Compare commits
2 Commits
main
...
not-mvbms-
Author | SHA1 | Date | |
---|---|---|---|
|
67466b72d5 | ||
c5c4184d6b |
@ -1,106 +0,0 @@
|
||||
/*
|
||||
* ADBMS_Abstraction.h
|
||||
*
|
||||
* Created on: 14.07.2022
|
||||
* Author: max
|
||||
*/
|
||||
|
||||
#ifndef INC_ADBMS_ABSTRACTION_H_
|
||||
#define INC_ADBMS_ABSTRACTION_H_
|
||||
|
||||
#include "ADBMS_CMD_MAKROS.h"
|
||||
#include "ADBMS_LL_Driver.h"
|
||||
#include "main.h"
|
||||
|
||||
|
||||
#define MAXIMUM_CELL_VOLTAGES 16
|
||||
#define MAXIMUM_AUX_VOLTAGES 10
|
||||
#define MAXIMUM_GPIO 10
|
||||
|
||||
//see table 103 in datasheet (page 71)
|
||||
#define DEFAULT_UV 417 //VUV * 16 * 150 uV + 1.5 V Default Setting 2.5V
|
||||
#define DEFAULT_OV 1125 //VOV * 16 * 150 uV + 1.5 V Default Setting 4.2V
|
||||
|
||||
#define mV_from_ADBMS6830(x) (((((int16_t) (x))) * 0.150) + 1500)
|
||||
|
||||
struct ADBMS6830_Internal_Status {
|
||||
uint16 CS_FLT : 16; //ADC fault - mismatch between S- and C-ADC
|
||||
uint16 : 3;
|
||||
uint16 CCTS : 13; //Conversion counter
|
||||
uint16 VA_OV : 1; //5V analog supply overvoltage
|
||||
uint16 VA_UV : 1; //5V analog supply undervoltage
|
||||
uint16 VD_OV : 1; //3V digital supply overvoltage
|
||||
uint16 VD_UV : 1; //3V digital supply undervoltage
|
||||
uint16 CED : 1; //C-ADC single trim error (correctable)
|
||||
uint16 CMED : 1; //C-ADC multiple trim error (uncorrectable)
|
||||
uint16 SED : 1; //S-ADC single trim error (correctable)
|
||||
uint16 SMED : 1; //S-ADC multiple trim error (uncorrectable)
|
||||
uint16 VDEL : 1; //Latent supply voltage error
|
||||
uint16 VDE : 1; //Supply voltage error
|
||||
uint16 COMPARE : 1; //Comparasion between S- and C-ADC active
|
||||
uint16 SPIFLT : 1; //SPI fault
|
||||
uint16 SLEEP : 1; //Sleep mode previously entered
|
||||
uint16 THSD : 1; //Thermal shutdown
|
||||
uint16 TMODCHK : 1; //Test mode check
|
||||
uint16 OSCCHK : 1; //Oscillator check
|
||||
};
|
||||
|
||||
typedef struct {
|
||||
int16_t cellVoltages[MAXIMUM_CELL_VOLTAGES];
|
||||
int16_t auxVoltages[MAXIMUM_AUX_VOLTAGES];
|
||||
|
||||
struct ADBMS6830_Internal_Status status;
|
||||
uint16 internalDieTemp;
|
||||
uint16 analogSupplyVoltage;
|
||||
uint16 digitalSupplyVoltage;
|
||||
uint16 sumOfCellMeasurements;
|
||||
uint16 refVoltage;
|
||||
|
||||
uint16 GPIO_Values[MAXIMUM_GPIO];
|
||||
|
||||
uint32 overVoltage;
|
||||
uint32 underVoltage;
|
||||
|
||||
} Cell_Module;
|
||||
|
||||
uint8 amsReset();
|
||||
|
||||
uint8 initAMS(SPI_HandleTypeDef* hspi, uint8 numofcells, uint8 numofaux);
|
||||
uint8 amsWakeUp();
|
||||
|
||||
uint8 amsCellMeasurement(Cell_Module* module);
|
||||
uint8 amsConfigCellMeasurement(uint8 numberofChannels);
|
||||
|
||||
uint8 amsAuxAndStatusMeasurement(Cell_Module* module);
|
||||
uint8 amsConfigAuxMeasurement(uint16 Channels);
|
||||
|
||||
uint8 amsConfigGPIO(uint16 gpios);
|
||||
uint8 amsSetGPIO(uint16 gpios);
|
||||
uint8 readGPIO(Cell_Module* module);
|
||||
|
||||
uint8 amsConfigBalancing(uint32 Channels, uint8 dutyCycle);
|
||||
uint8 amsStartBalancing(uint8 dutyCycle);
|
||||
uint8 amsStopBalancing();
|
||||
|
||||
uint8 amsSelfTest();
|
||||
|
||||
uint8 amsConfigOverUnderVoltage(uint16 overVoltage, uint16 underVoltage);
|
||||
|
||||
uint8 amsCheckUnderOverVoltage(Cell_Module* module);
|
||||
uint8 amsConfigOverVoltage(uint16 overVoltage);
|
||||
|
||||
uint8 amscheckOpenCellWire(Cell_Module* module);
|
||||
|
||||
uint8 amsClearStatus();
|
||||
uint8 amsClearAux();
|
||||
uint8 amsClearCells();
|
||||
|
||||
uint8 amsSendWarning();
|
||||
uint8 amsSendError();
|
||||
|
||||
uint8 amsClearWarning();
|
||||
uint8 amsClearError();
|
||||
|
||||
uint8 amsReadCellVoltages(Cell_Module* module);
|
||||
|
||||
#endif /* INC_ADBMS_ABSTRACTION_H_ */
|
@ -1,171 +0,0 @@
|
||||
/*
|
||||
* ADBMS_CMD_MAKROS.h
|
||||
*
|
||||
* Created on: 14.07.2022
|
||||
* Author: max
|
||||
*/
|
||||
|
||||
#ifndef INC_ADBMS_CMD_MAKROS_H_
|
||||
#define INC_ADBMS_CMD_MAKROS_H_
|
||||
|
||||
#include <stdint.h>
|
||||
#define WRCFGA 0x0001 // Write Configuration Register Group A
|
||||
#define RDCFGA 0x0002 // Read Configuration Register Group A
|
||||
#define WRCFGB 0x0024 // Write Configuration Register Group B
|
||||
#define RDCFGB 0x0026 // Read Configuration Register Group B
|
||||
|
||||
#define WRPWMA 0x0020 // Write PWM Register Group A
|
||||
#define RDPWMA 0x0022 // Read PWM Register Group A
|
||||
#define WRPWMB 0x0021 // Write PWM Register Group B
|
||||
#define RDPWMB 0x0023 // Read PWM Register Group B
|
||||
|
||||
#define RDCVA 0x0004 // Read Cell Voltage Register Group A
|
||||
#define RDCVB 0x0006 // Read Cell Voltage Register Group B
|
||||
#define RDCVC 0x0008 // Read Cell Voltage Register Group C
|
||||
#define RDCVD 0x000A // Read Cell Voltage Register Group D
|
||||
#define RDCVE 0x0009 // Read Cell Voltage Register Group E
|
||||
#define RDCVF 0x000B // Read Cell Voltage Register Group F
|
||||
#define RDCVALL 0x000C // Read All Cell Voltage Register Groups
|
||||
|
||||
#define RDACA 0x0044 // Read averaged Cell Voltage Register Group A
|
||||
#define RDACB 0x0046 // Read averaged Cell Voltage Register Group B
|
||||
#define RDACC 0x0048 // Read averaged Cell Voltage Register Group C
|
||||
#define RDACD 0x004A // Read averaged Cell Voltage Register Group D
|
||||
#define RDACE 0x0049 // Read averaged Cell Voltage Register Group E
|
||||
#define RDACF 0x004B // Read averaged Cell Voltage Register Group F
|
||||
#define RDACALL 0x004C // Read averaged All Cell Voltage Register Groups
|
||||
|
||||
#define RDAUXA 0x0019 // Read Auxilliary Register Group A
|
||||
#define RDAUXB 0x001A // Read Auxilliary Register Group B
|
||||
#define RDAUXC 0x001B // Read Auxilliary Register Group C
|
||||
#define RDAUXD 0x001F // Read Auxilliary Register Group D
|
||||
|
||||
#define RDAUXALL 0x0035 // Read All Auxilliary and Status Register Groups
|
||||
|
||||
#define RDSTATA 0x0030 // Read Status Register Group A
|
||||
#define RDSTATB 0x0031 // Read Status Register Group B
|
||||
#define RDSTATC 0x0032 // Read Status Register Group C
|
||||
#define RDSTATD 0x0033 // Read Status Register Group D
|
||||
#define RDSTATE 0x0034 // Read Status Register Group E
|
||||
|
||||
#define ADCV 0x0260 // Start Cell Voltage Conversion with C-ADC
|
||||
#define ADCV_OW_0 (1u << 0)
|
||||
#define ADCV_OW_1 (1u << 1)
|
||||
#define ADCV_RSTF (1u << 2)
|
||||
#define ADCV_DCP (1u << 4)
|
||||
#define ADCV_CONT (1u << 7) // Continuous Mode
|
||||
#define ADCV_RD (1u << 8) // Redundancy Mode
|
||||
|
||||
#define ADSV 0x0168 // Start Cell Voltage Conversion with S-ADC
|
||||
#define ADSV_OW_0 (1u << 0)
|
||||
#define ADSV_OW_1 (1u << 1)
|
||||
#define ADSV_DCP (1u << 4)
|
