steering-wheel-evo/lib/FT18_STW_INIT/FT18_STW_INIT.cpp

145 lines
4.3 KiB
C++

#include "FT18_STW_INIT.h"
#include <Arduino.h>
#include <Bounce2.h>
#include <RotaryEncoder.h>
volatile stw_data_type Stw_data = {0}; // alles mit 0 initialisieren
volatile vehicle_data_type Vehicle_data = {0}; // alles mit 0 initialisieren
bool enc1PinALast, enc1PinANow, enc2PinALast, enc2PinANow;
int led[] = {led1, led2, led3, led4, led5, led6, led7, led8,
led9, led10, led11, led12, led13, led14, led15, led16};
bool entprell;
int buttons[] = {button1, button2, button3, button4,
button5, button6, enc1PinS, enc2PinS};
constexpr size_t N_BUTTONS = sizeof(buttons) / sizeof(buttons[0]);
Bounce2::Button debouncer[N_BUTTONS];
double val = 0;
double val2 = 0;
RotaryEncoder encoder(enc1PinA, enc1PinB, 1, 1, 50);
RotaryEncoder encoder2(enc2PinA, enc2PinB, 1, 1, 50);
///////////////////////////////////////////////////
// functions
///////////////////////////////////////////////////
void set_pins() {
pinMode(l, OUTPUT);
for (int thisLed = 0; thisLed < sizeof(led) / sizeof(int); thisLed++) {
pinMode(led[thisLed], OUTPUT);
}
pinMode(enc1PinA, INPUT);
pinMode(enc1PinB, INPUT);
pinMode(enc2PinA, INPUT);
pinMode(enc2PinB, INPUT);
enc1PinALast = LOW;
enc1PinANow = LOW;
enc2PinALast = LOW;
enc2PinANow = LOW;
for (int i = 0; i < N_BUTTONS; i++) {
debouncer[i].attach(buttons[i], INPUT);
debouncer[i].interval(10);
}
}
void read_buttons() {
for (int i = 0; i < N_BUTTONS; i++) {
debouncer[i].update();
}
// These are only used to send them out via CAN, so they only need to be
// high once.
Stw_data.Stw_neutral = debouncer[1].rose();
Stw_data.Stw_auto_shift = debouncer[2].rose();
Stw_data.Stw_shift_down = debouncer[4].rose();
Stw_data.Stw_shift_up = debouncer[5].rose();
Stw_data.buttonState1 = debouncer[0].isPressed();
Stw_data.buttonState4 = debouncer[3].isPressed();
Stw_data.buttonStateEnc1 = debouncer[6].isPressed();
Stw_data.buttonStateEnc2 = debouncer[7].isPressed();
if (debouncer[0].rose()) {
Stw_data.button1_rises++;
}
if (debouncer[3].rose()) {
Stw_data.button4_rises++;
}
if (debouncer[6].rose()) {
Stw_data.enc1_rises++;
}
if (debouncer[7].rose()) {
Stw_data.enc2_rises++;
}
}
void read_rotary() {
int enc = encoder.readEncoder();
int enc2 = encoder2.readEncoder();
if (enc != 0) {
val = val + 0.5 * enc;
if (val == 1 or val == -1) {
if (Stw_data.trc == 0 and enc < 0) {
Stw_data.trc = 11;
} else if (Stw_data.trc == 11 and enc > 0) {
Stw_data.trc = 0;
} else {
Stw_data.trc = Stw_data.trc + enc;
}
val = 0;
}
}
/*enc1PinANow = digitalRead(enc1PinA);
enc2PinANow = digitalRead(enc2PinA);
if ((enc1PinALast == LOW) && (enc1PinANow == HIGH)) {
if (digitalRead(enc1PinB) == HIGH) {
if(Stw_data.trc==0){
Stw_data.trc = 5;
}else{
Stw_data.trc--;
}
}else {
if(Stw_data.trc==5){
Stw_data.trc=0;
}else{
Stw_data.trc++;
}
}
}
enc1PinALast = enc1PinANow;
/*if (Stw_data.buttonStateEnc1 == HIGH){
digitalWrite(led[Stw_data.i], HIGH);
}*/
if (enc2 != 0) {
val2 = val2 + 0.5 * enc2;
if (val2 == 1 or val2 == -1) {
if ((Stw_data.mode == 1 or Stw_data.mode == 0) and enc2 < 0) {
Stw_data.mode = 5;
} else if (Stw_data.mode == 5 and enc2 > 0) {
Stw_data.mode = 1;
} else {
Stw_data.mode = Stw_data.mode + enc2;
}
val2 = 0;
}
}
/*if ((enc2PinALast == LOW) && (enc2PinANow == HIGH)) {
//if(enc2PinALast != enc2PinANow){
if (digitalRead(enc2PinB) == HIGH) {
if(Stw_data.i==0){
Stw_data.i = sizeof(led)/sizeof(int)-1;
}else{
Stw_data.i--;
}
}else {
if(Stw_data.i==sizeof(led)/sizeof(int)-1){
Stw_data.i=0;
}else{
Stw_data.i++;
}
}
}
enc2PinALast = enc2PinANow;*/
/*if (Stw_data.buttonStateEnc2 == HIGH){
digitalWrite(led[Stw_data.i], HIGH);
}*/
}