mv-bms/Core/Src/state_machine.c

330 lines
8.9 KiB
C

#include "state_machine.h"
#include "AMS_HighLevel.h"
#include "TMP1075.h"
#include "errors.h"
#include "main.h"
#include "stm32f3xx_hal.h"
#include <stdint.h>
StateHandle state;
int16_t RELAY_BAT_SIDE_VOLTAGE;
int16_t RELAY_ESC_SIDE_VOLTAGE;
int16_t CURRENT_MEASUREMENT;
uint8_t powerground_status;
static uint32_t timestamp;
void sm_init(){
state.current_state = STATE_INACTIVE;
state.target_state = STATE_INACTIVE;
state.error_source = 0;
}
void sm_update(){
sm_check_errors();
RELAY_BAT_SIDE_VOLTAGE = module.auxVoltages[0] * 12.42; // the calculation says the factor is 11.989. 12.42 yields the better result
RELAY_ESC_SIDE_VOLTAGE = module.auxVoltages[1] * 12.42;
CURRENT_MEASUREMENT = (module.auxVoltages[2] - 2496) * 300;
switch (state.current_state) {
case STATE_INACTIVE:
state.current_state = sm_update_inactive(); // monitor only
break;
case STATE_PRECHARGE:
state.current_state = sm_update_precharge(); // set PRECHARGE and turn on cooling at 50% or such
break;
case STATE_READY:
state.current_state = sm_update_ready(); // keep cooling at 50%, get ready to turn on powerground
break;
case STATE_ACTIVE:
state.current_state = sm_update_active(); // set PRECHARGE and turn on cooling at 50% or such
break;
case STATE_DISCHARGE:
state.current_state = sm_update_discharge(); // open the main relay, keep PRECHARGE closed
break;
case STATE_CHARGING_PRECHARGE:
state.current_state = sm_update_charging_precharge();
break;
case STATE_CHARGING:
state.current_state = sm_update_charging(); // monitor and turn on cooling if needed.
break;
case STATE_ERROR:
state.current_state = sm_update_error(); // enter the correct ERROR state
break;
}
sm_set_relay_positions(state.current_state);
state.target_state = state.current_state;
}
State sm_update_inactive(){
switch (state.target_state) {
case STATE_PRECHARGE:
return STATE_PRECHARGE;
case STATE_CHARGING_PRECHARGE:
return STATE_CHARGING_PRECHARGE;
default:
return STATE_INACTIVE;
}
}
State sm_update_precharge(){
switch (state.target_state) {
case STATE_INACTIVE: // if CAN Signal 0000 0000 then immidiete shutdown
return STATE_DISCHARGE;
case STATE_PRECHARGE:
if (RELAY_BAT_SIDE_VOLTAGE-RELAY_ESC_SIDE_VOLTAGE < 100){
PWM_set_throttle();
return STATE_READY;
}
return STATE_PRECHARGE;
case STATE_DISCHARGE:
return STATE_DISCHARGE;
default:
return STATE_PRECHARGE;
}
}
State sm_update_ready(){
switch (state.target_state) {
case STATE_ACTIVE: // if CAN Signal 1100 0000 then turn on powerground
return STATE_ACTIVE;
case STATE_DISCHARGE: // if CAN Signal 0000 0000 then shutdown
return STATE_DISCHARGE;
default:
return STATE_READY;
}
}
State sm_update_active(){
switch (state.target_state) {
case STATE_READY: // if CAN Signal 1000 0000 then turn oof powerground but stay ready
return STATE_READY;
case STATE_DISCHARGE: // if CAN Signal 0000 0000 then shutdown
return STATE_DISCHARGE;
default:
return STATE_ACTIVE;
}
}
State sm_update_discharge(){
switch (state.target_state) {
case STATE_DISCHARGE:
return (RELAY_ESC_SIDE_VOLTAGE < 5000) ? STATE_INACTIVE : STATE_DISCHARGE;
case STATE_PRECHARGE: // if CAN Signal 1000 0000 then get ready
return STATE_PRECHARGE;
default:
return STATE_DISCHARGE;
}
}
State sm_update_charging_precharge(){
switch (state.target_state) {
case STATE_CHARGING:
return STATE_CHARGING;
case STATE_DISCHARGE:
return STATE_DISCHARGE;
default:
return STATE_CHARGING_PRECHARGE;
}
}
State sm_update_charging(){
switch (state.target_state) {
case STATE_DISCHARGE:
return STATE_DISCHARGE;
default:
return STATE_CHARGING;
}
}
State sm_update_error(){
switch (state.target_state) {
case STATE_DISCHARGE:
return STATE_DISCHARGE;
default:
return STATE_ERROR;
}
}
void sm_set_relay_positions(State current_state){
switch (state.current_state) {
case STATE_INACTIVE:
sm_set_relay(RELAY_MAIN, 0);
sm_set_relay(RELAY_PRECHARGE, 0);
break;
case STATE_PRECHARGE:
sm_set_relay(RELAY_MAIN, 0);
