/** ****************************************************************************** * @file stm32g4xx_hal_pwr_ex.c * @author MCD Application Team * @brief Extended PWR HAL module driver. * This file provides firmware functions to manage the following * functionalities of the Power Controller (PWR) peripheral: * + Extended Initialization and de-initialization functions * + Extended Peripheral Control functions * ****************************************************************************** * @attention * * Copyright (c) 2019 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32g4xx_hal.h" /** @addtogroup STM32G4xx_HAL_Driver * @{ */ /** @defgroup PWREx PWREx * @brief PWR Extended HAL module driver * @{ */ #ifdef HAL_PWR_MODULE_ENABLED /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ #if defined (STM32G471xx) || defined (STM32G473xx) || defined (STM32G474xx) || defined (STM32G483xx) || defined (STM32G484xx) #define PWR_PORTF_AVAILABLE_PINS 0x0000FFFFU /* PF0..PF15 */ #define PWR_PORTG_AVAILABLE_PINS 0x000007FFU /* PG0..PG10 */ #elif defined (STM32G431xx) || defined (STM32G441xx) || defined (STM32GBK1CB) || defined (STM32G491xx) || defined (STM32G4A1xx) #define PWR_PORTF_AVAILABLE_PINS 0x00000607U /* PF0..PF2 and PF9 and PF10 */ #define PWR_PORTG_AVAILABLE_PINS 0x00000400U /* PG10 */ #endif /** @defgroup PWR_Extended_Private_Defines PWR Extended Private Defines * @{ */ /** @defgroup PWREx_PVM_Mode_Mask PWR PVM Mode Mask * @{ */ #define PVM_MODE_IT 0x00010000U /*!< Mask for interruption yielded by PVM threshold crossing */ #define PVM_MODE_EVT 0x00020000U /*!< Mask for event yielded by PVM threshold crossing */ #define PVM_RISING_EDGE 0x00000001U /*!< Mask for rising edge set as PVM trigger */ #define PVM_FALLING_EDGE 0x00000002U /*!< Mask for falling edge set as PVM trigger */ /** * @} */ /** @defgroup PWREx_TimeOut_Value PWR Extended Flag Setting Time Out Value * @{ */ #define PWR_FLAG_SETTING_DELAY_US 50UL /*!< Time out value for REGLPF and VOSF flags setting */ /** * @} */ /** * @} */ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Exported functions --------------------------------------------------------*/ /** @defgroup PWREx_Exported_Functions PWR Extended Exported Functions * @{ */ /** @defgroup PWREx_Exported_Functions_Group1 Extended Peripheral Control functions * @brief Extended Peripheral Control functions * @verbatim =============================================================================== ##### Extended Peripheral Initialization and de-initialization functions ##### =============================================================================== [..] @endverbatim * @{ */ /** * @brief Return Voltage Scaling Range. * @retval VOS bit field (PWR_REGULATOR_VOLTAGE_SCALE1 or PWR_REGULATOR_VOLTAGE_SCALE2 * or PWR_REGULATOR_VOLTAGE_SCALE1_BOOST when applicable) */ uint32_t HAL_PWREx_GetVoltageRange(void) { if (READ_BIT(PWR->CR1, PWR_CR1_VOS) == PWR_REGULATOR_VOLTAGE_SCALE2) { return PWR_REGULATOR_VOLTAGE_SCALE2; } else if (READ_BIT(PWR->CR5, PWR_CR5_R1MODE) == PWR_CR5_R1MODE) { /* PWR_CR5_R1MODE bit set means that Range 1 Boost is disabled */ return PWR_REGULATOR_VOLTAGE_SCALE1; } else { return PWR_REGULATOR_VOLTAGE_SCALE1_BOOST; } } /** * @brief Configure the main internal regulator output voltage. * @param VoltageScaling: specifies the regulator output voltage to achieve * a tradeoff between performance and power consumption. * This parameter can be one of the following values: * @arg @ref PWR_REGULATOR_VOLTAGE_SCALE1_BOOST when available, Regulator voltage output range 1 boost mode, * typical output voltage at 1.28 V, * system frequency up to 170 MHz. * @arg @ref PWR_REGULATOR_VOLTAGE_SCALE1 Regulator voltage output range 1 mode, * typical output voltage at 1.2 V, * system frequency up to 150 MHz. * @arg @ref PWR_REGULATOR_VOLTAGE_SCALE2 Regulator voltage output range 2 mode, * typical output voltage at 1.0 V, * system frequency up to 26 MHz. * @note When moving from Range 1 to Range 2, the system frequency must be decreased to * a value below 26 MHz before calling HAL_PWREx_ControlVoltageScaling() API. * When moving from Range 2 to Range 1, the system