mv-bms/Core/Src/state_machine.c
2024-07-07 01:57:00 +03:00

425 lines
13 KiB
C

#include "state_machine.h"
#include "AMS_HighLevel.h"
#include "PWM_control.h"
#include "TMP1075.h"
#include "errors.h"
#include "main.h"
#include "stm32f3xx_hal.h"
#include <stdint.h>
StateHandle state;
int16_t RELAY_BAT_SIDE_VOLTAGE;
int16_t RELAY_ESC_SIDE_VOLTAGE;
int16_t CURRENT_MEASUREMENT;
bool CURRENT_MEASUREMENT_ON;
uint8_t powerground_status;
uint32_t precharge_timer;
uint32_t discharge_timer;
uint32_t powerground_calibration_timer;
uint8_t powerground_calibration_stage;
static uint32_t timestamp;
void sm_init(){
state.current_state = STATE_ERROR;
state.target_state = STATE_ERROR;
state.error_source = 0;
precharge_timer = discharge_timer = powerground_calibration_timer = 0;
}
#warning change amsState here
void sm_update(){
sm_check_errors();
sm_precharge_discharge_manager();
sm_calibrate_powerground();
int16_t base_offset = 0;
if (state.current_state == STATE_INACTIVE){
base_offset = module.auxVoltages[0];
}
CURRENT_MEASUREMENT = (module.auxVoltages[0] - base_offset) * 300;
CURRENT_MEASUREMENT_ON = (module.auxVoltages[1] > 2400);
RELAY_ESC_SIDE_VOLTAGE = module.auxVoltages[2] * 11.711;
RELAY_BAT_SIDE_VOLTAGE = module.auxVoltages[3] * 11.711; // the calculation says the factor is 11. 11.711 yields the better result
switch (state.current_state) {
case STATE_INACTIVE:
state.current_state = sm_update_inactive(); // monitor only
break;
case STATE_PRECHARGE:
state.current_state = sm_update_precharge(); // set PRECHARGE and turn on cooling at 50% or such
break;
case STATE_READY:
state.current_state = sm_update_ready(); // keep cooling at 50%, get ready to turn on powerground
break;
case STATE_ACTIVE:
state.current_state = sm_update_active(); // set PRECHARGE and turn on cooling at 50% or such
break;
case STATE_DISCHARGE:
state.current_state = sm_update_discharge(); // open the main relay, keep PRECHARGE closed
break;
case STATE_CHARGING_PRECHARGE:
state.current_state = sm_update_charging_precharge();
break;
case STATE_CHARGING:
state.current_state = sm_update_charging(); // monitor and turn on cooling if needed.
break;
case STATE_ERROR:
state.current_state = sm_update_error(); // enter the correct ERROR state
break;
}
sm_set_relay_positions(state.current_state);
state.target_state = state.current_state;
}
State sm_update_inactive(){
switch (state.target_state) {
case STATE_PRECHARGE:
return STATE_PRECHARGE;
case STATE_CHARGING_PRECHARGE:
return STATE_CHARGING_PRECHARGE;
case STATE_ERROR:
return STATE_ERROR;
default:
return STATE_INACTIVE;
}
}
State sm_update_precharge(){
switch (state.target_state) {
case STATE_INACTIVE: // if CAN Signal 0000 0000 then immidiete shutdown
return STATE_DISCHARGE;
case STATE_READY:
return STATE_READY;
default:
return STATE_PRECHARGE;
}
}
State sm_update_ready(){
switch (state.target_state) {
case STATE_ACTIVE: // if CAN Signal 1100 0000 then turn on powerground
return STATE_ACTIVE;
