steering-wheel/lib/FT_2018_STW_CAN/FT_2018_STW_CAN.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

241 lines
7.4 KiB
C++
Raw Normal View History

/*
FT_2018_STW_CAN.cpp
*/
#include "FT_2018_STW_CAN.h"
#include "Arduino.h"
#include "DueTimer.h"
#include "FT18_STW_INIT.h"
#include "due_can.h"
CAN_FRAME can_0_msg;
// can_1_msg.id = 0x110;
int can_0_temp_data = 0;
int leds[] = {led1, led2, led3, led4, led5, led6, led7, led8,
led9, led10, led11, led12, led13, led14, led15, led16};
void Init_Can_0() {
Can0.begin(1000000); // set CAN0 baud to 1kbit/s and don`t use enable pin!
Can0.setNumTXBoxes(1); // reserves mailbox 0 for tx only 8 mailboxes are
// available (the other 7 mailboxes are for rx)
2022-03-14 16:27:52 +01:00
// We only have 7 mailboxes, but want to receive 8 messages. This trick should
// allow us to receive BCU_APS_BRAKE and BCU_ETC in the same mailbox.
Can0.watchFor(CAN_ID_BCU_APS_BRAKE & CAN_ID_BCU_ETC,
~(CAN_ID_BCU_APS_BRAKE ^ CAN_ID_BCU_ETC));
Can0.watchFor(CAN_ID_BCU_SHIFT_CTRL);
Can0.watchFor(CAN_ID_BCU_LAP_TIME);
Can0.watchFor(CAN_ID_MS4_IGN_REV_ATH);
Can0.watchFor(CAN_ID_MS4_SPEED);
Can0.watchFor(CAN_ID_MS4_ETC);
Can0.watchFor(CAN_ID_MS4_STATES_TEMP_PRESS);
Can0.setGeneralCallback(Receive_Can_0);
Timer3.attachInterrupt(Send_0x110); // set send interrupt
Timer3.start(10000); // Calls every 10ms
}
void Send_0x110() {
read_buttons();
read_rotary();
can_0_msg.id = 0x110;
can_0_msg.fid = 0;
can_0_msg.rtr = 0;
can_0_msg.priority = 0;
can_0_msg.length = 2;
can_0_msg.extended = 0;
can_0_temp_data = 0;
can_0_temp_data |= Stw_data.Stw_shift_up & 0b00000001;
can_0_temp_data |= Stw_data.Stw_shift_down << 1 & 0b00000010;
can_0_temp_data |= Stw_data.Stw_neutral << 2 & 0b00000100;
can_0_temp_data |= Stw_data.Stw_auto_shift << 3 & 0b00001000;
can_0_temp_data |= Stw_data.buttonStateEnc1 << 5 & 0b00100000; // pitlane
can_0_msg.data.byte[0] = can_0_temp_data;
can_0_msg.data.byte[1] = Stw_data.trc & 0b00001111;
can_0_msg.data.byte[2] = Stw_data.mode & 0b00000111;
if ((Stw_data.Stw_auto_shift << 3 & 0b00001000)) {
if (Vehicle_data.g_auto) {
Vehicle_data.g_auto = false;
} else {
Vehicle_data.g_auto = true;
}
}
Can0.sendFrame(can_0_msg);
}
void Receive_Can_0(CAN_FRAME *temp_message) {
switch (temp_message->id) {
case CAN_ID_BCU_APS_BRAKE: {
Vehicle_data.p_brake_front = temp_message->data.byte[1];
Vehicle_data.p_brake_rear = temp_message->data.byte[2];
break;
}
case CAN_ID_BCU_ETC: { // eDrossel error bit
Vehicle_data.e_thro = (temp_message->data.byte[0] & 0xF0); // bit 4-7
if (temp_message->data.byte[0] & 0x80) {
Stw_data.error_type = 1; //"pc_error";
}
if (temp_message->data.byte[0] & 0x40) {
Stw_data.error_type = 2; //"bse_error";
}
if (temp_message->data.byte[0] & 0x20) {
Stw_data.error_type = 3; //"aps_error";
}
if (temp_message->data.byte[0] & 0x10) {
Stw_data.error_type = 4; //"etb_error";
}
break;
}
case CAN_ID_BCU_SHIFT_CTRL: { // autoshift+gear
Vehicle_data.gear = (temp_message->data.byte[1]) >> 5;
break;
}
case CAN_ID_BCU_LAP_TIME: { // lap time
Vehicle_data.lap_time_sec = temp_message->data.byte[1];
Vehicle_data.lap_time_msec = temp_message->data.byte[1];
}
case CAN_ID_MS4_IGN_REV_ATH: { // rpm
Vehicle_data.revol =
(temp_message->data.byte[5] | temp_message->data.byte[4] << 8);
break;
}
case CAN_ID_MS4_SPEED: { // speed
Vehicle_data.speed_fl = 2 * (temp_message->data.byte[2]);