frequency can be increased to * a value up to 150 MHz after calling HAL_PWREx_ControlVoltageScaling() API. * When moving from Range 1 to Boost Mode Range 1, the system frequency can be increased to * a value up to 170 MHz after calling HAL_PWREx_ControlVoltageScaling() API. * @note When moving from Range 2 to Range 1, the API waits for VOSF flag to be * cleared before returning the status. If the flag is not cleared within * 50 microseconds, HAL_TIMEOUT status is reported. * @retval HAL Status */ HAL_StatusTypeDef HAL_PWREx_ControlVoltageScaling(uint32_t VoltageScaling) { uint32_t wait_loop_index; assert_param(IS_PWR_VOLTAGE_SCALING_RANGE(VoltageScaling)); if (VoltageScaling == PWR_REGULATOR_VOLTAGE_SCALE1_BOOST) { /* If current range is range 2 */ if (READ_BIT(PWR->CR1, PWR_CR1_VOS) == PWR_REGULATOR_VOLTAGE_SCALE2) { /* Make sure Range 1 Boost is enabled */ CLEAR_BIT(PWR->CR5, PWR_CR5_R1MODE); /* Set Range 1 */ MODIFY_REG(PWR->CR1, PWR_CR1_VOS, PWR_REGULATOR_VOLTAGE_SCALE1); /* Wait until VOSF is cleared */ wait_loop_index = ((PWR_FLAG_SETTING_DELAY_US * SystemCoreClock) / 1000000U) + 1U; while ((HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_VOSF)) && (wait_loop_index != 0U)) { wait_loop_index--; } if (HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_VOSF)) { return HAL_TIMEOUT; } } /* If current range is range 1 normal or boost mode */ else { /* Enable Range 1 Boost (no issue if bit already reset) */ CLEAR_BIT(PWR->CR5, PWR_CR5_R1MODE); } } else if (VoltageScaling == PWR_REGULATOR_VOLTAGE_SCALE1) { /* If current range is range 2 */ if (READ_BIT(PWR->CR1, PWR_CR1_VOS) == PWR_REGULATOR_VOLTAGE_SCALE2) { /* Make sure Range 1 Boost is disabled */ SET_BIT(PWR->CR5, PWR_CR5_R1MODE); /* Set Range 1 */ MODIFY_REG(PWR->CR1, PWR_CR1_VOS, PWR_REGULATOR_VOLTAGE_SCALE1); /* Wait until VOSF is cleared */ wait_loop_index = ((PWR_FLAG_SETTING_DELAY_US * SystemCoreClock) / 1000000U) + 1U; while ((HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_VOSF)) && (wait_loop_index != 0U)) { wait_loop_index--; } if (HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_VOSF)) { return HAL_TIMEOUT; } } /* If current range is range 1 normal or boost mode */ else { /* Disable Range 1 Boost (no issue if bit already set) */ SET_BIT(PWR->CR5, PWR_CR5_R1MODE); } } else { /* Set Range 2 */ MODIFY_REG(PWR->CR1, PWR_CR1_VOS, PWR_REGULATOR_VOLTAGE_SCALE2); /* No need to wait for VOSF to be cleared for this transition */ /* PWR_CR5_R1MODE bit setting has no effect in Range 2 */ } return HAL_OK; } /** * @brief Enable battery charging. * When VDD is present, charge the external battery on VBAT through an internal resistor. * @param ResistorSelection: specifies the resistor impedance. * This parameter can be one of the following values: * @arg @ref PWR_BATTERY_CHARGING_RESISTOR_5 5 kOhms resistor * @arg @ref PWR_BATTERY_CHARGING_RESISTOR_1_5 1.5 kOhms resistor * @retval None */ void HAL_PWREx_EnableBatteryCharging(uint32_t ResistorSelection) { assert_param(IS_PWR_BATTERY_RESISTOR_SELECT(ResistorSelection)); /* Specify resistor selection */ MODIFY_REG(PWR->CR4, PWR_CR4_VBRS, ResistorSelection); /* Enable battery charging */ SET_BIT(PWR->CR4, PWR_CR4_VBE); } /** * @brief Disable battery charging. * @retval None */ void HAL_PWREx_DisableBatteryCharging(void) { CLEAR_BIT(PWR->CR4, PWR_CR4_VBE); } /** * @brief Enable Internal Wake-up Line. * @retval None */ void HAL_PWREx_EnableInternalWakeUpLine(void) { SET_BIT(PWR->CR3, PWR_CR3_EIWF); } /** * @brief Disable Internal Wake-up Line. * @retval None */ void HAL_PWREx_DisableInternalWakeUpLine(void) { CLEAR_BIT(PWR->CR3, PWR_CR3_EIWF); } /** * @brief Enable GPIO pull-up state in Standby and Shutdown modes. * @note Set the relevant PUy bits of PWR_PUCRx register to configure the I/O in * pull-up state in Standby and Shutdown modes. * @note This state is effective in Standby and Shutdown modes only if APC bit * is set through HAL_PWREx_EnablePullUpPullDownConfig() API. * @note The configuration is lost when exiting the Shutdown mode due to the * power-on reset, maintained when exiting the Standby mode. * @note To avoid any conflict at Standby and Shutdown