Compare commits

...

6 Commits

Author SHA1 Message Date
Jasper Blanckenburg 37123a43e8 Alternate color of testing view rows 2022-03-14 14:30:33 +01:00
Jasper Blanckenburg fc65d22450 Rename driver/testing pages to views 2022-03-14 14:06:52 +01:00
Jasper Blanckenburg 4de2baa867 Don't clear display periodically 2022-03-13 21:07:44 +01:00
Jasper Blanckenburg c6c0fa987e Update CAN
There are only 7 RX mailboxes available, so one of the filters won't
work.
2022-03-13 21:06:05 +01:00
Jasper Blanckenburg d0afcb6da4 Add .git-blame-ignore-revs
You can use this file to ignore this commit when running git blame.
Simply run

    git blame --ignore-revs-file .git-blame-ignore-revs [...]

Or configure git to persistently ignore the commit:

    git config blame.ignoreRevsFile .git-blame-ignore-revs
2022-03-13 20:33:59 +01:00
Jasper Blanckenburg 41d3bd907e Format everything
The next commit will add this to a `.git-blame-ignore-revs` file which
you can use to ignore this commit when running git blame. Simply run

    git blame --ignore-revs-file .git-blame-ignore-revs [...]

Or configure git to persistently ignore the commit:

    git config blame.ignoreRevsFile .git-blame-ignore-revs
2022-03-13 20:30:14 +01:00
17 changed files with 2355 additions and 2319 deletions

8
.editorconfig Normal file
View File

@ -0,0 +1,8 @@
[*]
charset = utf-8
end_of_line = lf
insert_final_newline = true
[*.{cpp,c,h,hpp}]
indent_style = space
indent_size = 4

2
.git-blame-ignore-revs Normal file
View File

@ -0,0 +1,2 @@
# Format everything
41d3bd907e65b484876859b767328e5d81181911

View File

@ -13,9 +13,7 @@ struct FaultStatusRegisters {
uint32_t SHCSR;
};
enum class FaultType {
HardFault, MemManage, BusFault, UsageFault
};
enum class FaultType { HardFault, MemManage, BusFault, UsageFault };
struct FlashDump {
FaultType type;
@ -43,22 +41,23 @@ const FlashDump *flash_dump_get_fault(uint32_t n);
void uart_wait_for_txrdy();
size_t uart_write(uint8_t c);
size_t uart_print(const char* str);
size_t uart_print(const char *str);
size_t uart_print_hex(uint32_t x);
void print_dumped_faults(bool in_irq=false);
void print_stacked_registers(const uint32_t *stack, bool in_irq=false);
void print_fault_registers(const FaultStatusRegisters *fsr, bool in_irq=false);
void print_dumped_faults(bool in_irq = false);
void print_stacked_registers(const uint32_t *stack, bool in_irq = false);
void print_fault_registers(const FaultStatusRegisters *fsr,
bool in_irq = false);
FaultStatusRegisters get_current_fsr();
const char* get_fault_type_name(FaultType type);
void fault_handler(uint32_t *stack_addr, FaultType fault_type,
const int *leds, unsigned n_leds);
const char *get_fault_type_name(FaultType type);
void fault_handler(uint32_t *stack_addr, FaultType fault_type, const int *leds,
unsigned n_leds);
void inline busy_wait(size_t iterations) {
for (size_t i = 0; i < iterations; i++) {
// Does nothing, but ensures the compiler doesn't optimize the loop away.
__ASM ("" ::: "memory");
__ASM("" ::: "memory");
}
}

