRX_REGISTER_CALLBACKS */ hspdif->ErrorCode = HAL_SPDIFRX_ERROR_NONE; /* SPDIFRX peripheral state is RESET*/ hspdif->State = HAL_SPDIFRX_STATE_RESET; /* Release Lock */ __HAL_UNLOCK(hspdif); return HAL_OK; } /** * @brief SPDIFRX MSP Init * @param hspdif SPDIFRX handle * @retval None */ __weak void HAL_SPDIFRX_MspInit(SPDIFRX_HandleTypeDef *hspdif) { /* Prevent unused argument(s) compilation warning */ UNUSED(hspdif); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_SPDIFRX_MspInit could be implemented in the user file */ } /** * @brief SPDIFRX MSP DeInit * @param hspdif SPDIFRX handle * @retval None */ __weak void HAL_SPDIFRX_MspDeInit(SPDIFRX_HandleTypeDef *hspdif) { /* Prevent unused argument(s) compilation warning */ UNUSED(hspdif); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_SPDIFRX_MspDeInit could be implemented in the user file */ } #if (USE_HAL_SPDIFRX_REGISTER_CALLBACKS == 1) /** * @brief Register a User SPDIFRX Callback * To be used instead of the weak predefined callback * @param hspdif SPDIFRX handle * @param CallbackID ID of the callback to be registered * This parameter can be one of the following values: * @arg @ref HAL_SPDIFRX_RX_HALF_CB_ID SPDIFRX Data flow half completed callback ID * @arg @ref HAL_SPDIFRX_RX_CPLT_CB_ID SPDIFRX Data flow completed callback ID * @arg @ref HAL_SPDIFRX_CX_HALF_CB_ID SPDIFRX Control flow half completed callback ID * @arg @ref HAL_SPDIFRX_CX_CPLT_CB_ID SPDIFRX Control flow completed callback ID * @arg @ref HAL_SPDIFRX_ERROR_CB_ID SPDIFRX error callback ID * @arg @ref HAL_SPDIFRX_MSPINIT_CB_ID MspInit callback ID * @arg @ref HAL_SPDIFRX_MSPDEINIT_CB_ID MspDeInit callback ID * @param pCallback pointer to the Callback function * @retval HAL status */ HAL_StatusTypeDef HAL_SPDIFRX_RegisterCallback(SPDIFRX_HandleTypeDef *hspdif, HAL_SPDIFRX_CallbackIDTypeDef CallbackID, pSPDIFRX_CallbackTypeDef pCallback) { HAL_StatusTypeDef status = HAL_OK; if (pCallback == NULL) { /* Update the error code */ hspdif->ErrorCode |= HAL_SPDIFRX_ERROR_INVALID_CALLBACK; return HAL_ERROR; } /* Process locked */ __HAL_LOCK(hspdif); if (HAL_SPDIFRX_STATE_READY == hspdif->State) { switch (CallbackID) { case HAL_SPDIFRX_RX_HALF_CB_ID : hspdif->RxHalfCpltCallback = pCallback; break; case HAL_SPDIFRX_RX_CPLT_CB_ID : hspdif->RxCpltCallback = pCallback; break; case HAL_SPDIFRX_CX_HALF_CB_ID : hspdif->CxHalfCpltCallback = pCallback; break; case HAL_SPDIFRX_CX_CPLT_CB_ID : hspdif->CxCpltCallback = pCallback; break; case HAL_SPDIFRX_ERROR_CB_ID : hspdif->ErrorCallback = pCallback; break; case HAL_SPDIFRX_MSPINIT_CB_ID : hspdif->MspInitCallback = pCallback; break; case HAL_SPDIFRX_MSPDEINIT_CB_ID : hspdif->MspDeInitCallback = pCallback; break; default : /* Update the error code */ hspdif->ErrorCode |= HAL_SPDIFRX_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; break; } } else if (HAL_SPDIFRX_STATE_RESET == hspdif->State) { switch (CallbackID) { case HAL_SPDIFRX_MSPINIT_CB_ID : hspdif->MspInitCallback = pCallback; break; case HAL_SPDIFRX_MSPDEINIT_CB_ID : hspdif->MspDeInitCallback = pCallback; break; default : /* Update the error code */ hspdif->ErrorCode |= HAL_SPDIFRX_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; break; } } else { /* Update the error code */ hspdif->ErrorCode |= HAL_SPDIFRX_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } /* Release Lock */ __HAL_UNLOCK(hspdif); return status; } /** * @brief Unregister a SPDIFRX Callback * SPDIFRX callback is redirected to the weak predefined callback * @param hspdif SPDIFRX handle * @param CallbackID ID of the callback to be unregistered * This parameter can be one of the following values: * @arg @ref HAL_SPDIFRX_RX_HALF_CB_ID SPDIFRX Data flow half completed callback ID * @arg @ref HAL_SPDIFRX_RX_CPLT_CB_ID SPDIFRX Data flow completed callback ID * @arg @ref HAL_SPDIFRX_CX_HALF_CB_ID SPDIFRX Control flow half completed callback ID * @arg @ref HAL_SPDIFRX_CX_CPLT_CB_ID SPDIFRX Control flow completed callback ID * @arg @ref