630 lines
19 KiB
C
630 lines
19 KiB
C
|
/* ----------------------------------------------------------------------
|
||
|
* Project: CMSIS DSP Library
|
||
|
* Title: arm_cfft_f32.c
|
||
|
* Description: Combined Radix Decimation in Frequency CFFT Floating point processing function
|
||
|
*
|
||
|
* $Date: 18. March 2019
|
||
|
* $Revision: V1.6.0
|
||
|
*
|
||
|
* Target Processor: Cortex-M cores
|
||
|
* -------------------------------------------------------------------- */
|
||
|
/*
|
||
|
* Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||
|
* not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
#include "arm_math.h"
|
||
|
#include "arm_common_tables.h"
|
||
|
|
||
|
extern void arm_radix8_butterfly_f32(
|
||
|
float32_t * pSrc,
|
||
|
uint16_t fftLen,
|
||
|
const float32_t * pCoef,
|
||
|
uint16_t twidCoefModifier);
|
||
|
|
||
|
extern void arm_bitreversal_32(
|
||
|
uint32_t * pSrc,
|
||
|
const uint16_t bitRevLen,
|
||
|
const uint16_t * pBitRevTable);
|
||
|
|
||
|
/**
|
||
|
@ingroup groupTransforms
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
@defgroup ComplexFFT Complex FFT Functions
|
||
|
|
||
|
@par
|
||
|
The Fast Fourier Transform (FFT) is an efficient algorithm for computing the
|
||
|
Discrete Fourier Transform (DFT). The FFT can be orders of magnitude faster
|
||
|
than the DFT, especially for long lengths.
|
||
|
The algorithms described in this section
|
||
|
operate on complex data. A separate set of functions is devoted to handling
|
||
|
of real sequences.
|
||
|
@par
|
||
|
There are separate algorithms for handling floating-point, Q15, and Q31 data
|
||
|
types. The algorithms available for each data type are described next.
|
||
|
@par
|
||
|
The FFT functions operate in-place. That is, the array holding the input data
|
||
|
will also be used to hold the corresponding result. The input data is complex
|
||
|
and contains <code>2*fftLen</code> interleaved values as shown below.
|
||
|
<pre>{real[0], imag[0], real[1], imag[1], ...} </pre>
|
||
|
The FFT result will be contained in the same array and the frequency domain
|
||
|
values will have the same interleaving.
|
||
|
|
||
|
@par Floating-point
|
||
|
The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-8
|
||
|
stages are performed along with a single radix-2 or radix-4 stage, as needed.
|
||
|
The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses
|
||
|
a different twiddle factor table.
|
||
|
@par
|
||
|
The function uses the standard FFT definition and output values may grow by a
|
||
|
factor of <code>fftLen</code> when computing the forward transform. The
|
||
|
inverse transform includes a scale of <code>1/fftLen</code> as part of the
|
||
|
calculation and this matches the textbook definition of the inverse FFT.
|
||
|
@par
|
||
|
Pre-initialized data structures containing twiddle factors and bit reversal
|
||
|
tables are provided and defined in <code>arm_const_structs.h</code>. Include
|
||
|
this header in your function and then pass one of the constant structures as
|
||
|
an argument to arm_cfft_f32. For example:
|
||
|
@par
|
||
|
<code>arm_cfft_f32(arm_cfft_sR_f32_len64, pSrc, 1, 1)</code>
|
||
|
@par
|
||
|
computes a 64-point inverse complex FFT including bit reversal.
|
||
|
The data structures are treated as constant data and not modified during the
|
||
|
calculation. The same data structure can be reused for multiple transforms
|
||
|
including mixing forward and inverse transforms.
|
||
|
@par
|
||
|
Earlier releases of the library provided separate radix-2 and radix-4
|
||
|
algorithms that operated on floating-point data. These functions are still
|
||
|
provided but are deprecated. The older functions are slower and less general
|
||
|
than the new functions.
|
||
|
@par
|
||
|
An example of initialization of the constants for the arm_cfft_f32 function follows:
|
||
|
@code
|
||
|
const static arm_cfft_instance_f32 *S;
|
||
|
...