View File

@ -1,412 +1,488 @@
#include "Arduino.h"
#include "EDIPTFT.h"
#include "FT_2018_STW_CAN.h"
#include "FT18_STW_INIT.h"
#include "FT18_STW_DISPLAY.h"
EDIPTFT tft(true,false);
String bezeichnungen[]={"T_mot","T_oil","P_oil","% fa","U_batt","P_wat","T_air",
"P_b_front","P_b_rear","Error Type","Speed_fl","Speed_fr","Speed"};
//"Drehzahl","P_fuel","Index"
int led_s[] = {led1,led2,led3,led4,led5,led6,led7,led8,led9,led10,led11,led12,led13,led14,led15,led16};
DataBox gear_box(121, 0, 199, 94, 160, 0, EA_SWISS30B, 4, 4, 'C');
DataBox left_box(0, 0, 119, 94, 110, 12, EA_FONT7X12, 3, 8, 'R');
DataBox right_box(201, 0, 320, 94, 310, 12, EA_FONT7X12, 3, 8, 'R');
TireTempBox fl_box(80, 130, 156, 176, 118, 124, EA_FONT7X12, 3, 5, 'C');
TireTempBox fr_box(164, 130, 240, 176, 202, 124, EA_FONT7X12, 3, 5, 'C');
TireTempBox rl_box(80, 184, 156, 230, 118, 178, EA_FONT7X12, 3, 5, 'C');
TireTempBox rr_box(164, 184, 240, 230, 202, 178, EA_FONT7X12, 3, 5, 'C');
void init_display() {
pinMode(writeprotect, OUTPUT);
digitalWrite(writeprotect, HIGH);
pinMode(reset, OUTPUT);
pinMode(disp_cs, OUTPUT);
pinMode(MOSI, OUTPUT);
pinMode(MISO, OUTPUT);
digitalWrite(disp_cs, HIGH);
digitalWrite(MOSI, HIGH);
digitalWrite(MISO, HIGH);
digitalWrite(reset, LOW);
digitalWrite(reset,HIGH);
tft.begin(115200); // start display communication
tft.cursorOn(false);
tft.terminalOn(false);
tft.setDisplayColor(EA_WHITE,EA_BLACK);
tft.setTextColor(EA_WHITE,EA_TRANSPARENT);
tft.setTextSize(5,8);
tft.clear();
gear_box.update_label(get_label(VAL_GEAR));
left_box.update_label(get_label(VAL_FIRST_LEFT_BOX));
right_box.update_label(get_label(VAL_RPM));
}
String get_value(Value val) {
switch (val) {
case VAL_GEAR:
if (Vehicle_data.gear == 0) {
return "N";
}
return String(Vehicle_data.gear);
case VAL_RPM:
return String(Vehicle_data.revol);
case VAL_TT_FL:
return "00";
case VAL_TT_FR:
return "01";
case VAL_TT_RL:
return "10";
case VAL_TT_RR:
return "11";
case VAL_LAPTIME:
return "93.13";
case VAL_UBATT:
return String(0.0706949 * Vehicle_data.u_batt, 2);
case VAL_TMOT:
return String(Vehicle_data.t_mot - 40);
case VAL_TAIR:
return String(Vehicle_data.t_air - 40);
case VAL_TOIL:
return String(Vehicle_data.t_oil - 40);
case VAL_ERR_TYPE:
return String(Stw_data.error_type);
case VAL_PWAT:
return String(0.0514*Vehicle_data.p_wat, 2);
case VAL_POIL:
return String(0.0514*Vehicle_data.p_oil, 2);
case VAL_PBF:
return String(Vehicle_data.p_brake_front);
case VAL_PBR:
return String(Vehicle_data.p_brake_rear);
case VAL_SPEED_FL:
return String(Vehicle_data.speed_fl);
case VAL_SPEED_FR:
return String(Vehicle_data.speed_fr);
case VAL_SPEED:
return String(Vehicle_data.speed);
default:
return "???";
}
}
String get_label(Value val) {
switch (val) {
case VAL_GEAR:
return "GEAR";
case VAL_RPM:
return "RPM";
case VAL_TT_FL:
return "TEMP FL";
case VAL_TT_FR:
return "TEMP FR";
case VAL_TT_RL:
return "TEMP RL";
case VAL_TT_RR:
return "TEMP RR";
case VAL_LAPTIME:
return "LAPTIME";
case VAL_UBATT:
return "BATT VOLTAGE";
case VAL_TMOT:
return "TEMP ENG";
case VAL_TAIR:
return "TEMP AIR";
case VAL_TOIL:
return "TEMP OIL";
case VAL_ERR_TYPE:
return "ERROR TYPE";
case VAL_PWAT:
return "PRESS WAT";
case VAL_POIL:
return "PRESS OIL";
case VAL_PBF:
return "PRESS BRAKE F";
case VAL_PBR:
return "PRESS BRAKE R";
case VAL_SPEED_FL:
return "SPEED FL";
case VAL_SPEED_FR:
return "SPEED FR";
case VAL_SPEED:
return "SPEED";
default:
return "???";
}
}
bool check_alarms() {
static uint32_t poil_last_valid, tmot_last_valid, toil_last_valid;
uint32_t now = millis();
if (Vehicle_data.p_oil >= POIL_ALARM_THRESH || Vehicle_data.speed == 0) {
poil_last_valid = now;
}
if (Vehicle_data.t_mot <= TMOT_ALARM_THRESH || Vehicle_data.t_mot == TMOT_SAFE_VALUE) {
tmot_last_valid = now;
}
if (Vehicle_data.t_oil <= TOIL_ALARM_THRESH) {
toil_last_valid = now;
}
bool poil_alarm = now - poil_last_valid >= POIL_ALARM_TIME;
bool tmot_alarm = now - tmot_last_valid >= TMOT_ALARM_TIME;
bool toil_alarm = now - toil_last_valid >= TOIL_ALARM_TIME;
bool alarm_active = poil_alarm || tmot_alarm || toil_alarm;
if (alarm_active) {
String alarm_text = "";
if (poil_alarm) alarm_text += "PO";
if (tmot_alarm) alarm_text += "TM";
if (toil_alarm) alarm_text += "TO";
alarm(alarm_text);
}
return alarm_active;
}
bool check_enc_displays() {
static uint8_t trc_old, mode_old;
static bool display_trc, display_mode;
static uint32_t display_trc_begin, display_mode_begin;
return check_display(trc_old, Stw_data.trc, display_trc, display_trc_begin, "ARB") ||
check_display(mode_old, Stw_data.mode, display_mode, display_mode_begin, "MODE");
}
bool check_display(uint8_t& val_old, uint8_t val_new, bool& active, uint32_t& begin, const String& title) {
if (val_old != val_new) {
active = true;
begin = millis();
val_old = val_new;
tft.clear();
tft.fillDisplayColor(EA_RED);
tft.setTextColor(EA_WHITE, EA_RED);
tft.setTextSize(7,8);
String text = title + ":" + val_new;
char text_arr[16];
text.toCharArray(text_arr, 16);
tft.drawText(15, 68, 'C', text_arr);
} else if (active && millis() - begin > ENC_DISPLAY_TIME) {
tft.setTextColor(EA_WHITE, EA_TRANSPARENT);
tft.clear();
active = false;
}
return active;
}
void update_display(){
static DisplayPage page = PAGE_DRIVER;
static uint32_t last_cleared;
static bool cleared = true;
if (check_alarms()) {
cleared = true;
return;
}
if (tft.disconnected) {
return;
}
if (check_enc_displays()) {
cleared = true;
return;
}
uint32_t now = millis();
// Both buttons have to be pressed at the same time, but we also use the
// debounced rises to ensure we don't keep toggling between the pages
if (Stw_data.buttonState1 && Stw_data.buttonState4 &&
(Stw_data.button1_rises > 0|| Stw_data.button4_rises > 0)){
Stw_data.button1_rises = 0;
Stw_data.button4_rises = 0;
page = (DisplayPage) ((page + 1) % DISPLAY_PAGES);
tft.clear();
last_cleared = now;
cleared = true;
}
if (now - last_cleared >= DISP_CLEAR_INTERVAL) {
tft.clear();
last_cleared = now;
cleared = true;
}
if (page == PAGE_DRIVER) {
if (cleared) {
redraw_page_driver();
cleared = false;
} else {
update_page_driver();
}
} else {
if (cleared) {
redraw_page_testing();
cleared = false;
} else {
update_page_testing();
}
}
}
void alarm(String textstr){
uint8_t x = 1;;
char text[7];
textstr.toCharArray(text,7);
tft.setTextSize(8,8);
while(x==1){
if(!tft.disconnected){
tft.setTextColor(EA_BLACK,EA_RED);
tft.fillDisplayColor(EA_RED);
tft.drawText(5,68,'L',text);
}
for (int j = 0; j < 16; j++){
digitalWrite(led_s[j], HIGH);
}
delay(100);
if(!tft.disconnected){
tft.setTextColor(EA_BLACK,EA_WHITE);
tft.fillDisplayColor(EA_WHITE);
tft.drawText(5,68,'L',text);
}
for (int j = 0; j < 16; j++){
digitalWrite(led_s[j], LOW);
}
delay(100);
if(Stw_data.buttonState1 & Stw_data.buttonState4){
x=0;
tft.setTextColor(EA_WHITE,EA_TRANSPARENT);
}
}
}
void redraw_page_driver() {
// Boxes
tft.drawLine(0, 110, 320, 110);
tft.drawLine(120, 0, 120, 110);
tft.drawLine(200, 0, 200, 110);
// Tire temperature cross
tft.drawLine(80, 180, 240, 180);
tft.drawLine(160, 130, 160, 230);
// Boxes
gear_box.redraw();
left_box.redraw();
right_box.redraw();
fl_box.redraw();
fr_box.redraw();
rl_box.redraw();
rr_box.redraw();
}
void update_page_driver() {
static Value left_box_value = VAL_FIRST_LEFT_BOX;
if (Stw_data.button4_rises > 0) {
Stw_data.button4_rises--;
if (left_box_value == VAL_LAST) {
left_box_value = VAL_FIRST_LEFT_BOX;
} else {
left_box_value = (Value) (left_box_value + 1);
}
left_box.update_label(get_label(left_box_value));
if (Stw_data.button1_rises > 0) {
Stw_data.button1_rises--;
if (left_box_value == VAL_FIRST_LEFT_BOX) {
left_box_value = VAL_LAST;
} else {
left_box_value = (Value) (left_box_value - 1);
}
left_box.update_label(get_label(left_box_value));
}
gear_box.update_value(get_value(VAL_GEAR));
left_box.update_value(get_value(left_box_value));
right_box.update_value(get_value(VAL_RPM));
fl_box.update_value(2);
fr_box.update_value(55);
rl_box.update_value(65);
rr_box.update_value(90);
}
void redraw_page_testing() {
#include "FT18_STW_DISPLAY.h"
#include "Arduino.h"
#include "EDIPTFT.h"
#include "FT18_STW_INIT.h"
#include "FT_2018_STW_CAN.h"
String pad_left(String orig, int len, char pad_char) {
String result = {orig};
for (int i = orig.length(); i < len; i++) {
result = pad_char + result;
}
return result;
}
EDIPTFT tft(true, false);
String bezeichnungen[] = {"T_mot", "T_oil", "P_oil", "% fa",
"U_batt", "P_wat", "T_air", "P_b_front",
"P_b_rear", "Error Type", "Speed_fl", "Speed_fr",
"Speed"};
//"Drehzahl","P_fuel","Index"
int led_s[] = {led1, led2, led3, led4, led5, led6, led7, led8,
led9, led10, led11, led12, led13, led14, led15, led16};
DataBox gear_box(121, 0, 199, 94, 160, 0, EA_SWISS30B, 4, 4, 'C');
DataBox left_box(0, 0, 119, 94, 110, 12, EA_FONT7X12, 3, 8, 'R');
DataBox right_box(201, 0, 320, 94, 310, 12, EA_FONT7X12, 3, 8, 'R');
TireTempBox fl_box(80, 130, 156, 176, 118, 124, EA_FONT7X12, 3, 5, 'C');
TireTempBox fr_box(164, 130, 240, 176, 202, 124, EA_FONT7X12, 3, 5, 'C');
TireTempBox rl_box(80, 184, 156, 230, 118, 178, EA_FONT7X12, 3, 5, 'C');
TireTempBox rr_box(164, 184, 240, 230, 202, 178, EA_FONT7X12, 3, 5, 'C');
int testing_page = 0;
void init_display() {
pinMode(writeprotect, OUTPUT);
digitalWrite(writeprotect, HIGH);
pinMode(reset, OUTPUT);
pinMode(disp_cs, OUTPUT);
pinMode(MOSI, OUTPUT);
pinMode(MISO, OUTPUT);
digitalWrite(disp_cs, HIGH);
digitalWrite(MOSI, HIGH);
digitalWrite(MISO, HIGH);
digitalWrite(reset, LOW);
digitalWrite(reset, HIGH);
tft.begin(115200); // start display communication
tft.cursorOn(false);
tft.terminalOn(false);
tft.setDisplayColor(EA_WHITE, EA_BLACK);
tft.setTextColor(EA_WHITE, EA_TRANSPARENT);
tft.setTextSize(5, 8);
tft.clear();
gear_box.update_label(get_label(VAL_GEAR));
left_box.update_label(get_label(VAL_FIRST_LEFT_BOX));
right_box.update_label(get_label(VAL_RPM));
}
String get_value(Value val) {
switch (val) {
case VAL_GEAR:
if (Vehicle_data.gear == 0) {
return "N";
}
return String(Vehicle_data.gear);
case VAL_RPM:
return String(Vehicle_data.revol / 2);
case VAL_TT_FL:
return "00";
case VAL_TT_FR:
return "01";
case VAL_TT_RL:
return "10";
case VAL_TT_RR:
return "11";
case VAL_LAPTIME:
return String(
Vehicle_data.lap_time_sec + Vehicle_data.lap_time_msec / 1000.0, 2);
case VAL_UBATT:
return String(0.0706949 * Vehicle_data.u_batt, 2);
case VAL_TMOT:
return String(Vehicle_data.t_mot - 40);
case VAL_TAIR:
return String(Vehicle_data.t_air - 40);
case VAL_TOIL:
return String(Vehicle_data.t_oil - 40);
case VAL_ERR_TYPE:
return String(Stw_data.error_type);
case VAL_PWAT:
return String(0.0514 * Vehicle_data.p_wat, 2);
case VAL_POIL:
return String(0.0514 * Vehicle_data.p_oil, 2);
case VAL_PBF:
return String(Vehicle_data.p_brake_front);
case VAL_PBR:
return String(Vehicle_data.p_brake_rear);
case VAL_SPEED_FL:
return String(Vehicle_data.speed_fl);
case VAL_SPEED_FR:
return String(Vehicle_data.speed_fr);
case VAL_SPEED:
return String(Vehicle_data.speed);
default:
return "???";
}
}
String get_label(Value val) {
switch (val) {
case VAL_GEAR:
return "GEAR";
case VAL_RPM:
return "RPM";
case VAL_TT_FL:
return "TEMP FL";
case VAL_TT_FR:
return "TEMP FR";
case VAL_TT_RL:
return "TEMP RL";
case VAL_TT_RR:
return "TEMP RR";
case VAL_LAPTIME:
return "LAPTIME";
case VAL_UBATT:
return "BATT VOLTAGE";
case VAL_TMOT:
return "TEMP ENG";
case VAL_TAIR:
return "TEMP AIR";
case VAL_TOIL:
return "TEMP OIL";
case VAL_ERR_TYPE:
return "ERROR TYPE";
case VAL_PWAT:
return "PRESS WAT";
case VAL_POIL:
return "PRESS OIL";
case VAL_PBF:
return "PRESS BRAKE F";
case VAL_PBR:
return "PRESS BRAKE R";
case VAL_SPEED_FL:
return "SPEED FL";
case VAL_SPEED_FR:
return "SPEED FR";
case VAL_SPEED:
return "SPEED";
default:
return "???";
}
}
bool check_alarms() {
static uint32_t poil_last_valid, tmot_last_valid, toil_last_valid;
uint32_t now = millis();
if (Vehicle_data.p_oil >= POIL_ALARM_THRESH || Vehicle_data.speed == 0) {
poil_last_valid = now;
}
if (Vehicle_data.t_mot <= TMOT_ALARM_THRESH ||
Vehicle_data.t_mot == TMOT_SAFE_VALUE) {
tmot_last_valid = now;
}
if (Vehicle_data.t_oil <= TOIL_ALARM_THRESH) {
toil_last_valid = now;
}
bool poil_alarm = now - poil_last_valid >= POIL_ALARM_TIME;
bool tmot_alarm = now - tmot_last_valid >= TMOT_ALARM_TIME;
bool toil_alarm = now - toil_last_valid >= TOIL_ALARM_TIME;
bool alarm_active = poil_alarm || tmot_alarm || toil_alarm;
if (alarm_active) {
String alarm_text = "";
if (poil_alarm)
alarm_text += "PO";
if (tmot_alarm)
alarm_text += "TM";
if (toil_alarm)
alarm_text += "TO";
alarm(alarm_text);
}
return alarm_active;
}
bool check_enc_displays() {
static uint8_t trc_old, mode_old;
static bool display_trc, display_mode;
static uint32_t display_trc_begin, display_mode_begin;
return check_display(trc_old, Stw_data.trc, display_trc, display_trc_begin,
"ARB") ||
check_display(mode_old, Stw_data.mode, display_mode,
display_mode_begin, "MODE");
}
bool check_display(uint8_t& val_old, uint8_t val_new, bool& active,
uint32_t& begin, const String& title) {
if (val_old != val_new) {
active = true;
begin = millis();
val_old = val_new;
tft.clear();
tft.fillDisplayColor(EA_RED);
tft.setTextColor(EA_WHITE, EA_RED);
tft.setTextSize(7, 8);
String text = title + ":" + val_new;
char text_arr[16];
text.toCharArray(text_arr, 16);
tft.drawText(15, 68, 'C', text_arr);
} else if (active && millis() - begin > ENC_DISPLAY_TIME) {
tft.setTextColor(EA_WHITE, EA_TRANSPARENT);
tft.clear();
active = false;
}
return active;
}
void update_display() {
static DisplayView view = VIEW_DRIVER;
static uint32_t last_cleared;
static bool cleared = true;
if (check_alarms()) {
cleared = true;
return;
}
if (tft.disconnected) {
return;
}
if (check_enc_displays()) {
cleared = true;
return;
}
uint32_t now = millis();
// Both buttons have to be pressed at the same time, but we also use the
// debounced rises to ensure we don't keep toggling between the views
if (Stw_data.buttonState1 && Stw_data.buttonState4 &&
(Stw_data.button1_rises > 0 || Stw_data.button4_rises > 0)) {
Stw_data.button1_rises = 0;
Stw_data.button4_rises = 0;
view = (DisplayView)((view + 1) % (VIEW_LAST + 1));
tft.clear();
last_cleared = now;
cleared = true;
}
if (view == VIEW_DRIVER) {
if (cleared) {
redraw_view_driver();
cleared = false;
} else {
update_view_driver();
}
} else {
if (cleared) {
redraw_view_testing();
cleared = false;
} else {
update_view_testing();
}
}
}
void alarm(String textstr) {
uint8_t x = 1;
;
char text[7];
textstr.toCharArray(text, 7);
tft.setTextSize(8, 8);
while (x == 1) {
if (!tft.disconnected) {
tft.setTextColor(EA_BLACK, EA_RED);
tft.fillDisplayColor(EA_RED);
tft.drawText(5, 68, 'L', text);
}
for (int j = 0; j < 16; j++) {
digitalWrite(led_s[j], HIGH);
}
delay(100);
if (!tft.disconnected) {
tft.setTextColor(EA_BLACK, EA_WHITE);
tft.fillDisplayColor(EA_WHITE);
tft.drawText(5, 68, 'L', text);
}
for (int j = 0; j < 16; j++) {
digitalWrite(led_s[j], LOW);
}
delay(100);
if (Stw_data.buttonState1 & Stw_data.buttonState4) {
x = 0;
tft.setTextColor(EA_WHITE, EA_TRANSPARENT);
}
}
}
void redraw_view_driver() {
tft.setTextColor(EA_WHITE, EA_TRANSPARENT);
// Boxes
tft.drawLine(0, 110, 320, 110);
tft.drawLine(120, 0, 120, 110);
tft.drawLine(200, 0, 200, 110);
// Tire temperature cross
tft.drawLine(80, 180, 240, 180);
tft.drawLine(160, 130, 160, 230);
// Boxes
gear_box.redraw();
left_box.redraw();
right_box.redraw();
fl_box.redraw();
fr_box.redraw();
rl_box.redraw();
rr_box.redraw();
}
void update_view_driver() {
static Value left_box_value = VAL_FIRST_LEFT_BOX;
if (Stw_data.button4_rises > 0) {
Stw_data.button4_rises--;
if (left_box_value == VAL_LAST) {
left_box_value = VAL_FIRST_LEFT_BOX;
} else {
left_box_value = (Value)(left_box_value + 1);
}
left_box.update_label(get_label(left_box_value));
}
if (Stw_data.button1_rises > 0) {
Stw_data.button1_rises--;
if (left_box_value == VAL_FIRST_LEFT_BOX) {
left_box_value = VAL_LAST;
} else {
left_box_value = (Value)(left_box_value - 1);
}
left_box.update_label(get_label(left_box_value));
}
gear_box.update_value(get_value(VAL_GEAR));
left_box.update_value(get_value(left_box_value));
right_box.update_value(get_value(VAL_RPM));
fl_box.update_value(2);
fr_box.update_value(55);
rl_box.update_value(65);
rr_box.update_value(90);
}
void redraw_view_testing() {
tft.clear();
tft.setTextFont(EA_FONT7X12);
tft.setTextSize(2, 2);
int start = 10 * testing_page;
tft.setTextColor(EA_WHITE, EA_BLACK);
for (int i = start; i <= min(VAL_LAST, start + 9); i += 2) {
redraw_label_testing(i, EA_BLACK);
}
tft.setTextColor(EA_WHITE, EA_DARKGREY);
for (int i = start + 1; i <= min(VAL_LAST, start + 9); i += 2) {
redraw_label_testing(i, EA_DARKGREY);
}
update_view_testing();
}
void update_view_testing() {
if (Stw_data.button4_rises > 0) {
Stw_data.button4_rises--;
testing_page++;
if (testing_page * 10 > VAL_LAST) {
testing_page = 0;
}
redraw_view_testing();
}
if (Stw_data.button1_rises > 0) {
Stw_data.button1_rises--;
testing_page--;
if (testing_page < 0) {
testing_page = VAL_LAST / 10;
}
redraw_view_testing();
}
tft.setTextFont(EA_FONT7X12);
tft.setTextSize(2, 2);
int start = 10 * testing_page;
tft.setTextColor(EA_WHITE, EA_BLACK);
for (int i = start; i <= min(VAL_LAST, start + 9); i += 2) {
update_value_testing(i);
}
tft.setTextColor(EA_WHITE, EA_DARKGREY);
for (int i = start + 1; i <= min(VAL_LAST, start + 9); i += 2) {
update_value_testing(i);
}
}
void redraw_label_testing(int i, uint8_t color) {
String text = get_label((Value)i) + ":";
int y = (i % 10) * 24;
tft.drawRectf(0, y, 320, y + 23, color);
tft.drawText(10, y, 'L', text.c_str());
}
void update_value_testing(int i) {
String text = pad_left(get_value((Value)i), 5);
int y = (i % 10) * 24;
tft.drawText(310, y, 'R', text.c_str());
}
DataBox::DataBox(int x1, int y1, int x2, int y2, int text_x, int text_y,
int font, int size_x, int size_y, uint8_t justification)
: x1{x1}, y1{y1}, x2{x2}, y2{y2}, text_x{text_x}, text_y{text_y},
font{font}, size_x{size_x}, size_y{size_y},
justification{justification}, value{""}, label{""} {}
void DataBox::update_value(String val_new) {
if (!val_new.equals(value)) {
value = val_new;
redraw_value();
}
}
void DataBox::update_label(String label_new) {
if (!label_new.equals(label)) {
label = label_new;
redraw_label();
}
}
void DataBox::redraw() {
redraw_value();
redraw_label();
}
void DataBox::redraw_value() {
tft.setTextFont(font);
tft.setTextSize(size_x, size_y);
Serial.println("Redrawing value:");
tft.clearRect(x1, y1, x2, y2);
tft.drawText(text_x, text_y, justification, value.c_str());
}
void DataBox::redraw_label() {
tft.setTextFont(EA_FONT7X12);
tft.setTextSize(1, 1);
Serial.println("Redrawing label:");
tft.clearRect(x1, y2 + 1, x2, y2 + 13);
tft.drawText((x1 + x2) / 2, y2 + 1, 'C', label.c_str());
}
TireTempBox::TireTempBox(int x1, int y1, int x2, int y2, int text_x, int text_y,
int font, int size_x, int size_y,
uint8_t justification)
: DataBox{x1, y1, x2, y2, text_x,
text_y, font, size_x, size_y, justification},
num_value{-1} {}
void TireTempBox::update_value(int val_new) {
if (val_new != num_value) {
num_value = val_new;
if (val_new < TT_THRESH1) {
color = TT_COL0;
} else if (val_new < TT_THRESH2) {
color = TT_COL1;
} else if (val_new < TT_THRESH3) {
color = TT_COL2;
} else {
color = TT_COL3;
}
String val_str = pad_left(String(val_new), 3);
DataBox::update_value(val_str);
}
}
void TireTempBox::redraw_value() {
tft.setTextFont(font);
tft.setTextSize(size_x, size_y);
tft.drawRectf(x1, y1, x2, y2, color);
tft.drawText(text_x, text_y, justification, value.c_str());
}
}
void update_page_testing() {}
DataBox::DataBox(int x1, int y1, int x2, int y2, int text_x, int text_y, int font,
int size_x, int size_y, uint8_t justification)
: x1{x1}, y1{y1}, x2{x2}, y2{y2}, text_x{text_x}, text_y{text_y},
font{font}, size_x{size_x}, size_y{size_y},
justification{justification}, value{""}, label{""} {}
void DataBox::update_value(String val_new) {
if (!val_new.equals(value)) {
value = val_new;
redraw_value();
}
}
void DataBox::update_label(String label_new) {
if (!label_new.equals(label)) {
label = label_new;
redraw_label();
}
}
void DataBox::redraw() {
redraw_value();
redraw_label();
}
void DataBox::redraw_value() {
tft.setTextFont(font);
tft.setTextSize(size_x, size_y);
Serial.println("Redrawing value:");
tft.clearRect(x1, y1, x2, y2);
tft.drawText(text_x, text_y, justification, value.c_str());
}
void DataBox::redraw_label() {
tft.setTextFont(EA_FONT7X12);
tft.setTextSize(1, 1);
Serial.println("Redrawing label:");
tft.clearRect(x1, y2 + 1, x2, y2 + 13);
tft.drawText((x1 + x2) / 2, y2 + 1, 'C', label.c_str());
}
TireTempBox::TireTempBox(int x1, int y1, int x2, int y2, int text_x, int text_y,
int font, int size_x, int size_y, uint8_t justification)
: DataBox{x1, y1, x2, y2, text_x, text_y, font, size_x, size_y, justification}, num_value{-1} {}
void TireTempBox::update_value(int val_new) {
if (val_new != num_value) {
num_value = val_new;
if (val_new < TT_THRESH1) {
color = TT_COL0;
} else if (val_new < TT_THRESH2) {
color = TT_COL1;
} else if (val_new < TT_THRESH3) {
color = TT_COL2;
} else {
color = TT_COL3;
}
String val_str = String(val_new);
if (val_str.length() == 1) {
val_str = " " + val_str;
} else if (val_str.length() == 2) {
val_str = " " + val_str;
}
DataBox::update_value(val_str);
}
}
void TireTempBox::redraw_value() {
tft.setTextFont(font);
tft.setTextSize(size_x, size_y);
tft.drawRectf(x1, y1, x2, y2, color);
tft.drawText(text_x, text_y, justification, value.c_str());
}
void TireTempBox::redraw_label() {}