HAL_SPDIFRX_ERROR_CB_ID SPDIFRX error callback ID * @arg @ref HAL_SPDIFRX_MSPINIT_CB_ID MspInit callback ID * @arg @ref HAL_SPDIFRX_MSPDEINIT_CB_ID MspDeInit callback ID * @retval HAL status */ HAL_StatusTypeDef HAL_SPDIFRX_UnRegisterCallback(SPDIFRX_HandleTypeDef *hspdif, HAL_SPDIFRX_CallbackIDTypeDef CallbackID) { HAL_StatusTypeDef status = HAL_OK; /* Process locked */ __HAL_LOCK(hspdif); if (HAL_SPDIFRX_STATE_READY == hspdif->State) { switch (CallbackID) { case HAL_SPDIFRX_RX_HALF_CB_ID : hspdif->RxHalfCpltCallback = HAL_SPDIFRX_RxHalfCpltCallback; break; case HAL_SPDIFRX_RX_CPLT_CB_ID : hspdif->RxCpltCallback = HAL_SPDIFRX_RxCpltCallback; break; case HAL_SPDIFRX_CX_HALF_CB_ID : hspdif->CxHalfCpltCallback = HAL_SPDIFRX_CxHalfCpltCallback; break; case HAL_SPDIFRX_CX_CPLT_CB_ID : hspdif->CxCpltCallback = HAL_SPDIFRX_CxCpltCallback; break; case HAL_SPDIFRX_ERROR_CB_ID : hspdif->ErrorCallback = HAL_SPDIFRX_ErrorCallback; break; default : /* Update the error code */ hspdif->ErrorCode |= HAL_SPDIFRX_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; break; } } else if (HAL_SPDIFRX_STATE_RESET == hspdif->State) { switch (CallbackID) { case HAL_SPDIFRX_MSPINIT_CB_ID : hspdif->MspInitCallback = HAL_SPDIFRX_MspInit; /* Legacy weak MspInit */ break; case HAL_SPDIFRX_MSPDEINIT_CB_ID : hspdif->MspDeInitCallback = HAL_SPDIFRX_MspDeInit; /* Legacy weak MspInit */ break; default : /* Update the error code */ hspdif->ErrorCode |= HAL_SPDIFRX_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; break; } } else { /* Update the error code */ hspdif->ErrorCode |= HAL_SPDIFRX_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } /* Release Lock */ __HAL_UNLOCK(hspdif); return status; } #endif /* USE_HAL_SPDIFRX_REGISTER_CALLBACKS */ /** * @brief Set the SPDIFRX data format according to the specified parameters in the SPDIFRX_InitTypeDef. * @param hspdif SPDIFRX handle * @param sDataFormat SPDIFRX data format * @retval HAL status */ HAL_StatusTypeDef HAL_SPDIFRX_SetDataFormat(SPDIFRX_HandleTypeDef *hspdif, SPDIFRX_SetDataFormatTypeDef sDataFormat) { uint32_t tmpreg; /* Check the SPDIFRX handle allocation */ if (hspdif == NULL) { return HAL_ERROR; } /* Check the SPDIFRX parameters */ assert_param(IS_STEREO_MODE(sDataFormat.StereoMode)); assert_param(IS_SPDIFRX_DATA_FORMAT(sDataFormat.DataFormat)); assert_param(IS_PREAMBLE_TYPE_MASK(sDataFormat.PreambleTypeMask)); assert_param(IS_CHANNEL_STATUS_MASK(sDataFormat.ChannelStatusMask)); assert_param(IS_VALIDITY_MASK(sDataFormat.ValidityBitMask)); assert_param(IS_PARITY_ERROR_MASK(sDataFormat.ParityErrorMask)); /* Reset the old SPDIFRX CR configuration */ tmpreg = hspdif->Instance->CR; if (((tmpreg & SPDIFRX_STATE_RCV) == SPDIFRX_STATE_RCV) && (((tmpreg & SPDIFRX_CR_DRFMT) != sDataFormat.DataFormat) || ((tmpreg & SPDIFRX_CR_RXSTEO) != sDataFormat.StereoMode))) { return HAL_ERROR; } tmpreg &= ~(SPDIFRX_CR_RXSTEO | SPDIFRX_CR_DRFMT | SPDIFRX_CR_PMSK | SPDIFRX_CR_VMSK | SPDIFRX_CR_CUMSK | SPDIFRX_CR_PTMSK); /* Configure the new data format */ tmpreg |= (sDataFormat.StereoMode | sDataFormat.DataFormat | sDataFormat.PreambleTypeMask | sDataFormat.ChannelStatusMask | sDataFormat.ValidityBitMask | sDataFormat.ParityErrorMask); hspdif->Instance->CR = tmpreg; return HAL_OK; } /** * @} */ /** @defgroup SPDIFRX_Exported_Functions_Group2 IO operation functions * @brief Data transfers functions * @verbatim =============================================================================== ##### IO operation functions ##### =============================================================================== [..] This subsection provides a set of functions allowing to manage the SPDIFRX data transfers. (#) There is two mode of transfer: (++) Blocking mode : The communication is performed in the polling mode. The status of all data processing is returned by the same function after finishing transfer. (++) No-Blocking mode : The communication is performed using Interrupts or DMA. These functions return the status of the transfer