|
||
|
switch (length) {
|
||
|
case 16:
|
||
|
S = &arm_cfft_sR_f32_len16;
|
||
|
break;
|
||
|
case 32:
|
||
|
S = &arm_cfft_sR_f32_len32;
|
||
|
break;
|
||
|
case 64:
|
||
|
S = &arm_cfft_sR_f32_len64;
|
||
|
break;
|
||
|
case 128:
|
||
|
S = &arm_cfft_sR_f32_len128;
|
||
|
break;
|
||
|
case 256:
|
||
|
S = &arm_cfft_sR_f32_len256;
|
||
|
break;
|
||
|
case 512:
|
||
|
S = &arm_cfft_sR_f32_len512;
|
||
|
break;
|
||
|
case 1024:
|
||
|
S = &arm_cfft_sR_f32_len1024;
|
||
|
break;
|
||
|
case 2048:
|
||
|
S = &arm_cfft_sR_f32_len2048;
|
||
|
break;
|
||
|
case 4096:
|
||
|
S = &arm_cfft_sR_f32_len4096;
|
||
|
break;
|
||
|
}
|
||
|
@endcode
|
||
|
@par Q15 and Q31
|
||
|
The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-4
|
||
|
stages are performed along with a single radix-2 stage, as needed.
|
||
|
The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses
|
||
|
a different twiddle factor table.
|
||
|
@par
|
||
|
The function uses the standard FFT definition and output values may grow by a
|
||
|
factor of <code>fftLen</code> when computing the forward transform. The
|
||
|
inverse transform includes a scale of <code>1/fftLen</code> as part of the
|
||
|
calculation and this matches the textbook definition of the inverse FFT.
|
||
|
@par
|
||
|
Pre-initialized data structures containing twiddle factors and bit reversal
|
||
|
tables are provided and defined in <code>arm_const_structs.h</code>. Include
|
||
|
this header in your function and then pass one of the constant structures as
|
||
|
an argument to arm_cfft_q31. For example:
|
||
|
@par
|
||
|
<code>arm_cfft_q31(arm_cfft_sR_q31_len64, pSrc, 1, 1)</code>
|
||
|
@par
|
||
|
computes a 64-point inverse complex FFT including bit reversal.
|
||
|
The data structures are treated as constant data and not modified during the
|
||
|
calculation. The same data structure can be reused for multiple transforms
|
||
|
including mixing forward and inverse transforms.
|
||
|
@par
|
||
|
Earlier releases of the library provided separate radix-2 and radix-4
|
||
|
algorithms that operated on floating-point data. These functions are still
|
||
|
provided but are deprecated. The older functions are slower and less general
|
||
|
than the new functions.
|
||
|
@par
|
||
|
An example of initialization of the constants for the arm_cfft_q31 function follows:
|
||
|
@code
|
||
|
const static arm_cfft_instance_q31 *S;
|
||
|
...
|
||
|