View File

@ -1,96 +1,114 @@
#include "Arduino.h"
#include "EDIPTFT.h"
#include "FT_2018_STW_CAN.h"
#include "FT18_STW_INIT.h"
#ifndef FT18_STW_DISPLAY_h
#define FT18_STW_DISPLAY_h
#define MOSI 75
#define MISO 74
#define CLK 76
#define disp_cs 42
#define reset 43
#define writeprotect 52
#define POIL_ALARM_THRESH ((uint32_t) (0.1 / 0.0514))
#define POIL_ALARM_TIME 20000 // ms
#define TMOT_ALARM_THRESH (40 + 105)
#define TMOT_SAFE_VALUE (40 + 200)
#define TMOT_ALARM_TIME 20000 // ms
#define TOIL_ALARM_THRESH (40 + 150)
#define TOIL_ALARM_TIME 10000 // ms
#define ENC_DISPLAY_TIME 1000 // ms
enum DisplayPage {PAGE_DRIVER, PAGE_TESTING};
#define DISPLAY_PAGES 2
enum Value {
VAL_GEAR, VAL_RPM, VAL_TT_FL, VAL_TT_FR, VAL_TT_RL, VAL_TT_RR, VAL_LAPTIME,
VAL_UBATT, VAL_TMOT, VAL_TAIR, VAL_TOIL, VAL_ERR_TYPE, VAL_PWAT, VAL_POIL,
VAL_PBF, VAL_PBR, VAL_SPEED_FL, VAL_SPEED_FR, VAL_SPEED,
VAL_FIRST_LEFT_BOX = VAL_LAPTIME, VAL_LAST = VAL_SPEED
};
String get_value(Value val);
String get_label(Value val);
#define DISP_CLEAR_INTERVAL 5000 // ms
void init_display(void);
void update_display(void);
void display_trc(void);
void display_mode(void);
void alarm(String text);
bool check_alarms();
bool check_enc_displays();
bool check_display(uint8_t& val_old, uint8_t val_new, bool& active, uint32_t& begin, const String& title);
void redraw_page_driver();
void update_page_driver();
void redraw_page_testing();
void update_page_testing();
class DataBox {
public:
DataBox(int x1, int y1, int x2, int y2, int text_x, int text_y, int font,
int size_x, int size_y, uint8_t justification);
void update_value(String val_new);
void update_label(String label_new);
void redraw();
virtual void redraw_value();
virtual void redraw_label();
protected:
int x1, y1, x2, y2, text_x, text_y, font, size_x, size_y;
uint8_t justification;
String value;
String label;
};
#define TT_COL0 EA_LIGHTBLUE
#define TT_COL1 EA_GREEN
#define TT_COL2 EA_ORANGE
#define TT_COL3 EA_RED
#define TT_THRESH1 50
#define TT_THRESH2 60
#define TT_THRESH3 70
class TireTempBox : public DataBox {
public:
TireTempBox(int x1, int y1, int x2, int y2, int text_x, int text_y,
int font, int size_x, int size_y, uint8_t justification);
void update_value(int val_new);
void redraw_value() override;
void redraw_label() override;
private:
int color;
int num_value;
};
#include "Arduino.h"
#include "EDIPTFT.h"
#include "FT18_STW_INIT.h"
#include "FT_2018_STW_CAN.h"
#ifndef FT18_STW_DISPLAY_h
#define FT18_STW_DISPLAY_h
#define MOSI 75
#define MISO 74
#define CLK 76
#define disp_cs 42
#define reset 43
#define writeprotect 52
#define POIL_ALARM_THRESH ((uint32_t)(0.1 / 0.0514))
#define POIL_ALARM_TIME 20000 // ms
#define TMOT_ALARM_THRESH (40 + 105)
#define TMOT_SAFE_VALUE (40 + 200)
#define TMOT_ALARM_TIME 20000 // ms
#define TOIL_ALARM_THRESH (40 + 150)
#define TOIL_ALARM_TIME 10000 // ms
#define ENC_DISPLAY_TIME 1000 // ms
String pad_left(String orig, int len, char pad_char = ' ');
enum DisplayView { VIEW_DRIVER, VIEW_TESTING, VIEW_LAST = VIEW_TESTING };
enum Value {
VAL_GEAR,
VAL_RPM,
VAL_TT_FL,
VAL_TT_FR,
VAL_TT_RL,
VAL_TT_RR,
VAL_LAPTIME,
VAL_UBATT,
VAL_TMOT,
VAL_TAIR,
VAL_TOIL,
VAL_ERR_TYPE,
VAL_PWAT,
VAL_POIL,
VAL_PBF,
VAL_PBR,
VAL_SPEED_FL,
VAL_SPEED_FR,
VAL_SPEED,
VAL_FIRST_LEFT_BOX = VAL_LAPTIME,
VAL_LAST = VAL_SPEED
};
String get_value(Value val);
String get_label(Value val);
void init_display(void);
void update_display(void);
void display_trc(void);
void display_mode(void);
void alarm(String text);
bool check_alarms();
bool check_enc_displays();
bool check_display(uint8_t& val_old, uint8_t val_new, bool& active,
uint32_t& begin, const String& title);
void redraw_view_driver();
void update_view_driver();
void redraw_view_testing();
void update_view_testing();
void redraw_label_testing(int i, uint8_t bg_color);
void update_value_testing(int i);
class DataBox {
public:
DataBox(int x1, int y1, int x2, int y2, int text_x, int text_y, int font,
int size_x, int size_y, uint8_t justification);
void update_value(String val_new);
void update_label(String label_new);
void redraw();
virtual void redraw_value();
virtual void redraw_label();
protected:
int x1, y1, x2, y2, text_x, text_y, font, size_x, size_y;
uint8_t justification;
String value;
String label;
};
#define TT_COL0 EA_LIGHTBLUE
#define TT_COL1 EA_GREEN
#define TT_COL2 EA_ORANGE
#define TT_COL3 EA_RED
#define TT_THRESH1 50
#define TT_THRESH2 60
#define TT_THRESH3 70
class TireTempBox : public DataBox {
public:
TireTempBox(int x1, int y1, int x2, int y2, int text_x, int text_y, int font,
int size_x, int size_y, uint8_t justification);
void update_value(int val_new);
void redraw_value() override;
void redraw_label() override;
private:
int color;
int num_value;
};
#endif

View File

@ -1,142 +1,144 @@
#include "FT18_STW_INIT.h"
#include <Arduino.h>
#include <Bounce2.h>
#include <RotaryEncoder.h>
volatile stw_data_type Stw_data = {0}; //alles mit 0 initialisieren
volatile vehicle_data_type Vehicle_data = {0}; //alles mit 0 initialisieren
bool enc1PinALast,enc1PinANow,enc2PinALast,enc2PinANow;
int led[] = {led1,led2,led3,led4,led5,led6,led7,led8,led9,led10,led11,led12,led13,led14,led15,led16};
bool entprell;
int buttons[] = {button1,button2,button3,button4,button5,button6,enc1PinS,enc2PinS};
constexpr size_t N_BUTTONS = sizeof(buttons)/sizeof(buttons[0]);
Bounce2::Button debouncer[N_BUTTONS];
double val = 0;
double val2 = 0;
RotaryEncoder encoder(enc1PinA,enc1PinB,1,1,50);
RotaryEncoder encoder2(enc2PinA,enc2PinB,1,1,50);
///////////////////////////////////////////////////
// functions
///////////////////////////////////////////////////
void set_pins(){
pinMode (l,OUTPUT);
for (int thisLed = 0; thisLed < sizeof(led)/sizeof(int); thisLed++) {
pinMode(led[thisLed], OUTPUT);
}
pinMode(enc1PinA, INPUT);
pinMode(enc1PinB, INPUT);
pinMode(enc2PinA, INPUT);
pinMode(enc2PinB, INPUT);
enc1PinALast=LOW;
enc1PinANow=LOW;
enc2PinALast=LOW;
enc2PinANow=LOW;
for(int i = 0; i < N_BUTTONS; i++){
debouncer[i].attach(buttons[i], INPUT);
debouncer[i].interval(10);
}
}
void read_buttons(){
for (int i = 0; i < N_BUTTONS; i++) {
debouncer[i].update();
}
// These are only used to send them out via CAN, so they only need to be
// high once.
Stw_data.Stw_neutral = debouncer[1].rose();
Stw_data.Stw_auto_shift = debouncer[2].rose();
Stw_data.Stw_shift_down = debouncer[4].rose();
Stw_data.Stw_shift_up = debouncer[5].rose();
Stw_data.buttonState1 = debouncer[0].isPressed();
Stw_data.buttonState4 = debouncer[3].isPressed();
Stw_data.buttonStateEnc1 = debouncer[6].isPressed();
Stw_data.buttonStateEnc2 = debouncer[7].isPressed();
if (debouncer[0].rose()) {
Stw_data.button1_rises++;
}
if (debouncer[3].rose()) {
Stw_data.button4_rises++;
}
if (debouncer[6].rose()) {
Stw_data.enc1_rises++;
}
if (debouncer[7].rose()) {
Stw_data.enc2_rises++;
}
}
void read_rotary(){
int enc = encoder.readEncoder();
int enc2 = encoder2.readEncoder();
if(enc != 0){
val = val +0.5*enc;
if (val==1 or val ==-1){
if(Stw_data.trc==0 and enc<0){
Stw_data.trc = 11;
}else if(Stw_data.trc==11 and enc>0){
Stw_data.trc=0;
}else{
Stw_data.trc = Stw_data.trc + enc;
}
val = 0;
}
}
/*enc1PinANow = digitalRead(enc1PinA);
enc2PinANow = digitalRead(enc2PinA);
if ((enc1PinALast == LOW) && (enc1PinANow == HIGH)) {
if (digitalRead(enc1PinB) == HIGH) {
if(Stw_data.trc==0){
Stw_data.trc = 5;
}else{
Stw_data.trc--;
}
}else {
if(Stw_data.trc==5){
Stw_data.trc=0;
}else{
Stw_data.trc++;
}
}
}
enc1PinALast = enc1PinANow;
/*if (Stw_data.buttonStateEnc1 == HIGH){
digitalWrite(led[Stw_data.i], HIGH);
}*/
if(enc2 != 0){
val2 = val2 +0.5*enc2;
if(val2==1 or val2==-1){
if((Stw_data.mode==1 or Stw_data.mode==0) and enc2<0){
Stw_data.mode = 5;
}else if(Stw_data.mode==5 and enc2>0){
Stw_data.mode=1;
}else{
Stw_data.mode = Stw_data.mode + enc2;
}
val2=0;
}
}
/*if ((enc2PinALast == LOW) && (enc2PinANow == HIGH)) {
//if(enc2PinALast != enc2PinANow){
if (digitalRead(enc2PinB) == HIGH) {
if(Stw_data.i==0){
Stw_data.i = sizeof(led)/sizeof(int)-1;
}else{
Stw_data.i--;
}
}else {
if(Stw_data.i==sizeof(led)/sizeof(int)-1){
Stw_data.i=0;
}else{
Stw_data.i++;
}
}
}
enc2PinALast = enc2PinANow;*/
/*if (Stw_data.buttonStateEnc2 == HIGH){
digitalWrite(led[Stw_data.i], HIGH);
}*/
}
#include "FT18_STW_INIT.h"
#include <Arduino.h>
#include <Bounce2.h>
#include <RotaryEncoder.h>
volatile stw_data_type Stw_data = {0}; // alles mit 0 initialisieren
volatile vehicle_data_type Vehicle_data = {0}; // alles mit 0 initialisieren
bool enc1PinALast, enc1PinANow, enc2PinALast, enc2PinANow;
int led[] = {led1, led2, led3, led4, led5, led6, led7, led8,
led9, led10, led11, led12, led13, led14, led15, led16};
bool entprell;
int buttons[] = {button1, button2, button3, button4,
button5, button6, enc1PinS, enc2PinS};
constexpr size_t N_BUTTONS = sizeof(buttons) / sizeof(buttons[0]);
Bounce2::Button debouncer[N_BUTTONS];
double val = 0;
double val2 = 0;
RotaryEncoder encoder(enc1PinA, enc1PinB, 1, 1, 50);
RotaryEncoder encoder2(enc2PinA, enc2PinB, 1, 1, 50);
///////////////////////////////////////////////////
// functions
///////////////////////////////////////////////////
void set_pins() {
pinMode(l, OUTPUT);
for (int thisLed = 0; thisLed < sizeof(led) / sizeof(int); thisLed++) {
pinMode(led[thisLed], OUTPUT);
}
pinMode(enc1PinA, INPUT);
pinMode(enc1PinB, INPUT);
pinMode(enc2PinA, INPUT);
pinMode(enc2PinB, INPUT);
enc1PinALast = LOW;
enc1PinANow = LOW;
enc2PinALast = LOW;
enc2PinANow = LOW;
for (int i = 0; i < N_BUTTONS; i++) {
debouncer[i].attach(buttons[i], INPUT);
debouncer[i].interval(10);
}
}
void read_buttons() {
for (int i = 0; i < N_BUTTONS; i++) {
debouncer[i].update();
}
// These are only used to send them out via CAN, so they only need to be
// high once.
Stw_data.Stw_neutral = debouncer[1].rose();
Stw_data.Stw_auto_shift = debouncer[2].rose();
Stw_data.Stw_shift_down = debouncer[4].rose();
Stw_data.Stw_shift_up = debouncer[5].rose();
Stw_data.buttonState1 = debouncer[0].isPressed();
Stw_data.buttonState4 = debouncer[3].isPressed();
Stw_data.buttonStateEnc1 = debouncer[6].isPressed();
Stw_data.buttonStateEnc2 = debouncer[7].isPressed();
if (debouncer[0].rose()) {
Stw_data.button1_rises++;
}
if (debouncer[3].rose()) {
Stw_data.button4_rises++;
}
if (debouncer[6].rose()) {
Stw_data.enc1_rises++;
}
if (debouncer[7].rose()) {
Stw_data.enc2_rises++;
}
}
void read_rotary() {
int enc = encoder.readEncoder();
int enc2 = encoder2.readEncoder();
if (enc != 0) {
val = val + 0.5 * enc;
if (val == 1 or val == -1) {
if (Stw_data.trc == 0 and enc < 0) {
Stw_data.trc = 11;
} else if (Stw_data.trc == 11 and enc > 0) {
Stw_data.trc = 0;
} else {
Stw_data.trc = Stw_data.trc + enc;
}
val = 0;
}
}
/*enc1PinANow = digitalRead(enc1PinA);
enc2PinANow = digitalRead(enc2PinA);
if ((enc1PinALast == LOW) && (enc1PinANow == HIGH)) {
if (digitalRead(enc1PinB) == HIGH) {
if(Stw_data.trc==0){
Stw_data.trc = 5;
}else{
Stw_data.trc--;
}
}else {
if(Stw_data.trc==5){
Stw_data.trc=0;
}else{
Stw_data.trc++;
}
}
}
enc1PinALast = enc1PinANow;
/*if (Stw_data.buttonStateEnc1 == HIGH){
digitalWrite(led[Stw_data.i], HIGH);
}*/
if (enc2 != 0) {
val2 = val2 + 0.5 * enc2;
if (val2 == 1 or val2 == -1) {
if ((Stw_data.mode == 1 or Stw_data.mode == 0) and enc2 < 0) {
Stw_data.mode = 5;
} else if (Stw_data.mode == 5 and enc2 > 0) {
Stw_data.mode = 1;
} else {
Stw_data.mode = Stw_data.mode + enc2;
}
val2 = 0;
}
}
/*if ((enc2PinALast == LOW) && (enc2PinANow == HIGH)) {
//if(enc2PinALast != enc2PinANow){
if (digitalRead(enc2PinB) == HIGH) {
if(Stw_data.i==0){
Stw_data.i = sizeof(led)/sizeof(int)-1;
}else{
Stw_data.i--;
}
}else {
if(Stw_data.i==sizeof(led)/sizeof(int)-1){
Stw_data.i=0;
}else{
Stw_data.i++;
}
}
}
enc2PinALast = enc2PinANow;*/
/*if (Stw_data.buttonStateEnc2 == HIGH){
digitalWrite(led[Stw_data.i], HIGH);
}*/
}

View File

@ -1,105 +1,102 @@
#include "Arduino.h"
#ifndef FT18_STW_Init
#define FT18_STW_Init
#define l 78 //test_led
#define led1 12//PD8
#define led2 11//PD7
#define led3 9//PC21
#define led4 8//PC22
#define led5 7//PC23
#define led6 6//PC24
#define led7 5//PC25
#define led8 4//PC26 und PA29
#define led9 3//PC28
#define led10 2//PB25
#define led11 10//PC29 und PA28
#define led12 22//PB26
#define led13 19//PA10
#define led14 13//PB27
#define led15 17//PA12
#define led16 18//PA11
#define button1 48//bl
#define button2 47//gl
#define button3 44//gr
#define button4 46//br
#define button5 45//sl
#define button6 49//sr
#define enc1PinA 37
#define enc1PinB 38
#define enc1PinS 35
#define enc2PinA 40
#define enc2PinB 41
#define enc2PinS 39
// define Drehzahlgrenzen TODOOOO
#define RPM_THRES_1 1000
#define RPM_THRES_2 6000
#define RPM_THRES_3 7000
#define RPM_THRES_4 8000
#define RPM_THRES_5 10000
#define RPM_THRES_6 14000
#define RPM_THRES_7 17000
#define RPM_THRES_8 18000
#define RPM_THRES_9 20000
#define RPM_THRES_10 20000
void set_pins(void);
void read_buttons(void);
void read_rotary(void); // read rotary switches
typedef struct
{
uint8_t Stw_shift_up; // 1 Bit 0
uint8_t Stw_shift_down; // 1 Bit 1
uint8_t Stw_neutral; // 1 Bit 2
uint8_t Stw_auto_shift; // 1 Bit 3
uint8_t buttonState1; // 1 Bit 4
uint8_t buttonState4; // 1 Bit 5
//bool CAN_toggle;
//bool CAN_check;
//uint8_t i; //Index linker Drehschalter
uint8_t buttonStateEnc1; // button
//uint8_t br; //test mode : mittlere Drehschalter position
uint8_t buttonStateEnc2; //button
uint8_t displayindex; //index für Displayanzeige
uint8_t error_type; //Extrainfos über Error-LED
uint8_t trc;
uint8_t mode;
uint8_t button1_rises;
uint8_t button4_rises;
uint8_t enc1_rises;
uint8_t enc2_rises;
} stw_data_type;
typedef struct
{
uint8_t e_thro; // E-Drossel
uint8_t g_auto; // Auto-Shift
uint8_t gear; // Gang
uint16_t revol; // Drehzahl
uint8_t t_oil; // Öl-Motor-Temperatur
uint8_t t_mot; // Wasser-Motor-Temperatur
uint8_t t_air; // LLK-Temperatur
uint8_t u_batt; // Batteriespannung
uint8_t rev_lim; // Drehzahllimit Bit
uint8_t p_wat;
uint8_t p_fuel;
uint8_t p_oil;
uint8_t p_brake_front;
uint8_t p_brake_rear;
uint8_t speed_fl;
uint8_t speed_fr;
uint8_t speed;
} vehicle_data_type;
extern volatile stw_data_type Stw_data;
extern volatile vehicle_data_type Vehicle_data;
#include "Arduino.h"
#ifndef FT18_STW_Init
#define FT18_STW_Init
#define l 78 // test_led
#define led1 12 // PD8
#define led2 11 // PD7
#define led3 9 // PC21
#define led4 8 // PC22
#define led5 7 // PC23
#define led6 6 // PC24
#define led7 5 // PC25
#define led8 4 // PC26 und PA29
#define led9 3 // PC28
#define led10 2 // PB25
#define led11 10 // PC29 und PA28
#define led12 22 // PB26
#define led13 19 // PA10
#define led14 13 // PB27
#define led15 17 // PA12
#define led16 18 // PA11
#define button1 48 // bl
#define button2 47 // gl
#define button3 44 // gr
#define button4 46 // br
#define button5 45 // sl
#define button6 49 // sr
#define enc1PinA 37
#define enc1PinB 38
#define enc1PinS 35
#define enc2PinA 40
#define enc2PinB 41
#define enc2PinS 39
// define Drehzahlgrenzen TODOOOO
#define RPM_THRES_1 1000
#define RPM_THRES_2 6000
#define RPM_THRES_3 7000
#define RPM_THRES_4 8000
#define RPM_THRES_5 10000
#define RPM_THRES_6 14000
#define RPM_THRES_7 17000
#define RPM_THRES_8 18000
#define RPM_THRES_9 20000
#define RPM_THRES_10 20000
void set_pins(void);
void read_buttons(void);
void read_rotary(void); // read rotary switches
typedef struct {
uint8_t Stw_shift_up; // 1 Bit 0
uint8_t Stw_shift_down; // 1 Bit 1
uint8_t Stw_neutral; // 1 Bit 2
uint8_t Stw_auto_shift; // 1 Bit 3
uint8_t buttonState1; // 1 Bit 4
uint8_t buttonState4; // 1 Bit 5
// bool CAN_toggle;
// bool CAN_check;
// uint8_t i; //Index
// linker Drehschalter
uint8_t buttonStateEnc1; // button
// uint8_t br; //test mode :
// mittlere Drehschalter position
uint8_t buttonStateEnc2; // button
uint8_t displayindex; // index für Displayanzeige
uint8_t error_type; // Extrainfos über Error-LED
uint8_t trc;
uint8_t mode;
uint8_t button1_rises;
uint8_t button4_rises;
uint8_t enc1_rises;
uint8_t enc2_rises;
} stw_data_type;
typedef struct {
uint8_t e_thro; // E-Drossel
uint8_t g_auto; // Auto-Shift
uint8_t gear; // Gang
uint16_t revol; // Drehzahl
uint8_t t_oil; // Öl-Motor-Temperatur
uint8_t t_mot; // Wasser-Motor-Temperatur
uint8_t t_air; // LLK-Temperatur
uint8_t u_batt; // Batteriespannung
uint8_t rev_lim; // Drehzahllimit Bit
uint8_t p_wat;
uint8_t p_fuel;
uint8_t p_oil;
uint8_t p_brake_front;
uint8_t p_brake_rear;
uint8_t speed_fl;
uint8_t speed_fr;
uint8_t speed;
uint8_t lap_time_sec;
uint8_t lap_time_msec;
} vehicle_data_type;
extern volatile stw_data_type Stw_data;
extern volatile vehicle_data_type Vehicle_data;
#endif

