Format everything

The next commit will add this to a `.git-blame-ignore-revs` file which
you can use to ignore this commit when running git blame. Simply run

    git blame --ignore-revs-file .git-blame-ignore-revs [...]

Or configure git to persistently ignore the commit:

    git config blame.ignoreRevsFile .git-blame-ignore-revs
This commit is contained in:
2022-03-13 20:30:14 +01:00
parent 14b5f6988d
commit 41d3bd907e
16 changed files with 2336 additions and 2319 deletions

View File

@ -1,84 +1,74 @@
#include "Arduino.h"
#include "FT18e_STW_INIT.h"
#include "Bounce2.h"
#include "RotaryEncoder.h"
volatile stw_data_type Stw_data = {0}; //alles mit 0 initialisieren
volatile vehicle_data_type Vehicle_data = {0}; //alles mit 0 initialisieren
bool enc1PinALast, enc1PinANow, enc2PinALast, enc2PinANow;
int led[] = {led1, led2, led3, led4, led5, led6, led7, led8, led9, led10, led11, led12, led13, led14, led15, led16};
bool entprell;
int buttons[] = {PIN_BUTTON_LL, PIN_BUTTON_LR, PIN_BUTTON_RL, PIN_BUTTON_RR, enc1PinS, enc2PinS};
Bounce debouncer[8];
double val = 0;
double val2 = 0;
RotaryEncoder encoder(enc1PinA, enc1PinB, 1, 1, 50);
RotaryEncoder encoder2(enc2PinA, enc2PinB, 1, 1, 50);
///////////////////////////////////////////////////
// functions
///////////////////////////////////////////////////
void set_pins()
{
for (int thisLed = 0; thisLed < sizeof(led) / sizeof(int); thisLed++)
{
pinMode(led[thisLed], OUTPUT);
}
pinMode(l, OUTPUT);
/*pinMode(button1, INPUT);
pinMode(button2, INPUT);
pinMode(button3, INPUT);
pinMode(button4, INPUT);
pinMode(button5, INPUT);
pinMode(button6, INPUT);*/
pinMode(enc1PinA, INPUT);
pinMode(enc1PinB, INPUT);
//pinMode(enc1PinS, INPUT);
pinMode(enc2PinA, INPUT);
pinMode(enc2PinB, INPUT);
//pinMode(enc2PinS, INPUT);
//Stw_data.i=0;
enc1PinALast = LOW;
enc1PinANow = LOW;
enc2PinALast = LOW;
enc2PinANow = LOW;
for (int i = 0; i < sizeof(buttons) / sizeof(*buttons); i++)
{
pinMode(buttons[i], INPUT);
debouncer[i].attach(buttons[i]);
debouncer[i].interval(10);
}
}
void read_buttons()
{
Stw_data.button_ll = digitalRead(PIN_BUTTON_LL);
Stw_data.button_lr = digitalRead(PIN_BUTTON_LR);
Stw_data.button_rl = digitalRead(PIN_BUTTON_RL);
Stw_data.button_rr = digitalRead(PIN_BUTTON_RR);
}
void read_rotary()
{
int enc2 = encoder2.readEncoder();
if (enc2 != 0)
{
val2 = val2 + 0.5 * enc2;
if (val2 == 1 or val2 == -1)
{
if ((Stw_data.mode == 1 or Stw_data.mode == 0) and enc2 < 0)
{
Stw_data.mode = 5;
}
else if (Stw_data.mode == 5 and enc2 > 0)
{
Stw_data.mode = 1;
}
else
{
Stw_data.mode = Stw_data.mode + enc2;
}
val2 = 0;
}
}
#include "FT18e_STW_INIT.h"
#include "Arduino.h"
#include "Bounce2.h"
#include "RotaryEncoder.h"
volatile stw_data_type Stw_data = {0}; // alles mit 0 initialisieren
volatile vehicle_data_type Vehicle_data = {0}; // alles mit 0 initialisieren
bool enc1PinALast, enc1PinANow, enc2PinALast, enc2PinANow;
int led[] = {led1, led2, led3, led4, led5, led6, led7, led8,
led9, led10, led11, led12, led13, led14, led15, led16};
bool entprell;
int buttons[] = {PIN_BUTTON_LL, PIN_BUTTON_LR, PIN_BUTTON_RL,
PIN_BUTTON_RR, enc1PinS, enc2PinS};
Bounce debouncer[8];
double val = 0;
double val2 = 0;
RotaryEncoder encoder(enc1PinA, enc1PinB, 1, 1, 50);
RotaryEncoder encoder2(enc2PinA, enc2PinB, 1, 1, 50);
///////////////////////////////////////////////////
// functions
///////////////////////////////////////////////////
void set_pins() {
for (int thisLed = 0; thisLed < sizeof(led) / sizeof(int); thisLed++) {
pinMode(led[thisLed], OUTPUT);
}
pinMode(l, OUTPUT);
/*pinMode(button1, INPUT);
pinMode(button2, INPUT);
pinMode(button3, INPUT);
pinMode(button4, INPUT);
pinMode(button5, INPUT);
pinMode(button6, INPUT);*/
pinMode(enc1PinA, INPUT);
pinMode(enc1PinB, INPUT);
// pinMode(enc1PinS, INPUT);
pinMode(enc2PinA, INPUT);
pinMode(enc2PinB, INPUT);
// pinMode(enc2PinS, INPUT);
// Stw_data.i=0;
enc1PinALast = LOW;
enc1PinANow = LOW;
enc2PinALast = LOW;
enc2PinANow = LOW;
for (int i = 0; i < sizeof(buttons) / sizeof(*buttons); i++) {
pinMode(buttons[i], INPUT);
debouncer[i].attach(buttons[i]);
debouncer[i].interval(10);
}
}
void read_buttons() {
Stw_data.button_ll = digitalRead(PIN_BUTTON_LL);
Stw_data.button_lr = digitalRead(PIN_BUTTON_LR);
Stw_data.button_rl = digitalRead(PIN_BUTTON_RL);
Stw_data.button_rr = digitalRead(PIN_BUTTON_RR);
}
void read_rotary() {
int enc2 = encoder2.readEncoder();
if (enc2 != 0) {
val2 = val2 + 0.5 * enc2;
if (val2 == 1 or val2 == -1) {
if ((Stw_data.mode == 1 or Stw_data.mode == 0) and enc2 < 0) {
Stw_data.mode = 5;
} else if (Stw_data.mode == 5 and enc2 > 0) {
Stw_data.mode = 1;
} else {
Stw_data.mode = Stw_data.mode + enc2;
}
val2 = 0;
}
}
}