switch (length) {
|
||
|
case 16:
|
||
|
S = &arm_cfft_sR_q31_len16;
|
||
|
break;
|
||
|
case 32:
|
||
|
S = &arm_cfft_sR_q31_len32;
|
||
|
break;
|
||
|
case 64:
|
||
|
S = &arm_cfft_sR_q31_len64;
|
||
|
break;
|
||
|
case 128:
|
||
|
S = &arm_cfft_sR_q31_len128;
|
||
|
break;
|
||
|
case 256:
|
||
|
S = &arm_cfft_sR_q31_len256;
|
||
|
break;
|
||
|
case 512:
|
||
|
S = &arm_cfft_sR_q31_len512;
|
||
|
break;
|
||
|
case 1024:
|
||
|
S = &arm_cfft_sR_q31_len1024;
|
||
|
break;
|
||
|
case 2048:
|
||
|
S = &arm_cfft_sR_q31_len2048;
|
||
|
break;
|
||
|
case 4096:
|
||
|
S = &arm_cfft_sR_q31_len4096;
|
||
|
break;
|
||
|
}
|
||
|
@endcode
|
||
|
|
||
|
*/
|
||
|
|
||
|
void arm_cfft_radix8by2_f32 (arm_cfft_instance_f32 * S, float32_t * p1)
|
||
|
{
|
||
|
uint32_t L = S->fftLen;
|
||
|
float32_t * pCol1, * pCol2, * pMid1, * pMid2;
|
||
|
float32_t * p2 = p1 + L;
|
||
|
const float32_t * tw = (float32_t *) S->pTwiddle;
|
||
|
float32_t t1[4], t2[4], t3[4], t4[4], twR, twI;
|
||
|
float32_t m0, m1, m2, m3;
|
||
|
uint32_t l;
|
||
|
|
||
|
pCol1 = p1;
|
||
|
pCol2 = p2;
|
||
|
|
||
|
/* Define new length */
|
||
|
L >>= 1;
|
||
|
|
||
|
/* Initialize mid pointers */
|
||
|
pMid1 = p1 + L;
|
||
|
pMid2 = p2 + L;
|
||
|
|
||
|
/* do two dot Fourier transform */
|
||
|
for (l = L >> 2; l > 0; l-- )
|
||
|
{
|
||
|
t1[0] = p1[0];
|
||
|
t1[1] = p1[1];
|
||
|
t1[2] = p1[2];
|
||
|
t1[3] = p1[3];
|
||
|
|
||
|
t2[0] = p2[0];
|
||
|
t2[1] = p2[1];
|
||
|
t2[2] = p2[2];
|
||
|
t2[3] = p2[3];
|
||
|
|
||
|
t3[0] = pMid1[0];
|
||
|
t3[1] = pMid1[1];
|
||
|
t3[2] = pMid1[2];
|
||
|
t3[3] = pMid1[3];
|
||
|
|
||
|
t4[0] = pMid2[0];
|
||
|
t4[1] = pMid2[1];
|
||
|
t4[2] = pMid2[2];
|
||
|
t4[3] = pMid2[3];
|
||
|
|
||
|
*p1++ = t1[0] + t2[0];
|
||
|
*p1++ = t1[1] + t2[1];
|
||
|
*p1++ = t1[2] + t2[2];
|
||
|
*p1++ = t1[3] + t2[3]; /* col 1 */
|
||
|
|
||
|
t2[0] = t1[0] - t2[0];
|
||
|
t2[1] = t1[1] - t2[1];
|
||
|
t2[2] = t1[2] - t2[2];
|
||
|
t2[3] = t1[3] - t2[3]; /* for col 2 */
|
||
|
|
||
|
*pMid1++ = t3[0] + t4[0];
|
||
|
*pMid1++ = t3[1] + t4[1];
|
||
|
*pMid1++ = t3[2] + t4[2];
|
||
|
*pMid1++ = t3[3] + t4[3]; /* col 1 */
|
||
|
|
||
|
t4[0] = t4[0] - t3[0];
|
||
|
t4[1] = t4[1] - t3[1];
|
||
|
t4[2] = t4[2] - t3[2];
|
||
|
t4[3] = t4[3] - t3[3]; /* for col 2 */
|
||
|
|
||
|
twR = *tw++;
|
||
|
twI = *tw++;
|
||
|
|
||
|
/* multiply by twiddle factors */
|
||
|
m0 = t2[0] * twR;
|
||
|
m1 = t2[1] * twI;