||||
#define ADSV_CONT (1u << 7) // Continuous Mode
|
||||
|
||||
#define ADAX 0x0410 // Start GPIOs and Vref2 Conversion
|
||||
#define ADAX_CONV_ALL 0x0000 // Convert all GPIOs, VREF2, VD, VA, ITEMP
|
||||
#define ADAX_OW (1u << 8)
|
||||
|
||||
#define CLRCELL 0x0711 // Clear Cell Voltage Register Groups
|
||||
#define CLRAUX 0x0712 // Clear Auxiliary Register Groups
|
||||
#define CLOVUV 0x0715 // Clear Overvoltage and Undervoltage Flags
|
||||
#define CLRFLAG 0x0717 // Clear all Flags
|
||||
|
||||
#define PLADC 0x0718 // Poll ADC Conversion Status
|
||||
#define PLAUX 0x071E // Poll AUX Conversion Status
|
||||
|
||||
#define SRST 0x0027 //Soft reset
|
||||
|
||||
#define DIAGN 0x0715 // Diagnos MUX and Poll Status
|
||||
#define WRCOMM 0x0721 // Write COMM Register Group
|
||||
#define RDCOMM 0x0722 // Read COMM Register Group
|
||||
#define STCOMM 0x0723 // Start I2C/SPI Communication
|
||||
#define MUTE 0x0028 // Mute Discharge
|
||||
#define UNMUTE 0x0029 // Unmute Discharge
|
||||
|
||||
|
||||
|
||||
/* GPIO Selection for ADC Converion
|
||||
* 000: GPIO1 to 5, 2nd Reference, GPIO 6 to 9
|
||||
* 001: GPIO1 and GPIO6
|
||||
* 010 GPIO2 and GPIO7
|
||||
* 011 GPIO3 and GPIO8
|
||||
* 100 GPIO4 and GPIO9
|
||||
* 101 GPIO5
|
||||
* 110 2nd Reference
|
||||
*/
|
||||
|
||||
#define CHG000 (0x00)
|
||||
#define CHG001 (0x01)
|
||||
#define CHG010 (0x02)
|
||||
#define CHG011 (0x03)
|
||||
#define CHG100 (0x04)
|
||||
#define CHG101 (0x05)
|
||||
#define CHG110 (0x06)
|
||||
|
||||
/* Status Group Selection
|
||||
* 000: SC,ITMP,VA,VD
|
||||
* 001: SC
|
||||
* 010: ITMP
|
||||
* 011: VA
|
||||
* 100: VD
|
||||
*/
|
||||
|
||||
#define CHST000 (0x00)
|
||||
#define CHST001 (0x01)
|
||||
#define CHST010 (0x02)
|
||||
#define CHST011 (0x03)
|
||||
#define CHST100 (0x04)
|
||||
|
||||
#define PEC_FIELD_SIZE 2
|
||||
|
||||
#define CFG_GROUP_A_SIZE 6
|
||||
#define CFG_GROUP_B_SIZE 6
|
||||
|
||||
#define PWM_GROUP_A_SIZE 6
|
||||
#define PWM_GROUP_B_SIZE 2
|
||||
|
||||
#define CV_GROUP_A_SIZE 6
|
||||
#define CV_GROUP_B_SIZE 6
|
||||
#define CV_GROUP_C_SIZE 6
|
||||
#define CV_GROUP_D_SIZE 6
|
||||
#define CV_GROUP_E_SIZE 6
|
||||
#define CV_GROUP_F_SIZE 6
|
||||
|
||||
#define AUX_GROUP_A_SIZE 6
|
||||
#define AUX_GROUP_B_SIZE 6
|
||||
#define AUX_GROUP_C_SIZE 6
|
||||
#define AUX_GROUP_D_SIZE 6
|
||||
|
||||
#define STATUS_GROUP_A_SIZE 6
|
||||
#define STATUS_GROUP_B_SIZE 6
|
||||
#define STATUS_GROUP_C_SIZE 6
|
||||
#define STATUS_GROUP_D_SIZE 6
|
||||
#define STATUS_GROUP_E_SIZE 6
|
||||
#define COMM_GROUP_SIZE 6
|
||||
#define S_CONTROL_GROUP_SIZE 6
|
||||
#define PWM_GROUP_SIZE 6
|
||||
#define PWM_S_CONTROL_GROUP_B_SIZE 6
|
||||
|
||||
#define CFG_GROUP_A_ID 1
|
||||
#define CFG_GROUP_B_ID 2
|
||||
#define CV_GROUP_A_ID 3
|
||||
#define CV_GROUP_B_ID 4
|
||||
#define CV_GROUP_C_ID 5
|
||||
#define CV_GROUP_D_ID 6
|
||||
#define CV_GROUP_E_ID 7
|
||||
#define CV_GROUP_F_ID 8
|
||||
|
||||
#define AUX_GROUP_A_ID 9
|
||||
#define AUX_GROUP_B_ID 10
|
||||
#define AUX_GROUP_C_ID 11
|
||||
#define AUX_GROUP_D_ID 12
|
||||
|
||||
#define STATUS_GROUP_A_ID 13
|
||||
#define STATUS_GROUP_B_ID 14
|
||||
#define COMM_GROUP_ID 15
|
||||
#define S_CONTROL_GROUP_ID 16
|
||||
#define PWM_GROUP_ID 17
|
||||
#define PWM_S_CONTROL_GROUP_B_ID 18
|
||||
|
||||
#endif /* INC_ADBMS_CMD_MAKROS_H_ */
|
@ -1,44 +0,0 @@
|
||||
/*
|
||||
* ADBMS_LL_Driver.h
|
||||
*
|
||||
* Created on: 05.06.2022
|
||||
* Author: max
|
||||
*/
|
||||
|
||||
#ifndef ADBMS_LL_DRIVER_H_
|
||||
#define ADBMS_LL_DRIVER_H_
|
||||
|
||||
#define TARGET_STM32
|
||||
|
||||
#include "main.h"
|
||||
|
||||
#ifdef TARGET_STM32
|
||||
typedef uint8_t uint8;
|
||||
typedef uint16_t uint16;
|
||||
typedef uint32_t uint32;
|
||||
#endif
|
||||
|
||||
uint8 adbmsDriverInit(SPI_HandleTypeDef* hspi);
|
||||
uint8 calculateCommandPEC(uint8* data, uint8 datalen);
|
||||
uint16 updateCommandPEC(uint16 currentPEC, uint8 din);
|
||||
uint8 checkCommandPEC(uint8* data, uint8 datalen);
|
||||
|
||||
uint8 calculateDataPEC(uint8* data, uint8 datalen);
|
||||
uint16 updateDataPEC(uint16 currentPEC, uint8 din);
|
||||
uint8 checkDataPEC(uint8* data, uint8 datalen);
|
||||
|
||||
uint8 writeCMD(uint16 command, uint8* args, uint8 arglen);
|
||||
uint8 readCMD(uint16 command, uint8* buffer, uint8 buflen);
|
||||
uint8 pollCMD(uint16 command);
|
||||
|
||||
void mcuAdbmsCSLow();
|
||||
void mcuAdbmsCSHigh();
|
||||
|
||||
uint8 mcuSPITransmit(uint8* buffer, uint8 buffersize);
|
||||
uint8 mcuSPIReceive(uint8* buffer, uint8 buffersize);
|
||||
uint8 mcuSPITransmitReceive(uint8* rxbuffer, uint8* txbuffer, uint8 buffersize);
|
||||
|
||||
uint8 wakeUpCmd();
|
||||
void mcuDelay(uint16 delay);
|
||||
|
||||
#endif /* ADBMS_LL_DRIVER_H_ */
|
@ -1,57 +0,0 @@
|
||||
/*
|
||||
* AMS_HighLevel.h
|
||||
*
|
||||
* Created on: 20.07.2022
|
||||
* Author: max
|
||||
*/
|
||||
|
||||
#ifndef INC_AMS_HIGHLEVEL_H_
|
||||
#define INC_AMS_HIGHLEVEL_H_
|
||||
|
||||
#include "ADBMS_Abstraction.h"
|
||||
#include "ADBMS_CMD_MAKROS.h"
|
||||
#include "ADBMS_LL_Driver.h"
|
||||
#include "can.h"
|
||||
#include "TMP1075.h"
|
||||
#include "can-halal.h"
|
||||
#include "errors.h"
|
||||
#include "stm32f3xx_hal.h"
|
||||
#include <stdint.h>
|
||||
|
||||
typedef enum {
|
||||
AMSDEACTIVE,
|
||||
AMSIDLE,
|
||||
AMSCHARGING,
|
||||
AMSIDLEBALANCING,
|
||||
AMSDISCHARGING,
|
||||
AMSWARNING,
|
||||
AMSERROR
|
||||
} amsState;
|
||||
|
||||
extern amsState currentAMSState;
|
||||
extern Cell_Module module;
|
||||
extern uint32_t balancedCells;
|
||||
extern uint8_t BalancingActive;
|
||||
extern uint8_t stateofcharge;
|
||||
|
||||
extern uint8_t amserrorcode;
|
||||
extern uint8_t amswarningcode;
|
||||
|
||||
extern uint8_t numberofCells;
|
||||
extern uint8_t numberofAux;
|
||||
|
||||
void AMS_Init(SPI_HandleTypeDef* hspi);
|
||||
void AMS_Loop();
|
||||
|
||||
uint8_t AMS_Balancing_Loop();
|
||||
uint8_t AMS_Idle_Loop();
|
||||
uint8_t AMS_Warning_Loop();
|
||||
uint8_t AMS_Error_Loop();
|
||||
uint8_t AMS_Charging_Loop();
|
||||
uint8_t AMS_Discharging_Loop();
|
||||
|
||||
uint8_t writeWarningLog(uint8_t warningCode);
|
||||
uint8_t writeErrorLog(uint8_t errorCode);
|
||||
uint8_t integrateCurrent();
|
||||
|
||||
#endif /* INC_AMS_HIGHLEVEL_H_ */
|
@ -1,32 +0,0 @@
|
||||
#ifndef INC_PWM_CONTROL_H
|
||||
#define INC_PWM_CONTROL_H
|
||||
|
||||
#include "stm32f3xx_hal.h"
|
||||
#include "ADBMS_LL_Driver.h"
|
||||
#include "state_machine.h"
|
||||
#include <stdint.h>
|
||||
#include "main.h"
|
||||
|
||||
/* The PWM period (1/FPWM) is defined by the following parameters:
|
||||
ARR value, the Prescaler value, and the internal clock itself which drives the timer module FCLK.