View File

@ -1,171 +1,149 @@
#include "Arduino.h"
#include "EDIPTFT.h"
#include "FT_2018e_STW_CAN.h"
#include "FT18e_STW_INIT.h"
#include "FT18e_STW_DISPLAY.h"
EDIPTFT tft(true, false);
String bezeichnungen[] = {"Batterieleistung", "Moment", "Batterietemp"};
//"T_mot","T_oil","P_oil","% fa","U_batt","P_wat","T_air",
//"P_b_front","P_b_rear","Error Type","Speed_fl","Speed_fr","Speed"};
//"Drehzahl","P_fuel","Index"
int vergleichsindex;
int sizeaalt;
int sizeaneu;
int sizebalt;
int sizebneu;
int sizecalt;
int sizecneu;
int sizedalt;
int sizedneu;
int sizeealt;
int sizeeneu;
uint8_t clearcounter = 56;
uint8_t modealt = Stw_data.mode;
uint8_t trccounter; // = Stw_data.trc;
uint8_t modecounter; // = Stw_data.mode;
bool trctimer;
bool modetimer;
int led_s[] = {led1, led2, led3, led4, led5, led6, led7, led8, led9, led10, led11, led12, led13, led14, led15, led16};
unsigned long poiltimer;
unsigned long tmottimer;
unsigned long toiltimer;
bool poilbool = true;
bool tmotbool = true;
bool toilbool = true;
void init_display()
{
pinMode(writeprotect, OUTPUT);
digitalWrite(writeprotect, HIGH);
pinMode(reset, OUTPUT);
pinMode(disp_cs, OUTPUT);
pinMode(MOSI, OUTPUT);
pinMode(MISO, OUTPUT);
//pinMode(CLK, INPUT);
digitalWrite(disp_cs, HIGH);
digitalWrite(MOSI, HIGH);
digitalWrite(MISO, HIGH);
digitalWrite(reset, LOW);
//edip.smallProtoSelect(7);
//edip.setNewColor(EA_GREY, 0xe3, 0xe3,0xe3); // redefine r-g-b-values of EA_GREY
//edip.drawImage(0,50,FASTTUBE_LOGO_PNG);
digitalWrite(reset, HIGH);
tft.begin(115200); // start display communication
/*int h = 20;
char charh[2];
String strh = String(h);
strh.toCharArray(charh,2);
tft.DisplayLight(charh);*/
tft.cursorOn(false);
tft.terminalOn(false);
tft.setDisplayColor(EA_WHITE, EA_BLACK);
tft.setTextColor(EA_WHITE, EA_BLACK);
//tft.setTextFont('4');
tft.setTextSize(5, 8);
tft.clear();
//tft.displayLight('30');
tft.drawText(0, 14, 'C', "FaSTTUBe"); //draw some text
//tft.loadImage(0,0,1);
//delay(2000);
}
double get_value(int a)
{
return 0;
}
void update_display()
{
if (!tft.disconnected)
{
tft.cursorOn(false);
if (modealt != Stw_data.mode || modetimer == true)
{
display_mode();
}
else
{
if (clearcounter >= 56)
{
tft.clear();
clearcounter = 0;
}
clearcounter += 1;
}
}
}
void display_mode()
{
if (modealt != Stw_data.mode)
{
tft.clear();
tft.setTextSize(6, 8);
tft.setDisplayColor(EA_WHITE, EA_RED);
tft.setTextColor(EA_WHITE, EA_RED);
char modeanzeige[7];
String str = String("MODE:");
str += String(Stw_data.mode);
str.toCharArray(modeanzeige, 7);
tft.drawText(0, 0, 'L', " ");
tft.drawText(0, 60, 'L', " ");
tft.drawText(0, 120, 'L', " ");
tft.drawText(0, 180, 'L', " ");
tft.drawText(15, 68, 'L', modeanzeige);
modecounter = 0;
modealt = Stw_data.mode;
modetimer = true;
}
else if (modecounter >= 255)
{
tft.setDisplayColor(EA_WHITE, EA_BLACK);
tft.setTextColor(EA_WHITE, EA_BLACK);
tft.clear();
modetimer = false;
}
else
{
modecounter += 1;
delay(5);
}
}
void alarm(String textstr)
{
uint8_t x = 1;
;
char text[7];
textstr.toCharArray(text, 7);
tft.setTextSize(8, 8);
while (x == 1)
{
if (!tft.disconnected)
{
tft.setTextColor(EA_BLACK, EA_RED);
tft.fillDisplayColor(EA_RED);
tft.drawText(5, 68, 'L', text);
}
for (int j = 0; j < 16; j++)
{
digitalWrite(led_s[j], HIGH);
}
delay(100);
if (!tft.disconnected)
{
tft.setTextColor(EA_BLACK, EA_WHITE);
tft.fillDisplayColor(EA_WHITE);
tft.drawText(5, 68, 'L', text);
}
for (int j = 0; j < 16; j++)
{
digitalWrite(led_s[j], LOW);
}
delay(100);
if (Stw_data.button_ll & Stw_data.button_rr)
{
x = 0;
tft.setTextColor(EA_WHITE, EA_BLACK);
}
}
#include "FT18e_STW_DISPLAY.h"
#include "Arduino.h"
#include "EDIPTFT.h"
#include "FT18e_STW_INIT.h"
#include "FT_2018e_STW_CAN.h"
EDIPTFT tft(true, false);
String bezeichnungen[] = {"Batterieleistung", "Moment", "Batterietemp"};
//"T_mot","T_oil","P_oil","% fa","U_batt","P_wat","T_air",
//"P_b_front","P_b_rear","Error Type","Speed_fl","Speed_fr","Speed"};
//"Drehzahl","P_fuel","Index"
int vergleichsindex;
int sizeaalt;
int sizeaneu;
int sizebalt;
int sizebneu;
int sizecalt;
int sizecneu;
int sizedalt;
int sizedneu;
int sizeealt;
int sizeeneu;
uint8_t clearcounter = 56;
uint8_t modealt = Stw_data.mode;
uint8_t trccounter; // = Stw_data.trc;
uint8_t modecounter; // = Stw_data.mode;
bool trctimer;
bool modetimer;
int led_s[] = {led1, led2, led3, led4, led5, led6, led7, led8,
led9, led10, led11, led12, led13, led14, led15, led16};
unsigned long poiltimer;
unsigned long tmottimer;
unsigned long toiltimer;
bool poilbool = true;
bool tmotbool = true;
bool toilbool = true;
void init_display() {
pinMode(writeprotect, OUTPUT);
digitalWrite(writeprotect, HIGH);
pinMode(reset, OUTPUT);
pinMode(disp_cs, OUTPUT);
pinMode(MOSI, OUTPUT);
pinMode(MISO, OUTPUT);
// pinMode(CLK, INPUT);
digitalWrite(disp_cs, HIGH);
digitalWrite(MOSI, HIGH);
digitalWrite(MISO, HIGH);
digitalWrite(reset, LOW);
// edip.smallProtoSelect(7);
// edip.setNewColor(EA_GREY, 0xe3, 0xe3,0xe3); // redefine r-g-b-values
// of EA_GREY edip.drawImage(0,50,FASTTUBE_LOGO_PNG);
digitalWrite(reset, HIGH);
tft.begin(115200); // start display communication
/*int h = 20;
char charh[2];
String strh = String(h);
strh.toCharArray(charh,2);
tft.DisplayLight(charh);*/
tft.cursorOn(false);
tft.terminalOn(false);
tft.setDisplayColor(EA_WHITE, EA_BLACK);
tft.setTextColor(EA_WHITE, EA_BLACK);
// tft.setTextFont('4');
tft.setTextSize(5, 8);
tft.clear();
// tft.displayLight('30');
tft.drawText(0, 14, 'C', "FaSTTUBe"); // draw some text
// tft.loadImage(0,0,1);
// delay(2000);
}
double get_value(int a) { return 0; }
void update_display() {
if (!tft.disconnected) {
tft.cursorOn(false);
if (modealt != Stw_data.mode || modetimer == true) {
display_mode();
} else {
if (clearcounter >= 56) {
tft.clear();
clearcounter = 0;
}
clearcounter += 1;
}
}
}
void display_mode() {
if (modealt != Stw_data.mode) {
tft.clear();
tft.setTextSize(6, 8);
tft.setDisplayColor(EA_WHITE, EA_RED);
tft.setTextColor(EA_WHITE, EA_RED);
char modeanzeige[7];
String str = String("MODE:");
str += String(Stw_data.mode);
str.toCharArray(modeanzeige, 7);
tft.drawText(0, 0, 'L', " ");
tft.drawText(0, 60, 'L', " ");
tft.drawText(0, 120, 'L', " ");
tft.drawText(0, 180, 'L', " ");
tft.drawText(15, 68, 'L', modeanzeige);
modecounter = 0;
modealt = Stw_data.mode;
modetimer = true;
} else if (modecounter >= 255) {
tft.setDisplayColor(EA_WHITE, EA_BLACK);
tft.setTextColor(EA_WHITE, EA_BLACK);
tft.clear();
modetimer = false;
} else {
modecounter += 1;
delay(5);
}
}
void alarm(String textstr) {
uint8_t x = 1;
;
char text[7];
textstr.toCharArray(text, 7);
tft.setTextSize(8, 8);
while (x == 1) {
if (!tft.disconnected) {
tft.setTextColor(EA_BLACK, EA_RED);
tft.fillDisplayColor(EA_RED);
tft.drawText(5, 68, 'L', text);
}
for (int j = 0; j < 16; j++) {
digitalWrite(led_s[j], HIGH);
}
delay(100);
if (!tft.disconnected) {
tft.setTextColor(EA_BLACK, EA_WHITE);
tft.fillDisplayColor(EA_WHITE);
tft.drawText(5, 68, 'L', text);
}
for (int j = 0; j < 16; j++) {
digitalWrite(led_s[j], LOW);
}
delay(100);
if (Stw_data.button_ll & Stw_data.button_rr) {
x = 0;
tft.setTextColor(EA_WHITE, EA_BLACK);
}
}
}

View File

@ -1,26 +1,26 @@
#include "Arduino.h"
#include "EDIPTFT.h"
#include "FT_2018e_STW_CAN.h"
#include "FT18e_STW_INIT.h"
#ifndef FT18e_STW_DISPLAY_h
#define FT18e_STW_DISPLAY_h
#define EA_BLACK 1
#define EA_RED 3
#define EA_GREY 10
#define EA_WHITE 8
#define MOSI 75
#define MISO 74
#define CLK 76
#define disp_cs 42
#define reset 43
#define writeprotect 52
void init_display(void);
void update_display(void);
double get_value(int a);
void display_mode(void);
void alarm(String text);
#include "Arduino.h"
#include "EDIPTFT.h"
#include "FT18e_STW_INIT.h"
#include "FT_2018e_STW_CAN.h"
#ifndef FT18e_STW_DISPLAY_h
#define FT18e_STW_DISPLAY_h
#define EA_BLACK 1
#define EA_RED 3
#define EA_GREY 10
#define EA_WHITE 8
#define MOSI 75
#define MISO 74
#define CLK 76
#define disp_cs 42
#define reset 43
#define writeprotect 52
void init_display(void);
void update_display(void);
double get_value(int a);
void display_mode(void);
void alarm(String text);
#endif

View File

@ -1,84 +1,74 @@
#include "Arduino.h"
#include "FT18e_STW_INIT.h"
#include "Bounce2.h"
#include "RotaryEncoder.h"
volatile stw_data_type Stw_data = {0}; //alles mit 0 initialisieren
volatile vehicle_data_type Vehicle_data = {0}; //alles mit 0 initialisieren
bool enc1PinALast, enc1PinANow, enc2PinALast, enc2PinANow;
int led[] = {led1, led2, led3, led4, led5, led6, led7, led8, led9, led10, led11, led12, led13, led14, led15, led16};
bool entprell;
int buttons[] = {PIN_BUTTON_LL, PIN_BUTTON_LR, PIN_BUTTON_RL, PIN_BUTTON_RR, enc1PinS, enc2PinS};
Bounce debouncer[8];
double val = 0;
double val2 = 0;
RotaryEncoder encoder(enc1PinA, enc1PinB, 1, 1, 50);
RotaryEncoder encoder2(enc2PinA, enc2PinB, 1, 1, 50);
///////////////////////////////////////////////////
// functions
///////////////////////////////////////////////////
void set_pins()
{
for (int thisLed = 0; thisLed < sizeof(led) / sizeof(int); thisLed++)
{
pinMode(led[thisLed], OUTPUT);
}
pinMode(l, OUTPUT);
/*pinMode(button1, INPUT);
pinMode(button2, INPUT);
pinMode(button3, INPUT);
pinMode(button4, INPUT);
pinMode(button5, INPUT);
pinMode(button6, INPUT);*/
pinMode(enc1PinA, INPUT);
pinMode(enc1PinB, INPUT);
//pinMode(enc1PinS, INPUT);
pinMode(enc2PinA, INPUT);
pinMode(enc2PinB, INPUT);
//pinMode(enc2PinS, INPUT);
//Stw_data.i=0;
enc1PinALast = LOW;
enc1PinANow = LOW;
enc2PinALast = LOW;
enc2PinANow = LOW;
for (int i = 0; i < sizeof(buttons) / sizeof(*buttons); i++)
{
pinMode(buttons[i], INPUT);
debouncer[i].attach(buttons[i]);
debouncer[i].interval(10);
}
}
void read_buttons()
{
Stw_data.button_ll = digitalRead(PIN_BUTTON_LL);
Stw_data.button_lr = digitalRead(PIN_BUTTON_LR);
Stw_data.button_rl = digitalRead(PIN_BUTTON_RL);
Stw_data.button_rr = digitalRead(PIN_BUTTON_RR);
}
void read_rotary()
{
int enc2 = encoder2.readEncoder();
if (enc2 != 0)
{
val2 = val2 + 0.5 * enc2;
if (val2 == 1 or val2 == -1)
{
if ((Stw_data.mode == 1 or Stw_data.mode == 0) and enc2 < 0)
{
Stw_data.mode = 5;
}
else if (Stw_data.mode == 5 and enc2 > 0)
{
Stw_data.mode = 1;
}
else
{
Stw_data.mode = Stw_data.mode + enc2;
}
val2 = 0;
}
}
#include "FT18e_STW_INIT.h"
#include "Arduino.h"
#include "Bounce2.h"
#include "RotaryEncoder.h"
volatile stw_data_type Stw_data = {0}; // alles mit 0 initialisieren
volatile vehicle_data_type Vehicle_data = {0}; // alles mit 0 initialisieren
bool enc1PinALast, enc1PinANow, enc2PinALast, enc2PinANow;
int led[] = {led1, led2, led3, led4, led5, led6, led7, led8,
led9, led10, led11, led12, led13, led14, led15, led16};
bool entprell;
int buttons[] = {PIN_BUTTON_LL, PIN_BUTTON_LR, PIN_BUTTON_RL,
PIN_BUTTON_RR, enc1PinS, enc2PinS};
Bounce debouncer[8];
double val = 0;
double val2 = 0;
RotaryEncoder encoder(enc1PinA, enc1PinB, 1, 1, 50);
RotaryEncoder encoder2(enc2PinA, enc2PinB, 1, 1, 50);
///////////////////////////////////////////////////
// functions
///////////////////////////////////////////////////
void set_pins() {
for (int thisLed = 0; thisLed < sizeof(led) / sizeof(int); thisLed++) {
pinMode(led[thisLed], OUTPUT);
}
pinMode(l, OUTPUT);
/*pinMode(button1, INPUT);
pinMode(button2, INPUT);
pinMode(button3, INPUT);
pinMode(button4, INPUT);
pinMode(button5, INPUT);
pinMode(button6, INPUT);*/
pinMode(enc1PinA, INPUT);
pinMode(enc1PinB, INPUT);
// pinMode(enc1PinS, INPUT);
pinMode(enc2PinA, INPUT);
pinMode(enc2PinB, INPUT);
// pinMode(enc2PinS, INPUT);
// Stw_data.i=0;
enc1PinALast = LOW;
enc1PinANow = LOW;
enc2PinALast = LOW;
enc2PinANow = LOW;
for (int i = 0; i < sizeof(buttons) / sizeof(*buttons); i++) {
pinMode(buttons[i], INPUT);
debouncer[i].attach(buttons[i]);
debouncer[i].interval(10);
}
}
void read_buttons() {
Stw_data.button_ll = digitalRead(PIN_BUTTON_LL);
Stw_data.button_lr = digitalRead(PIN_BUTTON_LR);
Stw_data.button_rl = digitalRead(PIN_BUTTON_RL);
Stw_data.button_rr = digitalRead(PIN_BUTTON_RR);
}
void read_rotary() {
int enc2 = encoder2.readEncoder();
if (enc2 != 0) {
val2 = val2 + 0.5 * enc2;
if (val2 == 1 or val2 == -1) {
if ((Stw_data.mode == 1 or Stw_data.mode == 0) and enc2 < 0) {
Stw_data.mode = 5;
} else if (Stw_data.mode == 5 and enc2 > 0) {
Stw_data.mode = 1;
} else {
Stw_data.mode = Stw_data.mode + enc2;
}
val2 = 0;
}
}
}