sm_set_relay(RELAY_PRECHARGE, 1);
break;
case STATE_READY:
sm_set_relay(RELAY_MAIN, 1);
sm_set_relay(RELAY_PRECHARGE, 0);
break;
case STATE_ACTIVE:
sm_set_relay(RELAY_MAIN, 1);
sm_set_relay(RELAY_PRECHARGE, 0);
break;
case STATE_DISCHARGE:
sm_set_relay(RELAY_MAIN, 0);
sm_set_relay(RELAY_PRECHARGE, 0);
break;
case STATE_CHARGING_PRECHARGE:
sm_set_relay(RELAY_MAIN, 0);
sm_set_relay(RELAY_PRECHARGE, 1);
break;
case STATE_CHARGING:
sm_set_relay(RELAY_MAIN, 1);
sm_set_relay(RELAY_PRECHARGE, 0);
break;
case STATE_ERROR:
sm_set_relay(RELAY_MAIN, 0);
sm_set_relay(RELAY_PRECHARGE, 0);
break;
}
}
void sm_set_relay(Relay relay, bool closed){
GPIO_PinState state = closed ? GPIO_PIN_SET : GPIO_PIN_RESET;
switch (relay) {
case RELAY_MAIN:
HAL_GPIO_WritePin(RELAY_ENABLE_GPIO_Port, RELAY_ENABLE_Pin, state);
relay_closed = closed;
break;
case RELAY_PRECHARGE:
HAL_GPIO_WritePin(PRECHARGE_ENABLE_GPIO_Port, PRECHARGE_ENABLE_Pin, state);
precharge_closed = closed;
break;
}
}
void sm_check_charging(){
if (RELAY_BAT_SIDE_VOLTAGE < RELAY_ESC_SIDE_VOLTAGE && timestamp == 0)
timestamp = HAL_GetTick() + 5000;
if (timestamp < HAL_GetTick())
state.target_state = STATE_CHARGING_PRECHARGE;
}
/* returns the ID and temperature of the hottest cell */
void sm_check_battery_temperature(int8_t *id, int16_t *temp){
for (int i = 0; i < N_TEMP_SENSORS; i++) {
if (tmp1075_temps[i] > *temp){
*id = i;
*temp = tmp1075_temps[i];
}
}
}
int16_t sm_return_cell_temperature(int id){
return tmp1075_temps[id];
}
int16_t sm_return_cell_voltage(int id){
return module.cellVoltages[id];
}
void sm_handle_ams_in(const uint8_t *data){
switch (data[0]) {
case 0x00:
if (state.current_state != STATE_INACTIVE){
state.target_state = STATE_DISCHARGE;
}
break;
case 0x01:
if (state.target_state == STATE_INACTIVE || state.target_state == STATE_DISCHARGE){
state.target_state = STATE_PRECHARGE;
} else if (state.target_state == STATE_ACTIVE){
state.target_state = STATE_READY;
}
break;
case 0x02:
if (state.current_state == STATE_READY || state.current_state == STATE_ACTIVE){
PWM_powerground_control(data[1]);
state.target_state = STATE_ACTIVE; // READY -> ACTIVE
}
break;
}
}
void sm_set_error(ErrorKind error_kind, bool is_errored){}
#warning TODO: add error checking for everything here
void sm_check_errors(){
switch (error_data.data_kind) {
case SEK_OVERTEMP:
case SEK_UNDERTEMP:
case SEK_TOO_FEW_TEMPS:
state.error_type.temperature_error = 1;
break;
case SEK_OVERVOLT:
case SEK_UNDERVOLT:
case SEK_OPENWIRE:
state.error_type.voltage_error = 1;
break;
case SEK_EEPROM_ERR:
state.error_type.eeprom_error = 1;
break;
case SEK_INTERNAL_BMS_TIMEOUT:
state.error_type.bms_timeout = 1;
break;
case SEK_INTERNAL_BMS_CHECKSUM_FAIL:
case SEK_INTERNAL_BMS_OVERTEMP:
case SEK_INTERNAL_BMS_FAULT:
state.error_type.bms_fault = 1;
break;
}
if (1){
state.error_type.current_error = 1;
}
if (1){
state.error_type.current_sensor_missing = 1;
}
if (RELAY_BAT_SIDE_VOLTAGE < 30000){
state.error_type.voltage_error = 1;
}
if (1){
state.error_type.voltage_missing = 1;
}
}
void sm_test_cycle_states(){
RELAY_BAT_SIDE_VOLTAGE = module.auxVoltages[0];
RELAY_ESC_SIDE_VOLTAGE = module.auxVoltages[1];
CURRENT_MEASUREMENT = module.auxVoltages[2];
sm_set_relay_positions(state.current_state);
if (timestamp > HAL_GetTick())
return;
switch (state.current_state) {
case STATE_INACTIVE:
state.current_state = STATE_PRECHARGE;
timestamp = HAL_GetTick() + 30000;
PWM_powerground_control(0);
break;
case STATE_PRECHARGE:
state.current_state = STATE_READY;
timestamp = HAL_GetTick() + 10000;
break;
case STATE_READY:
state.current_state = STATE_ACTIVE;
timestamp = HAL_GetTick() + 10000;
break;
case STATE_ACTIVE:
state.current_state = STATE_DISCHARGE;
timestamp = HAL_GetTick() + 10000;
PWM_powerground_control(1);
break;
case STATE_DISCHARGE:
state.current_state = STATE_INACTIVE;
timestamp = HAL_GetTick() + 10000;
break;
}
state.target_state = state.current_state;
}