|
||||
F_PWM = (F_CLK)/((ARR + 1) * (PSC + 1))
|
||||
|
||||
F_CLK = 16 MHz
|
||||
|
||||
POWERGROUND ESC Signal: pulse every 20 ms, 1 ms = 0%, 2 ms = 100%
|
||||
FREQ = 50 Hz -> 16 MHz/50 Hz = 320000 = ((39999 + 1) * (7 + 1))
|
||||
DUTY CYCLE = 1/20 -> 0%, DUTY CYCLE = 2/20 -> 100%
|
||||
CCR * DUTY_CYCLE
|
||||
CCR: 1/20 -> 500, 2/20 -> 1000
|
||||
*/
|
||||
#define POWERGROUND_FREQ 50
|
||||
|
||||
//#define BATTERY_COOLING_FREQ 20000
|
||||
|
||||
void PWM_control_init(TIM_HandleTypeDef* powerground, TIM_HandleTypeDef* battery_cooling);
|
||||
|
||||
void PWM_powerground_control(uint8_t percent);
|
||||
void PWM_battery_cooling_control(uint8_t percent);
|
||||
void PWM_set_throttle();
|
||||
|
||||
#endif /* INC_CHANNEL_CONTROL_H */
|
@ -1,20 +0,0 @@
|
||||
#ifndef INC_TMP1075_H_
|
||||
#define INC_TMP1075_H_
|
||||
|
||||
#include "can.h"
|
||||
#include "common_defs.h"
|
||||
#include "stm32f3xx_hal.h"
|
||||
#include "TMP1075.h"
|
||||
#include "can-halal.h"
|
||||
#include "errors.h"
|
||||
#include <stdint.h>
|
||||
|
||||
extern uint32_t tmp1075_failed_sensors;
|
||||
extern int16_t tmp1075_temps[N_TEMP_SENSORS];
|
||||
|
||||
HAL_StatusTypeDef tmp1075_init(I2C_HandleTypeDef* hi2c);
|
||||
HAL_StatusTypeDef tmp1075_measure();
|
||||
HAL_StatusTypeDef tmp1075_sensor_init(int n);
|
||||
HAL_StatusTypeDef tmp1075_sensor_read(int n, int16_t* res);
|
||||
|
||||
#endif // INC_TMP1075_H_
|
@ -1,23 +0,0 @@
|
||||
#ifndef INC_CAN_H
|
||||
#define INC_CAN_H
|
||||
|
||||
#include "stm32f3xx_hal.h"
|
||||
#include "ADBMS_Abstraction.h"
|
||||
#include "main.h"
|
||||
#include "can-halal.h"
|
||||
#include "AMS_HighLevel.h"
|
||||
#include "state_machine.h"
|
||||
#include <stdint.h>
|
||||
|
||||
#define CAN_ID_IN 0x501
|
||||
#define CAN_ID_OUT 0x502
|
||||
#define CAN_STATUS_FREQ 1000
|
||||
void can_init(CAN_HandleTypeDef* hcan);
|
||||
|
||||
void can_handle_send_status();
|
||||
|
||||
void can_handle_recieve_command(const uint8_t *data);
|
||||
|
||||
void ftcan_msg_received_cb(uint16_t id, size_t datalen, const uint8_t *data);
|
||||
|
||||
#endif /* "INC_CAN_H" */
|
@ -1,14 +0,0 @@
|
||||
/*
|
||||
* common_defs.h
|
||||
*
|
||||
* Created on: 23 Mar 2022
|
||||
* Author: Jasper
|
||||
*/
|
||||
|
||||
#ifndef INC_COMMON_DEFS_H_
|
||||
#define INC_COMMON_DEFS_H_
|
||||
|
||||
#define N_CELLS 12
|
||||
#define N_TEMP_SENSORS 12
|
||||
|
||||
#endif /* INC_COMMON_DEFS_H_ */
|
@ -1,41 +0,0 @@
|
||||
#ifndef INC_ERRORS_H
|
||||
#define INC_ERRORS_H
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#define ERROR_SOURCE_VOLTAGES (1 << 0)
|
||||
#define ERROR_SOURCE_TEMPERATURES (1 << 1)
|
||||
#define ERROR_SOURCE_TOO_FEW_WORKING_TEMP_SENSORS (1 << 2)
|
||||
#define ERROR_SOURCE_OPEN_CELL_CONNECTION (1 << 3)
|
||||
#define ERROR_SOURCE_EEPROM (1 << 4)
|
||||
#define ERROR_SOURCE_INTERNAL (1 << 5)
|
||||
|
||||
#define ERROR_TIME_THRESH 150 // ms
|
||||
|
||||
typedef enum {
|
||||
SEK_OVERTEMP = 0x0,
|
||||
SEK_UNDERTEMP = 0x1,
|
||||
SEK_OVERVOLT = 0x2,
|
||||
SEK_UNDERVOLT = 0x3,
|
||||
SEK_TOO_FEW_TEMPS = 0x4,
|
||||
SEK_OPENWIRE = 0x5,
|
||||
SEK_EEPROM_ERR = 0x6,
|
||||
SEK_INTERNAL_BMS_TIMEOUT = 0x7,
|
||||
SEK_INTERNAL_BMS_CHECKSUM_FAIL = 0x8,
|
||||
SEK_INTERNAL_BMS_OVERTEMP = 0x9,
|
||||
SEK_INTERNAL_BMS_FAULT = 0xA,
|
||||
} SlaveErrorKind;
|
||||
|
||||
typedef struct {
|
||||
int error_sources;
|
||||
SlaveErrorKind data_kind;
|
||||
uint8_t data[4];
|
||||
uint32_t errors_since;
|
||||
} SlaveErrorData;
|
||||
|
||||
extern SlaveErrorData error_data;
|
||||
|
||||
void set_error_source(int source);
|
||||
void clear_error_source(int source);
|
||||
|
||||
#endif // INC_ERRORS_H
|
@ -77,8 +77,10 @@ void Error_Handler(void);
|
||||
#define STATUS_LED_G_GPIO_Port GPIOB
|
||||
#define PRECHARGE_EN_Pin GPIO_PIN_11
|
||||
#define PRECHARGE_EN_GPIO_Port GPIOB
|
||||
#define PWM_Battery_Cooling_Pin GPIO_PIN_15
|
||||
#define PWM_Battery_Cooling_GPIO_Port GPIOB
|
||||
#define AUX_IN_Pin GPIO_PIN_13
|
||||
#define AUX_IN_GPIO_Port GPIOB
|
||||
#define AUX_OUT_Pin GPIO_PIN_14
|
||||
#define AUX_OUT_GPIO_Port GPIOB
|
||||
#define RELAY_BATT_SIDE_ON_Pin GPIO_PIN_8
|
||||
#define RELAY_BATT_SIDE_ON_GPIO_Port GPIOA
|
||||
#define RELAY_ESC_SIDE_ON_Pin GPIO_PIN_9
|
||||
|
@ -1,96 +0,0 @@
|
||||
#ifndef INC_STATE_MACHINE_H
|
||||
#define INC_STATE_MACHINE_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include "ADBMS_LL_Driver.h"
|
||||
#include "AMS_HighLevel.h"
|
||||
#include "errors.h"
|
||||
#include "PWM_control.h"
|
||||
#include "TMP1075.h"
|
||||
#include <math.h>
|
||||
|
||||
// Minimum vehicle side voltage to exit precharge
|
||||
#define MIN_VEHICLE_SIDE_VOLTAGE 150000 // mV
|
||||
// Time to wait after reaching 95% of battery voltage before exiting precharge
|
||||
// Set this to 1000 in scruti to demonstrate the voltage on the multimeter
|
||||
#define PRECHARGE_95_DURATION 0 // ms
|
||||
// Time to wait for discharge
|
||||
#define DISCHARGE_DURATION 5000 // ms
|
||||
// Time to wait after there is no more error condition before exiting TS_ERROR
|
||||
#define NO_ERROR_TIME 1000 // ms
|
||||
// Time to wait for charger voltage before going to TS_ERROR
|
||||
#define MAX_CHARGING_CHECK_DURATION 2000 // ms
|
||||
// Time to wait between closing relays
|
||||
#define RELAY_CLOSE_WAIT 10 // ms
|
||||
|
||||
#warning
|
||||
typedef enum { // states -> 3 bit. valid transitions: (all could transition to error)
|
||||
STATE_INACTIVE, // INACTIVE -> PRECHARGE, CHARGING, ERROR
|
||||
STATE_PRECHARGE, // PRECHARGE -> INACTIVE, READY, DISCHARGE, ERROR
|
||||
STATE_READY, // READY -> ACTIVE, DISCHARGE, ERROR
|
||||
STATE_ACTIVE, // ACTIVE -> READY, DISCHARGE, ERROR
|
||||
STATE_DISCHARGE, // DISCHARGE -> INACTIVE, PRECHARGE, ERROR
|
||||
STATE_CHARGING_PRECHARGE,
|
||||
STATE_CHARGING, // CHARGING -> INACTIVE, DISCHARGE, ERROR
|
||||
STATE_ERROR, // ERROR -> INACTIVE, DISCHARGE, ERROR
|
||||
} State;
|
||||
|
||||
typedef struct {
|
||||
|
||||
uint16_t bms_timeout : 1;
|
||||
uint16_t bms_fault : 1;
|
||||
uint16_t temperature_error : 1;
|
||||
uint16_t current_error : 1;
|
||||
uint16_t current_sensor_missing : 1;
|
||||
uint16_t voltage_error : 1;
|
||||
uint16_t voltage_missing : 1;
|
||||
uint16_t state_transition_fail : 1;
|
||||
|
||||
} ErrorKind;
|
||||
|
||||
//typedef enum {} WarningKind;
|
||||
|
||||
typedef struct {
|
||||
State current_state;
|
||||
State target_state;
|
||||
uint16_t error_source; // TSErrorSource (bitmask)
|
||||
ErrorKind error_type; // TSErrorKind
|
||||
} StateHandle;
|
||||
|
||||
extern StateHandle state;
|
||||
static bool relay_closed = 0;
|
||||
static bool precharge_closed = 0;
|
||||
extern int16_t RELAY_BAT_SIDE_VOLTAGE;
|
||||
extern int16_t RELAY_ESC_SIDE_VOLTAGE;
|
||||
extern int16_t CURRENT_MEASUREMENT;
|
||||
extern uint8_t powerground_status;
|
||||
|
||||
|
||||
void sm_init();
|
||||
void sm_update();
|
||||
|
||||
State sm_update_inactive();
|
||||
State sm_update_precharge();
|
||||
State sm_update_ready();
|
||||
State sm_update_active();
|
||||
State sm_update_discharge();
|
||||
State sm_update_charging_precharge();
|
||||
State sm_update_charging();
|
||||
State sm_update_error();
|
||||
|
||||
typedef enum { RELAY_MAIN, RELAY_PRECHARGE } Relay;
|
||||
void sm_set_relay_positions(State state);
|
||||
void sm_set_relay(Relay relay, bool closed);
|
||||
void sm_check_charging();
|
||||
void sm_check_battery_temperature(int8_t* id, int16_t* temp);
|
||||
|
||||
int16_t sm_return_cell_temperature(int id);
|
||||
int16_t sm_return_cell_voltage(int id);
|
||||
|
||||
void sm_handle_ams_in(const uint8 *data);
|
||||
void sm_check_errors();
|
||||
void sm_set_error(ErrorKind error_kind, bool is_errored);
|
||||
void sm_test_cycle_states();
|
||||
|
||||
#endif /* "INC_STATE_MACHINE_H" */
|
@ -81,7 +81,7 @@
|
||||
* (when HSE is used as system clock source, directly or through the PLL).