case STATE_DISCHARGE: // if CAN Signal 0000 0000 then shutdown
return STATE_DISCHARGE;
default:
sm_calibrate_powerground();
return STATE_READY;
}
}
State sm_update_active(){
switch (state.target_state) {
case STATE_READY: // if CAN Signal 1000 0000 then turn oof powerground but stay ready
return STATE_READY;
case STATE_DISCHARGE: // if CAN Signal 0000 0000 then shutdown
return STATE_DISCHARGE;
default:
return STATE_ACTIVE;
}
}
State sm_update_discharge(){
switch (state.target_state) {
case STATE_INACTIVE:
return STATE_INACTIVE;
case STATE_ERROR:
return STATE_ERROR;
default:
return STATE_DISCHARGE;
}
}
State sm_update_charging_precharge(){
switch (state.target_state) {
case STATE_CHARGING:
return STATE_CHARGING;
case STATE_DISCHARGE:
return STATE_DISCHARGE;
default:
return STATE_CHARGING_PRECHARGE;
}
}
State sm_update_charging(){
switch (state.target_state) {
case STATE_DISCHARGE:
return STATE_DISCHARGE;
default:
return STATE_CHARGING;
}
}
State sm_update_error(){
switch (state.target_state) {
case STATE_DISCHARGE:
return STATE_DISCHARGE;
case STATE_INACTIVE:
return STATE_INACTIVE;
default:
return STATE_ERROR;
}
}
void sm_set_relay_positions(State current_state){
switch (state.current_state) {
case STATE_INACTIVE:
sm_set_relay(RELAY_MAIN, 0);
sm_set_relay(RELAY_PRECHARGE, 0);
break;
case STATE_PRECHARGE:
sm_set_relay(RELAY_MAIN, 0);
sm_set_relay(RELAY_PRECHARGE, 1);
break;
case STATE_READY:
sm_set_relay(RELAY_MAIN, 1);
sm_set_relay(RELAY_PRECHARGE, 0);
break;
case STATE_ACTIVE:
sm_set_relay(RELAY_MAIN, 1);
sm_set_relay(RELAY_PRECHARGE, 0);
break;
case STATE_DISCHARGE:
sm_set_relay(RELAY_MAIN, 0);
sm_set_relay(RELAY_PRECHARGE, 1);
break;
case STATE_CHARGING_PRECHARGE:
sm_set_relay(RELAY_MAIN, 0);
sm_set_relay(RELAY_PRECHARGE, 1);
break;
case STATE_CHARGING:
sm_set_relay(RELAY_MAIN, 1);
sm_set_relay(RELAY_PRECHARGE, 0);
break;
case STATE_ERROR:
sm_set_relay(RELAY_MAIN, 0);
sm_set_relay(RELAY_PRECHARGE, 0);
break;
}
}
void sm_set_relay(Relay relay, bool closed){
GPIO_PinState state = closed ? GPIO_PIN_SET : GPIO_PIN_RESET;
switch (relay) {
case RELAY_MAIN:
HAL_GPIO_WritePin(RELAY_ENABLE_GPIO_Port, RELAY_ENABLE_Pin, state);
break;
case RELAY_PRECHARGE:
HAL_GPIO_WritePin(PRECHARGE_ENABLE_GPIO_Port, PRECHARGE_ENABLE_Pin, state);
break;
}
}
/* returns the ID and temperature of the hottest cell */
void sm_check_battery_temperature(int8_t *id, int16_t *temp){
for (int i = 0; i < N_TEMP_SENSORS; i++) {
if (tmp1075_temps[i] > *temp){
*id = i;
*temp = tmp1075_temps[i];
}
}
}
void sm_precharge_discharge_manager(){
if (state.current_state != STATE_PRECHARGE && state.target_state == STATE_PRECHARGE){
precharge_timer = HAL_GetTick() + PRECHARGE_DURATION;
} else if (state.current_state == STATE_PRECHARGE && precharge_timer < HAL_GetTick()) {
state.target_state = STATE_READY;
precharge_timer = 0;
}
if (state.current_state != STATE_CHARGING_PRECHARGE && state.target_state == STATE_CHARGING_PRECHARGE){
precharge_timer = HAL_GetTick() + PRECHARGE_DURATION;