start-up. The end of the data processing will be indicated through the dedicated SPDIFRX IRQ when using Interrupt mode or the DMA IRQ when using DMA mode. (#) Blocking mode functions are : (++) HAL_SPDIFRX_ReceiveDataFlow() (++) HAL_SPDIFRX_ReceiveCtrlFlow() (+@) Do not use blocking mode to receive both control and data flow at the same time. (#) No-Blocking mode functions with Interrupt are : (++) HAL_SPDIFRX_ReceiveCtrlFlow_IT() (++) HAL_SPDIFRX_ReceiveDataFlow_IT() (#) No-Blocking mode functions with DMA are : (++) HAL_SPDIFRX_ReceiveCtrlFlow_DMA() (++) HAL_SPDIFRX_ReceiveDataFlow_DMA() (#) A set of Transfer Complete Callbacks are provided in No_Blocking mode: (++) HAL_SPDIFRX_RxCpltCallback() (++) HAL_SPDIFRX_CxCpltCallback() @endverbatim * @{ */ /** * @brief Receives an amount of data (Data Flow) in blocking mode. * @param hspdif pointer to SPDIFRX_HandleTypeDef structure that contains * the configuration information for SPDIFRX module. * @param pData Pointer to data buffer * @param Size Amount of data to be received * @param Timeout Timeout duration * @retval HAL status */ HAL_StatusTypeDef HAL_SPDIFRX_ReceiveDataFlow(SPDIFRX_HandleTypeDef *hspdif, uint32_t *pData, uint16_t Size, uint32_t Timeout) { uint32_t tickstart; uint16_t sizeCounter = Size; uint32_t *pTmpBuf = pData; if ((pData == NULL) || (Size == 0U)) { return HAL_ERROR; } if (hspdif->State == HAL_SPDIFRX_STATE_READY) { /* Process Locked */ __HAL_LOCK(hspdif); hspdif->State = HAL_SPDIFRX_STATE_BUSY; /* Start synchronisation */ __HAL_SPDIFRX_SYNC(hspdif); /* Get tick */ tickstart = HAL_GetTick(); /* Wait until SYNCD flag is set */ if (SPDIFRX_WaitOnFlagUntilTimeout(hspdif, SPDIFRX_FLAG_SYNCD, RESET, Timeout, tickstart) != HAL_OK) { return HAL_TIMEOUT; } /* Start reception */ __HAL_SPDIFRX_RCV(hspdif); /* Receive data flow */ while (sizeCounter > 0U) { /* Get tick */ tickstart = HAL_GetTick(); /* Wait until RXNE flag is set */ if (SPDIFRX_WaitOnFlagUntilTimeout(hspdif, SPDIFRX_FLAG_RXNE, RESET, Timeout, tickstart) != HAL_OK) { return HAL_TIMEOUT; } (*pTmpBuf) = hspdif->Instance->DR; pTmpBuf++; sizeCounter--; } /* SPDIFRX ready */ hspdif->State = HAL_SPDIFRX_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hspdif); return HAL_OK; } else { return HAL_BUSY; } } /** * @brief Receives an amount of data (Control Flow) in blocking mode. * @param hspdif pointer to a SPDIFRX_HandleTypeDef structure that contains * the configuration information for SPDIFRX module. * @param pData Pointer to data buffer * @param Size Amount of data to be received * @param Timeout Timeout duration * @retval HAL status */ HAL_StatusTypeDef HAL_SPDIFRX_ReceiveCtrlFlow(SPDIFRX_HandleTypeDef *hspdif, uint32_t *pData, uint16_t Size, uint32_t Timeout) { uint32_t tickstart; uint16_t sizeCounter = Size; uint32_t *pTmpBuf = pData; if ((pData == NULL) || (Size == 0U)) { return HAL_ERROR; } if (hspdif->State == HAL_SPDIFRX_STATE_READY) { /* Process Locked */ __HAL_LOCK(hspdif); hspdif->State = HAL_SPDIFRX_STATE_BUSY; /* Start synchronization */ __HAL_SPDIFRX_SYNC(hspdif); /* Get tick */ tickstart = HAL_GetTick(); /* Wait until SYNCD flag is set */ if (SPDIFRX_WaitOnFlagUntilTimeout(hspdif, SPDIFRX_FLAG_SYNCD, RESET, Timeout, tickstart) != HAL_OK) { return HAL_TIMEOUT; } /* Start reception */ __HAL_SPDIFRX_RCV(hspdif); /* Receive control flow */ while (sizeCounter > 0U) { /* Get tick */ tickstart = HAL_GetTick(); /* Wait until CSRNE flag is set */ if (SPDIFRX_WaitOnFlagUntilTimeout(hspdif, SPDIFRX_FLAG_CSRNE, RESET, Timeout, tickstart) != HAL_OK) { return HAL_TIMEOUT; } (*pTmpBuf) = hspdif->Instance->CSR; pTmpBuf++; sizeCounter--; } /* SPDIFRX ready */ hspdif->State = HAL_SPDIFRX_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hspdif); return HAL_OK; } else { return HAL_BUSY; } } /** * @brief Receive an amount of data (Data Flow) in non-blocking mode with Interrupt * @param hspdif SPDIFRX handle * @param pData a 32-bit pointer to the Receive data buffer. * @param Size number of data sample to be