View File

@ -1,98 +1,95 @@
#include "Arduino.h"
#ifndef FT18e_STW_Init
#define FT18e_STW_Init
#define l 78 //test_led
#define led1 12 //PD8
#define led2 11 //PD7
#define led3 9 //PC21
#define led4 8 //PC22
#define led5 7 //PC23
#define led6 6 //PC24
#define led7 5 //PC25
#define led8 4 //PC26 und PA29
#define led9 3 //PC28
#define led10 2 //PB25
#define led11 10 //PC29 und PA28
#define led12 22 //PB26
#define led13 19 //PA10
#define led14 13 //PB27
#define led15 17 //PA12
#define led16 18 //PA11
#define enc1PinA 37
#define enc1PinB 38
#define enc1PinS 35
#define enc2PinA 40
#define enc2PinB 41
#define enc2PinS 39
constexpr int PIN_BUTTON_LL = 47;
constexpr int PIN_BUTTON_LR = 48;
constexpr int PIN_BUTTON_RL = 46;
constexpr int PIN_BUTTON_RR = 44;
constexpr int16_t RPM_THRESH_1 = 1000;
constexpr int16_t RPM_THRESH_2 = 4000;
constexpr int16_t RPM_THRESH_3 = 6000;
constexpr int16_t RPM_THRESH_4 = 8000;
constexpr int16_t RPM_THRESH_5 = 10000;
constexpr int16_t RPM_THRESH_6 = 12000;
constexpr int16_t RPM_THRESH_7 = 14000;
constexpr int16_t RPM_THRESH_8 = 16000;
constexpr int16_t RPM_THRESH_9 = 18000;
constexpr int16_t RPM_THRESH_10 = 20000;
constexpr int16_t LED_THRESH_T_MOT = 7000; // 1/100°C
constexpr int16_t LED_THRESH_T_INV = 6000; // 1/100°C
constexpr int16_t LED_THRESH_T_BAT = 5000; // 1/100°C
constexpr uint16_t LED_THRESH_U_BATT = 350; // 1/100V
void set_pins(void);
void read_buttons(void);
void read_rotary(void); // read rotary switches
typedef struct
{
bool button_ll; // Left side, left button
bool button_lr; // Left side, right button
bool button_rl; // Right side, left button
bool button_rr; // Right side, right button
uint8_t mode;
uint8_t displayindex; //index für Displayanzeige
uint8_t error_type; //Extrainfos über Error-LED
} stw_data_type;
struct InverterData
{
bool ready;
bool derating;
bool warning;
bool error;
bool on;
bool precharge;
bool ams_emerg;
bool ts_active;
};
typedef struct
{
uint16_t u_cell_min; // Minimale Zellspannung
uint16_t u_batt; // Batteriespannung (pre-AIR-voltage)
int16_t t_mot_l; // Motor-Wasser-Temperatur Links
int16_t t_mot_r; // Motor-Wasser-Temperatur Rechts
int16_t t_cell_max; // Maximale Zelltemperatur
int16_t t_inv;
int16_t t_wat;
int16_t p_wat;
uint8_t speed;
InverterData inverter;
bool rev_lim; // Drehzahllimit Bit
int16_t revol; // Drehzahl
int16_t wheel_speed;
} vehicle_data_type;
extern volatile stw_data_type Stw_data;
extern volatile vehicle_data_type Vehicle_data;
#include "Arduino.h"
#ifndef FT18e_STW_Init
#define FT18e_STW_Init
#define l 78 // test_led
#define led1 12 // PD8
#define led2 11 // PD7
#define led3 9 // PC21
#define led4 8 // PC22
#define led5 7 // PC23
#define led6 6 // PC24
#define led7 5 // PC25
#define led8 4 // PC26 und PA29
#define led9 3 // PC28
#define led10 2 // PB25
#define led11 10 // PC29 und PA28
#define led12 22 // PB26
#define led13 19 // PA10
#define led14 13 // PB27
#define led15 17 // PA12
#define led16 18 // PA11
#define enc1PinA 37
#define enc1PinB 38
#define enc1PinS 35
#define enc2PinA 40
#define enc2PinB 41
#define enc2PinS 39
constexpr int PIN_BUTTON_LL = 47;
constexpr int PIN_BUTTON_LR = 48;
constexpr int PIN_BUTTON_RL = 46;
constexpr int PIN_BUTTON_RR = 44;
constexpr int16_t RPM_THRESH_1 = 1000;
constexpr int16_t RPM_THRESH_2 = 4000;
constexpr int16_t RPM_THRESH_3 = 6000;
constexpr int16_t RPM_THRESH_4 = 8000;
constexpr int16_t RPM_THRESH_5 = 10000;
constexpr int16_t RPM_THRESH_6 = 12000;
constexpr int16_t RPM_THRESH_7 = 14000;
constexpr int16_t RPM_THRESH_8 = 16000;
constexpr int16_t RPM_THRESH_9 = 18000;
constexpr int16_t RPM_THRESH_10 = 20000;
constexpr int16_t LED_THRESH_T_MOT = 7000; // 1/100°C
constexpr int16_t LED_THRESH_T_INV = 6000; // 1/100°C
constexpr int16_t LED_THRESH_T_BAT = 5000; // 1/100°C
constexpr uint16_t LED_THRESH_U_BATT = 350; // 1/100V
void set_pins(void);
void read_buttons(void);
void read_rotary(void); // read rotary switches
typedef struct {
bool button_ll; // Left side, left button
bool button_lr; // Left side, right button
bool button_rl; // Right side, left button
bool button_rr; // Right side, right button
uint8_t mode;
uint8_t displayindex; // index für Displayanzeige
uint8_t error_type; // Extrainfos über Error-LED
} stw_data_type;
struct InverterData {
bool ready;
bool derating;
bool warning;
bool error;
bool on;
bool precharge;
bool ams_emerg;
bool ts_active;
};
typedef struct {
uint16_t u_cell_min; // Minimale Zellspannung
uint16_t u_batt; // Batteriespannung (pre-AIR-voltage)
int16_t t_mot_l; // Motor-Wasser-Temperatur Links
int16_t t_mot_r; // Motor-Wasser-Temperatur Rechts
int16_t t_cell_max; // Maximale Zelltemperatur
int16_t t_inv;
int16_t t_wat;
int16_t p_wat;
uint8_t speed;
InverterData inverter;
bool rev_lim; // Drehzahllimit Bit
int16_t revol; // Drehzahl
int16_t wheel_speed;
} vehicle_data_type;
extern volatile stw_data_type Stw_data;
extern volatile vehicle_data_type Vehicle_data;
#endif