modes exits, the corresponding * PDy bit of PWR_PDCRx register is cleared unless it is reserved. * @note Even if a PUy bit to set is reserved, the other PUy bits entered as input * parameter at the same time are set. * @param GPIO: Specify the IO port. This parameter can be PWR_GPIO_A, ..., PWR_GPIO_G * (or PWR_GPIO_I depending on the devices) to select the GPIO peripheral. * @param GPIONumber: Specify the I/O pins numbers. * This parameter can be one of the following values: * PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for the port where less * I/O pins are available) or the logical OR of several of them to set * several bits for a given port in a single API call. * @retval HAL Status */ HAL_StatusTypeDef HAL_PWREx_EnableGPIOPullUp(uint32_t GPIO, uint32_t GPIONumber) { HAL_StatusTypeDef status = HAL_OK; assert_param(IS_PWR_GPIO(GPIO)); assert_param(IS_PWR_GPIO_BIT_NUMBER(GPIONumber)); switch (GPIO) { case PWR_GPIO_A: SET_BIT(PWR->PUCRA, (GPIONumber & (~(PWR_GPIO_BIT_14)))); CLEAR_BIT(PWR->PDCRA, (GPIONumber & (~(PWR_GPIO_BIT_13|PWR_GPIO_BIT_15)))); break; case PWR_GPIO_B: SET_BIT(PWR->PUCRB, GPIONumber); CLEAR_BIT(PWR->PDCRB, (GPIONumber & (~(PWR_GPIO_BIT_4)))); break; case PWR_GPIO_C: SET_BIT(PWR->PUCRC, GPIONumber); CLEAR_BIT(PWR->PDCRC, GPIONumber); break; case PWR_GPIO_D: SET_BIT(PWR->PUCRD, GPIONumber); CLEAR_BIT(PWR->PDCRD, GPIONumber); break; case PWR_GPIO_E: SET_BIT(PWR->PUCRE, GPIONumber); CLEAR_BIT(PWR->PDCRE, GPIONumber); break; case PWR_GPIO_F: SET_BIT(PWR->PUCRF, (GPIONumber & PWR_PORTF_AVAILABLE_PINS)); CLEAR_BIT(PWR->PDCRF, (GPIONumber & PWR_PORTF_AVAILABLE_PINS)); break; case PWR_GPIO_G: SET_BIT(PWR->PUCRG, (GPIONumber & PWR_PORTG_AVAILABLE_PINS)); CLEAR_BIT(PWR->PDCRG, ((GPIONumber & PWR_PORTG_AVAILABLE_PINS) & (~(PWR_GPIO_BIT_10)))); break; default: status = HAL_ERROR; break; } return status; } /** * @brief Disable GPIO pull-up state in Standby mode and Shutdown modes. * @note Reset the relevant PUy bits of PWR_PUCRx register used to configure the I/O * in pull-up state in Standby and Shutdown modes. * @note Even if a PUy bit to reset is reserved, the other PUy bits entered as input * parameter at the same time are reset. * @param GPIO: Specifies the IO port. This parameter can be PWR_GPIO_A, ..., PWR_GPIO_G * (or PWR_GPIO_I depending on the devices) to select the GPIO peripheral. * @param GPIONumber: Specify the I/O pins numbers. * This parameter can be one of the following values: * PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for the port where less * I/O pins are available) or the logical OR of several of them to reset * several bits for a given port in a single API call. * @retval HAL Status */ HAL_StatusTypeDef HAL_PWREx_DisableGPIOPullUp(uint32_t GPIO, uint32_t GPIONumber) { HAL_StatusTypeDef status = HAL_OK; assert_param(IS_PWR_GPIO(GPIO)); assert_param(IS_PWR_GPIO_BIT_NUMBER(GPIONumber)); switch (GPIO) { case PWR_GPIO_A: CLEAR_BIT(PWR->PUCRA, (GPIONumber & (~(PWR_GPIO_BIT_14)))); break; case PWR_GPIO_B: CLEAR_BIT(PWR->PUCRB, GPIONumber); break; case PWR_GPIO_C: CLEAR_BIT(PWR->PUCRC, GPIONumber); break; case PWR_GPIO_D: CLEAR_BIT(PWR->PUCRD, GPIONumber); break; case PWR_GPIO_E: CLEAR_BIT(PWR->PUCRE, GPIONumber); break; case PWR_GPIO_F: CLEAR_BIT(PWR->PUCRF, (GPIONumber & PWR_PORTF_AVAILABLE_PINS)); break; case PWR_GPIO_G: CLEAR_BIT(PWR->PUCRG, (GPIONumber & PWR_PORTG_AVAILABLE_PINS)); break; default: status = HAL_ERROR; break; } return status; } /** * @brief Enable GPIO pull-down state in Standby and Shutdown modes. * @note Set the relevant PDy bits of PWR_PDCRx register to configure the I/O in * pull-down state in Standby and Shutdown modes. * @note This state is effective in Standby and Shutdown modes only if APC bit * is set through HAL_PWREx_EnablePullUpPullDownConfig() API. * @note The configuration is lost when exiting the Shutdown mode due to the * power-on reset, maintained when exiting the Standby mode. * @note To avoid any conflict at Standby and Shutdown modes exits, the corresponding * PUy bit of PWR_PUCRx register is cleared unless it is reserved. * @note Even if a PDy bit to set is reserved, the other PDy bits