received . * @retval HAL status */ HAL_StatusTypeDef HAL_SPDIFRX_ReceiveDataFlow_IT(SPDIFRX_HandleTypeDef *hspdif, uint32_t *pData, uint16_t Size) { uint32_t count = SPDIFRX_TIMEOUT_VALUE * (SystemCoreClock / 24U / 1000U); const HAL_SPDIFRX_StateTypeDef tempState = hspdif->State; if ((tempState == HAL_SPDIFRX_STATE_READY) || (tempState == HAL_SPDIFRX_STATE_BUSY_CX)) { if ((pData == NULL) || (Size == 0U)) { return HAL_ERROR; } /* Process Locked */ __HAL_LOCK(hspdif); hspdif->pRxBuffPtr = pData; hspdif->RxXferSize = Size; hspdif->RxXferCount = Size; hspdif->ErrorCode = HAL_SPDIFRX_ERROR_NONE; /* Check if a receive process is ongoing or not */ hspdif->State = HAL_SPDIFRX_STATE_BUSY_RX; /* Enable the SPDIFRX PE Error Interrupt */ __HAL_SPDIFRX_ENABLE_IT(hspdif, SPDIFRX_IT_PERRIE); /* Enable the SPDIFRX OVR Error Interrupt */ __HAL_SPDIFRX_ENABLE_IT(hspdif, SPDIFRX_IT_OVRIE); /* Enable the SPDIFRX RXNE interrupt */ __HAL_SPDIFRX_ENABLE_IT(hspdif, SPDIFRX_IT_RXNE); if ((SPDIFRX->CR & SPDIFRX_CR_SPDIFEN) != SPDIFRX_STATE_RCV) { /* Start synchronization */ __HAL_SPDIFRX_SYNC(hspdif); /* Wait until SYNCD flag is set */ do { if (count == 0U) { /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */ __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_RXNE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_CSRNE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_PERRIE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_OVRIE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_SBLKIE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_SYNCDIE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_IFEIE); hspdif->State = HAL_SPDIFRX_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hspdif); return HAL_TIMEOUT; } count--; } while (__HAL_SPDIFRX_GET_FLAG(hspdif, SPDIFRX_FLAG_SYNCD) == RESET); /* Start reception */ __HAL_SPDIFRX_RCV(hspdif); } /* Process Unlocked */ __HAL_UNLOCK(hspdif); return HAL_OK; } else { return HAL_BUSY; } } /** * @brief Receive an amount of data (Control Flow) with Interrupt * @param hspdif SPDIFRX handle * @param pData a 32-bit pointer to the Receive data buffer. * @param Size number of data sample (Control Flow) to be received * @retval HAL status */ HAL_StatusTypeDef HAL_SPDIFRX_ReceiveCtrlFlow_IT(SPDIFRX_HandleTypeDef *hspdif, uint32_t *pData, uint16_t Size) { uint32_t count = SPDIFRX_TIMEOUT_VALUE * (SystemCoreClock / 24U / 1000U); const HAL_SPDIFRX_StateTypeDef tempState = hspdif->State; if ((tempState == HAL_SPDIFRX_STATE_READY) || (tempState == HAL_SPDIFRX_STATE_BUSY_RX)) { if ((pData == NULL) || (Size == 0U)) { return HAL_ERROR; } /* Process Locked */ __HAL_LOCK(hspdif); hspdif->pCsBuffPtr = pData; hspdif->CsXferSize = Size; hspdif->CsXferCount = Size; hspdif->ErrorCode = HAL_SPDIFRX_ERROR_NONE; /* Check if a receive process is ongoing or not */ hspdif->State = HAL_SPDIFRX_STATE_BUSY_CX; /* Enable the SPDIFRX PE Error Interrupt */ __HAL_SPDIFRX_ENABLE_IT(hspdif, SPDIFRX_IT_PERRIE); /* Enable the SPDIFRX OVR Error Interrupt */ __HAL_SPDIFRX_ENABLE_IT(hspdif, SPDIFRX_IT_OVRIE); /* Enable the SPDIFRX CSRNE interrupt */ __HAL_SPDIFRX_ENABLE_IT(hspdif, SPDIFRX_IT_CSRNE); if ((SPDIFRX->CR & SPDIFRX_CR_SPDIFEN) != SPDIFRX_STATE_RCV) { /* Start synchronization */ __HAL_SPDIFRX_SYNC(hspdif); /* Wait until SYNCD flag is set */ do { if (count == 0U) { /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */ __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_RXNE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_CSRNE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_PERRIE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_OVRIE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_SBLKIE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_SYNCDIE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_IFEIE); hspdif->State = HAL_SPDIFRX_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hspdif); return HAL_TIMEOUT; } count--; } while (__HAL_SPDIFRX_GET_FLAG(hspdif, SPDIFRX_FLAG_SYNCD) == RESET); /* Start