|
||
|
m2 = t2[1] * twR;
|
||
|
m3 = t2[0] * twI;
|
||
|
|
||
|
/* R = R * Tr - I * Ti */
|
||
|
*p2++ = m0 + m1;
|
||
|
/* I = I * Tr + R * Ti */
|
||
|
*p2++ = m2 - m3;
|
||
|
|
||
|
/* use vertical symmetry */
|
||
|
/* 0.9988 - 0.0491i <==> -0.0491 - 0.9988i */
|
||
|
m0 = t4[0] * twI;
|
||
|
m1 = t4[1] * twR;
|
||
|
m2 = t4[1] * twI;
|
||
|
m3 = t4[0] * twR;
|
||
|
|
||
|
*pMid2++ = m0 - m1;
|
||
|
*pMid2++ = m2 + m3;
|
||
|
|
||
|
twR = *tw++;
|
||
|
twI = *tw++;
|
||
|
|
||
|
m0 = t2[2] * twR;
|
||
|
m1 = t2[3] * twI;
|
||
|
m2 = t2[3] * twR;
|
||
|
m3 = t2[2] * twI;
|
||
|
|
||
|
*p2++ = m0 + m1;
|
||
|
*p2++ = m2 - m3;
|
||
|
|
||
|
m0 = t4[2] * twI;
|
||
|
m1 = t4[3] * twR;
|
||
|
m2 = t4[3] * twI;
|
||
|
m3 = t4[2] * twR;
|
||
|
|
||
|
*pMid2++ = m0 - m1;
|
||
|
*pMid2++ = m2 + m3;
|
||
|
}
|
||
|
|
||
|
/* first col */
|
||
|
arm_radix8_butterfly_f32 (pCol1, L, (float32_t *) S->pTwiddle, 2U);
|
||
|
|
||
|
/* second col */
|
||
|
arm_radix8_butterfly_f32 (pCol2, L, (float32_t *) S->pTwiddle, 2U);
|
||
|
}
|
||
|
|
||
|
void arm_cfft_radix8by4_f32 (arm_cfft_instance_f32 * S, float32_t * p1)
|
||
|
{
|
||
|
uint32_t L = S->fftLen >> 1;
|
||
|
float32_t * pCol1, *pCol2, *pCol3, *pCol4, *pEnd1, *pEnd2, *pEnd3, *pEnd4;
|
||
|
const float32_t *tw2, *tw3, *tw4;
|
||
|
float32_t * p2 = p1 + L;
|
||
|
float32_t * p3 = p2 + L;
|
||
|
float32_t * p4 = p3 + L;
|
||
|
float32_t t2[4], t3[4], t4[4], twR, twI;
|
||
|
float32_t p1ap3_0, p1sp3_0, p1ap3_1, p1sp3_1;
|
||
|
float32_t m0, m1, m2, m3;
|
||
|
uint32_t l, twMod2, twMod3, twMod4;
|
||
|
|
||
|
pCol1 = p1; /* points to real values by default */
|
||
|
pCol2 = p2;
|
||
|
pCol3 = p3;
|
||
|
pCol4 = p4;
|
||
|
pEnd1 = p2 - 1; /* points to imaginary values by default */
|
||
|
pEnd2 = p3 - 1;
|
||
|
pEnd3 = p4 - 1;
|
||
|
pEnd4 = pEnd3 + L;
|
||
|
|
||
|
tw2 = tw3 = tw4 = (float32_t *) S->pTwiddle;
|
||
|
|
||
|
L >>= 1;
|
||
|
|
||
|
/* do four dot Fourier transform */
|
||
|
|
||
|
twMod2 = 2;
|
||
|
twMod3 = 4;
|
||
|
twMod4 = 6;
|
||
|
|
||
|
/* TOP */
|
||
|
p1ap3_0 = p1[0] + p3[0];
|
||
|
p1sp3_0 = p1[0] - p3[0];
|
||
|
p1ap3_1 = p1[1] + p3[1];
|
||
|
p1sp3_1 = p1[1] - p3[1];
|
||
|
|
||
|
/* col 2 */
|
||
|
t2[0] = p1sp3_0 + p2[1] - p4[1];
|
||
|
t2[1] = p1sp3_1 - p2[0] + p4[0];
|
||
|
/* col 3 */
|
||
|
t3[0] = p1ap3_0 - p2[0] - p4[0];
|
||
|
t3[1] = p1ap3_1 - p2[1] - p4[1];
|
||
|
/* col 4 */
|
||
|
t4[0] = p1sp3_0 - p2[1] + p4[1];
