mv-bms/Core/Src/state_machine.c

482 lines
15 KiB
C

/*
* state_machine.h
*
* Created on: 07.07.2024
* Author: Hamza
*/
#include "state_machine.h"
#include "PWM_control.h"
#include "eeprom.h"
#include "main.h"
#include <stdint.h>
// Time to wait after reaching 95% of battery voltage before exiting precharge
// Set this to 1000 in scruti to demonstrate the voltage on the multimeter
#define PRECHARGE_DURATION 5000 // ms
// Time to wait for discharge
#define DISCHARGE_DURATION 5000 // ms
// Time to wait for charger voltage before going to TS_ERROR
#define MAX_CHARGING_CHECK_DURATION 2000 // ms
// Time to wait between closing relays
#define RELAY_CLOSE_WAIT 10 // ms
// Max time to wait for CAN messages. If we reach it then we emergency shutdown.
#define CAN_TIMEOUT 1000
// waiting time between to eeprom writes
#define EEPROM_WRITE_FREQ_INACTIVE 10000
#define EEPROM_WRITE_FREQ_ACTIVE 1000
StateHandle state;
int32_t RELAY_BAT_SIDE_VOLTAGE;
int32_t RELAY_ESC_SIDE_VOLTAGE;
int32_t CURRENT_MEASUREMENT;
bool CURRENT_MEASUREMENT_ON;
float base_offset = 0;
uint32_t precharge_timer;
uint32_t discharge_timer;
uint32_t CAN_timer;
uint32_t EEPROM_timer;
uint32_t powerground_softstart_timer;
uint32_t powerground_calibration_timer;
uint8_t powerground_calibration_stage;
uint8_t current_powerground_status;
uint8_t target_powerground_status;
static uint32_t timestamp;
void sm_init(){
state.current_state = STATE_INACTIVE;
state.target_state = STATE_INACTIVE;
state.error_source = 0;
precharge_timer = discharge_timer = powerground_calibration_timer;
CAN_timer = HAL_GetTick() + 5000;
}
#warning change amsState here
void sm_update(){
sm_check_errors();
sm_precharge_discharge_manager();
sm_calibrate_powerground();
sm_powerground_manager();
if (CAN_timer < HAL_GetTick())
state.current_state = state.target_state = STATE_ERROR;
if (state.current_state == STATE_INACTIVE || state.current_state == STATE_ERROR){
CURRENT_MEASUREMENT = (module.auxVoltages[0] > 2494) ? (module.auxVoltages[0] - (2494.0)) * (300.0) : 0;
} else {
CURRENT_MEASUREMENT = (module.auxVoltages[0] > 2477) ? (module.auxVoltages[0] - (2477.0)) * (4600.0) : 0;
}
CURRENT_MEASUREMENT_ON = (module.auxVoltages[1] > 2400);
RELAY_ESC_SIDE_VOLTAGE = module.auxVoltages[2] * 15.98;
RELAY_BAT_SIDE_VOLTAGE = module.auxVoltages[3] * 15.98; // the calculation says the factor is 11. 11.711 yields the better result
switch (state.current_state) {
case STATE_INACTIVE:
state.current_state = sm_update_inactive(); // monitor only
break;
case STATE_PRECHARGE:
state.current_state = sm_update_precharge(); // set PRECHARGE and turn on cooling at 50% or such
break;
case STATE_READY:
state.current_state = sm_update_ready(); // keep cooling at 50%, get ready to turn on powerground
break;
case STATE_ACTIVE:
state.current_state = sm_update_active(); // set PRECHARGE and turn on cooling at 50% or such
break;
case STATE_DISCHARGE:
state.current_state = sm_update_discharge(); // open the main relay, keep PRECHARGE closed
break;
case STATE_CHARGING_PRECHARGE:
state.current_state = sm_update_charging_precharge();
break;
case STATE_CHARGING:
state.current_state = sm_update_charging(); // monitor and turn on cooling if needed.