reception */ __HAL_SPDIFRX_RCV(hspdif); } /* Process Unlocked */ __HAL_UNLOCK(hspdif); return HAL_OK; } else { return HAL_BUSY; } } /** * @brief Receive an amount of data (Data Flow) mode with DMA * @param hspdif SPDIFRX handle * @param pData a 32-bit pointer to the Receive data buffer. * @param Size number of data sample to be received * @retval HAL status */ HAL_StatusTypeDef HAL_SPDIFRX_ReceiveDataFlow_DMA(SPDIFRX_HandleTypeDef *hspdif, uint32_t *pData, uint16_t Size) { uint32_t count = SPDIFRX_TIMEOUT_VALUE * (SystemCoreClock / 24U / 1000U); const HAL_SPDIFRX_StateTypeDef tempState = hspdif->State; if ((pData == NULL) || (Size == 0U)) { return HAL_ERROR; } if ((tempState == HAL_SPDIFRX_STATE_READY) || (tempState == HAL_SPDIFRX_STATE_BUSY_CX)) { /* Process Locked */ __HAL_LOCK(hspdif); hspdif->pRxBuffPtr = pData; hspdif->RxXferSize = Size; hspdif->RxXferCount = Size; hspdif->ErrorCode = HAL_SPDIFRX_ERROR_NONE; hspdif->State = HAL_SPDIFRX_STATE_BUSY_RX; /* Set the SPDIFRX Rx DMA Half transfer complete callback */ hspdif->hdmaDrRx->XferHalfCpltCallback = SPDIFRX_DMARxHalfCplt; /* Set the SPDIFRX Rx DMA transfer complete callback */ hspdif->hdmaDrRx->XferCpltCallback = SPDIFRX_DMARxCplt; /* Set the DMA error callback */ hspdif->hdmaDrRx->XferErrorCallback = SPDIFRX_DMAError; /* Enable the DMA request */ if (HAL_DMA_Start_IT(hspdif->hdmaDrRx, (uint32_t)&hspdif->Instance->DR, (uint32_t)hspdif->pRxBuffPtr, Size) != HAL_OK) { /* Set SPDIFRX error */ hspdif->ErrorCode = HAL_SPDIFRX_ERROR_DMA; /* Set SPDIFRX state */ hspdif->State = HAL_SPDIFRX_STATE_ERROR; /* Process Unlocked */ __HAL_UNLOCK(hspdif); return HAL_ERROR; } /* Enable RXDMAEN bit in SPDIFRX CR register for data flow reception*/ hspdif->Instance->CR |= SPDIFRX_CR_RXDMAEN; if ((SPDIFRX->CR & SPDIFRX_CR_SPDIFEN) != SPDIFRX_STATE_RCV) { /* Start synchronization */ __HAL_SPDIFRX_SYNC(hspdif); /* Wait until SYNCD flag is set */ do { if (count == 0U) { /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */ __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_RXNE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_CSRNE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_PERRIE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_OVRIE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_SBLKIE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_SYNCDIE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_IFEIE); hspdif->State = HAL_SPDIFRX_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hspdif); return HAL_TIMEOUT; } count--; } while (__HAL_SPDIFRX_GET_FLAG(hspdif, SPDIFRX_FLAG_SYNCD) == RESET); /* Start reception */ __HAL_SPDIFRX_RCV(hspdif); } /* Process Unlocked */ __HAL_UNLOCK(hspdif); return HAL_OK; } else { return HAL_BUSY; } } /** * @brief Receive an amount of data (Control Flow) with DMA * @param hspdif SPDIFRX handle * @param pData a 32-bit pointer to the Receive data buffer. * @param Size number of data (Control Flow) sample to be received * @retval HAL status */ HAL_StatusTypeDef HAL_SPDIFRX_ReceiveCtrlFlow_DMA(SPDIFRX_HandleTypeDef *hspdif, uint32_t *pData, uint16_t Size) { uint32_t count = SPDIFRX_TIMEOUT_VALUE * (SystemCoreClock / 24U / 1000U); const HAL_SPDIFRX_StateTypeDef tempState = hspdif->State; if ((pData == NULL) || (Size == 0U)) { return HAL_ERROR; } if ((tempState == HAL_SPDIFRX_STATE_READY) || (tempState == HAL_SPDIFRX_STATE_BUSY_RX)) { hspdif->pCsBuffPtr = pData; hspdif->CsXferSize = Size; hspdif->CsXferCount = Size; /* Process Locked */ __HAL_LOCK(hspdif); hspdif->ErrorCode = HAL_SPDIFRX_ERROR_NONE; hspdif->State = HAL_SPDIFRX_STATE_BUSY_CX; /* Set the SPDIFRX Rx DMA Half transfer complete callback */ hspdif->hdmaCsRx->XferHalfCpltCallback = SPDIFRX_DMACxHalfCplt; /* Set the SPDIFRX Rx DMA transfer complete callback */ hspdif->hdmaCsRx->XferCpltCallback = SPDIFRX_DMACxCplt; /* Set the DMA error callback */ hspdif->hdmaCsRx->XferErrorCallback = SPDIFRX_DMAError; /* Enable the DMA request */ if (HAL_DMA_Start_IT(hspdif->hdmaCsRx, (uint32_t)&hspdif->Instance->CSR, (uint32_t)hspdif->pCsBuffPtr, Size) != HAL_OK) { /* Set SPDIFRX error */ hspdif->ErrorCode = HAL_SPDIFRX_ERROR_DMA; /* Set SPDIFRX state */ hspdif->State = HAL_SPDIFRX_STATE_ERROR; /* Process Unlocked */ __HAL_UNLOCK(hspdif); return HAL_ERROR; } /* Enable CBDMAEN bit in SPDIFRX CR register for control flow reception*/ hspdif->Instance->CR |= SPDIFRX_CR_CBDMAEN; if ((SPDIFRX->CR & SPDIFRX_CR_SPDIFEN) != SPDIFRX_STATE_RCV) { /* Start synchronization */ __HAL_SPDIFRX_SYNC(hspdif); /* Wait until SYNCD flag is set */ do { if (count == 0U) { /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */ __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_RXNE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_CSRNE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_PERRIE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_OVRIE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_SBLKIE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_SYNCDIE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_IFEIE); hspdif->State = HAL_SPDIFRX_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hspdif); return HAL_TIMEOUT; } count--; } while (__HAL_SPDIFRX_GET_FLAG(hspdif, SPDIFRX_FLAG_SYNCD) == RESET); /* Start reception */ __HAL_SPDIFRX_RCV(hspdif); } /* Process Unlocked */ __HAL_UNLOCK(hspdif); return HAL_OK; } else { return HAL_BUSY; } } /** * @brief stop the audio stream receive from the Media. * @param hspdif SPDIFRX handle * @retval None */ HAL_StatusTypeDef HAL_SPDIFRX_DMAStop(SPDIFRX_HandleTypeDef *hspdif) { /* Process Locked */ __HAL_LOCK(hspdif); /* Disable the SPDIFRX DMA requests */ hspdif->Instance->CR &= (uint16_t)(~SPDIFRX_CR_RXDMAEN); hspdif->Instance->CR &= (uint16_t)(~SPDIFRX_CR_CBDMAEN); /* Disable the SPDIFRX DMA channel */ if (hspdif->hdmaDrRx != NULL) { __HAL_DMA_DISABLE(hspdif->hdmaDrRx); } if (hspdif->hdmaCsRx != NULL) { __HAL_DMA_DISABLE(hspdif->hdmaCsRx); } /* Disable SPDIFRX peripheral */ __HAL_SPDIFRX_IDLE(hspdif); hspdif->State = HAL_SPDIFRX_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hspdif); return HAL_OK; } /** * @brief This function handles SPDIFRX interrupt request. * @param hspdif SPDIFRX handle * @retval HAL status */ void HAL_SPDIFRX_IRQHandler(SPDIFRX_HandleTypeDef *hspdif) { uint32_t itFlag = hspdif->Instance->SR; uint32_t itSource = hspdif->Instance->IMR; /* SPDIFRX in mode Data Flow Reception */ if (((itFlag & SPDIFRX_FLAG_RXNE) == SPDIFRX_FLAG_RXNE) && ((itSource & SPDIFRX_IT_RXNE) == SPDIFRX_IT_RXNE)) { __HAL_SPDIFRX_CLEAR_IT(hspdif, SPDIFRX_IT_RXNE); SPDIFRX_ReceiveDataFlow_IT(hspdif); } /* SPDIFRX in mode Control Flow Reception */ if (((itFlag & SPDIFRX_FLAG_CSRNE) == SPDIFRX_FLAG_CSRNE) && ((itSource & SPDIFRX_IT_CSRNE) == SPDIFRX_IT_CSRNE)) { __HAL_SPDIFRX_CLEAR_IT(hspdif, SPDIFRX_IT_CSRNE); SPDIFRX_ReceiveControlFlow_IT(hspdif); } /* SPDIFRX Overrun error interrupt occurred */ if (((itFlag & SPDIFRX_FLAG_OVR) == SPDIFRX_FLAG_OVR) && ((itSource & SPDIFRX_IT_OVRIE) == SPDIFRX_IT_OVRIE)) { __HAL_SPDIFRX_CLEAR_IT(hspdif, SPDIFRX_IT_OVRIE); /* Change the SPDIFRX error code */ hspdif->ErrorCode |= HAL_SPDIFRX_ERROR_OVR; /* the transfer is not stopped */ HAL_SPDIFRX_ErrorCallback(hspdif); } /* SPDIFRX Parity error interrupt occurred */ if (((itFlag & SPDIFRX_FLAG_PERR) == SPDIFRX_FLAG_PERR) && ((itSource & SPDIFRX_IT_PERRIE) == SPDIFRX_IT_PERRIE)) { __HAL_SPDIFRX_CLEAR_IT(hspdif, SPDIFRX_IT_PERRIE); /* Change the SPDIFRX error code */ hspdif->ErrorCode |= HAL_SPDIFRX_ERROR_PE; /* the transfer is not stopped */ HAL_SPDIFRX_ErrorCallback(hspdif); } } /** * @brief Rx Transfer (Data flow) half completed callbacks * @param hspdif SPDIFRX handle * @retval None */ __weak void HAL_SPDIFRX_RxHalfCpltCallback(SPDIFRX_HandleTypeDef *hspdif) { /* Prevent unused argument(s) compilation warning */ UNUSED(hspdif); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_SPDIFRX_RxCpltCallback could be implemented in the user file */ } /** * @brief Rx Transfer (Data