} else if (state.current_state == STATE_CHARGING_PRECHARGE && precharge_timer < HAL_GetTick()) {
state.target_state = STATE_CHARGING;
precharge_timer = 0;
}
if (state.current_state != STATE_DISCHARGE && state.target_state == STATE_DISCHARGE){
discharge_timer = HAL_GetTick() + DISCHARGE_DURATION;
} else if (state.current_state == STATE_DISCHARGE && discharge_timer < HAL_GetTick()) {
state.target_state = STATE_INACTIVE;
discharge_timer = 0;
}
}
void sm_calibrate_powerground(){
if (powerground_calibration_stage != 4 && state.current_state == STATE_READY){
switch (powerground_calibration_stage) {
case 0:
powerground_calibration_timer = HAL_GetTick() + 5000;
powerground_calibration_stage = 1;
return;
case 1:
if (powerground_calibration_timer < HAL_GetTick()){
powerground_calibration_timer = HAL_GetTick() + 2000;
powerground_calibration_stage = 2;
PWM_powerground_control(100);
}
return;
case 2:
if (powerground_calibration_timer < HAL_GetTick()){
powerground_calibration_timer = HAL_GetTick() + 1000;
powerground_calibration_stage = 3;
PWM_powerground_control(0);
}
return;
case 3:
if (powerground_calibration_timer < HAL_GetTick()){
powerground_calibration_stage = 4;
}
return;
}
}
}
void sm_handle_ams_in(const uint8_t *data){
switch (data[0]) {
case 0x00:
if (state.current_state != STATE_INACTIVE){
state.target_state = STATE_DISCHARGE;
PWM_powerground_control(255);
}
break;
case 0x01:
if (state.target_state == STATE_INACTIVE || state.target_state == STATE_DISCHARGE){
state.target_state = STATE_PRECHARGE;
PWM_powerground_control(0);
} else if (state.target_state == STATE_ACTIVE){
state.target_state = STATE_READY;
PWM_powerground_control(0);
}
break;
case 0x02:
if (state.current_state == STATE_READY || state.current_state == STATE_ACTIVE){
PWM_powerground_control(data[1]);
state.target_state = STATE_ACTIVE; // READY -> ACTIVE
}
break;
case 0xF0:
if (state.current_state == STATE_INACTIVE){
state.target_state = STATE_CHARGING_PRECHARGE;
}
break;
#warning implement this
case 0xF1: // EEPROM
break;
case 0xFF: // EMERGENCY SHUTDOWN
state.current_state = STATE_DISCHARGE;
state.target_state = STATE_ERROR;
break;
}
}
void sm_set_error(ErrorKind error_kind, bool is_errored){}
/*
bool sm_is_errored(){
return state.error_type.current_error == 1 || state.error_type.current_sensor_missing == 1 || //state.error_type.eeprom_error == 1 ||
state.error_type.state_transition_fail == 1 || state.error_type.temperature_error == 1 || state.error_type.voltage_error == 1 ||
state.error_type.voltage_missing == 1 || state.error_type.bms_fault == 1 || state.error_type.bms_timeout == 1;
}
*/
#warning TODO: add error checking for everything here
void sm_check_errors(){
switch (error_data.data_kind) {
case SEK_OVERTEMP:
case SEK_UNDERTEMP:
case SEK_TOO_FEW_TEMPS:
state.error_type.temperature_error = 1;
break;
case SEK_OVERVOLT:
case SEK_UNDERVOLT:
case SEK_OPENWIRE:
state.error_type.voltage_error = 1;
break;
case SEK_EEPROM_ERR:
//state.error_type.eeprom_error = 1;