entered as input * parameter at the same time are set. * @param GPIO: Specify the IO port. This parameter can be PWR_GPIO_A..PWR_GPIO_G * (or PWR_GPIO_I depending on the devices) to select the GPIO peripheral. * @param GPIONumber: Specify the I/O pins numbers. * This parameter can be one of the following values: * PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for the port where less * I/O pins are available) or the logical OR of several of them to set * several bits for a given port in a single API call. * @retval HAL Status */ HAL_StatusTypeDef HAL_PWREx_EnableGPIOPullDown(uint32_t GPIO, uint32_t GPIONumber) { HAL_StatusTypeDef status = HAL_OK; assert_param(IS_PWR_GPIO(GPIO)); assert_param(IS_PWR_GPIO_BIT_NUMBER(GPIONumber)); switch (GPIO) { case PWR_GPIO_A: SET_BIT(PWR->PDCRA, (GPIONumber & (~(PWR_GPIO_BIT_13|PWR_GPIO_BIT_15)))); CLEAR_BIT(PWR->PUCRA, (GPIONumber & (~(PWR_GPIO_BIT_14)))); break; case PWR_GPIO_B: SET_BIT(PWR->PDCRB, (GPIONumber & (~(PWR_GPIO_BIT_4)))); CLEAR_BIT(PWR->PUCRB, GPIONumber); break; case PWR_GPIO_C: SET_BIT(PWR->PDCRC, GPIONumber); CLEAR_BIT(PWR->PUCRC, GPIONumber); break; case PWR_GPIO_D: SET_BIT(PWR->PDCRD, GPIONumber); CLEAR_BIT(PWR->PUCRD, GPIONumber); break; case PWR_GPIO_E: SET_BIT(PWR->PDCRE, GPIONumber); CLEAR_BIT(PWR->PUCRE, GPIONumber); break; case PWR_GPIO_F: SET_BIT(PWR->PDCRF, (GPIONumber & PWR_PORTF_AVAILABLE_PINS)); CLEAR_BIT(PWR->PUCRF, (GPIONumber & PWR_PORTF_AVAILABLE_PINS)); break; case PWR_GPIO_G: SET_BIT(PWR->PDCRG, ((GPIONumber & PWR_PORTG_AVAILABLE_PINS) & (~(PWR_GPIO_BIT_10)))); CLEAR_BIT(PWR->PUCRG, (GPIONumber & PWR_PORTG_AVAILABLE_PINS)); break; default: status = HAL_ERROR; break; } return status; } /** * @brief Disable GPIO pull-down state in Standby and Shutdown modes. * @note Reset the relevant PDy bits of PWR_PDCRx register used to configure the I/O * in pull-down state in Standby and Shutdown modes. * @note Even if a PDy bit to reset is reserved, the other PDy bits entered as input * parameter at the same time are reset. * @param GPIO: Specifies the IO port. This parameter can be PWR_GPIO_A..PWR_GPIO_G * (or PWR_GPIO_I depending on the devices) to select the GPIO peripheral. * @param GPIONumber: Specify the I/O pins numbers. * This parameter can be one of the following values: * PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for the port where less * I/O pins are available) or the logical OR of several of them to reset * several bits for a given port in a single API call. * @retval HAL Status */ HAL_StatusTypeDef HAL_PWREx_DisableGPIOPullDown(uint32_t GPIO, uint32_t GPIONumber) { HAL_StatusTypeDef status = HAL_OK; assert_param(IS_PWR_GPIO(GPIO)); assert_param(IS_PWR_GPIO_BIT_NUMBER(GPIONumber)); switch (GPIO) { case PWR_GPIO_A: CLEAR_BIT(PWR->PDCRA, (GPIONumber & (~(PWR_GPIO_BIT_13|PWR_GPIO_BIT_15)))); break; case PWR_GPIO_B: CLEAR_BIT(PWR->PDCRB, (GPIONumber & (~(PWR_GPIO_BIT_4)))); break; case PWR_GPIO_C: CLEAR_BIT(PWR->PDCRC, GPIONumber); break; case PWR_GPIO_D: CLEAR_BIT(PWR->PDCRD, GPIONumber); break; case PWR_GPIO_E: CLEAR_BIT(PWR->PDCRE, GPIONumber); break; case PWR_GPIO_F: CLEAR_BIT(PWR->PDCRF, (GPIONumber & PWR_PORTF_AVAILABLE_PINS)); break; case PWR_GPIO_G: CLEAR_BIT(PWR->PDCRG, ((GPIONumber & PWR_PORTG_AVAILABLE_PINS) & (~(PWR_GPIO_BIT_10)))); break; default: status = HAL_ERROR; break; } return status; } /** * @brief Enable pull-up and pull-down configuration. * @note When APC bit is set, the I/O pull-up and pull-down configurations defined in * PWR_PUCRx and PWR_PDCRx registers are applied in Standby and Shutdown modes. * @note Pull-up set by PUy bit of PWR_PUCRx register is not activated if the corresponding * PDy bit of PWR_PDCRx register is also set (pull-down configuration priority is higher). * HAL_PWREx_EnableGPIOPullUp() and HAL_PWREx_EnableGPIOPullDown() API's ensure there * is no conflict when setting PUy or PDy bit. * @retval None */ void HAL_PWREx_EnablePullUpPullDownConfig(void) { SET_BIT(PWR->CR3, PWR_CR3_APC); } /** * @brief Disable pull-up and pull-down configuration. * @note When APC bit is cleared, the I/O pull-up and pull-down configurations defined in * PWR_PUCRx and