View File

@ -1,98 +1,95 @@
#include "Arduino.h"
#ifndef FT18e_STW_Init
#define FT18e_STW_Init
#define l 78 //test_led
#define led1 12 //PD8
#define led2 11 //PD7
#define led3 9 //PC21
#define led4 8 //PC22
#define led5 7 //PC23
#define led6 6 //PC24
#define led7 5 //PC25
#define led8 4 //PC26 und PA29
#define led9 3 //PC28
#define led10 2 //PB25
#define led11 10 //PC29 und PA28
#define led12 22 //PB26
#define led13 19 //PA10
#define led14 13 //PB27
#define led15 17 //PA12
#define led16 18 //PA11
#define enc1PinA 37
#define enc1PinB 38
#define enc1PinS 35
#define enc2PinA 40
#define enc2PinB 41
#define enc2PinS 39
constexpr int PIN_BUTTON_LL = 47;
constexpr int PIN_BUTTON_LR = 48;
constexpr int PIN_BUTTON_RL = 46;
constexpr int PIN_BUTTON_RR = 44;
constexpr int16_t RPM_THRESH_1 = 1000;
constexpr int16_t RPM_THRESH_2 = 4000;
constexpr int16_t RPM_THRESH_3 = 6000;
constexpr int16_t RPM_THRESH_4 = 8000;
constexpr int16_t RPM_THRESH_5 = 10000;
constexpr int16_t RPM_THRESH_6 = 12000;
constexpr int16_t RPM_THRESH_7 = 14000;
constexpr int16_t RPM_THRESH_8 = 16000;
constexpr int16_t RPM_THRESH_9 = 18000;
constexpr int16_t RPM_THRESH_10 = 20000;
constexpr int16_t LED_THRESH_T_MOT = 7000; // 1/100°C
constexpr int16_t LED_THRESH_T_INV = 6000; // 1/100°C
constexpr int16_t LED_THRESH_T_BAT = 5000; // 1/100°C
constexpr uint16_t LED_THRESH_U_BATT = 350; // 1/100V
void set_pins(void);
void read_buttons(void);
void read_rotary(void); // read rotary switches
typedef struct
{
bool button_ll; // Left side, left button
bool button_lr; // Left side, right button
bool button_rl; // Right side, left button
bool button_rr; // Right side, right button
uint8_t mode;
uint8_t displayindex; //index für Displayanzeige
uint8_t error_type; //Extrainfos über Error-LED
} stw_data_type;
struct InverterData
{
bool ready;
bool derating;
bool warning;
bool error;
bool on;
bool precharge;
bool ams_emerg;
bool ts_active;
};
typedef struct
{
uint16_t u_cell_min; // Minimale Zellspannung
uint16_t u_batt; // Batteriespannung (pre-AIR-voltage)
int16_t t_mot_l; // Motor-Wasser-Temperatur Links
int16_t t_mot_r; // Motor-Wasser-Temperatur Rechts
int16_t t_cell_max; // Maximale Zelltemperatur
int16_t t_inv;
int16_t t_wat;
int16_t p_wat;
uint8_t speed;
InverterData inverter;
bool rev_lim; // Drehzahllimit Bit
int16_t revol; // Drehzahl
int16_t wheel_speed;
} vehicle_data_type;
extern volatile stw_data_type Stw_data;
extern volatile vehicle_data_type Vehicle_data;