break;
case STATE_ERROR:
state.current_state = sm_update_error(); // enter the correct ERROR state
break;
}
sm_set_relay_positions(state.current_state);
state.target_state = state.current_state;
}
void sm_handle_ams_in(const uint8_t *data){
CAN_timer = HAL_GetTick() + CAN_TIMEOUT;
switch (data[0]) {
case 0x00:
if (state.current_state != STATE_INACTIVE){
state.target_state = STATE_DISCHARGE;
PWM_powerground_control(255);
}
break;
case 0x01:
if (state.target_state == STATE_INACTIVE || state.target_state == STATE_DISCHARGE){
state.target_state = STATE_PRECHARGE;
PWM_powerground_control(0);
} else if (state.target_state == STATE_ACTIVE){
state.target_state = STATE_READY;
PWM_powerground_control(0);
}
break;
case 0x02:
if (state.current_state == STATE_READY || state.current_state == STATE_ACTIVE){
target_powerground_status = data[1];
state.target_state = STATE_ACTIVE; // READY -> ACTIVE
}
break;
case 0xF0:
if (state.current_state == STATE_INACTIVE){
state.target_state = STATE_CHARGING_PRECHARGE;
}
break;
#warning implement this
case 0xF1: // EEPROM
break;
case 0xFF: // EMERGENCY SHUTDOWN
state.current_state = STATE_DISCHARGE;
state.target_state = STATE_ERROR;
break;
}
}
void sm_precharge_discharge_manager(){
if (state.current_state != STATE_PRECHARGE && state.target_state == STATE_PRECHARGE){
precharge_timer = HAL_GetTick() + PRECHARGE_DURATION;
} else if (state.current_state == STATE_PRECHARGE && precharge_timer < HAL_GetTick()) {
state.target_state = STATE_READY;
precharge_timer = 0;
}
if (state.current_state != STATE_CHARGING_PRECHARGE && state.target_state == STATE_CHARGING_PRECHARGE){
precharge_timer = HAL_GetTick() + PRECHARGE_DURATION;
} else if (state.current_state == STATE_CHARGING_PRECHARGE && precharge_timer < HAL_GetTick()) {
state.target_state = STATE_CHARGING;
precharge_timer = 0;
}
if (state.current_state != STATE_DISCHARGE && state.target_state == STATE_DISCHARGE){
discharge_timer = HAL_GetTick() + DISCHARGE_DURATION;
} else if (state.current_state == STATE_DISCHARGE && discharge_timer < HAL_GetTick()) {
state.target_state = STATE_INACTIVE;
discharge_timer = 0;
}
}
void sm_powerground_manager(){
if (current_powerground_status == target_powerground_status)
return;
if ( current_powerground_status > 100 || target_powerground_status > 100){ //something went wrong
PWM_powerground_control(255);
current_powerground_status = target_powerground_status= 0;
return;
}
if (powerground_softstart_timer < HAL_GetTick()){
if (current_powerground_status < target_powerground_status ){
current_powerground_status++;
PWM_powerground_softcontrol();
powerground_softstart_timer = HAL_GetTick() + 10;
} else if (current_powerground_status > target_powerground_status) {
current_powerground_status--;
PWM_powerground_softcontrol();
powerground_softstart_timer = HAL_GetTick() + 10;
}
}
}
void sm_calibrate_powerground(){
if (powerground_calibration_stage != 4 && state.current_state == STATE_PRECHARGE){
switch (powerground_calibration_stage) {
case 0:
powerground_calibration_timer = HAL_GetTick() + 0;
powerground_calibration_stage = 1;
return;
case 1:
if (powerground_calibration_timer < HAL_GetTick()){
powerground_calibration_timer = HAL_GetTick() + 2000;
powerground_calibration_stage = 2;
PWM_powerground_control(100);
}
return;
case 2:
if (powerground_calibration_timer < HAL_GetTick()){
powerground_calibration_timer = HAL_GetTick() + 1000;
powerground_calibration_stage = 3;
PWM_powerground_control(0);
}
return;
case 3:
if (powerground_calibration_timer < HAL_GetTick()){
powerground_calibration_stage = 4;