PWR_PDCRx registers are not applied in Standby and Shutdown modes. * @retval None */ void HAL_PWREx_DisablePullUpPullDownConfig(void) { CLEAR_BIT(PWR->CR3, PWR_CR3_APC); } /** * @brief Enable SRAM2 content retention in Standby mode. * @note When RRS bit is set, SRAM2 is powered by the low-power regulator in * Standby mode and its content is kept. * @retval None */ void HAL_PWREx_EnableSRAM2ContentRetention(void) { SET_BIT(PWR->CR3, PWR_CR3_RRS); } /** * @brief Disable SRAM2 content retention in Standby mode. * @note When RRS bit is reset, SRAM2 is powered off in Standby mode * and its content is lost. * @retval None */ void HAL_PWREx_DisableSRAM2ContentRetention(void) { CLEAR_BIT(PWR->CR3, PWR_CR3_RRS); } #if defined(PWR_CR2_PVME1) /** * @brief Enable the Power Voltage Monitoring 1: VDDA versus FASTCOMP minimum voltage. * @retval None */ void HAL_PWREx_EnablePVM1(void) { SET_BIT(PWR->CR2, PWR_PVM_1); } /** * @brief Disable the Power Voltage Monitoring 1: VDDA versus FASTCOMP minimum voltage. * @retval None */ void HAL_PWREx_DisablePVM1(void) { CLEAR_BIT(PWR->CR2, PWR_PVM_1); } #endif /* PWR_CR2_PVME1 */ #if defined(PWR_CR2_PVME2) /** * @brief Enable the Power Voltage Monitoring 2: VDDA versus FASTDAC minimum voltage. * @retval None */ void HAL_PWREx_EnablePVM2(void) { SET_BIT(PWR->CR2, PWR_PVM_2); } /** * @brief Disable the Power Voltage Monitoring 2: VDDA versus FASTDAC minimum voltage. * @retval None */ void HAL_PWREx_DisablePVM2(void) { CLEAR_BIT(PWR->CR2, PWR_PVM_2); } #endif /* PWR_CR2_PVME2 */ /** * @brief Enable the Power Voltage Monitoring 3: VDDA versus ADC minimum voltage 1.62V. * @retval None */ void HAL_PWREx_EnablePVM3(void) { SET_BIT(PWR->CR2, PWR_PVM_3); } /** * @brief Disable the Power Voltage Monitoring 3: VDDA versus ADC minimum voltage 1.62V. * @retval None */ void HAL_PWREx_DisablePVM3(void) { CLEAR_BIT(PWR->CR2, PWR_PVM_3); } /** * @brief Enable the Power Voltage Monitoring 4: VDDA versus OPAMP/DAC minimum voltage 1.8V. * @retval None */ void HAL_PWREx_EnablePVM4(void) { SET_BIT(PWR->CR2, PWR_PVM_4); } /** * @brief Disable the Power Voltage Monitoring 4: VDDA versus OPAMP/DAC minimum voltage 1.8V. * @retval None */ void HAL_PWREx_DisablePVM4(void) { CLEAR_BIT(PWR->CR2, PWR_PVM_4); } /** * @brief Configure the Peripheral Voltage Monitoring (PVM). * @param sConfigPVM: pointer to a PWR_PVMTypeDef structure that contains the * PVM configuration information. * @note The API configures a single PVM according to the information contained * in the input structure. To configure several PVMs, the API must be singly * called for each PVM used. * @note Refer to the electrical characteristics of your device datasheet for * more details about the voltage thresholds corresponding to each * detection level and to each monitored supply. * @retval HAL status */ HAL_StatusTypeDef HAL_PWREx_ConfigPVM(PWR_PVMTypeDef *sConfigPVM) { HAL_StatusTypeDef status = HAL_OK; /* Check the parameters */ assert_param(IS_PWR_PVM_TYPE(sConfigPVM->PVMType)); assert_param(IS_PWR_PVM_MODE(sConfigPVM->Mode)); /* Configure EXTI 35 to 38 interrupts if so required: scan through PVMType to detect which PVMx is set and configure the corresponding EXTI line accordingly. */ switch (sConfigPVM->PVMType) { #if defined(PWR_CR2_PVME1) case PWR_PVM_1: /* Clear any previous config. Keep it clear if no event or IT mode is selected */ __HAL_PWR_PVM1_EXTI_DISABLE_EVENT(); __HAL_PWR_PVM1_EXTI_DISABLE_IT(); __HAL_PWR_PVM1_EXTI_DISABLE_FALLING_EDGE(); __HAL_PWR_PVM1_EXTI_DISABLE_RISING_EDGE(); /* Configure interrupt mode */ if((sConfigPVM->Mode & PVM_MODE_IT) == PVM_MODE_IT) { __HAL_PWR_PVM1_EXTI_ENABLE_IT(); } /* Configure event mode */ if((sConfigPVM->Mode & PVM_MODE_EVT) == PVM_MODE_EVT) { __HAL_PWR_PVM1_EXTI_ENABLE_EVENT(); } /* Configure the edge */ if((sConfigPVM->Mode & PVM_RISING_EDGE) == PVM_RISING_EDGE) { __HAL_PWR_PVM1_EXTI_ENABLE_RISING_EDGE(); } if((sConfigPVM->Mode & PVM_FALLING_EDGE) == PVM_FALLING_EDGE) { __HAL_PWR_PVM1_EXTI_ENABLE_FALLING_EDGE(); } break; #endif /* PWR_CR2_PVME1 */ #if defined(PWR_CR2_PVME2) case PWR_PVM_2: /* Clear any previous config. Keep it clear if no event or IT mode is