|
||||
*/
|
||||
#if !defined (HSE_VALUE)
|
||||
#define HSE_VALUE ((uint32_t)16000000) /*!< Value of the External oscillator in Hz */
|
||||
#define HSE_VALUE ((uint32_t)8000000) /*!< Value of the External oscillator in Hz */
|
||||
#endif /* HSE_VALUE */
|
||||
|
||||
/**
|
||||
|
@ -55,8 +55,6 @@ void SVC_Handler(void);
|
||||
void DebugMon_Handler(void);
|
||||
void PendSV_Handler(void);
|
||||
void SysTick_Handler(void);
|
||||
void USB_LP_CAN_RX0_IRQHandler(void);
|
||||
void CAN_RX1_IRQHandler(void);
|
||||
/* USER CODE BEGIN EFP */
|
||||
|
||||
/* USER CODE END EFP */
|
||||
|
@ -1,246 +0,0 @@
|
||||
/*
|
||||
* ADBMS_Abstraction.c
|
||||
*
|
||||
* Created on: 14.07.2022
|
||||
* Author: max
|
||||
*/
|
||||
|
||||
#include "ADBMS_Abstraction.h"
|
||||
#include "ADBMS_CMD_MAKROS.h"
|
||||
#include "ADBMS_LL_Driver.h"
|
||||
#include <stddef.h>
|
||||
|
||||
uint8 numberofcells;
|
||||
uint8 numberofauxchannels;
|
||||
|
||||
#define CHECK_RETURN(x) \
|
||||
{ \
|
||||
uint8 status = x; \
|
||||
if (status != 0) \
|
||||
return status; \
|
||||
}
|
||||
|
||||
uint8 amsReset() {
|
||||
amsWakeUp();
|
||||
readCMD(SRST, NULL, 0);
|
||||
mcuDelay(10);
|
||||
amsWakeUp();
|
||||
amsStopBalancing();
|
||||
amsConfigOverUnderVoltage(DEFAULT_OV, DEFAULT_UV);
|
||||
|
||||
uint8 buffer[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
|
||||
|
||||
CHECK_RETURN(writeCMD(CLRFLAG, buffer, 6)); //clear flags,
|
||||
CHECK_RETURN(writeCMD(CLOVUV, buffer, 6)); //OVUV flags
|
||||
CHECK_RETURN(writeCMD(ADCV | ADCV_CONT | ADCV_RD, NULL, 0)); //start continuous cell voltage measurement with redundancy
|
||||
CHECK_RETURN(writeCMD(ADAX | ADAX_CONV_ALL, NULL, 0)); //start aux measurement
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint8 initAMS(SPI_HandleTypeDef* hspi, uint8 numofcells, uint8 numofaux) {
|
||||
adbmsDriverInit(hspi);
|
||||
numberofcells = numofcells;
|
||||
numberofauxchannels = numofaux;
|
||||
|
||||
return amsReset();
|
||||
}
|
||||
|
||||
uint8 amsWakeUp() {
|
||||
uint8 buf[6];
|
||||
return readCMD(RDCFGA, buf, 6);
|
||||
}
|
||||
|
||||
uint8 amsCellMeasurement(Cell_Module* module) {
|
||||
#warning check conversion counter to ensure that continous conversion has not been stopped
|
||||
#warning check for OW conditions: ADSV | ADSV_OW_0 / ADSV_OW_1
|
||||
return amsReadCellVoltages(module);
|
||||
}
|
||||
|
||||
uint8 amsConfigCellMeasurement(uint8 numberofChannels) {
|
||||
numberofcells = numberofChannels;
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint8 amsAuxAndStatusMeasurement(Cell_Module* module) {
|
||||
uint8 rxbuf[AUX_GROUP_A_SIZE] = {};
|
||||
|
||||
CHECK_RETURN(readCMD(RDSTATC, rxbuf, STATUS_GROUP_C_SIZE));
|
||||
|
||||
module->status.CS_FLT = rxbuf[0] | (rxbuf[1] << 8);
|
||||
module->status.CCTS = rxbuf[2] | (rxbuf[3] << 8);
|
||||
module->status.VA_OV = (rxbuf[4] >> 7) & 0x01;
|
||||
module->status.VA_UV = (rxbuf[4] >> 6) & 0x01;
|
||||
module->status.VD_OV = (rxbuf[4] >> 5) & 0x01;
|
||||
module->status.VD_UV = (rxbuf[4] >> 4) & 0x01;
|
||||
module->status.CED = (rxbuf[4] >> 3) & 0x01;
|
||||
module->status.CMED = (rxbuf[4] >> 2) & 0x01;
|
||||
module->status.SED = (rxbuf[4] >> 1) & 0x01;
|
||||
module->status.SMED = (rxbuf[4] >> 0) & 0x01;
|
||||
module->status.VDEL = (rxbuf[5] >> 7) & 0x01;
|
||||
module->status.VDE = (rxbuf[5] >> 6) & 0x01;
|
||||
module->status.COMPARE= (rxbuf[5] >> 5) & 0x01;
|
||||
module->status.SPIFLT = (rxbuf[5] >> 4) & 0x01;
|
||||
module->status.SLEEP = (rxbuf[5] >> 3) & 0x01;
|
||||
module->status.THSD = (rxbuf[5] >> 2) & 0x01;
|
||||
module->status.TMODCHK= (rxbuf[5] >> 1) & 0x01;
|
||||
module->status.OSCCHK = (rxbuf[5] >> 0) & 0x01;
|
||||
|
||||
if (pollCMD(PLAUX) == 0x0) { //TODO: check for SPI fault
|
||||
return 0; // aux ADC data not ready
|
||||
}
|
||||
|
||||
CHECK_RETURN(readCMD(RDAUXA, rxbuf, AUX_GROUP_A_SIZE));
|
||||
|
||||
module->auxVoltages[0] = mV_from_ADBMS6830(rxbuf[0] | (rxbuf[1] << 8));
|
||||
module->auxVoltages[1] = mV_from_ADBMS6830(rxbuf[2] | (rxbuf[3] << 8));
|
||||
module->auxVoltages[2] = mV_from_ADBMS6830(rxbuf[4] | (rxbuf[5] << 8));
|
||||
|
||||
CHECK_RETURN(readCMD(RDAUXB, rxbuf, AUX_GROUP_A_SIZE));
|
||||
|
||||
module->auxVoltages[3] = mV_from_ADBMS6830(rxbuf[0] | (rxbuf[1] << 8));
|
||||
module->auxVoltages[4] = mV_from_ADBMS6830(rxbuf[2] | (rxbuf[3] << 8));
|
||||
module->auxVoltages[5] = mV_from_ADBMS6830(rxbuf[4] | (rxbuf[5] << 8));
|
||||
|
||||
CHECK_RETURN(readCMD(RDAUXC, rxbuf, AUX_GROUP_A_SIZE));
|
||||
|
||||
module->auxVoltages[6] = mV_from_ADBMS6830(rxbuf[0] | (rxbuf[1] << 8));
|
||||
module->auxVoltages[7] = mV_from_ADBMS6830(rxbuf[2] | (rxbuf[3] << 8));
|
||||
module->auxVoltages[8] = mV_from_ADBMS6830(rxbuf[4] | (rxbuf[5] << 8));
|
||||
|
||||
CHECK_RETURN(readCMD(RDAUXD, rxbuf, AUX_GROUP_A_SIZE));
|
||||
|
||||
module->auxVoltages[9] = mV_from_ADBMS6830(rxbuf[0] | (rxbuf[1] << 8));
|
||||
|
||||
uint8 rxbuffer[STATUS_GROUP_A_SIZE];
|
||||
|
||||
CHECK_RETURN(readCMD(RDSTATA, rxbuffer, STATUS_GROUP_A_SIZE));
|
||||
|
||||
module->internalDieTemp = rxbuffer[2] | (rxbuffer[3] << 8);
|
||||
|
||||
CHECK_RETURN(readCMD(RDSTATB, rxbuffer, STATUS_GROUP_B_SIZE));
|
||||
module->digitalSupplyVoltage = mV_from_ADBMS6830(rxbuffer[0] | (rxbuffer[1] << 8));
|
||||
module->analogSupplyVoltage = mV_from_ADBMS6830(rxbuffer[2] | (rxbuffer[3] << 8));
|
||||
module->refVoltage = mV_from_ADBMS6830(rxbuffer[4] | (rxbuffer[5] << 8));
|
||||
|
||||
CHECK_RETURN(writeCMD(ADAX | ADAX_CONV_ALL, NULL, 0)); //start aux measurement for next cycle
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint8 amsConfigBalancing(uint32 channels, uint8 dutyCycle) {
|
||||
uint8 buffer_a[PWM_GROUP_A_SIZE] = {};
|
||||
uint8 buffer_b[PWM_GROUP_B_SIZE] = {};
|
||||
CHECK_RETURN(readCMD(RDPWMA, buffer_a, CFG_GROUP_A_SIZE));
|
||||
CHECK_RETURN(readCMD(RDPWMB, buffer_b, CFG_GROUP_B_SIZE));
|
||||
|
||||
if (dutyCycle > 0x0F) { // there are only 4 bits for duty cycle
|
||||
return 1;
|
||||
}
|
||||
|
||||
#warning fixme
|
||||
|
||||
for (size_t i = 0; i < 16; i += 2) {
|
||||
if (i < 12) { // cells 0, 1 are in regbuffer[0], cells 2, 3 in regbuffer[1], ...
|
||||
buffer_a[i / 2] = ((channels & (1 << (i + 1))) ? (dutyCycle << 4) : 0) |
|
||||
((channels & (1 << i)) ? dutyCycle : 0);
|
||||
} else {
|
||||
buffer_b[(i - 12) / 2] = ((channels & (1 << (i + 1))) ? (dutyCycle << 4) : 0) |
|
||||
((channels & (1 << i)) ? dutyCycle : 0);
|
||||
}
|
||||
}
|
||||
|
||||
CHECK_RETURN(writeCMD(WRPWMA, buffer_a, CFG_GROUP_A_SIZE));
|
||||
CHECK_RETURN(writeCMD(WRPWMB, buffer_b, CFG_GROUP_B_SIZE));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint8 amsStartBalancing(uint8 dutyCycle) { return writeCMD(UNMUTE, NULL, 0); }
|
||||
|
||||
uint8 amsStopBalancing() { return writeCMD(MUTE, NULL, 0); }
|
||||
|
||||
uint8 amsSelfTest() { return 0; }
|
||||
|
||||
uint8 amsConfigOverUnderVoltage(uint16 overVoltage, uint16 underVoltage) {
|
||||
uint8 buffer[CFG_GROUP_A_SIZE];
|
||||
|
||||
if (underVoltage & 0xF000 || overVoltage & 0xF000) { // only 12 bits allowed
|
||||
return 1;
|
||||
}
|
||||
|
||||
CHECK_RETURN(readCMD(RDCFGB, buffer, CFG_GROUP_A_SIZE));
|
||||
|
||||
//UV
|
||||
buffer[0] = (uint8) (underVoltage & 0xFF);
|
||||
buffer[1] &= 0xF0;
|
||||
buffer[1] |= (uint8) ((underVoltage >> 8) & 0x0F);
|
||||
|
||||
//OV
|
||||
buffer[1] &= 0x0F;
|
||||
buffer[1] |= (uint8) (overVoltage << 4);
|
||||
buffer[2] = (uint8) (overVoltage >> 4);
|
||||
|
||||
return writeCMD(WRCFGB, buffer, CFG_GROUP_A_SIZE);
|
||||
}
|
||||
|
||||
uint8 amsCheckUnderOverVoltage(Cell_Module* module) {
|
||||
uint8 regbuffer[STATUS_GROUP_D_SIZE];
|
||||
uint32 ov_uv_data = 0;
|
||||
CHECK_RETURN(readCMD(RDSTATD, regbuffer, STATUS_GROUP_D_SIZE));
|
||||
ov_uv_data = (regbuffer[0] << 0) | (regbuffer[1] << 8) |
|
||||
(regbuffer[2] << 16) | (regbuffer[3] << 24);
|
||||
|
||||
module->overVoltage = 0;
|
||||
module->underVoltage = 0;
|
||||
|
||||
for (size_t i = 0; i < numberofcells; i++) { // ov/uv flags are 1-bit flags for each cell C0UV, C0OV, C1UV, C1OV, ...