|
||
|
t4[1] = p1sp3_1 + p2[0] - p4[0];
|
||
|
/* col 1 */
|
||
|
*p1++ = p1ap3_0 + p2[0] + p4[0];
|
||
|
*p1++ = p1ap3_1 + p2[1] + p4[1];
|
||
|
|
||
|
/* Twiddle factors are ones */
|
||
|
*p2++ = t2[0];
|
||
|
*p2++ = t2[1];
|
||
|
*p3++ = t3[0];
|
||
|
*p3++ = t3[1];
|
||
|
*p4++ = t4[0];
|
||
|
*p4++ = t4[1];
|
||
|
|
||
|
tw2 += twMod2;
|
||
|
tw3 += twMod3;
|
||
|
tw4 += twMod4;
|
||
|
|
||
|
for (l = (L - 2) >> 1; l > 0; l-- )
|
||
|
{
|
||
|
/* TOP */
|
||
|
p1ap3_0 = p1[0] + p3[0];
|
||
|
p1sp3_0 = p1[0] - p3[0];
|
||
|
p1ap3_1 = p1[1] + p3[1];
|
||
|
p1sp3_1 = p1[1] - p3[1];
|
||
|
/* col 2 */
|
||
|
t2[0] = p1sp3_0 + p2[1] - p4[1];
|
||
|
t2[1] = p1sp3_1 - p2[0] + p4[0];
|
||
|
/* col 3 */
|
||
|
t3[0] = p1ap3_0 - p2[0] - p4[0];
|
||
|
t3[1] = p1ap3_1 - p2[1] - p4[1];
|
||
|
/* col 4 */
|
||
|
t4[0] = p1sp3_0 - p2[1] + p4[1];
|
||
|
t4[1] = p1sp3_1 + p2[0] - p4[0];
|
||
|
/* col 1 - top */
|
||
|
*p1++ = p1ap3_0 + p2[0] + p4[0];
|
||
|
*p1++ = p1ap3_1 + p2[1] + p4[1];
|
||
|
|
||
|
/* BOTTOM */
|
||
|
p1ap3_1 = pEnd1[-1] + pEnd3[-1];
|
||
|
p1sp3_1 = pEnd1[-1] - pEnd3[-1];
|
||
|
p1ap3_0 = pEnd1[ 0] + pEnd3[0];
|
||
|
p1sp3_0 = pEnd1[ 0] - pEnd3[0];
|
||
|
/* col 2 */
|
||
|
t2[2] = pEnd2[0] - pEnd4[0] + p1sp3_1;
|
||
|
t2[3] = pEnd1[0] - pEnd3[0] - pEnd2[-1] + pEnd4[-1];
|
||
|
/* col 3 */
|
||
|
t3[2] = p1ap3_1 - pEnd2[-1] - pEnd4[-1];
|
||
|
t3[3] = p1ap3_0 - pEnd2[ 0] - pEnd4[ 0];
|
||
|
/* col 4 */
|
||
|
t4[2] = pEnd2[ 0] - pEnd4[ 0] - p1sp3_1;
|
||
|
t4[3] = pEnd4[-1] - pEnd2[-1] - p1sp3_0;
|
||
|
/* col 1 - Bottom */
|
||
|
*pEnd1-- = p1ap3_0 + pEnd2[ 0] + pEnd4[ 0];
|
||
|
*pEnd1-- = p1ap3_1 + pEnd2[-1] + pEnd4[-1];
|
||
|
|
||
|
/* COL 2 */
|
||
|
/* read twiddle factors */
|
||
|
twR = *tw2++;
|
||
|
twI = *tw2++;
|
||
|
/* multiply by twiddle factors */
|
||
|
/* let Z1 = a + i(b), Z2 = c + i(d) */
|
||
|
/* => Z1 * Z2 = (a*c - b*d) + i(b*c + a*d) */
|
||
|
|
||
|
/* Top */
|
||
|
m0 = t2[0] * twR;
|
||
|
m1 = t2[1] * twI;
|
||
|
m2 = t2[1] * twR;
|
||
|
m3 = t2[0] * twI;
|
||
|
|
||
|
*p2++ = m0 + m1;
|
||
|
*p2++ = m2 - m3;
|
||
|
/* use vertical symmetry col 2 */
|
||
|
/* 0.9997 - 0.0245i <==> 0.0245 - 0.9997i */
|
||
|
/* Bottom */
|
||
|
m0 = t2[3] * twI;
|
||
|
m1 = t2[2] * twR;
|
||
|
m2 = t2[2] * twI;
|
||
|
m3 = t2[3] * twR;
|
||
|
|
||
|
*pEnd2-- = m0 - m1;
|
||
|
*pEnd2-- = m2 + m3;
|
||
|
|
||
|
/* COL 3 */
|
||
|
twR = tw3[0];
|
||
|
twI = tw3[1];