selected */ __HAL_PWR_PVM2_EXTI_DISABLE_EVENT(); __HAL_PWR_PVM2_EXTI_DISABLE_IT(); __HAL_PWR_PVM2_EXTI_DISABLE_FALLING_EDGE(); __HAL_PWR_PVM2_EXTI_DISABLE_RISING_EDGE(); /* Configure interrupt mode */ if((sConfigPVM->Mode & PVM_MODE_IT) == PVM_MODE_IT) { __HAL_PWR_PVM2_EXTI_ENABLE_IT(); } /* Configure event mode */ if((sConfigPVM->Mode & PVM_MODE_EVT) == PVM_MODE_EVT) { __HAL_PWR_PVM2_EXTI_ENABLE_EVENT(); } /* Configure the edge */ if((sConfigPVM->Mode & PVM_RISING_EDGE) == PVM_RISING_EDGE) { __HAL_PWR_PVM2_EXTI_ENABLE_RISING_EDGE(); } if((sConfigPVM->Mode & PVM_FALLING_EDGE) == PVM_FALLING_EDGE) { __HAL_PWR_PVM2_EXTI_ENABLE_FALLING_EDGE(); } break; #endif /* PWR_CR2_PVME2 */ case PWR_PVM_3: /* Clear any previous config. Keep it clear if no event or IT mode is selected */ __HAL_PWR_PVM3_EXTI_DISABLE_EVENT(); __HAL_PWR_PVM3_EXTI_DISABLE_IT(); __HAL_PWR_PVM3_EXTI_DISABLE_FALLING_EDGE(); __HAL_PWR_PVM3_EXTI_DISABLE_RISING_EDGE(); /* Configure interrupt mode */ if((sConfigPVM->Mode & PVM_MODE_IT) == PVM_MODE_IT) { __HAL_PWR_PVM3_EXTI_ENABLE_IT(); } /* Configure event mode */ if((sConfigPVM->Mode & PVM_MODE_EVT) == PVM_MODE_EVT) { __HAL_PWR_PVM3_EXTI_ENABLE_EVENT(); } /* Configure the edge */ if((sConfigPVM->Mode & PVM_RISING_EDGE) == PVM_RISING_EDGE) { __HAL_PWR_PVM3_EXTI_ENABLE_RISING_EDGE(); } if((sConfigPVM->Mode & PVM_FALLING_EDGE) == PVM_FALLING_EDGE) { __HAL_PWR_PVM3_EXTI_ENABLE_FALLING_EDGE(); } break; case PWR_PVM_4: /* Clear any previous config. Keep it clear if no event or IT mode is selected */ __HAL_PWR_PVM4_EXTI_DISABLE_EVENT(); __HAL_PWR_PVM4_EXTI_DISABLE_IT(); __HAL_PWR_PVM4_EXTI_DISABLE_FALLING_EDGE(); __HAL_PWR_PVM4_EXTI_DISABLE_RISING_EDGE(); /* Configure interrupt mode */ if((sConfigPVM->Mode & PVM_MODE_IT) == PVM_MODE_IT) { __HAL_PWR_PVM4_EXTI_ENABLE_IT(); } /* Configure event mode */ if((sConfigPVM->Mode & PVM_MODE_EVT) == PVM_MODE_EVT) { __HAL_PWR_PVM4_EXTI_ENABLE_EVENT(); } /* Configure the edge */ if((sConfigPVM->Mode & PVM_RISING_EDGE) == PVM_RISING_EDGE) { __HAL_PWR_PVM4_EXTI_ENABLE_RISING_EDGE(); } if((sConfigPVM->Mode & PVM_FALLING_EDGE) == PVM_FALLING_EDGE) { __HAL_PWR_PVM4_EXTI_ENABLE_FALLING_EDGE(); } break; default: status = HAL_ERROR; break; } return status; } /** * @brief Enter Low-power Run mode * @note In Low-power Run mode, all I/O pins keep the same state as in Run mode. * @note When Regulator is set to PWR_LOWPOWERREGULATOR_ON, the user can optionally configure the * Flash in power-down monde in setting the RUN_PD bit in FLASH_ACR register. * Additionally, the clock frequency must be reduced below 2 MHz. * Setting RUN_PD in FLASH_ACR then appropriately reducing the clock frequency must * be done before calling HAL_PWREx_EnableLowPowerRunMode() API. * @retval None */ void HAL_PWREx_EnableLowPowerRunMode(void) { /* Set Regulator parameter */ SET_BIT(PWR->CR1, PWR_CR1_LPR); } /** * @brief Exit Low-power Run mode. * @note Before HAL_PWREx_DisableLowPowerRunMode() completion, the function checks that * REGLPF has been properly reset (otherwise, HAL_PWREx_DisableLowPowerRunMode * returns HAL_TIMEOUT status). The system clock frequency can then be * increased above 2 MHz. * @retval HAL Status */ HAL_StatusTypeDef HAL_PWREx_DisableLowPowerRunMode(void) { uint32_t wait_loop_index; /* Clear LPR bit */ CLEAR_BIT(PWR->CR1, PWR_CR1_LPR); /* Wait until REGLPF is reset */ wait_loop_index = (PWR_FLAG_SETTING_DELAY_US * (SystemCoreClock / 1000000U)); while ((HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_REGLPF)) && (wait_loop_index != 0U)) { wait_loop_index--; } if (HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_REGLPF)) { return HAL_TIMEOUT; } return HAL_OK; } /** * @brief Enter Stop 0 mode. * @note In Stop 0 mode, main and low voltage regulators are ON. * @note In Stop 0 mode, all I/O pins keep the same state as in Run mode. * @note All clocks in the VCORE domain are stopped; the PLL, the HSI * and the HSE oscillators are disabled. Some peripherals with the wakeup capability * (I2Cx, USARTx and LPUART) can switch on the HSI to receive a frame, and switch off the HSI * after receiving the frame if it is not a wakeup frame. In this case, the