flow) completed callbacks * @param hspdif SPDIFRX handle * @retval None */ __weak void HAL_SPDIFRX_RxCpltCallback(SPDIFRX_HandleTypeDef *hspdif) { /* Prevent unused argument(s) compilation warning */ UNUSED(hspdif); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_SPDIFRX_RxCpltCallback could be implemented in the user file */ } /** * @brief Rx (Control flow) Transfer half completed callbacks * @param hspdif SPDIFRX handle * @retval None */ __weak void HAL_SPDIFRX_CxHalfCpltCallback(SPDIFRX_HandleTypeDef *hspdif) { /* Prevent unused argument(s) compilation warning */ UNUSED(hspdif); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_SPDIFRX_RxCpltCallback could be implemented in the user file */ } /** * @brief Rx Transfer (Control flow) completed callbacks * @param hspdif SPDIFRX handle * @retval None */ __weak void HAL_SPDIFRX_CxCpltCallback(SPDIFRX_HandleTypeDef *hspdif) { /* Prevent unused argument(s) compilation warning */ UNUSED(hspdif); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_SPDIFRX_RxCpltCallback could be implemented in the user file */ } /** * @brief SPDIFRX error callbacks * @param hspdif SPDIFRX handle * @retval None */ __weak void HAL_SPDIFRX_ErrorCallback(SPDIFRX_HandleTypeDef *hspdif) { /* Prevent unused argument(s) compilation warning */ UNUSED(hspdif); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_SPDIFRX_ErrorCallback could be implemented in the user file */ } /** * @} */ /** @defgroup SPDIFRX_Exported_Functions_Group3 Peripheral State and Errors functions * @brief Peripheral State functions * @verbatim =============================================================================== ##### Peripheral State and Errors functions ##### =============================================================================== [..] This subsection permit to get in run-time the status of the peripheral and the data flow. @endverbatim * @{ */ /** * @brief Return the SPDIFRX state * @param hspdif SPDIFRX handle * @retval HAL state */ HAL_SPDIFRX_StateTypeDef HAL_SPDIFRX_GetState(SPDIFRX_HandleTypeDef const *const hspdif) { return hspdif->State; } /** * @brief Return the SPDIFRX error code * @param hspdif SPDIFRX handle * @retval SPDIFRX Error Code */ uint32_t HAL_SPDIFRX_GetError(SPDIFRX_HandleTypeDef const *const hspdif) { return hspdif->ErrorCode; } /** * @} */ /** * @brief DMA SPDIFRX receive process (Data flow) complete callback * @param hdma DMA handle * @retval None */ static void SPDIFRX_DMARxCplt(DMA_HandleTypeDef *hdma) { SPDIFRX_HandleTypeDef *hspdif = (SPDIFRX_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; /* Disable Rx DMA Request */ if (hdma->Init.Mode != DMA_CIRCULAR) { hspdif->Instance->CR &= (uint16_t)(~SPDIFRX_CR_RXDMAEN); hspdif->RxXferCount = 0; hspdif->State = HAL_SPDIFRX_STATE_READY; } #if (USE_HAL_SPDIFRX_REGISTER_CALLBACKS == 1) hspdif->RxCpltCallback(hspdif); #else HAL_SPDIFRX_RxCpltCallback(hspdif); #endif /* USE_HAL_SPDIFRX_REGISTER_CALLBACKS */ } /** * @brief DMA SPDIFRX receive process (Data flow) half complete callback * @param hdma DMA handle * @retval None */ static void SPDIFRX_DMARxHalfCplt(DMA_HandleTypeDef *hdma) { SPDIFRX_HandleTypeDef *hspdif = (SPDIFRX_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; #if (USE_HAL_SPDIFRX_REGISTER_CALLBACKS == 1) hspdif->RxHalfCpltCallback(hspdif); #else HAL_SPDIFRX_RxHalfCpltCallback(hspdif); #endif /* USE_HAL_SPDIFRX_REGISTER_CALLBACKS */ } /** * @brief DMA SPDIFRX receive process (Control flow) complete callback * @param hdma DMA handle * @retval None */ static void SPDIFRX_DMACxCplt(DMA_HandleTypeDef *hdma) { SPDIFRX_HandleTypeDef *hspdif = (SPDIFRX_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; /* Disable Cb DMA Request */ hspdif->Instance->CR &= (uint16_t)(~SPDIFRX_CR_CBDMAEN); hspdif->CsXferCount = 0; hspdif->State = HAL_SPDIFRX_STATE_READY; #if (USE_HAL_SPDIFRX_REGISTER_CALLBACKS == 1) hspdif->CxCpltCallback(hspdif); #else HAL_SPDIFRX_CxCpltCallback(hspdif); #endif /* USE_HAL_SPDIFRX_REGISTER_CALLBACKS */ } /** * @brief DMA SPDIFRX receive process (Control flow) half complete callback * @param hdma DMA handle * @retval None */ static void SPDIFRX_DMACxHalfCplt(DMA_HandleTypeDef *hdma) { SPDIFRX_HandleTypeDef *hspdif = (SPDIFRX_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; #if (USE_HAL_SPDIFRX_REGISTER_CALLBACKS == 1) hspdif->CxHalfCpltCallback(hspdif); #else HAL_SPDIFRX_CxHalfCpltCallback(hspdif); #endif /* USE_HAL_SPDIFRX_REGISTER_CALLBACKS */ } /** * @brief DMA SPDIFRX communication error callback * @param hdma DMA handle * @retval None */ static void SPDIFRX_DMAError(DMA_HandleTypeDef *hdma) { SPDIFRX_HandleTypeDef *hspdif = (SPDIFRX_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; /* Disable Rx and Cb DMA Request */ hspdif->Instance->CR &= (uint16_t)(~(SPDIFRX_CR_RXDMAEN | SPDIFRX_CR_CBDMAEN)); hspdif->RxXferCount = 0; hspdif->State = HAL_SPDIFRX_STATE_READY; /* Set the error code and execute error callback*/ hspdif->ErrorCode |= HAL_SPDIFRX_ERROR_DMA; #if (USE_HAL_SPDIFRX_REGISTER_CALLBACKS == 1) /* The transfer is not stopped */ hspdif->ErrorCallback(hspdif); #else /* The transfer is not stopped */ HAL_SPDIFRX_ErrorCallback(hspdif); #endif /* USE_HAL_SPDIFRX_REGISTER_CALLBACKS */ } /** * @brief Receive an amount of data (Data Flow) with Interrupt * @param hspdif SPDIFRX handle * @retval None */ static void SPDIFRX_ReceiveDataFlow_IT(SPDIFRX_HandleTypeDef *hspdif) { /* Receive data */ (*hspdif->pRxBuffPtr) = hspdif->Instance->DR; hspdif->pRxBuffPtr++; hspdif->RxXferCount--; if (hspdif->RxXferCount == 0U) { /* Disable RXNE/PE and OVR interrupts */ __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_OVRIE | SPDIFRX_IT_PERRIE | SPDIFRX_IT_RXNE); hspdif->State = HAL_SPDIFRX_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hspdif); #if (USE_HAL_SPDIFRX_REGISTER_CALLBACKS == 1) hspdif->RxCpltCallback(hspdif); #else HAL_SPDIFRX_RxCpltCallback(hspdif); #endif /* USE_HAL_SPDIFRX_REGISTER_CALLBACKS */ } } /** * @brief Receive an amount of data (Control Flow) with Interrupt * @param hspdif SPDIFRX handle * @retval None */ static void SPDIFRX_ReceiveControlFlow_IT(SPDIFRX_HandleTypeDef *hspdif) { /* Receive data */ (*hspdif->pCsBuffPtr) = hspdif->Instance->CSR; hspdif->pCsBuffPtr++; hspdif->CsXferCount--; if (hspdif->CsXferCount == 0U) { /* Disable CSRNE interrupt */ __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_CSRNE); hspdif->State = HAL_SPDIFRX_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hspdif); #if (USE_HAL_SPDIFRX_REGISTER_CALLBACKS == 1) hspdif->CxCpltCallback(hspdif); #else HAL_SPDIFRX_CxCpltCallback(hspdif); #endif /* USE_HAL_SPDIFRX_REGISTER_CALLBACKS */ } } /** * @brief This function handles SPDIFRX Communication Timeout. * @param hspdif SPDIFRX handle * @param Flag Flag checked * @param Status Value of the flag expected * @param Timeout Duration of the timeout * @param tickstart Tick start value * @retval HAL status */ static HAL_StatusTypeDef SPDIFRX_WaitOnFlagUntilTimeout(SPDIFRX_HandleTypeDef *hspdif, uint32_t Flag, FlagStatus Status, uint32_t Timeout, uint32_t tickstart) { /* Wait until flag is set */ while (__HAL_SPDIFRX_GET_FLAG(hspdif, Flag) == Status) { /* Check for the Timeout */ if (Timeout != HAL_MAX_DELAY) { if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) { /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */ __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_RXNE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_CSRNE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_PERRIE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_OVRIE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_SBLKIE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_SYNCDIE); __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_IFEIE); hspdif->State = HAL_SPDIFRX_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hspdif); return HAL_TIMEOUT; } } } return HAL_OK; } /** * @} */ #endif /* SPDIFRX */ #endif /* HAL_SPDIFRX_MODULE_ENABLED */ /** * @} */ /** * @} */