Vehicle_data.speed_fr = 2 * (temp_message->data.byte[3]);
Vehicle_data.speed = (Vehicle_data.speed_fl + Vehicle_data.speed_fr) / 2;
break;
}
case CAN_ID_MS4_ETC: { // battery voltage
Vehicle_data.u_batt = temp_message->data.byte[6];
break;
}
case CAN_ID_MS4_STATES_TEMP_PRESS: { // temp und p
if (temp_message->data.byte[0] == 1) {
Vehicle_data.p_oil = temp_message->data.byte[5];
Vehicle_data.p_fuel = temp_message->data.byte[7];
} else if (temp_message->data.byte[0] == 2) {
Vehicle_data.t_air = temp_message->data.byte[7];
} else if (temp_message->data.byte[0] == 4) {
Vehicle_data.t_oil = temp_message->data.byte[5];
} else if (temp_message->data.byte[0] == 5) {
Vehicle_data.t_mot = temp_message->data.byte[4];
}
break;
}
}
}
void update_LED() {
// Copyright Michael Dietzel
// m.dietzel@fasttube.de
// Edit Michael Witt 05-2015
// m.witt@fasttube.de
// EDIT BAHA ZARROUKI 05-2107
// z.baha@fasttube.de
// alle Werte als Hex-Werte angegeben
bool t_oil = (Vehicle_data.t_oil - 40) >= 0x96; // 150°C temp.oil
bool t_air = (Vehicle_data.t_air - 40) >= 0x3C; // 60°C temp.llk
bool t_mot =
((Vehicle_data.t_mot - 40) >= 0x69) and
((Vehicle_data.t_mot - 40) != 0xC8); // 105°C temp.water und !=200
bool g_auto = Vehicle_data.g_auto;
bool u_batt = Vehicle_data.u_batt <= 0xB1; // 12.5V batt.spann.
bool e_dros = Vehicle_data.e_thro; // error-bit
bool rev_lim = Vehicle_data.rev_lim;
uint16_t rev = Vehicle_data.revol;
/*if(Vehicle_data.rev_lim){
for (int j = 0; j < 10; j++){
digitalWrite(leds[j], HIGH);
//analogWrite(leds[j], STW_data.br); //nur eine der zwei
zeilen
}
delay(100);
for (int j = 0; j < 10; j++){
digitalWrite(leds[j], LOW);
}
delay(100);
}else{*/
/*uint8_t helligkeit = 20;
if(RPM_THRES_1 <= rev){
analogWrite(led1, helligkeit);
}else{
analogWrite(led1, 0);
}
if(RPM_THRES_2 <= rev){
analogWrite(led2, helligkeit);
}else{
analogWrite(led2, 0);
}
if(RPM_THRES_3 <= rev){
analogWrite(led3, helligkeit);
}else{
analogWrite(led3, 0);
}
if(RPM_THRES_4 <= rev){
analogWrite(led4, helligkeit);
}else{
analogWrite(led4, 0);
}
if(RPM_THRES_5 <= rev){
analogWrite(led5, helligkeit);
}else{
analogWrite(led5, 0);
}
if(RPM_THRES_6 <= rev){
analogWrite(led6, helligkeit);
}else{
analogWrite(led6, 0);
}
if(RPM_THRES_7 <= rev){
analogWrite(led7, helligkeit);
}else{
analogWrite(led7, 0);
}
if(RPM_THRES_8 <= rev){
analogWrite(led8, helligkeit);
}else{
analogWrite(led8, 0);
}
if(RPM_THRES_9 <= rev){
analogWrite(led9, helligkeit);
}else{
analogWrite(led9, 0);
}
if(RPM_THRES_10 <= rev){
analogWrite(led10, helligkeit);
}else{
analogWrite(led10, 0);
}*/
digitalWrite(led1, RPM_THRES_1 <= rev);
digitalWrite(led2, RPM_THRES_2 <= rev);
digitalWrite(led3, RPM_THRES_3 <= rev);
digitalWrite(led4, RPM_THRES_4 <= rev);
digitalWrite(led5, RPM_THRES_5 <= rev);
digitalWrite(led6, RPM_THRES_6 <= rev);
digitalWrite(led7, RPM_THRES_7 <= rev);
digitalWrite(led8, RPM_THRES_8 <= rev);
digitalWrite(led9, RPM_THRES_9 <= rev);
digitalWrite(led10, RPM_THRES_10 <= rev);
digitalWrite(led11, t_mot); // rot, links, oben
digitalWrite(led12, t_air); // rot, links, mitte
digitalWrite(led13, t_oil); // rot, links, unten
digitalWrite(led14, e_dros); // rot, rechts, oben
digitalWrite(led15, u_batt); // rot rechts, mitte
digitalWrite(led16, g_auto); // blau rechts, unten
/*if(Vehicle_data.g_auto){
digitalWrite(led16, HIGH);
}else{
digitalWrite(led16, LOW);
}*/
}