}
return;
}
}
}
void sm_program_powerground(){
powerground_calibration_timer = HAL_GetTick() + 5000;
while (powerground_calibration_timer > HAL_GetTick()){}
state.current_state = STATE_PRECHARGE;
sm_update();
powerground_calibration_timer = HAL_GetTick() + PRECHARGE_DURATION + 1000;
PWM_powerground_control(100);
while (powerground_calibration_timer > HAL_GetTick()){}
sm_update();
while (1) {
}
}
void sm_balancing(){
for (int i = 0; i < 13; i++) {
amsConfigBalancing((1 << i), 0xF);
}
amsStartBalancing(0);
}
void sm_eeprom_write_status(){
if (EEPROM_timer < HAL_GetTick()){
eeprom_write_status();
EEPROM_timer = HAL_GetTick() + EEPROM_WRITE_FREQ_INACTIVE;
}
}
#warning TODO: add error checking for everything here
void sm_check_errors(){
state.error_type.temperature_error = (error_data.error_sources & (1 << 0) || error_data.error_sources & (1 << 1) || error_data.error_sources & (1 << 4)) ? 1 : 0;
state.error_type.voltage_error = (error_data.error_sources & (1 << 2)|| error_data.error_sources & (1 << 3)|| error_data.error_sources & (1 << 5) || RELAY_BAT_SIDE_VOLTAGE < 30000) ? 1 : 0;
state.error_type.bms_timeout = (error_data.error_sources & (1 << 7)) ? 1 : 0;
state.error_type.bms_fault = (error_data.error_sources & (1 << 8) || error_data.error_sources & (1 << 10) || error_data.error_sources & (1 << 9)) ? 1 : 0;
//SEK_EEPROM_ERR: state.error_type.eeprom_error = 1;
//state.error_type.current_error = (powerground_status > 10 && CURRENT_MEASUREMENT < 500) ? 1 : 0;
state.error_type.current_sensor_missing = (!CURRENT_MEASUREMENT_ON) ? 1 : 0;
state.error_type.voltage_missing = (RELAY_BAT_SIDE_VOLTAGE < 1000) ? 1 : 0;
if ( state.error_type.current_error == 1 || state.error_type.current_sensor_missing == 1 || //state.error_type.eeprom_error == 1 ||
state.error_type.state_transition_fail == 1 || state.error_type.temperature_error == 1 || state.error_type.voltage_error == 1 ||
state.error_type.voltage_missing == 1 || state.error_type.bms_fault == 1 || state.error_type.bms_timeout == 1){
if (state.current_state != STATE_INACTIVE && state.current_state != STATE_ERROR)
state.current_state = STATE_DISCHARGE;
state.target_state = STATE_ERROR;
PWM_powerground_control(255);
} else if (state.current_state == STATE_ERROR){
state.target_state = STATE_INACTIVE;
}
sm_set_error_source();
}
void sm_set_error_source(){
state.error_source = 0;
state.error_source |= (state.error_type.bms_timeout << 0);
state.error_source |= (state.error_type.bms_fault << 1);
state.error_source |= (state.error_type.temperature_error << 2);
state.error_source |= (state.error_type.current_error << 3);
state.error_source |= (state.error_type.current_sensor_missing << 4);
state.error_source |= (state.error_type.voltage_error << 5);
state.error_source |= (state.error_type.voltage_missing << 6);
state.error_source |= (state.error_type.state_transition_fail << 7);
}
State sm_update_inactive(){
switch (state.target_state) {
case STATE_PRECHARGE:
return STATE_PRECHARGE;
case STATE_CHARGING_PRECHARGE:
return STATE_CHARGING_PRECHARGE;
case STATE_ERROR:
return STATE_ERROR;
default:
return STATE_INACTIVE;
}
}
State sm_update_precharge(){
switch (state.target_state) {
case STATE_INACTIVE: // if CAN Signal 0000 0000 then immidiete shutdown
return STATE_DISCHARGE;
case STATE_READY:
return STATE_READY;
default:
return STATE_PRECHARGE;
}
}
State sm_update_ready(){
switch (state.target_state) {
case STATE_ACTIVE: // if CAN Signal 1100 0000 then turn on powerground
return STATE_ACTIVE;
case STATE_DISCHARGE: // if CAN Signal 0000 0000 then shutdown