|
||||
module->underVoltage |= (ov_uv_data >> (i * 2)) & 0x01;
|
||||
module->overVoltage |= (ov_uv_data >> (i * 2 + 1)) & 0x01;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint8 amsClearAux() {
|
||||
uint8 buffer[6];
|
||||
return writeCMD(CLRAUX, buffer, 0);
|
||||
}
|
||||
|
||||
uint8 amsClearCells() {
|
||||
uint8 buffer[6];
|
||||
return writeCMD(CLRCELL, buffer, 0);
|
||||
}
|
||||
|
||||
uint8 amsReadCellVoltages(Cell_Module* module) {
|
||||
uint8 rxbuffer[CV_GROUP_A_SIZE];
|
||||
CHECK_RETURN(readCMD(RDCVA, rxbuffer, CV_GROUP_A_SIZE));
|
||||
module->cellVoltages[0] = mV_from_ADBMS6830(rxbuffer[0] | (rxbuffer[1] << 8));
|
||||
module->cellVoltages[1] = mV_from_ADBMS6830(rxbuffer[2] | (rxbuffer[3] << 8));
|
||||
module->cellVoltages[2] = mV_from_ADBMS6830(rxbuffer[4] | (rxbuffer[5] << 8));
|
||||
|
||||
CHECK_RETURN(readCMD(RDCVB, rxbuffer, CV_GROUP_A_SIZE));
|
||||
module->cellVoltages[3] = mV_from_ADBMS6830(rxbuffer[0] | (rxbuffer[1] << 8));
|
||||
module->cellVoltages[4] = mV_from_ADBMS6830(rxbuffer[2] | (rxbuffer[3] << 8));
|
||||
module->cellVoltages[5] = mV_from_ADBMS6830(rxbuffer[4] | (rxbuffer[5] << 8));
|
||||
|
||||
CHECK_RETURN(readCMD(RDCVC, rxbuffer, CV_GROUP_A_SIZE));
|
||||
module->cellVoltages[6] = mV_from_ADBMS6830(rxbuffer[0] | (rxbuffer[1] << 8));
|
||||
module->cellVoltages[7] = mV_from_ADBMS6830(rxbuffer[2] | (rxbuffer[3] << 8));
|
||||
module->cellVoltages[8] = mV_from_ADBMS6830(rxbuffer[4] | (rxbuffer[5] << 8));
|
||||
|
||||
CHECK_RETURN(readCMD(RDCVD, rxbuffer, CV_GROUP_A_SIZE));
|
||||
module->cellVoltages[9] = mV_from_ADBMS6830(rxbuffer[0] | (rxbuffer[1] << 8));
|
||||
module->cellVoltages[10] = mV_from_ADBMS6830(rxbuffer[2] | (rxbuffer[3] << 8));
|
||||
module->cellVoltages[11] = mV_from_ADBMS6830(rxbuffer[4] | (rxbuffer[5] << 8));
|
||||
|
||||
CHECK_RETURN(readCMD(RDCVE, rxbuffer, CV_GROUP_A_SIZE));
|
||||
module->cellVoltages[12] = mV_from_ADBMS6830(rxbuffer[0] | (rxbuffer[1] << 8));
|
||||
module->cellVoltages[13] = mV_from_ADBMS6830(rxbuffer[2] | (rxbuffer[3] << 8));
|
||||
module->cellVoltages[14] = mV_from_ADBMS6830(rxbuffer[4] | (rxbuffer[5] << 8));
|
||||
|
||||
CHECK_RETURN(readCMD(RDCVF, rxbuffer, CV_GROUP_A_SIZE));
|
||||
module->cellVoltages[15] = mV_from_ADBMS6830(rxbuffer[0] | (rxbuffer[1] << 8));
|
||||
|
||||
return 0;
|
||||
}
|
@ -1,361 +0,0 @@
|
||||
/*
|
||||
* ADBMS_LL_Driver.c
|
||||
*
|
||||
* Created on: 05.06.2022
|
||||
* Author: max
|
||||
*/
|
||||
|
||||
#include "ADBMS_LL_Driver.h"
|
||||
#include <stdbool.h>
|
||||
|
||||
#define INITIAL_COMMAND_PEC 0x0010
|
||||
#define INITIAL_DATA_PEC 0x0010
|
||||
#define ADBMS_SPI_TIMEOUT 100 // Timeout in ms
|
||||
#warning ask about the timeout value
|
||||
|
||||
SPI_HandleTypeDef* adbmsspi;
|
||||
|
||||
uint8 adbmsDriverInit(SPI_HandleTypeDef* hspi) {
|
||||
mcuAdbmsCSLow();
|
||||
HAL_Delay(1);
|
||||
mcuAdbmsCSHigh();
|
||||
adbmsspi = hspi;
|
||||
return 0;
|
||||
}
|
||||
|
||||
//command PEC calculation
|
||||
//CRC-15
|
||||
//x^15 + x^14 + x^10 + x^8 + x^7 + x^4 + x^3 + 1
|
||||
|
||||
uint8 calculateCommandPEC(uint8_t* data, uint8_t datalen) {
|
||||
uint16 currentpec = INITIAL_COMMAND_PEC;
|
||||
if (datalen >= 3) {
|
||||
for (int i = 0; i < (datalen - 2); i++) {
|
||||
for (int n = 0; n < 8; n++) {
|
||||
uint8 din = data[i] << (n);
|
||||
currentpec = updateCommandPEC(currentpec, din);
|
||||
}
|
||||
}
|
||||
|
||||
data[datalen - 2] = (currentpec >> 7) & 0xFF;
|
||||
data[datalen - 1] = (currentpec << 1) & 0xFF;
|
||||
return 0;
|
||||
} else {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
uint8 checkCommandPEC(uint8* data, uint8 datalen) {
|
||||
if (datalen <= 3) {
|
||||
return 255;
|
||||
}
|
||||
|
||||
uint16 currentpec = INITIAL_COMMAND_PEC;
|
||||
|
||||
for (int i = 0; i < (datalen - 2); i++) {
|
||||
for (int n = 0; n < 8; n++) {
|
||||
uint8 din = data[i] << (n);
|
||||
currentpec = updateCommandPEC(currentpec, din);
|
||||
}
|
||||
}
|
||||
|
||||
uint8 pechigh = (currentpec >> 7) & 0xFF;
|
||||
uint8 peclow = (currentpec << 1) & 0xFF;
|
||||
|
||||
if ((pechigh == data[datalen - 2]) && (peclow == data[datalen - 1])) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
uint16 updateCommandPEC(uint16 currentPEC, uint8 din) {
|
||||
din = (din >> 7) & 0x01;
|
||||
uint8 in0 = din ^ ((currentPEC >> 14) & 0x01);
|
||||
uint8 in3 = in0 ^ ((currentPEC >> 2) & 0x01);
|
||||
uint8 in4 = in0 ^ ((currentPEC >> 3) & 0x01);
|
||||
uint8 in7 = in0 ^ ((currentPEC >> 6) & 0x01);
|
||||
uint8 in8 = in0 ^ ((currentPEC >> 7) & 0x01);
|
||||
uint8 in10 = in0 ^ ((currentPEC >> 9) & 0x01);
|
||||
uint8 in14 = in0 ^ ((currentPEC >> 13) & 0x01);
|
||||
|
||||
uint16 newPEC = 0;
|
||||
|
||||
newPEC |= in14 << 14;
|
||||
newPEC |= (currentPEC & (0x01 << 12)) << 1;
|
||||
newPEC |= (currentPEC & (0x01 << 11)) << 1;
|
||||
newPEC |= (currentPEC & (0x01 << 10)) << 1;
|
||||
newPEC |= in10 << 10;
|
||||
newPEC |= (currentPEC & (0x01 << 8)) << 1;
|
||||
newPEC |= in8 << 8;
|
||||
newPEC |= in7 << 7;
|
||||
newPEC |= (currentPEC & (0x01 << 5)) << 1;
|
||||
newPEC |= (currentPEC & (0x01 << 4)) << 1;
|
||||
newPEC |= in4 << 4;
|
||||
newPEC |= in3 << 3;
|
||||
newPEC |= (currentPEC & (0x01 << 1)) << 1;
|
||||
newPEC |= (currentPEC & (0x01)) << 1;
|
||||
newPEC |= in0;
|
||||
|
||||
return newPEC;
|
||||
}
|
||||
|
||||
//data PEC calculation
|
||||
//CRC-10
|
||||
//x^10 + x^7 + x^3 + x^2 + x + 1
|
||||
|
||||
uint16_t pec10_calc(bool rx_cmd, int len, uint8_t* data) {
|
||||
uint16_t remainder = 16; /* PEC_SEED; 0000010000 */
|
||||
uint16_t polynom = 0x8F; /* x10 + x7 + x3 + x2 + x + 1 <- the CRC15 polynomial
|
||||
100 1000 1111 48F */
|
||||
|
||||
/* Perform modulo-2 division, a byte at a time. */
|
||||
for (uint8_t pbyte = 0; pbyte < len; ++pbyte) {
|
||||
/* Bring the next byte into the remainder. */
|
||||
remainder ^= (uint16_t)(data[pbyte] << 2);
|
||||
/* Perform modulo-2 division, a bit at a time.*/
|
||||
for (uint8_t bit_ = 8; bit_ > 0; --bit_) {
|
||||
/* Try to divide the current data bit. */
|
||||
if ((remainder & 0x200) >
|
||||
0) // equivalent to remainder & 2^14 simply check for MSB
|
||||
{
|
||||
remainder = (uint16_t)((remainder << 1));
|
||||
remainder = (uint16_t)(remainder ^ polynom);
|
||||
} else {
|
||||
remainder = (uint16_t)(remainder << 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (rx_cmd == true) {
|
||||
remainder ^= (uint16_t)((data[len] & 0xFC) << 2);
|
||||
/* Perform modulo-2 division, a bit at a time */
|
||||
for (uint8_t bit_ = 6; bit_ > 0; --bit_) {
|
||||
/* Try to divide the current data bit */
|
||||
if ((remainder & 0x200) >
|
||||
0) // equivalent to remainder & 2^14 simply check for MSB
|
||||
{
|
||||
remainder = (uint16_t)((remainder << 1));
|
||||
remainder = (uint16_t)(remainder ^ polynom);
|
||||
} else {
|
||||
remainder = (uint16_t)((remainder << 1));
|
||||
}
|
||||
}
|
||||
}
|
||||
return ((uint16_t)(remainder & 0x3FF));
|
||||
}
|
||||
|
||||
typedef uint16_t crc;
|
||||
crc F_CRC_CalculaCheckSum(uint8_t const AF_Datos[], uint16_t VF_nBytes);
|
||||
|
||||
uint8 calculateDataPEC(uint8_t* data, uint8_t datalen) {
|
||||
|
||||
if (datalen >= 3) {
|
||||
|
||||
|
||||
crc currentpec = pec10_calc(true, datalen - 2, data) & 0x3FF; // mask to 10 bits
|
||||
|
||||
// memory layout is [[zeroes], PEC[9:8]], [PEC[7:0]]
|
||||
data[datalen - 2] = (currentpec >> 8) & 0xFF;
|
||||
data[datalen - 1] = currentpec & 0xFF;
|
||||
|
||||
volatile uint8 result = pec10_calc(true, datalen, data);
|
||||
|
||||
return 0;
|
||||
} else {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
uint8 checkDataPEC(uint8* data, uint8 len) {
|
||||
if (len <= 2) {
|
||||
return 255;
|
||||
}
|
||||
|
||||