HSI clock is propagated * only to the peripheral requesting it. * SRAM1, SRAM2 and register contents are preserved. * The BOR is available. * @note When exiting Stop 0 mode by issuing an interrupt or a wakeup event, * the HSI RC oscillator is selected as system clock if STOPWUCK bit in RCC_CFGR register * is set; the HSI oscillator is selected if STOPWUCK is cleared. * @note By keeping the internal regulator ON during Stop 0 mode, the consumption * is higher although the startup time is reduced. * @param STOPEntry specifies if Stop mode in entered with WFI or WFE instruction. * This parameter can be one of the following values: * @arg @ref PWR_STOPENTRY_WFI Enter Stop mode with WFI instruction * @arg @ref PWR_STOPENTRY_WFE Enter Stop mode with WFE instruction * @retval None */ void HAL_PWREx_EnterSTOP0Mode(uint8_t STOPEntry) { /* Check the parameters */ assert_param(IS_PWR_STOP_ENTRY(STOPEntry)); /* Stop 0 mode with Main Regulator */ MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_CR1_LPMS_STOP0); /* Set SLEEPDEEP bit of Cortex System Control Register */ SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); /* Select Stop mode entry --------------------------------------------------*/ if(STOPEntry == PWR_STOPENTRY_WFI) { /* Request Wait For Interrupt */ __WFI(); } else { /* Request Wait For Event */ __SEV(); __WFE(); __WFE(); } /* Reset SLEEPDEEP bit of Cortex System Control Register */ CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); } /** * @brief Enter Stop 1 mode. * @note In Stop 1 mode, only low power voltage regulator is ON. * @note In Stop 1 mode, all I/O pins keep the same state as in Run mode. * @note All clocks in the VCORE domain are stopped; the PLL, the HSI * and the HSE oscillators are disabled. Some peripherals with the wakeup capability * (I2Cx, USARTx and LPUART) can switch on the HSI to receive a frame, and switch off the HSI * after receiving the frame if it is not a wakeup frame. In this case, the HSI clock is propagated * only to the peripheral requesting it. * SRAM1, SRAM2 and register contents are preserved. * The BOR is available. * @note When exiting Stop 1 mode by issuing an interrupt or a wakeup event, * the HSI RC oscillator is selected as system clock if STOPWUCK bit in RCC_CFGR register * is set. * @note Due to low power mode, an additional startup delay is incurred when waking up from Stop 1 mode. * @param STOPEntry specifies if Stop mode in entered with WFI or WFE instruction. * This parameter can be one of the following values: * @arg @ref PWR_STOPENTRY_WFI Enter Stop mode with WFI instruction * @arg @ref PWR_STOPENTRY_WFE Enter Stop mode with WFE instruction * @retval None */ void HAL_PWREx_EnterSTOP1Mode(uint8_t STOPEntry) { /* Check the parameters */ assert_param(IS_PWR_STOP_ENTRY(STOPEntry)); /* Stop 1 mode with Low-Power Regulator */ MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_CR1_LPMS_STOP1); /* Set SLEEPDEEP bit of Cortex System Control Register */ SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); /* Select Stop mode entry --------------------------------------------------*/ if(STOPEntry == PWR_STOPENTRY_WFI) { /* Request Wait For Interrupt */ __WFI(); } else { /* Request Wait For Event */ __SEV(); __WFE(); __WFE(); } /* Reset SLEEPDEEP bit of Cortex System Control Register */ CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); } /** * @brief Enter Shutdown mode. * @note In Shutdown mode, the PLL, the HSI, the LSI and the HSE oscillators are switched * off. The voltage regulator is disabled and Vcore domain is powered off. * SRAM1, SRAM2 and registers contents are lost except for registers in the Backup domain. * The BOR is not available. * @note The I/Os can be configured either with a pull-up or pull-down or can be kept in analog state. * @retval None */ void HAL_PWREx_EnterSHUTDOWNMode(void) { /* Set Shutdown mode */ MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_CR1_LPMS_SHUTDOWN); /* Set SLEEPDEEP bit of Cortex System Control Register */ SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); /* This option is used to ensure that store operations are completed */ #if defined ( __CC_ARM) __force_stores(); #endif /* Request Wait For Interrupt */ __WFI(); } /** * @brief This function handles the PWR PVD/PVMx interrupt request. * @note This API should be called under the PVD_PVM_IRQHandler(). * @retval None */ void HAL_PWREx_PVD_PVM_IRQHandler(void) { /* Check PWR exti flag */ if(__HAL_PWR_PVD_EXTI_GET_FLAG() != 0U) { /* PWR PVD interrupt user callback */ HAL_PWR_PVDCallback(); /* Clear PVD exti pending bit */ __HAL_PWR_PVD_EXTI_CLEAR_FLAG(); } /* Next, successively check PVMx exti flags */ #if defined(PWR_CR2_PVME1) if(__HAL_PWR_PVM1_EXTI_GET_FLAG() != 0U) { /* PWR PVM1 interrupt user callback */ HAL_PWREx_PVM1Callback(); /* Clear PVM1 exti pending bit */ __HAL_PWR_PVM1_EXTI_CLEAR_FLAG(); } #endif /* PWR_CR2_PVME1 */ #if defined(PWR_CR2_PVME2) if(__HAL_PWR_PVM2_EXTI_GET_FLAG() != 0U) { /* PWR PVM2 interrupt user callback */ HAL_PWREx_PVM2Callback(); /* Clear PVM2 exti pending bit */ __HAL_PWR_PVM2_EXTI_CLEAR_FLAG(); } #endif /* PWR_CR2_PVME2 */ if(__HAL_PWR_PVM3_EXTI_GET_FLAG() != 0U) { /* PWR PVM3 interrupt user callback */ HAL_PWREx_PVM3Callback(); /* Clear PVM3 exti pending bit */ __HAL_PWR_PVM3_EXTI_CLEAR_FLAG(); } if(__HAL_PWR_PVM4_EXTI_GET_FLAG() != 0U) { /* PWR PVM4 interrupt user callback */ HAL_PWREx_PVM4Callback(); /* Clear PVM4 exti pending bit */ __HAL_PWR_PVM4_EXTI_CLEAR_FLAG(); } } #if defined(PWR_CR2_PVME1) /** * @brief PWR PVM1 interrupt callback * @retval None */ __weak void HAL_PWREx_PVM1Callback(void) { /* NOTE : This function should not be modified; when the callback is needed, HAL_PWREx_PVM1Callback() API can be implemented in the user file */ } #endif /* PWR_CR2_PVME1 */ #if defined(PWR_CR2_PVME2) /** * @brief PWR PVM2 interrupt callback * @retval None */ __weak void HAL_PWREx_PVM2Callback(void) { /* NOTE : This function should not be modified; when the callback is needed, HAL_PWREx_PVM2Callback() API can be implemented in the user file */ } #endif /* PWR_CR2_PVME2 */ /** * @brief PWR PVM3 interrupt callback * @retval None */ __weak void HAL_PWREx_PVM3Callback(void) { /* NOTE : This function should not be modified; when the callback is needed, HAL_PWREx_PVM3Callback() API can be implemented in the user file */ } /** * @brief PWR PVM4 interrupt callback * @retval None */ __weak void HAL_PWREx_PVM4Callback(void) { /* NOTE : This function should not be modified; when the callback is needed, HAL_PWREx_PVM4Callback() API can be implemented in the user file */ } #if defined(PWR_CR3_UCPD_STDBY) /** * @brief Enable UCPD configuration memorization in Standby. * @retval None */ void HAL_PWREx_EnableUCPDStandbyMode(void) { /* Memorize UCPD configuration when entering standby mode */ SET_BIT(PWR->CR3, PWR_CR3_UCPD_STDBY); } /** * @brief Disable UCPD configuration memorization in Standby. * @note This function must be called on exiting the Standby mode and before any UCPD * configuration update. * @retval None */ void HAL_PWREx_DisableUCPDStandbyMode(void) { /* Write 0 immediately after Standby exit when using UCPD, and before writing any UCPD registers */ CLEAR_BIT(PWR->CR3, PWR_CR3_UCPD_STDBY); } #endif /* PWR_CR3_UCPD_STDBY */ #if defined(PWR_CR3_UCPD_DBDIS) /** * @brief Enable the USB Type-C dead battery pull-down behavior * on UCPDx_CC1 and UCPDx_CC2 pins * @retval None */ void HAL_PWREx_EnableUCPDDeadBattery(void) { /* Write 0 to enable the USB Type-C dead battery pull-down behavior */ CLEAR_BIT(PWR->CR3, PWR_CR3_UCPD_DBDIS); } /** * @brief Disable the USB Type-C dead battery pull-down behavior * on UCPDx_CC1 and UCPDx_CC2 pins * @note After exiting reset, the USB Type-C dead battery behavior will be enabled, * which may have a pull-down effect on CC1 and CC2 pins. * It is recommended to disable it in all cases, either to stop this pull-down * or to hand over control to the UCPD (which should therefore be * initialized before doing the disable). * @retval None */ void HAL_PWREx_DisableUCPDDeadBattery(void) { /* Write 1 to disable the USB Type-C dead battery pull-down behavior */ SET_BIT(PWR->CR3, PWR_CR3_UCPD_DBDIS); } #endif /* PWR_CR3_UCPD_DBDIS */ /** * @} */ /** * @} */ #endif /* HAL_PWR_MODULE_ENABLED */ /** * @} */ /** * @} */