return STATE_DISCHARGE;
default:
return STATE_READY;
}
}
State sm_update_active(){
switch (state.target_state) {
case STATE_READY: // if CAN Signal 1000 0000 then turn oof powerground but stay ready
return STATE_READY;
case STATE_DISCHARGE: // if CAN Signal 0000 0000 then shutdown
return STATE_DISCHARGE;
default:
return STATE_ACTIVE;
}
}
State sm_update_discharge(){
switch (state.target_state) {
case STATE_INACTIVE:
return STATE_INACTIVE;
case STATE_ERROR:
return STATE_ERROR;
default:
return STATE_DISCHARGE;
}
}
State sm_update_charging_precharge(){
switch (state.target_state) {
case STATE_CHARGING:
return STATE_CHARGING;
case STATE_DISCHARGE:
return STATE_DISCHARGE;
default:
return STATE_CHARGING_PRECHARGE;
}
}
State sm_update_charging(){
switch (state.target_state) {
case STATE_DISCHARGE:
return STATE_DISCHARGE;
default:
return STATE_CHARGING;
}
}
State sm_update_error(){
switch (state.target_state) {
case STATE_DISCHARGE:
return STATE_DISCHARGE;
case STATE_INACTIVE:
return STATE_INACTIVE;
default:
return STATE_ERROR;
}
}
void sm_set_relay_positions(State current_state){
switch (state.current_state) {
case STATE_INACTIVE:
sm_set_relay(RELAY_MAIN, 0);
sm_set_relay(RELAY_PRECHARGE, 0);
break;
case STATE_PRECHARGE:
sm_set_relay(RELAY_MAIN, 0);
sm_set_relay(RELAY_PRECHARGE, 1);
break;
case STATE_READY:
sm_set_relay(RELAY_MAIN, 1);
sm_set_relay(RELAY_PRECHARGE, 0);
break;
case STATE_ACTIVE:
sm_set_relay(RELAY_MAIN, 1);
sm_set_relay(RELAY_PRECHARGE, 0);
break;
case STATE_DISCHARGE:
sm_set_relay(RELAY_MAIN, 0);
sm_set_relay(RELAY_PRECHARGE, 1);
break;
case STATE_CHARGING_PRECHARGE:
sm_set_relay(RELAY_MAIN, 0);
sm_set_relay(RELAY_PRECHARGE, 1);
break;
case STATE_CHARGING:
sm_set_relay(RELAY_MAIN, 1);
sm_set_relay(RELAY_PRECHARGE, 0);
break;
case STATE_ERROR:
sm_set_relay(RELAY_MAIN, 0);
sm_set_relay(RELAY_PRECHARGE, 0);
break;
}
}
void sm_set_relay(Relay relay, bool closed){
GPIO_PinState state = closed ? GPIO_PIN_SET : GPIO_PIN_RESET;
switch (relay) {
case RELAY_MAIN:
HAL_GPIO_WritePin(RELAY_ENABLE_GPIO_Port, RELAY_ENABLE_Pin, state);
break;
case RELAY_PRECHARGE:
HAL_GPIO_WritePin(PRECHARGE_ENABLE_GPIO_Port, PRECHARGE_ENABLE_Pin, state);
break;
}
}
/* returns the ID and temperature of the hottest cell */
void sm_check_battery_temperature(int8_t *id, int16_t *temp){
for (int i = 0; i < N_TEMP_SENSORS; i++) {
if (tmp1075_temps[i] > *temp){
*id = i;
*temp = tmp1075_temps[i];
}
}
}
int16_t sm_return_cell_temperature(int id){ return tmp1075_temps[id]; }
int16_t sm_return_cell_voltage(int id){ return module.cellVoltages[id]; }
void sm_test_cycle_states(){
RELAY_BAT_SIDE_VOLTAGE = module.auxVoltages[0];
RELAY_ESC_SIDE_VOLTAGE = module.auxVoltages[1];
CURRENT_MEASUREMENT = module.auxVoltages[2];
sm_set_relay_positions(state.current_state);
if (timestamp > HAL_GetTick())
return;
switch (state.current_state) {
case STATE_INACTIVE:
state.current_state = STATE_PRECHARGE;
timestamp = HAL_GetTick() + 30000;
PWM_powerground_control(0);
break;
case STATE_PRECHARGE:
state.current_state = STATE_READY;
timestamp = HAL_GetTick() + 10000;
break;
case STATE_READY:
state.current_state = STATE_ACTIVE;
timestamp = HAL_GetTick() + 10000;
break;
case STATE_ACTIVE:
state.current_state = STATE_DISCHARGE;
timestamp = HAL_GetTick() + 10000;
PWM_powerground_control(10);
break;
case STATE_DISCHARGE:
state.current_state = STATE_INACTIVE;
timestamp = HAL_GetTick() + 10000;
break;
case STATE_CHARGING_PRECHARGE:
case STATE_CHARGING:
case STATE_ERROR:
break;
}
state.target_state = state.current_state;
}