|
||
|
tw3 += twMod3;
|
||
|
/* Top */
|
||
|
m0 = t3[0] * twR;
|
||
|
m1 = t3[1] * twI;
|
||
|
m2 = t3[1] * twR;
|
||
|
m3 = t3[0] * twI;
|
||
|
|
||
|
*p3++ = m0 + m1;
|
||
|
*p3++ = m2 - m3;
|
||
|
/* use vertical symmetry col 3 */
|
||
|
/* 0.9988 - 0.0491i <==> -0.9988 - 0.0491i */
|
||
|
/* Bottom */
|
||
|
m0 = -t3[3] * twR;
|
||
|
m1 = t3[2] * twI;
|
||
|
m2 = t3[2] * twR;
|
||
|
m3 = t3[3] * twI;
|
||
|
|
||
|
*pEnd3-- = m0 - m1;
|
||
|
*pEnd3-- = m3 - m2;
|
||
|
|
||
|
/* COL 4 */
|
||
|
twR = tw4[0];
|
||
|
twI = tw4[1];
|
||
|
tw4 += twMod4;
|
||
|
/* Top */
|
||
|
m0 = t4[0] * twR;
|
||
|
m1 = t4[1] * twI;
|
||
|
m2 = t4[1] * twR;
|
||
|
m3 = t4[0] * twI;
|
||
|
|
||
|
*p4++ = m0 + m1;
|
||
|
*p4++ = m2 - m3;
|
||
|
/* use vertical symmetry col 4 */
|
||
|
/* 0.9973 - 0.0736i <==> -0.0736 + 0.9973i */
|
||
|
/* Bottom */
|
||
|
m0 = t4[3] * twI;
|
||
|
m1 = t4[2] * twR;
|
||
|
m2 = t4[2] * twI;
|
||
|
m3 = t4[3] * twR;
|
||
|
|
||
|
*pEnd4-- = m0 - m1;
|
||
|
*pEnd4-- = m2 + m3;
|
||
|
}
|
||
|
|
||
|
/* MIDDLE */
|
||
|
/* Twiddle factors are */
|
||
|
/* 1.0000 0.7071-0.7071i -1.0000i -0.7071-0.7071i */
|
||
|
p1ap3_0 = p1[0] + p3[0];
|
||
|
p1sp3_0 = p1[0] - p3[0];
|
||
|
p1ap3_1 = p1[1] + p3[1];
|
||
|
p1sp3_1 = p1[1] - p3[1];
|
||
|
|
||
|
/* col 2 */
|
||
|
t2[0] = p1sp3_0 + p2[1] - p4[1];
|
||
|
t2[1] = p1sp3_1 - p2[0] + p4[0];
|
||
|
/* col 3 */
|
||
|
t3[0] = p1ap3_0 - p2[0] - p4[0];
|
||
|
t3[1] = p1ap3_1 - p2[1] - p4[1];
|
||
|
/* col 4 */
|
||
|
t4[0] = p1sp3_0 - p2[1] + p4[1];
|
||
|
t4[1] = p1sp3_1 + p2[0] - p4[0];
|
||
|
/* col 1 - Top */
|
||
|
*p1++ = p1ap3_0 + p2[0] + p4[0];
|
||
|
*p1++ = p1ap3_1 + p2[1] + p4[1];
|
||
|
|
||
|
/* COL 2 */
|
||
|
twR = tw2[0];
|
||
|
twI = tw2[1];
|
||
|
|
||
|
m0 = t2[0] * twR;
|
||
|
m1 = t2[1] * twI;
|
||
|
m2 = t2[1] * twR;
|
||
|
m3 = t2[0] * twI;
|
||
|
|
||
|
*p2++ = m0 + m1;
|
||
|
*p2++ = m2 - m3;
|
||
|
/* COL 3 */
|
||
|
twR = tw3[0];
|
||
|
twI = tw3[1];
|
||
|
|
||
|
m0 = t3[0] * twR;
|
||
|
m1 = t3[1] * twI;
|
||
|
m2 = t3[1] * twR;
|
||
|
m3 = t3[0] * twI;
|
||
|
|
||
|
*p3++ = m0 + m1;
|
||
|
*p3++ = m2 - m3;
|
||
|
/* COL 4 */
|
||
|
twR = tw4[0];
|
||
|
twI = tw4[1];
|
||
|
|
||
|
m0 = t4[0] * twR;
|
||
|
m1 = t4[1] * twI;
|
||
|
m2 = t4[1] * twR;
|
||
|
m3 = t4[0] * twI;
|
||
|
|
||
|
*p4++ = m0 + m1;
|
||
|
*p4++ = m2 - m3;
|
||
|
|
||
|
/* first col */
|
||
|
arm_radix8_butterfly_f32 (pCol1, L, (float32_t *) S->pTwiddle, 4U);