crc currentpec = F_CRC_CalculaCheckSum(data, len);
|
||||
|
||||
return (currentpec == 0) ? 0 : 1;
|
||||
}
|
||||
|
||||
|
||||
static crc F_CRC_ObtenValorDeTabla(uint8_t VP_Pos_Tabla) {
|
||||
crc VP_CRCTableValue = 0;
|
||||
uint8_t VP_Pos_bit = 0;
|
||||
|
||||
VP_CRCTableValue = ((crc)(VP_Pos_Tabla)) << (10 - 8);
|
||||
|
||||
for (VP_Pos_bit = 0; VP_Pos_bit < 8; VP_Pos_bit++) {
|
||||
if (VP_CRCTableValue & (((crc)1) << (10 - 1))) {
|
||||
VP_CRCTableValue = (VP_CRCTableValue << 1) ^ 0x8F;
|
||||
} else {
|
||||
VP_CRCTableValue = (VP_CRCTableValue << 1);
|
||||
}
|
||||
}
|
||||
return ((VP_CRCTableValue));
|
||||
}
|
||||
crc F_CRC_CalculaCheckSum(uint8_t const AF_Datos[], uint16_t VF_nBytes) {
|
||||
crc VP_CRCTableValue = 16;
|
||||
int16_t VP_bytes = 0;
|
||||
|
||||
for (VP_bytes = 0; VP_bytes < VF_nBytes; VP_bytes++) {
|
||||
|
||||
VP_CRCTableValue = (VP_CRCTableValue << 8) ^
|
||||
F_CRC_ObtenValorDeTabla(
|
||||
((uint8_t)((VP_CRCTableValue >> (10 - 8)) & 0xFF)) ^
|
||||
AF_Datos[VP_bytes]);
|
||||
}
|
||||
|
||||
if ((8 * sizeof(crc)) > 10) {
|
||||
VP_CRCTableValue = VP_CRCTableValue & ((((crc)(1)) << 10) - 1);
|
||||
}
|
||||
|
||||
return (VP_CRCTableValue ^ 0x0000);
|
||||
}
|
||||
|
||||
uint16 updateDataPEC(uint16 currentPEC, uint8 din) {
|
||||
din = (din >> 7) & 0x01;
|
||||
uint8 in0 = din ^ ((currentPEC >> 9) & 0x01);
|
||||
uint8 in2 = in0 ^ ((currentPEC >> 1) & 0x01);
|
||||
uint8 in3 = in0 ^ ((currentPEC >> 2) & 0x01);
|
||||
uint8 in7 = in0 ^ ((currentPEC >> 6) & 0x01);
|
||||
|
||||
uint16 newPEC = 0;
|
||||
|
||||
newPEC |= (currentPEC & (0x01 << 8)) << 1;
|
||||
newPEC |= (currentPEC & (0x01 << 7)) << 1;
|
||||
newPEC |= in7 << 7;
|
||||
newPEC |= (currentPEC & (0x01 << 5)) << 1;
|
||||
newPEC |= (currentPEC & (0x01 << 4)) << 1;
|
||||
newPEC |= in3 << 3;
|
||||
newPEC |= in2 << 2;
|
||||
newPEC |= (currentPEC & (0x01)) << 1;
|
||||
newPEC |= in0;
|
||||
|
||||
return newPEC;
|
||||
}
|
||||
|
||||
uint8 writeCMD(uint16 command, uint8* args, uint8 arglen) {
|
||||
uint8 ret;
|
||||
if (arglen > 0) {
|
||||
uint8 buffer[6 + arglen]; //command + PEC (2 bytes) + data + DPEC (2 bytes)
|
||||
buffer[0] = (command >> 8) & 0xFF;
|
||||
buffer[1] = (command) & 0xFF;
|
||||
|
||||
calculateCommandPEC(buffer, 4);
|
||||
|
||||
for (uint8 i = 0; i < arglen; i++) {
|
||||
buffer[4 + i] = args[i];
|
||||
}
|
||||
|
||||
calculateDataPEC(&buffer[4], arglen + 2); //DPEC is calculated over the data, not the command, and placed at the end of the data
|
||||
|
||||
mcuAdbmsCSLow();
|
||||
ret = mcuSPITransmit(buffer, 6 + arglen);
|
||||
mcuAdbmsCSHigh();
|
||||
} else {
|
||||
uint8 buffer[4];
|
||||
buffer[0] = (command >> 8) & 0xFF;
|
||||
buffer[1] = (command) & 0xFF;
|
||||
calculateCommandPEC(buffer, 4);
|
||||
|
||||
mcuAdbmsCSLow();
|
||||
|
||||
ret = mcuSPITransmit(buffer, 4);
|
||||
|
||||
mcuAdbmsCSHigh();
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
#define ITER_COUNT 50
|
||||
static uint8_t count = 0;
|
||||
static bool isOn = false;
|
||||
|
||||
uint8 readCMD(uint16 command, uint8* buffer, uint8 buflen) {
|
||||
if (count == ITER_COUNT) {
|
||||
HAL_GPIO_WritePin(STATUS_LED_B_GPIO_Port, STATUS_LED_B_Pin, isOn ? GPIO_PIN_SET : GPIO_PIN_RESET);
|
||||
|
||||
count = 0;
|
||||
isOn = !isOn;
|
||||
} else {
|
||||
count++;
|
||||
}
|
||||
|
||||
|
||||
uint8 txbuffer[6 + buflen] = {};
|
||||
uint8 rxbuffer[6 + buflen] = {};
|
||||
|
||||
txbuffer[0] = (command >> 8) & 0xFF;
|
||||
txbuffer[1] = (command)&0xFF;
|
||||
calculateCommandPEC(txbuffer, 4);
|
||||
|
||||
mcuAdbmsCSLow();
|
||||
uint8 status = mcuSPITransmitReceive(rxbuffer, txbuffer, 6 + buflen);
|
||||
mcuAdbmsCSHigh();
|
||||
|
||||
if (status != 0) {
|
||||
return status;
|
||||
}
|
||||
|
||||
for (uint8 i = 0; i < buflen; i++) {
|
||||
buffer[i] = rxbuffer[i + 4];
|
||||
}
|
||||
|
||||
[[maybe_unused]] uint8 commandCounter = rxbuffer[sizeof(rxbuffer) - 2] & 0xFC; //command counter is bits 7-2
|
||||
//TODO: check command counter?
|
||||
|
||||
return checkDataPEC(&rxbuffer[4], buflen + 2);
|
||||
}
|
||||
|
||||
//check poll command - no data PEC sent back
|
||||
uint8 pollCMD(uint16 command) {
|
||||
uint8 txbuffer[5] = {};
|
||||
uint8 rxbuffer[5] = {};
|
||||
|
||||
txbuffer[0] = (command >> 8) & 0xFF;
|
||||
txbuffer[1] = (command)&0xFF;
|
||||
calculateCommandPEC(txbuffer, 4);
|
||||
|
||||
mcuAdbmsCSLow();
|
||||
uint8 status = mcuSPITransmitReceive(rxbuffer, txbuffer, 5);
|
||||
mcuAdbmsCSHigh();
|
||||
|
||||
if (status != 0) {
|
||||
return status;
|
||||
}
|
||||
|
||||
return rxbuffer[4]; //last byte will be poll response
|
||||
}
|
||||
|
||||
void mcuAdbmsCSLow() {
|
||||
HAL_GPIO_WritePin(CSB_GPIO_Port, CSB_Pin, GPIO_PIN_RESET);
|
||||
}
|
||||
|
||||
void mcuAdbmsCSHigh() {
|
||||
HAL_GPIO_WritePin(CSB_GPIO_Port, CSB_Pin, GPIO_PIN_SET);
|
||||
}
|
||||
|
||||
uint8 mcuSPITransmit(uint8* buffer, uint8 buffersize) {
|
||||
HAL_StatusTypeDef status;
|
||||
uint8 rxbuf[buffersize];
|
||||
status = HAL_SPI_TransmitReceive(adbmsspi, buffer, rxbuf, buffersize,
|
||||
ADBMS_SPI_TIMEOUT);
|
||||
__HAL_SPI_CLEAR_OVRFLAG(adbmsspi);
|
||||
return status;
|
||||
}
|
||||
|
||||
uint8 mcuSPIReceive(uint8* buffer, uint8 buffersize) {
|
||||
HAL_StatusTypeDef status;
|
||||
status = HAL_SPI_Receive(adbmsspi, buffer, buffersize, ADBMS_SPI_TIMEOUT);
|
||||
return status;
|
||||
}
|
||||
|
||||
uint8 mcuSPITransmitReceive(uint8* rxbuffer, uint8* txbuffer,
|
||||
uint8 buffersize) {
|
||||
HAL_StatusTypeDef status;
|
||||
status = HAL_SPI_TransmitReceive(adbmsspi, txbuffer, rxbuffer, buffersize,
|
||||
ADBMS_SPI_TIMEOUT);
|
||||
return status;
|
||||
}
|
||||
|
||||
inline void mcuDelay(uint16 delay) { HAL_Delay(delay); }
|
@ -1,313 +0,0 @@
|
||||
/*
|
||||
* AMS_HighLevel.c
|
||||
*
|
||||
* Created on: 20.07.2022
|
||||
* Author: max
|
||||
*/
|
||||
|
||||
#include "AMS_HighLevel.h"
|
||||
|
||||
|
||||
Cell_Module module = {};
|
||||
uint32_t balancedCells = 0;
|
||||
uint8_t BalancingActive = 0;
|
||||
uint8_t stateofcharge = 100;
|
||||
int64_t currentintegrator = 0;
|
||||
uint32_t lastticks = 0;
|
||||
uint32_t currenttick = 0;
|
||||
uint8_t eepromconfigured = 0;
|
||||
|
||||
uint8_t internalbalancingalgo = 1;
|
||||
uint16_t startbalancingthreshold = 41000;
|
||||
uint16_t stopbalancingthreshold = 30000;
|
||||
uint16_t balancingvoltagedelta = 10;
|
||||
|
||||
uint16_t amsuv = 0;
|
||||
uint16_t amsov = 0;
|
||||
|
||||
uint8_t amserrorcode = 0;
|
||||
uint8_t amswarningcode = 0;
|
||||
|
||||
uint8_t numberofCells = 14;
|
||||
uint8_t numberofAux = 0;
|
||||
|
||||
uint8_t packetChecksumFails = 0;
|
||||
#define MAX_PACKET_CHECKSUM_FAILS 5
|
||||
|
||||
uint8_t deviceSleeps = 0;
|
||||
#define MAX_DEVICE_SLEEP 3 //TODO: change to correct value
|
||||
|
||||
amsState currentAMSState = AMSDEACTIVE;
|
||||
amsState lastAMSState = AMSDEACTIVE;
|
||||
|
||||
struct pollingTimes {
|
||||
uint32_t S_ADC_OW_CHECK;
|
||||
uint32_t TMP1075;
|
||||
};
|
||||
|
||||
struct pollingTimes pollingTimes = {0, 0};
|
||||
|
||||
void AMS_Init(SPI_HandleTypeDef* hspi) {
|
||||
if (eepromconfigured == 1) {
|
||||
/*amsov = eepromcellovervoltage>>4;
|
||||
amsuv = (eepromcellundervoltage-1)>>4;
|
||||
numberofCells = eepromnumofcells;
|
||||
numberofAux = eepromnumofaux;
|
||||
initAMS(hspi, eepromnumofcells, eepromnumofaux);*/
|
||||
amsConfigOverUnderVoltage(amsov, amsuv);
|
||||
} else {
|
||||
initAMS(hspi, numberofCells, numberofAux);
|
||||
amsov = DEFAULT_OV;
|
||||
amsuv = DEFAULT_UV;
|
||||
}
|
||||
|
||||
pollingTimes = (struct pollingTimes) {HAL_GetTick(), HAL_GetTick()};
|
||||
|
||||
currentAMSState = AMSIDLE;
|
||||
}
|
||||
|
||||
void AMS_Loop() {
|
||||
|
||||