View File

@ -1,269 +1,238 @@
/*
FT_2018_STW_CAN.cpp
*/
#include "Arduino.h"
#include "DueTimer.h"
#include "due_can.h"
#include "FT_2018_STW_CAN.h"
#include "FT18_STW_INIT.h"
CAN_FRAME can_0_msg;
//can_1_msg.id = 0x110;
int can_0_temp_data = 0;
int leds[] = {led1,led2,led3,led4,led5,led6,led7,led8,led9,led10,led11,led12,led13,led14,led15,led16};
void Init_Can_0(){
Can0.begin(1000000); // set CAN0 baud to 1kbit/s and don`t use enable pin!
Can0.setNumTXBoxes(1); // reserves mailbox 0 for tx only 8 mailboxes are available (the other 7 mailboxes are for rx)
Can0.watchFor(0x502); // set CAN RX filter for ID 0x502 and reserves mailbox 1 for rx
Can0.watchFor(0x504);
Can0.watchFor(0x500);
Can0.watchFor(0x773); // set CAN RX filter for ID 0x773 and reserves mailbox 3 for rx
Can0.watchFor(0x775);
// Can0.watchFor(0x777); // set CAN RX filter for ID 0x777 and reserves mailbox 5 for rx
Can0.watchFor(0x779); // set CAN RX filter for ID 0x779 and reserves mailbox 6 for rx
Can0.watchFor(0x77A);
Can0.setGeneralCallback(Receive_Can_0);
Timer3.attachInterrupt(Send_0x110); // set send interrupt
Timer3.start(10000); // Calls every 10ms
}
void Send_0x110(){
read_buttons();
read_rotary();
can_0_msg.id = 0x110;
can_0_msg.fid = 0;
can_0_msg.rtr = 0;
can_0_msg.priority = 0;
can_0_msg.length = 2;
can_0_msg.extended = 0;
can_0_temp_data = 0;
can_0_temp_data |= Stw_data.Stw_shift_up & 0b00000001;
can_0_temp_data |= Stw_data.Stw_shift_down << 1 & 0b00000010;
can_0_temp_data |= Stw_data.Stw_neutral << 2 & 0b00000100;
can_0_temp_data |= Stw_data.Stw_auto_shift << 3 & 0b00001000;
can_0_temp_data |= Stw_data.buttonStateEnc1 << 5 & 0b00100000; //pitlane
can_0_msg.data.byte[0] = can_0_temp_data;
can_0_msg.data.byte[1] = Stw_data.trc & 0b00001111;
can_0_msg.data.byte[2] = Stw_data.mode & 0b00000111;
if ((Stw_data.Stw_auto_shift << 3 & 0b00001000)){
if(Vehicle_data.g_auto){
Vehicle_data.g_auto = false;
}else{
Vehicle_data.g_auto = true;
}
}
Can0.sendFrame(can_0_msg);
}
void Receive_Can_0(CAN_FRAME *temp_message){
switch (temp_message->id) {
//g_auto
case 0x502:{ // eDrossel error bit
Vehicle_data.e_thro = (temp_message->data.byte[0] & 0x80) | (temp_message->data.byte[0] & 0x40) | (temp_message->data.byte[0] & 0x20) | (temp_message->data.byte[0] & 0x10); // bit 4-7
if(temp_message->data.byte[0] & 0x80){
Stw_data.error_type = 1;//"pc_error";
}
if(temp_message->data.byte[0] & 0x40){
Stw_data.error_type = 2;//"bse_error";
}
if(temp_message->data.byte[0] & 0x20){
Stw_data.error_type = 3;//"aps_error";
}
if(temp_message->data.byte[0] & 0x10){
Stw_data.error_type = 4;//"etb_error";
}
//can_1_temp_data |= g_etb_e << 4;
//can_1_temp_data |= g_aps_e << 5;
//can_1_temp_data |= g_bse_e << 6;
//can_1_temp_data |= g_pc_e << 7;
break;
}
case 0x504:{ //autoshift+gear
//Vehicle_data.g_auto = (temp_message->data.byte[1]) >> 4;
Vehicle_data.gear = (temp_message->data.byte[1]) >> 5;
break;
}
case 0x773:{ // rpm
Vehicle_data.revol = (temp_message->data.byte[4] | temp_message->data.byte[3] << 8);
break;
}
case 0x779:{ // battery voltage
Vehicle_data.u_batt = temp_message->data.byte[6];
break;
}
/*case 0x77A: // revolution limit bit
Vehicle_data.rev_lim = (temp_message->data.byte[3] & 0x20) >> 4;
switch(temp_message->data.byte[0]) {
case 0x02: // temp. intercooler
Vehicle_data.t_air = temp_message->data.byte[7];
break;
case 0x05: // temp. water
Vehicle_data.t_mot = temp_message->data.byte[4];
break;
case 0x04: // temp. oil
Vehicle_data.t_oil = temp_message->data.byte[5];
case 0x01: {
Vehicle_data.p_wat = temp_message->data.byte[6];
Vehicle_data.p_fuel = temp_message->data.byte[7];
Vehicle_data.p_oil = temp_message->data.byte[5];
break;
}
}
break;*/
case 0x77A:{//temp und p
//g_ms4_idle_b = (temp_message->data.byte[2] & 0b10000000) >> 7;
//g_ms4_engine_status = (temp_message->data.byte[3] & 0b01000000) >> 6;
//g_ms4_ignoff_b = (temp_message->data.byte[3] & 0b10000000) >> 7;
// Serial.println("CAN 77A");
// for (int i = 0; i < 8; i++) {
// Serial.print('[');
// Serial.print(i);
// Serial.print("] ");
// Serial.println(temp_message->data.byte[i], HEX);
// }
if ( temp_message->data.byte[0] == 1){
Vehicle_data.p_oil = temp_message->data.byte[5];
Vehicle_data.p_fuel = temp_message->data.byte[7];
}
else if ( temp_message->data.byte[0] == 2){
Vehicle_data.t_air = temp_message->data.byte[7];
}
else if ( temp_message->data.byte[0] == 4){
Vehicle_data.t_oil = temp_message->data.byte[5];
}
else if ( temp_message->data.byte[0] == 5){
Vehicle_data.t_mot = temp_message->data.byte[4];
}
break;
}
case 0x775:{//speed
Vehicle_data.speed_fl = 2*(temp_message->data.byte[2]);
Vehicle_data.speed_fr = 2*(temp_message->data.byte[3]);
Vehicle_data.speed = (Vehicle_data.speed_fl+Vehicle_data.speed_fr)/2;
break;
}
/*case 0x777:{//m4_gear
Vehicle_data.gear = temp_message->data.byte[0];
break;
}*/
case 0x500:{
Vehicle_data.p_brake_front = temp_message->data.byte[1];
Vehicle_data.p_brake_rear = temp_message->data.byte[2];
break;
}
}
}
void update_LED(){
//Copyright Michael Dietzel
//m.dietzel@fasttube.de
//Edit Michael Witt 05-2015
//m.witt@fasttube.de
//EDIT BAHA ZARROUKI 05-2107
//z.baha@fasttube.de
// alle Werte als Hex-Werte angegeben
bool t_oil = (Vehicle_data.t_oil - 40) >= 0x96; // 150°C temp.oil
bool t_air = (Vehicle_data.t_air - 40) >= 0x3C; // 60°C temp.llk
bool t_mot = ((Vehicle_data.t_mot - 40) >= 0x69) and ((Vehicle_data.t_mot - 40)!=0xC8); // 105°C temp.water und !=200
bool g_auto = Vehicle_data.g_auto;
bool u_batt = Vehicle_data.u_batt <= 0xB1; // 12.5V batt.spann.
bool e_dros = Vehicle_data.e_thro; // error-bit
bool rev_lim = Vehicle_data.rev_lim;
uint16_t rev = Vehicle_data.revol;
/*if(Vehicle_data.rev_lim){
for (int j = 0; j < 10; j++){
digitalWrite(leds[j], HIGH);
//analogWrite(leds[j], STW_data.br); //nur eine der zwei zeilen
}
delay(100);
for (int j = 0; j < 10; j++){
digitalWrite(leds[j], LOW);
}
delay(100);
}else{*/
/*uint8_t helligkeit = 20;
if(RPM_THRES_1 <= rev){
analogWrite(led1, helligkeit);
}else{
analogWrite(led1, 0);
}
if(RPM_THRES_2 <= rev){
analogWrite(led2, helligkeit);
}else{
analogWrite(led2, 0);
}
if(RPM_THRES_3 <= rev){
analogWrite(led3, helligkeit);
}else{
analogWrite(led3, 0);
}
if(RPM_THRES_4 <= rev){
analogWrite(led4, helligkeit);
}else{
analogWrite(led4, 0);
}
if(RPM_THRES_5 <= rev){
analogWrite(led5, helligkeit);
}else{
analogWrite(led5, 0);
}
if(RPM_THRES_6 <= rev){
analogWrite(led6, helligkeit);
}else{
analogWrite(led6, 0);
}
if(RPM_THRES_7 <= rev){
analogWrite(led7, helligkeit);
}else{
analogWrite(led7, 0);
}
if(RPM_THRES_8 <= rev){
analogWrite(led8, helligkeit);
}else{
analogWrite(led8, 0);
}
if(RPM_THRES_9 <= rev){
analogWrite(led9, helligkeit);
}else{
analogWrite(led9, 0);
}
if(RPM_THRES_10 <= rev){
analogWrite(led10, helligkeit);
}else{
analogWrite(led10, 0);
}*/
digitalWrite(led1, RPM_THRES_1 <= rev);
digitalWrite(led2, RPM_THRES_2 <= rev);
digitalWrite(led3, RPM_THRES_3 <= rev);
digitalWrite(led4, RPM_THRES_4 <= rev);
digitalWrite(led5, RPM_THRES_5 <= rev);
digitalWrite(led6, RPM_THRES_6 <= rev);
digitalWrite(led7, RPM_THRES_7 <= rev);
digitalWrite(led8, RPM_THRES_8 <= rev);
digitalWrite(led9, RPM_THRES_9 <= rev);
digitalWrite(led10, RPM_THRES_10 <= rev);
digitalWrite(led11, t_mot); // rot, links, oben
digitalWrite(led12, t_air); // rot, links, mitte
digitalWrite(led13, t_oil); // rot, links, unten
digitalWrite(led14, e_dros); // rot, rechts, oben
digitalWrite(led15, u_batt); // rot rechts, mitte
digitalWrite(led16, g_auto); // blau rechts, unten
/*if(Vehicle_data.g_auto){
digitalWrite(led16, HIGH);
}else{
digitalWrite(led16, LOW);
}*/
}
/*
FT_2018_STW_CAN.cpp
*/
#include "FT_2018_STW_CAN.h"
#include "Arduino.h"
#include "DueTimer.h"
#include "FT18_STW_INIT.h"
#include "due_can.h"
CAN_FRAME can_0_msg;
// can_1_msg.id = 0x110;
int can_0_temp_data = 0;
int leds[] = {led1, led2, led3, led4, led5, led6, led7, led8,
led9, led10, led11, led12, led13, led14, led15, led16};
void Init_Can_0() {
Can0.begin(1000000); // set CAN0 baud to 1kbit/s and don`t use enable pin!
Can0.setNumTXBoxes(1); // reserves mailbox 0 for tx only 8 mailboxes are
// available (the other 7 mailboxes are for rx)
Can0.watchFor(CAN_ID_BCU_APS_BRAKE);
Can0.watchFor(CAN_ID_BCU_ETC);
Can0.watchFor(CAN_ID_BCU_SHIFT_CTRL);
Can0.watchFor(CAN_ID_BCU_LAP_TIME);
Can0.watchFor(CAN_ID_MS4_IGN_REV_ATH);
Can0.watchFor(CAN_ID_MS4_SPEED);
Can0.watchFor(CAN_ID_MS4_ETC);
Can0.watchFor(CAN_ID_MS4_STATES_TEMP_PRESS);
Can0.setGeneralCallback(Receive_Can_0);
Timer3.attachInterrupt(Send_0x110); // set send interrupt
Timer3.start(10000); // Calls every 10ms
}
void Send_0x110() {
read_buttons();
read_rotary();
can_0_msg.id = 0x110;
can_0_msg.fid = 0;
can_0_msg.rtr = 0;
can_0_msg.priority = 0;
can_0_msg.length = 2;
can_0_msg.extended = 0;
can_0_temp_data = 0;
can_0_temp_data |= Stw_data.Stw_shift_up & 0b00000001;
can_0_temp_data |= Stw_data.Stw_shift_down << 1 & 0b00000010;
can_0_temp_data |= Stw_data.Stw_neutral << 2 & 0b00000100;
can_0_temp_data |= Stw_data.Stw_auto_shift << 3 & 0b00001000;
can_0_temp_data |= Stw_data.buttonStateEnc1 << 5 & 0b00100000; // pitlane
can_0_msg.data.byte[0] = can_0_temp_data;
can_0_msg.data.byte[1] = Stw_data.trc & 0b00001111;
can_0_msg.data.byte[2] = Stw_data.mode & 0b00000111;
if ((Stw_data.Stw_auto_shift << 3 & 0b00001000)) {
if (Vehicle_data.g_auto) {
Vehicle_data.g_auto = false;
} else {
Vehicle_data.g_auto = true;
}
}
Can0.sendFrame(can_0_msg);
}
void Receive_Can_0(CAN_FRAME *temp_message) {
switch (temp_message->id) {
case CAN_ID_BCU_APS_BRAKE: {
Vehicle_data.p_brake_front = temp_message->data.byte[1];
Vehicle_data.p_brake_rear = temp_message->data.byte[2];
break;
}
case CAN_ID_BCU_ETC: { // eDrossel error bit
Vehicle_data.e_thro = (temp_message->data.byte[0] & 0xF0); // bit 4-7
if (temp_message->data.byte[0] & 0x80) {
Stw_data.error_type = 1; //"pc_error";
}
if (temp_message->data.byte[0] & 0x40) {
Stw_data.error_type = 2; //"bse_error";
}
if (temp_message->data.byte[0] & 0x20) {
Stw_data.error_type = 3; //"aps_error";
}
if (temp_message->data.byte[0] & 0x10) {
Stw_data.error_type = 4; //"etb_error";
}
break;
}
case CAN_ID_BCU_SHIFT_CTRL: { // autoshift+gear
Vehicle_data.gear = (temp_message->data.byte[1]) >> 5;
break;
}
case CAN_ID_BCU_LAP_TIME: { // lap time
Vehicle_data.lap_time_sec = temp_message->data.byte[1];
Vehicle_data.lap_time_msec = temp_message->data.byte[1];
}
case CAN_ID_MS4_IGN_REV_ATH: { // rpm
Vehicle_data.revol =
(temp_message->data.byte[5] | temp_message->data.byte[4] << 8);
break;
}
case CAN_ID_MS4_SPEED: { // speed
Vehicle_data.speed_fl = 2 * (temp_message->data.byte[2]);
Vehicle_data.speed_fr = 2 * (temp_message->data.byte[3]);
Vehicle_data.speed = (Vehicle_data.speed_fl + Vehicle_data.speed_fr) / 2;
break;
}
case CAN_ID_MS4_ETC: { // battery voltage
Vehicle_data.u_batt = temp_message->data.byte[6];
break;
}
case CAN_ID_MS4_STATES_TEMP_PRESS: { // temp und p
if (temp_message->data.byte[0] == 1) {
Vehicle_data.p_oil = temp_message->data.byte[5];
Vehicle_data.p_fuel = temp_message->data.byte[7];
} else if (temp_message->data.byte[0] == 2) {
Vehicle_data.t_air = temp_message->data.byte[7];
} else if (temp_message->data.byte[0] == 4) {
Vehicle_data.t_oil = temp_message->data.byte[5];
} else if (temp_message->data.byte[0] == 5) {
Vehicle_data.t_mot = temp_message->data.byte[4];
}
break;
}
}
}
void update_LED() {
// Copyright Michael Dietzel
// m.dietzel@fasttube.de
// Edit Michael Witt 05-2015
// m.witt@fasttube.de
// EDIT BAHA ZARROUKI 05-2107
// z.baha@fasttube.de
// alle Werte als Hex-Werte angegeben
bool t_oil = (Vehicle_data.t_oil - 40) >= 0x96; // 150°C temp.oil
bool t_air = (Vehicle_data.t_air - 40) >= 0x3C; // 60°C temp.llk
bool t_mot =
((Vehicle_data.t_mot - 40) >= 0x69) and
((Vehicle_data.t_mot - 40) != 0xC8); // 105°C temp.water und !=200
bool g_auto = Vehicle_data.g_auto;
bool u_batt = Vehicle_data.u_batt <= 0xB1; // 12.5V batt.spann.
bool e_dros = Vehicle_data.e_thro; // error-bit
bool rev_lim = Vehicle_data.rev_lim;
uint16_t rev = Vehicle_data.revol;
/*if(Vehicle_data.rev_lim){
for (int j = 0; j < 10; j++){
digitalWrite(leds[j], HIGH);
//analogWrite(leds[j], STW_data.br); //nur eine der zwei
zeilen
}
delay(100);
for (int j = 0; j < 10; j++){
digitalWrite(leds[j], LOW);
}
delay(100);
}else{*/
/*uint8_t helligkeit = 20;
if(RPM_THRES_1 <= rev){
analogWrite(led1, helligkeit);
}else{
analogWrite(led1, 0);
}
if(RPM_THRES_2 <= rev){
analogWrite(led2, helligkeit);
}else{
analogWrite(led2, 0);
}
if(RPM_THRES_3 <= rev){
analogWrite(led3, helligkeit);
}else{
analogWrite(led3, 0);
}
if(RPM_THRES_4 <= rev){
analogWrite(led4, helligkeit);
}else{
analogWrite(led4, 0);
}
if(RPM_THRES_5 <= rev){
analogWrite(led5, helligkeit);
}else{
analogWrite(led5, 0);
}
if(RPM_THRES_6 <= rev){
analogWrite(led6, helligkeit);
}else{
analogWrite(led6, 0);
}
if(RPM_THRES_7 <= rev){
analogWrite(led7, helligkeit);
}else{
analogWrite(led7, 0);
}
if(RPM_THRES_8 <= rev){
analogWrite(led8, helligkeit);
}else{
analogWrite(led8, 0);
}
if(RPM_THRES_9 <= rev){
analogWrite(led9, helligkeit);
}else{
analogWrite(led9, 0);
}
if(RPM_THRES_10 <= rev){
analogWrite(led10, helligkeit);
}else{
analogWrite(led10, 0);
}*/
digitalWrite(led1, RPM_THRES_1 <= rev);
digitalWrite(led2, RPM_THRES_2 <= rev);
digitalWrite(led3, RPM_THRES_3 <= rev);
digitalWrite(led4, RPM_THRES_4 <= rev);
digitalWrite(led5, RPM_THRES_5 <= rev);
digitalWrite(led6, RPM_THRES_6 <= rev);
digitalWrite(led7, RPM_THRES_7 <= rev);
digitalWrite(led8, RPM_THRES_8 <= rev);
digitalWrite(led9, RPM_THRES_9 <= rev);
digitalWrite(led10, RPM_THRES_10 <= rev);
digitalWrite(led11, t_mot); // rot, links, oben
digitalWrite(led12, t_air); // rot, links, mitte
digitalWrite(led13, t_oil); // rot, links, unten
digitalWrite(led14, e_dros); // rot, rechts, oben
digitalWrite(led15, u_batt); // rot rechts, mitte
digitalWrite(led16, g_auto); // blau rechts, unten
/*if(Vehicle_data.g_auto){
digitalWrite(led16, HIGH);
}else{
digitalWrite(led16, LOW);
}*/
}

View File

@ -1,12 +1,23 @@
/*
FT_2018_STW_CAN.h
*/
#include "Arduino.h"
#include "DueTimer.h"
#include "due_can.h"
void Init_Can_0();
void Send_0x110();
void Receive_Can_0(CAN_FRAME *frame);
/*
FT_2018_STW_CAN.h
*/
#pragma once
#include "Arduino.h"
#include "DueTimer.h"
#include "due_can.h"
#define CAN_ID_BCU_APS_BRAKE 0x500
#define CAN_ID_BCU_ETC 0x502
#define CAN_ID_BCU_SHIFT_CTRL 0x504
#define CAN_ID_BCU_LAP_TIME 0x570
#define CAN_ID_MS4_IGN_REV_ATH 0x773
#define CAN_ID_MS4_SPEED 0x775
#define CAN_ID_MS4_ETC 0x779
#define CAN_ID_MS4_STATES_TEMP_PRESS 0x77A
void Init_Can_0();
void Send_0x110();
void Receive_Can_0(CAN_FRAME *frame);
void update_LED(void);