#include "Arduino.h"
#ifndef FT18e_STW_Init
#define FT18e_STW_Init
#define l 78 // test_led
#define led1 12 // PD8
#define led2 11 // PD7
#define led3 9 // PC21
#define led4 8 // PC22
#define led5 7 // PC23
#define led6 6 // PC24
#define led7 5 // PC25
#define led8 4 // PC26 und PA29
#define led9 3 // PC28
#define led10 2 // PB25
#define led11 10 // PC29 und PA28
#define led12 22 // PB26
#define led13 19 // PA10
#define led14 13 // PB27
#define led15 17 // PA12
#define led16 18 // PA11
#define enc1PinA 37
#define enc1PinB 38
#define enc1PinS 35
#define enc2PinA 40
#define enc2PinB 41
#define enc2PinS 39
constexpr int PIN_BUTTON_LL = 47;
constexpr int PIN_BUTTON_LR = 48;
constexpr int PIN_BUTTON_RL = 46;
constexpr int PIN_BUTTON_RR = 44;
constexpr int16_t RPM_THRESH_1 = 1000;
constexpr int16_t RPM_THRESH_2 = 4000;
constexpr int16_t RPM_THRESH_3 = 6000;
constexpr int16_t RPM_THRESH_4 = 8000;
constexpr int16_t RPM_THRESH_5 = 10000;
constexpr int16_t RPM_THRESH_6 = 12000;
constexpr int16_t RPM_THRESH_7 = 14000;
constexpr int16_t RPM_THRESH_8 = 16000;
constexpr int16_t RPM_THRESH_9 = 18000;
constexpr int16_t RPM_THRESH_10 = 20000;
constexpr int16_t LED_THRESH_T_MOT = 7000; // 1/100°C
constexpr int16_t LED_THRESH_T_INV = 6000; // 1/100°C
constexpr int16_t LED_THRESH_T_BAT = 5000; // 1/100°C
constexpr uint16_t LED_THRESH_U_BATT = 350; // 1/100V
void set_pins(void);
void read_buttons(void);
void read_rotary(void); // read rotary switches
typedef struct {
bool button_ll; // Left side, left button
bool button_lr; // Left side, right button
bool button_rl; // Right side, left button
bool button_rr; // Right side, right button
uint8_t mode;
uint8_t displayindex; // index für Displayanzeige
uint8_t error_type; // Extrainfos über Error-LED
} stw_data_type;
struct InverterData {
bool ready;
bool derating;
bool warning;
bool error;
bool on;
bool precharge;
bool ams_emerg;
bool ts_active;
};
typedef struct {
uint16_t u_cell_min; // Minimale Zellspannung
uint16_t u_batt; // Batteriespannung (pre-AIR-voltage)
int16_t t_mot_l; // Motor-Wasser-Temperatur Links
int16_t t_mot_r; // Motor-Wasser-Temperatur Rechts
int16_t t_cell_max; // Maximale Zelltemperatur
int16_t t_inv;
int16_t t_wat;
int16_t p_wat;
uint8_t speed;
InverterData inverter;
bool rev_lim; // Drehzahllimit Bit
int16_t revol; // Drehzahl
int16_t wheel_speed;
} vehicle_data_type;
extern volatile stw_data_type Stw_data;
extern volatile vehicle_data_type Vehicle_data;
#endif