// On Transition Functions called ones if the State Changed
|
||||
|
||||
if (currentAMSState != lastAMSState) {
|
||||
switch (currentAMSState) {
|
||||
case AMSIDLE:
|
||||
break;
|
||||
case AMSDEACTIVE:
|
||||
break;
|
||||
case AMSCHARGING:
|
||||
break;
|
||||
case AMSIDLEBALANCING:
|
||||
break;
|
||||
case AMSDISCHARGING:
|
||||
break;
|
||||
case AMSWARNING:
|
||||
writeWarningLog(0x01);
|
||||
break;
|
||||
case AMSERROR:
|
||||
writeErrorLog(amserrorcode);
|
||||
break;
|
||||
}
|
||||
lastAMSState = currentAMSState;
|
||||
}
|
||||
|
||||
// Main Loops for different AMS States
|
||||
|
||||
switch (currentAMSState) {
|
||||
case AMSIDLE:
|
||||
AMS_Idle_Loop();
|
||||
break;
|
||||
case AMSDEACTIVE:
|
||||
break;
|
||||
case AMSCHARGING:
|
||||
break;
|
||||
case AMSIDLEBALANCING:
|
||||
AMS_Idle_Loop();
|
||||
break;
|
||||
case AMSDISCHARGING:
|
||||
break;
|
||||
case AMSWARNING:
|
||||
AMS_Warning_Loop();
|
||||
break;
|
||||
case AMSERROR:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
uint8_t AMS_Idle_Loop() {
|
||||
if (!amsWakeUp()) {
|
||||
//error_data.data_kind = SEK_INTERNAL_BMS_TIMEOUT;
|
||||
//set_error_source(ERROR_SOURCE_INTERNAL);
|
||||
}
|
||||
|
||||
packetChecksumFails += amsAuxAndStatusMeasurement(&module);
|
||||
|
||||
if (module.status.SLEEP) {
|
||||
deviceSleeps++;
|
||||
if (deviceSleeps > MAX_DEVICE_SLEEP) {
|
||||
error_data.data_kind = SEK_INTERNAL_BMS_TIMEOUT;
|
||||
set_error_source(ERROR_SOURCE_INTERNAL);
|
||||
} else {
|
||||
amsReset();
|
||||
}
|
||||
}
|
||||
|
||||
if (module.status.CS_FLT || module.status.SPIFLT || module.status.CMED ||
|
||||
module.status.SMED || module.status.VDE || module.status.VDEL ||
|
||||
module.status.OSCCHK || module.status.TMODCHK) {
|
||||
error_data.data_kind = SEK_INTERNAL_BMS_FAULT;
|
||||
set_error_source(ERROR_SOURCE_INTERNAL);
|
||||
}
|
||||
|
||||
if (module.status.THSD) {
|
||||
error_data.data_kind = SEK_INTERNAL_BMS_OVERTEMP;
|
||||
set_error_source(ERROR_SOURCE_INTERNAL);
|
||||
}
|
||||
|
||||
packetChecksumFails += amsCellMeasurement(&module);
|
||||
packetChecksumFails += amsCheckUnderOverVoltage(&module);
|
||||
packetChecksumFails += integrateCurrent();
|
||||
|
||||
if (packetChecksumFails > MAX_PACKET_CHECKSUM_FAILS) {
|
||||
error_data.data_kind = SEK_INTERNAL_BMS_CHECKSUM_FAIL;
|
||||
set_error_source(ERROR_SOURCE_INTERNAL);
|
||||
}
|
||||
|
||||
tmp1075_measure();
|
||||
|
||||
int any_voltage_error = 0;
|
||||
for (size_t i = 0; i < numberofCells; i++) {
|
||||
if (module.cellVoltages[i] < 2500) {
|
||||
any_voltage_error = 1;
|
||||
error_data.data_kind = SEK_UNDERVOLT;
|
||||
error_data.data[0] = i;
|
||||
uint8_t* ptr = &error_data.data[1];
|
||||
ptr = ftcan_marshal_unsigned(ptr, module.cellVoltages[i], 2);
|
||||
} else if (module.cellVoltages[i] > 4200) {
|
||||
any_voltage_error = 1;
|
||||
error_data.data_kind = SEK_OVERVOLT;
|
||||
error_data.data[0] = i;
|
||||
uint8_t* ptr = &error_data.data[1];
|
||||
ptr = ftcan_marshal_unsigned(ptr, module.cellVoltages[i], 2);
|
||||
}
|
||||
}
|
||||
|
||||
if (module.internalDieTemp > 28000) { //TODO: change to correct value
|
||||
error_data.data_kind = SEK_INTERNAL_BMS_OVERTEMP;
|
||||
uint8_t* ptr = &error_data.data[0];
|
||||
ptr = ftcan_marshal_unsigned(ptr, module.internalDieTemp, 2);
|
||||
|
||||
set_error_source(ERROR_SOURCE_INTERNAL);
|
||||
} else {
|
||||
clear_error_source(ERROR_SOURCE_INTERNAL);
|
||||
}
|
||||
|
||||
if (any_voltage_error) {
|
||||
set_error_source(ERROR_SOURCE_VOLTAGES);
|
||||
} else {
|
||||
clear_error_source(ERROR_SOURCE_VOLTAGES);
|
||||
}
|
||||
|
||||
mcuDelay(10);
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint8_t AMS_Warning_Loop() {
|
||||
|
||||
amsWakeUp();
|
||||
amsConfigOverUnderVoltage(amsov, amsuv);
|
||||
amsClearAux();
|
||||
amsCellMeasurement(&module);
|
||||
amsAuxAndStatusMeasurement(&module);
|
||||
amsCheckUnderOverVoltage(&module);
|
||||
|
||||
if (!(module.overVoltage | module.underVoltage)) {
|
||||
currentAMSState = AMSIDLE;
|
||||
// amsClearWarning();
|
||||
}
|
||||
amsStopBalancing();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint8_t AMS_Error_Loop() { return 0; }
|
||||
|
||||
uint8_t AMS_Charging_Loop() { return 0; }
|
||||
|
||||
uint8_t AMS_Discharging_Loop() { return 0; }
|
||||
|
||||
uint8_t AMS_Balancing_Loop() {
|
||||
uint8_t balancingdone = 1;
|
||||
if ((eepromconfigured == 1) && (internalbalancingalgo == 1) &&
|
||||
(module.internalDieTemp <
|
||||
28000 /*Thermal Protection 93°C*/)) // If the EEPROM is configured and
|
||||
// the internal Balancing Algorithm
|
||||
// should be used
|
||||
{
|
||||
uint16_t highestcellvoltage = module.cellVoltages[0];
|
||||
uint16_t lowestcellvoltage = module.cellVoltages[0];
|
||||
uint8_t highestcell = 0;
|
||||
uint8_t lowestcell = 0;
|
||||
|
||||
for (uint8_t n = 0; n < numberofCells; n++) {
|
||||
if (module.cellVoltages[n] > highestcellvoltage) {
|
||||
highestcellvoltage = module.cellVoltages[n];
|
||||
highestcell = n;
|
||||
}
|
||||
if (module.cellVoltages[n] < lowestcellvoltage) {
|
||||
lowestcellvoltage = module.cellVoltages[n];
|
||||
lowestcell = n;
|
||||
}
|
||||
}
|
||||
|
||||
if (currentAMSState ==
|
||||
AMSCHARGING) // Balancing is only Active if the BMS is in Charging Mode
|
||||
{
|
||||
|
||||
uint32_t channelstobalance = 0;
|
||||
|
||||
if (highestcellvoltage > startbalancingthreshold) {
|
||||
for (uint8_t n = 0; n < numberofCells; n++) {
|
||||
if (module.cellVoltages[n] > stopbalancingthreshold) {
|
||||
uint16_t dv = module.cellVoltages[n] - lowestcellvoltage;
|
||||
if (dv > (balancingvoltagedelta * 1000)) {
|
||||
balancingdone = 0;
|
||||
channelstobalance |= 1 << n;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
amsConfigBalancing(channelstobalance, 0x0F);
|
||||
amsStartBalancing(100);
|
||||
}
|
||||
|
||||
else if (currentAMSState == AMSIDLEBALANCING) {
|
||||
|
||||
uint32_t channelstobalance = 0;
|
||||
|
||||
if (lowestcellvoltage <
|
||||
stopbalancingthreshold) // If under Voltage of one Cell is reached
|
||||
{
|
||||
amsStopBalancing();
|
||||
balancingdone = 1;
|
||||
} else // otherwise continue with regular Balancing Algorithm
|
||||
{
|
||||
for (uint8_t n = 0; n < numberofCells; n++) {
|
||||
uint16_t dv = module.cellVoltages[n] - lowestcellvoltage;
|
||||
if (dv > balancingvoltagedelta) {
|
||||
balancingdone = 0;
|
||||
channelstobalance |= 1 << n;
|
||||
}
|
||||
}
|
||||
|
||||
amsConfigBalancing(channelstobalance, 0x0F);
|
||||
amsStartBalancing(100);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
amsStopBalancing();
|
||||
balancingdone = 1;
|
||||
}
|
||||
return balancingdone;
|
||||
}
|
||||
|
||||
uint8_t writeWarningLog(uint8_t warningCode) {
|
||||
// eepromWriteWarningLog(warningCode);
|
||||
return 0;
|
||||
}
|
||||
uint8_t writeErrorLog(uint8_t errorCode) {
|
||||
// eepromWriteErrorLog(errorCode);
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint8_t integrateCurrent() {
|
||||
lastticks = currenttick;
|
||||
currenttick = HAL_GetTick();
|
||||
if (currenttick < lastticks) {
|
||||
currentintegrator += (module.auxVoltages[0] - module.auxVoltages[2]) *
|
||||
(currenttick - lastticks);
|
||||
}
|
||||
return 0;
|
||||
}
|
@ -1,63 +0,0 @@
|
||||
#include "PWM_control.h"
|
||||
#include "stm32f3xx_hal.h"
|
||||
#include <stdint.h>
|
||||
|
||||
uint8_t battery_cooling_status;
|
||||
//uint32_t powerground1_CCR, powerground2_CCR, battery_cooling_CCR;
|
||||
|
||||
TIM_HandleTypeDef* powerground, *battery_cooling;
|
||||
|
||||
/*
|
||||
Pulse width modulation mode allows for generating a signal with a frequency determined by
|
||||
the value of the TIMx_ARR register and a duty cycle determined by the value of the TIMx_CCRx register.