View File

@ -1,143 +1,137 @@
/*
FT_2018_STW_CAN.cpp
*/
#include "Arduino.h"
#include "DueTimer.h"
#include "due_can.h"
#include "FT_2018e_STW_CAN.h"
#include "FT18e_STW_INIT.h"
CAN_FRAME can_0_msg;
//can_1_msg.id = 0x110;
int can_0_temp_data = 0;
int leds[] = {led1, led2, led3, led4, led5, led6, led7, led8, led9, led10, led11, led12, led13, led14, led15, led16};
void Init_Can_0()
{
Serial.begin(9600);
Can0.begin(1000000); // set CAN0 baud to 1kbit/s and don`t use enable pin!
Can0.setNumTXBoxes(1); // reserves mailbox 0 for tx only 8 mailboxes are available (the other 7 mailboxes are for rx)
Can0.watchFor(CAN_CELL_STATS_ID);
Can0.watchFor(CAN_BATTERY_STATS_ID);
Can0.watchFor(CAN_COOLING_STATS_ID);
Can0.watchFor(CAN_INVERTER_STATS_ID);
Can0.setGeneralCallback(Receive_Can_0);
Timer3.attachInterrupt(Send_0x110); // set send interrupt
Timer3.start(10000); // Calls every 10ms
}
void Send_0x110()
{
read_buttons();
read_rotary();
can_0_msg.id = 0x110;
can_0_msg.fid = 0;
can_0_msg.rtr = 0;
can_0_msg.priority = 0;
can_0_msg.length = 2;
can_0_msg.extended = 0;
can_0_temp_data = 0;
can_0_temp_data |= Stw_data.button_ll << 0;
can_0_temp_data |= Stw_data.button_lr << 1;
can_0_temp_data |= Stw_data.button_rl << 2;
can_0_temp_data |= Stw_data.button_rr << 3;
can_0_msg.data.byte[0] = can_0_temp_data;
can_0_msg.data.byte[1] = Stw_data.mode;
Can0.sendFrame(can_0_msg);
}
void Receive_Can_0(CAN_FRAME *temp_message)
{
switch (temp_message->id)
{
case CAN_CELL_STATS_ID:
process_cell_stats(temp_message);
break;
case CAN_BATTERY_STATS_ID:
process_battery_stats(temp_message);
break;
case CAN_COOLING_STATS_ID:
process_cooling_stats(temp_message);
break;
case CAN_INVERTER_STATS_ID:
process_inverter_stats(temp_message);
break;
default:
// TODO: How to handle this in the car?
Serial.print("ERROR: Unknown CAN ID: ");
Serial.println(temp_message->id);
}
}
void process_cell_stats(CAN_FRAME *frame)
{
CellStats *data = (CellStats *)&frame->data;
Vehicle_data.t_cell_max = data->max_cell_temp;
Vehicle_data.u_cell_min = data->min_cell_voltage;
}
void process_battery_stats(CAN_FRAME *frame)
{
BatteryStats *data = (BatteryStats *)&frame->data;
Vehicle_data.u_batt = data->pre_air_voltage;
}
void process_cooling_stats(CAN_FRAME *frame)
{
CoolingStats *data = (CoolingStats *)&frame->data;
Vehicle_data.p_wat = data->water_pressure;
Vehicle_data.t_wat = data->water_temp;
Vehicle_data.t_mot_l = data->motor_l_temp;
Vehicle_data.t_mot_r = data->motor_r_temp;
}
void process_inverter_stats(CAN_FRAME *frame)
{
InverterStats *data = (InverterStats *)&frame->data;
uint8_t status = data->status;
Vehicle_data.inverter.ready = status & CAN_INVERTER_STATS_READY;
Vehicle_data.inverter.derating = status & CAN_INVERTER_STATS_DERATING;
Vehicle_data.inverter.warning = status & CAN_INVERTER_STATS_WARNING;
Vehicle_data.inverter.error = status & CAN_INVERTER_STATS_ERROR;
Vehicle_data.inverter.on = status & CAN_INVERTER_STATS_ON;
Vehicle_data.inverter.precharge = status & CAN_INVERTER_STATS_PRECHARGE;
Vehicle_data.inverter.ams_emerg = status & CAN_INVERTER_STATS_AMS_EMERG;
Vehicle_data.inverter.ts_active = status & CAN_INVERTER_STATS_TS_ACTIVE;
Vehicle_data.t_inv = data->temp;
Vehicle_data.revol = data->velocity;
Vehicle_data.wheel_speed = data->wheel_speed;
}
void update_LED()
{
bool t_mot = (Vehicle_data.t_mot_l > LED_THRESH_T_MOT) || (Vehicle_data.t_mot_r > LED_THRESH_T_MOT);
bool t_inv = Vehicle_data.t_inv > LED_THRESH_T_INV;
bool t_bat = Vehicle_data.t_cell_max > LED_THRESH_T_BAT;
bool precharge_active = !Vehicle_data.inverter.precharge;
bool derating = Vehicle_data.inverter.derating;
bool u_batt = Vehicle_data.u_cell_min < LED_THRESH_U_BATT;
digitalWrite(led11, t_mot); // rot, links, oben
digitalWrite(led12, t_inv); // rot, links, mitte
digitalWrite(led13, t_bat); // rot, links, unten
digitalWrite(led14, precharge_active); // rot, rechts, oben
digitalWrite(led15, derating); // rot rechts, mitte
digitalWrite(led16, u_batt); // blau rechts, unten
bool rev_lim = Vehicle_data.rev_lim;
int16_t rev = Vehicle_data.revol;
digitalWrite(led1, RPM_THRESH_1 <= rev);
digitalWrite(led2, RPM_THRESH_2 <= rev);
digitalWrite(led3, RPM_THRESH_3 <= rev);
digitalWrite(led4, RPM_THRESH_4 <= rev);
digitalWrite(led5, RPM_THRESH_5 <= rev);
digitalWrite(led6, RPM_THRESH_6 <= rev);
digitalWrite(led7, RPM_THRESH_7 <= rev);
digitalWrite(led8, RPM_THRESH_8 <= rev);
digitalWrite(led9, RPM_THRESH_9 <= rev);
digitalWrite(led10, RPM_THRESH_10 <= rev);
}
/*
FT_2018_STW_CAN.cpp
*/
#include "FT_2018e_STW_CAN.h"
#include "Arduino.h"
#include "DueTimer.h"
#include "FT18e_STW_INIT.h"
#include "due_can.h"
CAN_FRAME can_0_msg;
// can_1_msg.id = 0x110;
int can_0_temp_data = 0;
int leds[] = {led1, led2, led3, led4, led5, led6, led7, led8,
led9, led10, led11, led12, led13, led14, led15, led16};
void Init_Can_0() {
Serial.begin(9600);
Can0.begin(1000000); // set CAN0 baud to 1kbit/s and don`t use enable pin!
Can0.setNumTXBoxes(1); // reserves mailbox 0 for tx only 8 mailboxes are
// available (the other 7 mailboxes are for rx)
Can0.watchFor(CAN_CELL_STATS_ID);
Can0.watchFor(CAN_BATTERY_STATS_ID);
Can0.watchFor(CAN_COOLING_STATS_ID);
Can0.watchFor(CAN_INVERTER_STATS_ID);
Can0.setGeneralCallback(Receive_Can_0);
Timer3.attachInterrupt(Send_0x110); // set send interrupt
Timer3.start(10000); // Calls every 10ms
}
void Send_0x110() {
read_buttons();
read_rotary();
can_0_msg.id = 0x110;
can_0_msg.fid = 0;
can_0_msg.rtr = 0;
can_0_msg.priority = 0;
can_0_msg.length = 2;
can_0_msg.extended = 0;
can_0_temp_data = 0;
can_0_temp_data |= Stw_data.button_ll << 0;
can_0_temp_data |= Stw_data.button_lr << 1;
can_0_temp_data |= Stw_data.button_rl << 2;
can_0_temp_data |= Stw_data.button_rr << 3;
can_0_msg.data.byte[0] = can_0_temp_data;
can_0_msg.data.byte[1] = Stw_data.mode;
Can0.sendFrame(can_0_msg);
}
void Receive_Can_0(CAN_FRAME *temp_message) {
switch (temp_message->id) {
case CAN_CELL_STATS_ID:
process_cell_stats(temp_message);
break;
case CAN_BATTERY_STATS_ID:
process_battery_stats(temp_message);
break;
case CAN_COOLING_STATS_ID:
process_cooling_stats(temp_message);
break;
case CAN_INVERTER_STATS_ID:
process_inverter_stats(temp_message);
break;
default:
// TODO: How to handle this in the car?
Serial.print("ERROR: Unknown CAN ID: ");
Serial.println(temp_message->id);
}
}
void process_cell_stats(CAN_FRAME *frame) {
CellStats *data = (CellStats *)&frame->data;
Vehicle_data.t_cell_max = data->max_cell_temp;
Vehicle_data.u_cell_min = data->min_cell_voltage;
}
void process_battery_stats(CAN_FRAME *frame) {
BatteryStats *data = (BatteryStats *)&frame->data;
Vehicle_data.u_batt = data->pre_air_voltage;
}
void process_cooling_stats(CAN_FRAME *frame) {
CoolingStats *data = (CoolingStats *)&frame->data;
Vehicle_data.p_wat = data->water_pressure;
Vehicle_data.t_wat = data->water_temp;
Vehicle_data.t_mot_l = data->motor_l_temp;
Vehicle_data.t_mot_r = data->motor_r_temp;
}
void process_inverter_stats(CAN_FRAME *frame) {
InverterStats *data = (InverterStats *)&frame->data;
uint8_t status = data->status;
Vehicle_data.inverter.ready = status & CAN_INVERTER_STATS_READY;
Vehicle_data.inverter.derating = status & CAN_INVERTER_STATS_DERATING;
Vehicle_data.inverter.warning = status & CAN_INVERTER_STATS_WARNING;
Vehicle_data.inverter.error = status & CAN_INVERTER_STATS_ERROR;
Vehicle_data.inverter.on = status & CAN_INVERTER_STATS_ON;
Vehicle_data.inverter.precharge = status & CAN_INVERTER_STATS_PRECHARGE;
Vehicle_data.inverter.ams_emerg = status & CAN_INVERTER_STATS_AMS_EMERG;
Vehicle_data.inverter.ts_active = status & CAN_INVERTER_STATS_TS_ACTIVE;
Vehicle_data.t_inv = data->temp;
Vehicle_data.revol = data->velocity;
Vehicle_data.wheel_speed = data->wheel_speed;
}
void update_LED() {
bool t_mot = (Vehicle_data.t_mot_l > LED_THRESH_T_MOT) ||
(Vehicle_data.t_mot_r > LED_THRESH_T_MOT);
bool t_inv = Vehicle_data.t_inv > LED_THRESH_T_INV;
bool t_bat = Vehicle_data.t_cell_max > LED_THRESH_T_BAT;
bool precharge_active = !Vehicle_data.inverter.precharge;
bool derating = Vehicle_data.inverter.derating;
bool u_batt = Vehicle_data.u_cell_min < LED_THRESH_U_BATT;
digitalWrite(led11, t_mot); // rot, links, oben
digitalWrite(led12, t_inv); // rot, links, mitte
digitalWrite(led13, t_bat); // rot, links, unten
digitalWrite(led14, precharge_active); // rot, rechts, oben
digitalWrite(led15, derating); // rot rechts, mitte
digitalWrite(led16, u_batt); // blau rechts, unten
bool rev_lim = Vehicle_data.rev_lim;
int16_t rev = Vehicle_data.revol;
digitalWrite(led1, RPM_THRESH_1 <= rev);
digitalWrite(led2, RPM_THRESH_2 <= rev);
digitalWrite(led3, RPM_THRESH_3 <= rev);
digitalWrite(led4, RPM_THRESH_4 <= rev);
digitalWrite(led5, RPM_THRESH_5 <= rev);
digitalWrite(led6, RPM_THRESH_6 <= rev);
digitalWrite(led7, RPM_THRESH_7 <= rev);
digitalWrite(led8, RPM_THRESH_8 <= rev);
digitalWrite(led9, RPM_THRESH_9 <= rev);
digitalWrite(led10, RPM_THRESH_10 <= rev);
}

View File

@ -1,65 +1,61 @@
/*
FT_2018e_STW_CAN.h
*/
#pragma once
#include "Arduino.h"
#include "DueTimer.h"
#include "due_can.h"
constexpr uint32_t CAN_CELL_STATS_ID = 0x101;
constexpr uint32_t CAN_BATTERY_STATS_ID = 0x102;
constexpr uint32_t CAN_COOLING_STATS_ID = 0x103;
constexpr uint32_t CAN_INVERTER_STATS_ID = 0x104;
constexpr uint8_t CAN_INVERTER_STATS_READY = (1 << 0);
constexpr uint8_t CAN_INVERTER_STATS_DERATING = (1 << 1);
constexpr uint8_t CAN_INVERTER_STATS_WARNING = (1 << 2);
constexpr uint8_t CAN_INVERTER_STATS_ERROR = (1 << 3);
constexpr uint8_t CAN_INVERTER_STATS_ON = (1 << 4);
constexpr uint8_t CAN_INVERTER_STATS_PRECHARGE = (1 << 5);
constexpr uint8_t CAN_INVERTER_STATS_AMS_EMERG = (1 << 6);
constexpr uint8_t CAN_INVERTER_STATS_TS_ACTIVE = (1 << 7);
void Init_Can_0();
void Send_0x110();
void Receive_Can_0(CAN_FRAME *frame);
void process_cell_stats(CAN_FRAME *frame);
void process_battery_stats(CAN_FRAME *frame);
void process_cooling_stats(CAN_FRAME *frame);
void process_inverter_stats(CAN_FRAME *frame);
void update_LED(void);
struct CellStats
{
uint16_t sum_cell_voltage;
int16_t max_cell_temp;
uint16_t max_cell_voltage;
uint16_t min_cell_voltage;
};
struct BatteryStats
{
uint16_t battery_current;
uint16_t pre_air_voltage;
uint16_t post_air_voltage;
uint16_t battery_power;
};
struct CoolingStats
{
int16_t water_pressure;
int16_t water_temp;
int16_t motor_l_temp;
int16_t motor_r_temp;
};
struct InverterStats
{
uint8_t status;
uint8_t _reserved;
uint16_t temp;
int16_t velocity;
int16_t wheel_speed;
/*
FT_2018e_STW_CAN.h
*/
#pragma once
#include "Arduino.h"
#include "DueTimer.h"
#include "due_can.h"
constexpr uint32_t CAN_CELL_STATS_ID = 0x101;
constexpr uint32_t CAN_BATTERY_STATS_ID = 0x102;
constexpr uint32_t CAN_COOLING_STATS_ID = 0x103;
constexpr uint32_t CAN_INVERTER_STATS_ID = 0x104;
constexpr uint8_t CAN_INVERTER_STATS_READY = (1 << 0);
constexpr uint8_t CAN_INVERTER_STATS_DERATING = (1 << 1);
constexpr uint8_t CAN_INVERTER_STATS_WARNING = (1 << 2);
constexpr uint8_t CAN_INVERTER_STATS_ERROR = (1 << 3);
constexpr uint8_t CAN_INVERTER_STATS_ON = (1 << 4);
constexpr uint8_t CAN_INVERTER_STATS_PRECHARGE = (1 << 5);
constexpr uint8_t CAN_INVERTER_STATS_AMS_EMERG = (1 << 6);
constexpr uint8_t CAN_INVERTER_STATS_TS_ACTIVE = (1 << 7);
void Init_Can_0();
void Send_0x110();
void Receive_Can_0(CAN_FRAME *frame);
void process_cell_stats(CAN_FRAME *frame);
void process_battery_stats(CAN_FRAME *frame);
void process_cooling_stats(CAN_FRAME *frame);
void process_inverter_stats(CAN_FRAME *frame);
void update_LED(void);
struct CellStats {
uint16_t sum_cell_voltage;
int16_t max_cell_temp;
uint16_t max_cell_voltage;
uint16_t min_cell_voltage;
};
struct BatteryStats {
uint16_t battery_current;
uint16_t pre_air_voltage;
uint16_t post_air_voltage;
uint16_t battery_power;
};
struct CoolingStats {
int16_t water_pressure;
int16_t water_temp;
int16_t motor_l_temp;
int16_t motor_r_temp;
};
struct InverterStats {
uint8_t status;
uint8_t _reserved;
uint16_t temp;
int16_t velocity;
int16_t wheel_speed;
};