|
||
|
|
||
|
/* second col */
|
||
|
arm_radix8_butterfly_f32 (pCol2, L, (float32_t *) S->pTwiddle, 4U);
|
||
|
|
||
|
/* third col */
|
||
|
arm_radix8_butterfly_f32 (pCol3, L, (float32_t *) S->pTwiddle, 4U);
|
||
|
|
||
|
/* fourth col */
|
||
|
arm_radix8_butterfly_f32 (pCol4, L, (float32_t *) S->pTwiddle, 4U);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
@addtogroup ComplexFFT
|
||
|
@{
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
@brief Processing function for the floating-point complex FFT.
|
||
|
@param[in] S points to an instance of the floating-point CFFT structure
|
||
|
@param[in,out] p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place
|
||
|
@param[in] ifftFlag flag that selects transform direction
|
||
|
- value = 0: forward transform
|
||
|
- value = 1: inverse transform
|
||
|
@param[in] bitReverseFlag flag that enables / disables bit reversal of output
|
||
|
- value = 0: disables bit reversal of output
|
||
|
- value = 1: enables bit reversal of output
|
||
|
@return none
|
||
|
*/
|
||
|
|
||
|
void arm_cfft_f32(
|
||
|
const arm_cfft_instance_f32 * S,
|
||
|
float32_t * p1,
|
||
|
uint8_t ifftFlag,
|
||
|
uint8_t bitReverseFlag)
|
||
|
{
|
||
|
uint32_t L = S->fftLen, l;
|
||
|
float32_t invL, * pSrc;
|
||
|
|
||
|
if (ifftFlag == 1U)
|
||
|
{
|
||
|
/* Conjugate input data */
|
||
|
pSrc = p1 + 1;
|
||
|
for (l = 0; l < L; l++)
|
||
|
{
|
||
|
*pSrc = -*pSrc;
|
||
|
pSrc += 2;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
switch (L)
|
||
|
{
|
||
|
case 16:
|
||
|
case 128:
|
||
|
case 1024:
|
||
|
arm_cfft_radix8by2_f32 ( (arm_cfft_instance_f32 *) S, p1);
|
||
|
break;
|
||
|
case 32:
|
||
|
case 256:
|
||
|
case 2048:
|
||
|
arm_cfft_radix8by4_f32 ( (arm_cfft_instance_f32 *) S, p1);
|
||
|
break;
|
||
|
case 64:
|
||
|
case 512:
|
||
|
case 4096:
|
||
|
arm_radix8_butterfly_f32 ( p1, L, (float32_t *) S->pTwiddle, 1);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if ( bitReverseFlag )
|
||
|
arm_bitreversal_32 ((uint32_t*) p1, S->bitRevLength, S->pBitRevTable);
|
||
|
|
||
|
if (ifftFlag == 1U)
|
||
|
{
|
||
|
invL = 1.0f / (float32_t)L;
|
||
|
|
||
|
/* Conjugate and scale output data */
|
||
|
pSrc = p1;
|
||
|
for (l= 0; l < L; l++)
|
||
|
{
|
||
|
*pSrc++ *= invL ;
|
||
|
*pSrc = -(*pSrc) * invL;
|
||
|
pSrc++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
@} end of ComplexFFT group
|
||
|
*/
|