break;
case SEK_INTERNAL_BMS_TIMEOUT:
state.error_type.bms_timeout = 1;
break;
case SEK_INTERNAL_BMS_CHECKSUM_FAIL:
case SEK_INTERNAL_BMS_OVERTEMP:
case SEK_INTERNAL_BMS_FAULT:
state.error_type.bms_fault = 1;
break;
}
state.error_type.temperature_error = (error_data.data_kind == SEK_OVERTEMP || error_data.data_kind == SEK_UNDERTEMP ||error_data.data_kind == SEK_TOO_FEW_TEMPS) ? 1 : 0;
state.error_type.voltage_error = (error_data.data_kind == SEK_OVERVOLT || error_data.data_kind == SEK_UNDERVOLT ||error_data.data_kind == SEK_OPENWIRE) ? 1 : 0;
state.error_type.bms_timeout = (error_data.data_kind == SEK_INTERNAL_BMS_TIMEOUT) ? 1 : 0;
state.error_type.bms_fault = (error_data.data_kind == SEK_INTERNAL_BMS_CHECKSUM_FAIL || error_data.data_kind == SEK_INTERNAL_BMS_FAULT || error_data.data_kind == SEK_INTERNAL_BMS_OVERTEMP) ? 1 : 0;
//SEK_EEPROM_ERR: state.error_type.eeprom_error = 1;
state.error_type.current_error = (powerground_status > 10 && CURRENT_MEASUREMENT < 1000) ? 1 : 0;
state.error_type.current_sensor_missing = (!CURRENT_MEASUREMENT_ON) ? 1 : 0;
state.error_type.voltage_error = (RELAY_BAT_SIDE_VOLTAGE < 30000) ? 1 : 0;
state.error_type.voltage_missing = (RELAY_BAT_SIDE_VOLTAGE < 1000) ? 1 : 0;
if ( state.error_type.current_error == 1 || state.error_type.current_sensor_missing == 1 || //state.error_type.eeprom_error == 1 ||
state.error_type.state_transition_fail == 1 || state.error_type.temperature_error == 1 || state.error_type.voltage_error == 1 ||
state.error_type.voltage_missing == 1 || state.error_type.bms_fault == 1 || state.error_type.bms_timeout == 1){
if (state.current_state != STATE_INACTIVE && state.current_state != STATE_ERROR)
state.current_state = STATE_DISCHARGE;
state.target_state = STATE_ERROR;
PWM_powerground_control(255);
} else {
if (state.current_state == STATE_ERROR)
state.target_state = STATE_INACTIVE;
}
}
int16_t sm_return_cell_temperature(int id){ return tmp1075_temps[id]; }
int16_t sm_return_cell_voltage(int id){ return module.cellVoltages[id]; }
void sm_test_cycle_states(){
RELAY_BAT_SIDE_VOLTAGE = module.auxVoltages[0];
RELAY_ESC_SIDE_VOLTAGE = module.auxVoltages[1];
CURRENT_MEASUREMENT = module.auxVoltages[2];
sm_set_relay_positions(state.current_state);
if (timestamp > HAL_GetTick())
return;
switch (state.current_state) {
case STATE_INACTIVE:
state.current_state = STATE_PRECHARGE;
timestamp = HAL_GetTick() + 30000;
PWM_powerground_control(0);
break;
case STATE_PRECHARGE:
state.current_state = STATE_READY;
timestamp = HAL_GetTick() + 10000;
break;
case STATE_READY:
state.current_state = STATE_ACTIVE;
timestamp = HAL_GetTick() + 10000;
break;
case STATE_ACTIVE:
state.current_state = STATE_DISCHARGE;
timestamp = HAL_GetTick() + 10000;
PWM_powerground_control(1);
break;
case STATE_DISCHARGE:
state.current_state = STATE_INACTIVE;
timestamp = HAL_GetTick() + 10000;
break;
case STATE_CHARGING_PRECHARGE:
case STATE_CHARGING:
case STATE_ERROR:
break;
}
state.target_state = state.current_state;
}