File diff suppressed because it is too large Load Diff

View File

@ -26,15 +26,15 @@
#include "Arduino.h"
//Devices
// Devices
#define EDIP128 1
#define EDIP160 1
#define EDIP240 1
#define EDIP320 2
//Set your device
// Set your device
#define DEVICE EDIP320
#define COORD_SIZE DEVICE //Byte count for coordinates
#define COORD_SIZE DEVICE // Byte count for coordinates
#define SERIAL_DEV Serial3
#define EA_TRANSPARENT 0
@ -72,382 +72,384 @@
#define uint unsigned int
class EDIPTFT {
public:
EDIPTFT(boolean smallprotocol=true, boolean disconnected=false);
boolean disconnected;
public:
EDIPTFT(boolean smallprotocol = true, boolean disconnected = false);
boolean disconnected;
void begin(long baud=115200);
void begin(long baud = 115200);
// helper functions
char readByte();
char waitandreadByte();
unsigned char datainBuffer();
int readBuffer(char* data);
void smallProtoSelect(char address);
void smallProtoDeselect(char address);
void sendData(char* data, char len);
// helper functions
char readByte();
char waitandreadByte();
unsigned char datainBuffer();
int readBuffer(char* data);
void smallProtoSelect(char address);
void smallProtoDeselect(char address);
void sendData(char* data, char len);
// Basic display functions
/*! \brief Clear display
*
* Clear display contents (all pixels off) and remove touch areas
*/
void clear();
// Basic display functions
/*! \brief Clear display
*
* Clear display contents (all pixels off) and remove touch areas
*/
void clear();
/*! \brief Delete display
*
* Delete display contents (all pixels off). Touch areas are still active.
*/
void deleteDisplay();
/*! \brief Delete display
*
* Delete display contents (all pixels off). Touch areas are still active.
*/
void deleteDisplay();
/*! \brief Invert display
*
* Invert display contents (invert all pixels)
*/
void invert();
/*! \brief Invert display
*
* Invert display contents (invert all pixels)
*/
void invert();
void setDisplayColor(char fg, char bg);
void setDisplayColor(char fg, char bg);
void fillDisplayColor(char bg);
void fillDisplayColor(char bg);
/*! \brief Terminal on
*
* Terminal display is switched on if \a on is true
*
* \param on determine if terminal is switched on
*/
void terminalOn(boolean on);
/*! \brief Terminal on
*
* Terminal display is switched on if \a on is true
*
* \param on determine if terminal is switched on
*/
void terminalOn(boolean on);
/*! \brief Load internal image
*
* Load internal image with the \a nr (0..255) from the *EEPROM* memory to
* \a x1, \a y1
*
* \param x1 x position of image on the display
* \param y1 y position of image on the display
* \param nr number of the image on the *EEPROM*
*/
void loadImage(int x1, int y1, int nr);
/*! \brief Load internal image
*
* Load internal image with the \a nr (0..255) from the *EEPROM* memory to
* \a x1, \a y1
*
* \param x1 x position of image on the display
* \param y1 y position of image on the display
* \param nr number of the image on the *EEPROM*
*/
void loadImage(int x1, int y1, int nr);
/*! \brief Cursor on/off
*
* Switch cursor on/off
*
* \param on `n1=0`: cursor is invisible, `n1=1`: cursor flashes
*/
void cursorOn(boolean on);
/*! \brief Cursor on/off
*
* Switch cursor on/off
*
* \param on `n1=0`: cursor is invisible, `n1=1`: cursor flashes
*/
void cursorOn(boolean on);
/*! \brief Position cursor
*
* origin upper-left corner `(1, 1)`
*
* \param col new cursor column
* \param row new cursor row
*/
void setCursor(char col, char row);
/*! \brief Position cursor
*
* origin upper-left corner `(1, 1)`
*
* \param col new cursor column
* \param row new cursor row
*/
void setCursor(char col, char row);
void displayLight(char no);
// Bargraph
/*! \brief Define bargraph
*
* Define bargraph to form the rectangle enclosing the
* bargraph. \a sv and \a ev are the values for `0%` and `100%`.
*
* \param dir direction ('L'eft, 'R'ight, 'O'up, 'U'down)
* \param no bargraph number `1..32`
* \param x1 upper left x coordinate
* \param y1 upper left y coordinate
* \param x2 lower right x coordinate
* \param y2 lower right y coordinate
* \param sv start value (0%)
* \param ev end value (100%)
void displayLight(char no);
// Bargraph
/*! \brief Define bargraph
*
* Define bargraph to form the rectangle enclosing the
* bargraph. \a sv and \a ev are the values for `0%` and `100%`.
*
* \param dir direction ('L'eft, 'R'ight, 'O'up, 'U'down)
* \param no bargraph number `1..32`
* \param x1 upper left x coordinate
* \param y1 upper left y coordinate
* \param x2 lower right x coordinate
* \param y2 lower right y coordinate
* \param sv start value (0%)
* \param ev end value (100%)
* \param type set the style of the bargraph:\n
* `type=0`: pattern bar, \a mst=bar pattern,\n
* `type=1`: pattern bar in rectangle, \a mst=bar pattern,\n
* `type=2`: pattern line, \a mst=line width,\n
* `type=3`: pattern line in rectangle, \a mst=line width
*
* \param mst additional parameter for type specification
*/
void defineBargraph(char dir, char no, int x1, int y1, int x2, int y2,
byte sv, byte ev, char type, char mst);
* \param type set the style of the bargraph:\n
* `type=0`: pattern bar, \a mst=bar pattern,\n
* `type=1`: pattern bar in rectangle, \a mst=bar pattern,\n
* `type=2`: pattern line, \a mst=line width,\n
* `type=3`: pattern line in rectangle, \a mst=line width
*
* \param mst additional parameter for type specification
*/
void defineBargraph(char dir, char no, int x1, int y1, int x2, int y2,
byte sv, byte ev, char type, char mst);
/*! \brief Update bargraph
*
* Set and draw the bargraph *no* to the new *value*
*
* \param no number of the bargraph `1..32`
* \param val new value of the bargraph
*/
void updateBargraph(char no, char val);
/*! \brief Update bargraph
*
* Set and draw the bargraph *no* to the new *value*
*
* \param no number of the bargraph `1..32`
* \param val new value of the bargraph
*/
void updateBargraph(char no, char val);
void setBargraphColor(char no, char fg, char bg, char fr);
void setBargraphColor(char no, char fg, char bg, char fr);
/*! \brief Set bargraph by touch
*
* The bargraph with number *no* is defined for input by touch panel
*
* \param no number of the bargraph `1..32`
*/
void makeBargraphTouch(char no);
/*! \brief Set bargraph by touch
*
* The bargraph with number *no* is defined for input by touch panel
*
* \param no number of the bargraph `1..32`
*/
void makeBargraphTouch(char no);
void linkBargraphLight(char no);
void linkBargraphLight(char no);
/*! \brief Delete bargraph
*
* The definition of the bargraph with number *no* becomes invalid. If the
* bargraph was defined as input with touch, the touchfield will also be
* deleted.
*
* \param no number of the bargraph `1..32`
* \param n1 additional parameter\n
* `n1=0`: bargraph remains visible\n
* `n1=1`: bargraph is deleted
*/
void deleteBargraph(char no, char n1);
/*! \brief Delete bargraph
*
* The definition of the bargraph with number *no* becomes invalid. If the
* bargraph was defined as input with touch, the touchfield will also be
* deleted.
*
* \param no number of the bargraph `1..32`
* \param n1 additional parameter\n
* `n1=0`: bargraph remains visible\n
* `n1=1`: bargraph is deleted
*/
void deleteBargraph(char no, char n1);
// Instrument
void defineInstrument(char no, int x1, int y1, char image,
char angle, char sv, char ev);
void updateInstrument(char no, char val);
void redrawInstrument(char no);
void deleteInstrument(char no, char n1, char n2);
// Instrument
void defineInstrument(char no, int x1, int y1, char image, char angle,
char sv, char ev);
void updateInstrument(char no, char val);
void redrawInstrument(char no);
void deleteInstrument(char no, char n1, char n2);
// Text
void setTextColor(char fg, char bg);
// Text
void setTextColor(char fg, char bg);
/*! \brief Set font
*
* Set font with the number *font*
*
* \param font font number `font=0..15`, use font defines here
*/
void setTextFont(char font);
void setTextSize(int xsize, int ysize);
/*! \brief Set font
*
* Set font with the number *font*
*
* \param font font number `font=0..15`, use font defines here
*/
void setTextFont(char font);
/*! \brief Set text angle
*
* Set text output angle
*
* \param angle text output angle\n
`angle=0`: 0°
`angle=1`: 90°
*/
void setTextAngle(char angle);
void setTextSize(int xsize, int ysize);
/*! \brief Draw text on display
*
* Draw a *text* on screen. Several lines are separated by the character `|`
* ($7C).
* * place text between `~`: characters flash on/off
* * place text between `@`: characters flash inversely
* * use `\\` as to escape special characters
*
* \param x1: x coordinate
* \param y1: y coordinate
* \param justification set text justification to `L`(eft), `R`(ight),
* `C`(enter)
* \param text text to draw on display
*/
void drawText(uint16_t x1, uint16_t y1, char justification, const char* text);
/*! \brief Set text angle
*
* Set text output angle
*
* \param angle text output angle\n
`angle=0`: 0°
`angle=1`: 90°
*/
void setTextAngle(char angle);
/*! \brief Draw text on display in an area
*
* Draw a *text* on screen. Several lines are separated by the character `|`
* ($7C).
* * place text between `~`: characters flash on/off
* * place text between `@`: characters flash inversely
* * use `\\` as to escape special characters
*
* \param align set alignment in the rectangle. 1 = top left, 2 = top
* center, 3 = top right, 4 = center left, 5 = center, 6 = center right, 7 =
* bottom left, 8 = bottom center, 9 = bottom right.
* \param text text to draw on display
*/
void drawTextInRect(int x1, int y1, int x2, int y2, uint8_t align, const char* text);
/*! \brief Draw text on display
*
* Draw a *text* on screen. Several lines are separated by the character `|`
* ($7C).
* * place text between `~`: characters flash on/off
* * place text between `@`: characters flash inversely
* * use `\\` as to escape special characters
*
* \param x1: x coordinate
* \param y1: y coordinate
* \param justification set text justification to `L`(eft), `R`(ight),
* `C`(enter)
* \param text text to draw on display
*/
void drawText(uint16_t x1, uint16_t y1, char justification, const char* text);
// Rectangle and Line
void setLineColor(char fg, char bg);
/*! \brief Draw text on display in an area
*
* Draw a *text* on screen. Several lines are separated by the character `|`
* ($7C).
* * place text between `~`: characters flash on/off
* * place text between `@`: characters flash inversely
* * use `\\` as to escape special characters
*
* \param align set alignment in the rectangle. 1 = top left, 2 = top
* center, 3 = top right, 4 = center left, 5 = center, 6 = center right, 7 =
* bottom left, 8 = bottom center, 9 = bottom right.
* \param text text to draw on display
*/
void drawTextInRect(int x1, int y1, int x2, int y2, uint8_t align,
const char* text);
/*! \brief Point size/line thickness
*
* \param x x-point size (1..15)
* \param y y-point size (1..15)
*/
void setLineThick(char x, char y);
// Rectangle and Line
void setLineColor(char fg, char bg);
/*! \brief Draw straight line
*
* Draw straight line from point *x1*, *y1* to point *x2*, *y2*
*/
void drawLine(int x1, int y1, int x2, int y2);
/*! \brief Point size/line thickness
*
* \param x x-point size (1..15)
* \param y y-point size (1..15)
*/
void setLineThick(char x, char y);
/*! \brief Draw rectangle
*
* Draw four straight lines as a rectangle from *x1*, *y1* to *x2*, *y2*
*/
void drawRect(int x1, int y1, int x2, int y2);
/*! \brief Draw straight line
*
* Draw straight line from point *x1*, *y1* to point *x2*, *y2*
*/
void drawLine(int x1, int y1, int x2, int y2);
void drawRectf(int x1, int y1, int x2, int y2, char color);
/*! \brief Draw rectangle
*
* Draw four straight lines as a rectangle from *x1*, *y1* to *x2*, *y2*
*/
void drawRect(int x1, int y1, int x2, int y2);
/*! \brief Clear rectangular area */
void clearRect(int x1, int y1, int x2, int y2);
void drawRectf(int x1, int y1, int x2, int y2, char color);
// Touch keys
/*! \brief Clear rectangular area */
void clearRect(int x1, int y1, int x2, int y2);
/*! \brief Define touch key
*
* Key remains pressed as long as there is contact. The area from *x1*, *y1*
* to *x2*, *y2* is drawn with actual border and defined as a key.
* The label is drawn with the current touch font. The first character
* determines the alignment of the text (`L`(eft), `R`(ight), `C`(enter)).
* Multiline texts are separated by the character `|`.
*
* \param down return/touchmacro (1-255) if pressed
* \param up return/touchmacro (1-255) if released
* \param text label of the touch key
*/
void defineTouchKey(int x1, int y1, int x2, int y2,
char down, char up, const char* text);
// Touch keys
/*! \brief Define touch switch
*
* Status of the switch toggles after each contact. The area from *x1*, *y1*
* to *x2*, *y2* is drawn with actual border and defined as a key.
* The label is drawn with the current touch font. The first character
* determines the alignment of the text (`L`(eft), `R`(ight), `C`(enter)).
* Multiline texts are separated by the character `|`.
*
* \param down return/touchmacro (1-255) if pressed
* \param up return/touchmacro (1-255) if released
* \param text label of the touch key
*/
void defineTouchSwitch(int x1, int y1, int x2, int y2,
char down, char up, const char* text);
/*! \brief Define touch key
*
* Key remains pressed as long as there is contact. The area from *x1*, *y1*
* to *x2*, *y2* is drawn with actual border and defined as a key.
* The label is drawn with the current touch font. The first character
* determines the alignment of the text (`L`(eft), `R`(ight), `C`(enter)).
* Multiline texts are separated by the character `|`.
*
* \param down return/touchmacro (1-255) if pressed
* \param up return/touchmacro (1-255) if released
* \param text label of the touch key
*/
void defineTouchKey(int x1, int y1, int x2, int y2, char down, char up,
const char* text);
/*! \brief Define touch switch with image
*
* Status of the switch toggles after each contact. Image number *img* is
* loaded to *x*, *y* and defined as a switch.
* The label is drawn with the current touch font. The first character
* determines the alignment of the text (`L`(eft), `R`(ight), `C`(enter)).
* Multiline texts are separated by the character `|`.
*
* \param down return/touchmacro (1-255) if pressed
* \param up return/touchmacro (1-255) if released
* \param text label of the touch switch
*/
void defineTouchSwitch(int x, int y, int img, char downcode,
char upcode, const char* text);
/*! \brief Define touch switch
*
* Status of the switch toggles after each contact. The area from *x1*, *y1*
* to *x2*, *y2* is drawn with actual border and defined as a key.
* The label is drawn with the current touch font. The first character
* determines the alignment of the text (`L`(eft), `R`(ight), `C`(enter)).
* Multiline texts are separated by the character `|`.
*
* \param down return/touchmacro (1-255) if pressed
* \param up return/touchmacro (1-255) if released
* \param text label of the touch key
*/
void defineTouchSwitch(int x1, int y1, int x2, int y2, char down, char up,
const char* text);
/*! \brief Set touch switch
*
* Set the status of the touch switch with the return code *code*
* to *value*.
*
* \param code Return code of the switch
* \param value `value=0`: OFF, `value=1`: ON
*/
void setTouchSwitch(char code,char value);
/*! \brief Define touch switch with image
*
* Status of the switch toggles after each contact. Image number *img* is
* loaded to *x*, *y* and defined as a switch.
* The label is drawn with the current touch font. The first character
* determines the alignment of the text (`L`(eft), `R`(ight), `C`(enter)).
* Multiline texts are separated by the character `|`.
*
* \param down return/touchmacro (1-255) if pressed
* \param up return/touchmacro (1-255) if released
* \param text label of the touch switch
*/
void defineTouchSwitch(int x, int y, int img, char downcode, char upcode,
const char* text);
void setTouchkeyColors(char n1, char n2, char n3,
char s1, char s2, char s3);
/*! \brief Set touch switch
*
* Set the status of the touch switch with the return code *code*
* to *value*.
*
* \param code Return code of the switch
* \param value `value=0`: OFF, `value=1`: ON
*/
void setTouchSwitch(char code, char value);
/*! \brief Label font
*
* Apply font with number *font* for touch key labels
*/
void setTouchkeyFont(char font);
void setTouchkeyColors(char n1, char n2, char n3, char s1, char s2, char s3);
void setTouchkeyLabelColors(char nf,char sf);
/*! \brief Label font
*
* Apply font with number *font* for touch key labels
*/
void setTouchkeyFont(char font);
/*! \brief Radio group for switches
*
* `group=0`: newly defined switches don't belong to a group
* `group=1..255`: newly defined switches are assigned to the group with
* the given number
* Only one switch in a group is active at once. All others are deactivated.
* For switches only the *down code* is applicable. The *up code* will be
* ignored.
*/
void setTouchGroup(char group);
void setTouchkeyLabelColors(char nf, char sf);
/*! \brief Delete toch area by up- or downcode
*
* The touch area with the return code is removed from the touch query
*
* \param code the code of the touch area (code=0: all touch areas)
* \param n1 n1==0: the area remains visible on the display,
* n1==1: the area is deleted
*/
void removeTouchArea(char code,char n1);
/*! \brief Radio group for switches
*
* `group=0`: newly defined switches don't belong to a group
* `group=1..255`: newly defined switches are assigned to the group with
* the given number
* Only one switch in a group is active at once. All others are deactivated.
* For switches only the *down code* is applicable. The *up code* will be
* ignored.
*/
void setTouchGroup(char group);
// Macro Calls
/*! \brief Run macro
*
* Call the (normal) macro with number *nr* (max. 7 levels).
*/
void callMacro(uint nr);
/*! \brief Delete toch area by up- or downcode
*
* The touch area with the return code is removed from the touch query
*
* \param code the code of the touch area (code=0: all touch areas)
* \param n1 n1==0: the area remains visible on the display,
* n1==1: the area is deleted
*/
void removeTouchArea(char code, char n1);
/*! \brief Run touch macro
*
* Call touch macro with number *nr* (max. 7 levels)
*/
void callTouchMacro(uint nr);
// Macro Calls
/*! \brief Run macro
*
* Call the (normal) macro with number *nr* (max. 7 levels).
*/
void callMacro(uint nr);
/*! \brief Run menu macro
*
* Call menu macro with number *nr* (max. 7 levels)
*/
void callMenuMacro(uint nr);
/*! \brief Run touch macro
*
* Call touch macro with number *nr* (max. 7 levels)
*/
void callTouchMacro(uint nr);
/*! \brief Define touch key with menu function
*
* Define the area from *x1*, *y1* to *x2*, *y2* as a menu key.
* The first character determines the direction in which the menu opens (R=right,L=left,O=up,U=down)
* The second character determines the alignment of the touch text (C=center,L=left-,R=right justified)
* The menu items are separated by the character '|' ($7C,dec:124) (e.g. "UCkey|item1|item2|item3".
* The key text is written with the current touch font and the menu items are written with the current menu font. The background of the menu is saved automatically.
* \param downcode `1-255` return/touchmacro if pressed
* \param upcode `1-255` return/touchmacro if released
* \param mnucode return/menumacro+(item nr - 1) after selection of a
* menu item
* \param text string with the key text and menu items
*/
void defineTouchMenu(int x1, int y1, int x2, int y2,
char downcode, char upcode, char mnucode,
const char *text);
/*! \brief Run menu macro
*
* Call menu macro with number *nr* (max. 7 levels)
*/
void callMenuMacro(uint nr);
/*! \brief Send *open* signal after a Menu open request has been sent from TFT.
*
* If a touch menu is not set to open automatically the TFT sends a
* request 'ESC T 0'. This function sends 'ESC N T 2' to open the menu.
*/
void openTouchMenu();
/*! \brief Define touch key with menu function
*
* Define the area from *x1*, *y1* to *x2*, *y2* as a menu key.
* The first character determines the direction in which the menu opens
* (R=right,L=left,O=up,U=down) The second character determines the alignment
* of the touch text (C=center,L=left-,R=right justified) The menu items are
* separated by the character '|' ($7C,dec:124) (e.g.
* "UCkey|item1|item2|item3". The key text is written with the current touch
* font and the menu items are written with the current menu font. The
* background of the menu is saved automatically. \param downcode `1-255`
* return/touchmacro if pressed \param upcode `1-255` return/touchmacro if
* released \param mnucode return/menumacro+(item nr - 1) after selection of a
* menu item
* \param text string with the key text and menu items
*/
void defineTouchMenu(int x1, int y1, int x2, int y2, char downcode,
char upcode, char mnucode, const char* text);
/*! \brief Set menu font
*
* Set font with number *font* (`0..15`) for menu display
*/
void setMenuFont(char font);
/*! \brief Send *open* signal after a Menu open request has been sent from
* TFT.
*
* If a touch menu is not set to open automatically the TFT sends a
* request 'ESC T 0'. This function sends 'ESC N T 2' to open the menu.
*/
void openTouchMenu();
/*! \brief enable/disable touchmenu automation
*
* if val==true touch menu opens automatically, if val==false touchmenu
* doesn' t open automatically, instead a request is sent to the
* host computer, which can then open the menu with openTouchMenu()
*/
void setTouchMenuAutomation(bool val);
/*! \brief Set menu font
*
* Set font with number *font* (`0..15`) for menu display
*/
void setMenuFont(char font);
private:
boolean _smallprotocol;
int _counter;
unsigned char bytesAvailable();
void waitBytesAvailable();
void sendByte(char data);
void sendSmall(char* data, char len);
void sendSmallDC2(char* data, char len);
/*! \brief enable/disable touchmenu automation
*
* if val==true touch menu opens automatically, if val==false touchmenu
* doesn' t open automatically, instead a request is sent to the
* host computer, which can then open the menu with openTouchMenu()
*/
void setTouchMenuAutomation(bool val);
private:
boolean _smallprotocol;
int _counter;
unsigned char bytesAvailable();
void waitBytesAvailable();
void sendByte(char data);
void sendSmall(char* data, char len);
void sendSmallDC2(char* data, char len);
};
#endif