|
||||
*/
|
||||
|
||||
void PWM_control_init(TIM_HandleTypeDef* pg, TIM_HandleTypeDef* bat_cool){
|
||||
powerground_status = 0;
|
||||
battery_cooling_status = 0;
|
||||
|
||||
powerground = pg;
|
||||
battery_cooling = bat_cool;
|
||||
|
||||
HAL_TIM_PWM_Start(pg, TIM_CHANNEL_1); //TIM15CH1
|
||||
HAL_TIM_PWM_Start(pg, TIM_CHANNEL_2); //TIM15CH2
|
||||
HAL_TIM_PWM_Start(bat_cool, TIM_CHANNEL_3); //TIM1CH3
|
||||
|
||||
__HAL_TIM_SET_COMPARE(powerground, TIM_CHANNEL_1, 0);
|
||||
__HAL_TIM_SET_COMPARE(powerground, TIM_CHANNEL_2, 0);
|
||||
|
||||
//PWM_powerground_control(0);
|
||||
//__HAL_TIM_SET_COMPARE(battery_cooling, TIM_CHANNEL_3, 2000);
|
||||
}
|
||||
|
||||
/*
|
||||
controls the duty cycle of the fans by setting the CCR of the channel percent/100 = x/ARR
|
||||
DUTYCYCLE = 40000 * X/100
|
||||
*/
|
||||
void PWM_powerground_control(uint8_t percent){
|
||||
if (percent > 100) //something went wrong
|
||||
return;
|
||||
powerground_status = percent;
|
||||
|
||||
int ccr = 2000 + ((2000) * (percent/100.0));
|
||||
__HAL_TIM_SET_COMPARE(powerground, TIM_CHANNEL_1, ccr);
|
||||
__HAL_TIM_SET_COMPARE(powerground, TIM_CHANNEL_2, ccr);
|
||||
//TIM15->CCR1 = (TIM15->ARR*POWERGROUND_MAX_DUTY_CYCLE-TIM15->ARR*POWERGROUND_MIN_DUTY_CYCLE) * (percent/100.0) + TIM15->ARR*POWERGROUND_MIN_DUTY_CYCLE;
|
||||
}
|
||||
|
||||
void PWM_set_throttle(){
|
||||
uint32_t timestamp = HAL_GetTick() + 5000;
|
||||
while (timestamp > HAL_GetTick()) {}
|
||||
|
||||
__HAL_TIM_SET_COMPARE(powerground, TIM_CHANNEL_1, 4000);
|
||||
__HAL_TIM_SET_COMPARE(powerground, TIM_CHANNEL_2, 4000);
|
||||
timestamp = HAL_GetTick() + 2000;
|
||||
while (timestamp > HAL_GetTick()) {}
|
||||
|
||||
__HAL_TIM_SET_COMPARE(powerground, TIM_CHANNEL_1, 2000);
|
||||
__HAL_TIM_SET_COMPARE(powerground, TIM_CHANNEL_2, 2000);
|
||||
timestamp = HAL_GetTick() + 1000;
|
||||
while (timestamp > HAL_GetTick()) {}
|
||||
}
|
||||
|
||||
void PWM_battery_cooling_control(uint8_t percent){}
|
@ -1,77 +0,0 @@
|
||||
#include "TMP1075.h"
|
||||
|
||||
#define MAX_TEMP ((int16_t)(59 / 0.0625f))
|
||||
#define MAX_FAILED_TEMP 12 //TODO: change value for compliance with the actual number of sensors
|
||||
#warning "change value for compliance with the actual number of sensors"
|
||||
|
||||
int16_t tmp1075_temps[N_TEMP_SENSORS] = {0};
|
||||
uint32_t tmp1075_failed_sensors = 0;
|
||||
uint8_t nfailed_temp_sensors = 0;
|
||||
|
||||
I2C_HandleTypeDef* hi2c;
|
||||
|
||||
HAL_StatusTypeDef tmp1075_init(I2C_HandleTypeDef* handle) {
|
||||
hi2c = handle;
|
||||
for (int i = 0; i < N_TEMP_SENSORS; i++) {
|
||||
HAL_StatusTypeDef status = tmp1075_sensor_init(i);
|
||||
if (status != HAL_OK) {
|
||||
return status;
|
||||
}
|
||||
}
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
void handle_over_maxtemp(uint8_t index, uint16_t value) {
|
||||
set_error_source(ERROR_SOURCE_TEMPERATURES);
|
||||
error_data.data_kind = SEK_OVERTEMP;
|
||||
error_data.data[0] = index;
|
||||
uint8_t* ptr = &error_data.data[1];
|
||||
ptr = ftcan_marshal_unsigned(ptr, value, 2);
|
||||
}
|
||||
|
||||
HAL_StatusTypeDef tmp1075_measure() {
|
||||
int err = 0;
|
||||
int temp_error = 0;
|
||||
for (int i = 0; i < N_TEMP_SENSORS; i++) {
|
||||
if (tmp1075_sensor_read(i, &tmp1075_temps[i]) != HAL_OK ||
|
||||
(tmp1075_temps[i] & 0x000F) != 0) {
|
||||
tmp1075_failed_sensors |= 1 << i;
|
||||
nfailed_temp_sensors++;
|
||||
err = 1;
|
||||
} else {
|
||||
tmp1075_temps[i] >>= 4;
|
||||
tmp1075_failed_sensors &= ~(1 << i);
|
||||
if (tmp1075_temps[i] >= MAX_TEMP) {
|
||||
temp_error = 1;
|
||||
handle_over_maxtemp(i, tmp1075_temps[i]);
|
||||
}
|
||||
#warning "check for under temp"
|
||||
}
|
||||
}
|
||||
if (nfailed_temp_sensors > MAX_FAILED_TEMP) {
|
||||
error_data.data_kind = SEK_TOO_FEW_TEMPS;
|
||||
set_error_source(ERROR_SOURCE_TEMPERATURES);
|
||||
} else if (!temp_error) {
|
||||
clear_error_source(ERROR_SOURCE_TEMPERATURES);
|
||||
}
|
||||
nfailed_temp_sensors = 0;
|
||||
return err ? HAL_ERROR : HAL_OK;
|
||||
}
|
||||
|
||||
HAL_StatusTypeDef tmp1075_sensor_init(int n) {
|
||||
uint16_t addr = (0b1000000 | n) << 1;
|
||||
uint8_t data[] = {0};
|
||||
return HAL_I2C_Master_Transmit(hi2c, addr, data, sizeof(data), 100);
|
||||
}
|
||||
|
||||
HAL_StatusTypeDef tmp1075_sensor_read(int n, int16_t* res) {
|
||||
uint16_t addr = (0b1000000 | n) << 1;
|
||||
addr |= 1; // Read
|
||||
uint8_t result[2];
|
||||
HAL_StatusTypeDef status =
|
||||
HAL_I2C_Master_Receive(hi2c, addr, result, sizeof(result), 5); //5ms timeout for failure (cascading faliure max = 30 * 5 = 150ms)
|
||||
if (status == HAL_OK) {
|
||||
*res = (result[0] << 8) | result[1];
|
||||
}
|
||||
return status;
|
||||
}
|
150
Core/Src/can.c
150
Core/Src/can.c
@ -1,150 +0,0 @@
|
||||
/*
|
||||
* can.c
|
||||
* Created on: Mai 23, 2024
|
||||
* Author: Hamza
|
||||
*/
|
||||
|
||||
#include "can.h"
|
||||
|
||||
//#define CAN_ID_IN 0x501
|
||||
//#define CAN_ID_OUT 0x502
|
||||
int can_delay_manager = 0;
|
||||
void can_init(CAN_HandleTypeDef* hcan) {
|
||||
ftcan_init(hcan);
|
||||
ftcan_add_filter(CAN_ID_IN, 0xFFF);
|
||||
}
|
||||
|
||||
/*
|
||||
This function sends the status of the mvbms, the battery and of powerground.
|
||||
once every 1s in states: INACTIVE, PRECHARGE, DISCHARGE, CHARGING, ERROR.
|
||||
once every 0.5s in states: READY, ACTIVE.
|
||||
with format of:
|
||||
CAN Messages:
|
||||
Error bit
|
||||
MVBMS state
|
||||
Powerground Status 0-100%
|
||||
Errors
|
||||
Battery state of charge
|
||||
Pack Voltage
|
||||
Current
|
||||
Battery temperature (12 bit)
|
||||
|
||||
Min/Max. Cell Temp (ID, Min Temp, ID, Max Temp)(3B),
|
||||
Min/Max Cell Voltage (ID, Min Voltage, ID, Max Voltage)(3B)
|
||||
|
||||
bit 0 (1b): empty
|
||||
bit 1-3 (3b): state
|
||||
bit 4-11 (8b): powerground status
|
||||
bit 12-19 (8b): error
|
||||
bit 20-27 (8b): state of charge from 0-100%
|
||||
bit 28-39 (12b): battery voltage
|
||||
bit 40-51 (12b): current measurement
|
||||
bit 52-63 (12b): temperature of the cell with highest temperature
|
||||
|
||||
|
||||
bit 0-3 (4b): ID of the sensor with highest temperature
|
||||
bit 4-7 (4b): ID of the sensor with lowest temperataure
|
||||
bit 8-19 (12b): temperature of the coldest cell
|
||||
bit 20-23 (4b): ID of the cell with the lowest voltage
|
||||
bit 24-35 (12b): lowest cell voltage
|
||||
bit 36-39 (4b): ID of the cell the the highest voltage
|
||||
bit 40-51 (12b): highest cell voltage
|
||||
bit 52-63 (12b): empty
|
||||
*/
|
||||
|
||||
void can_handle_send_status() {
|
||||
if (can_delay_manager > HAL_GetTick())
|
||||
return;
|
||||
else
|
||||
can_delay_manager = HAL_GetTick() + CAN_STATUS_FREQ;
|
||||
|
||||
uint8_t data[8] = {};
|
||||
int8_t id_highest_temp = -1;
|
||||
int16_t highest_temp = INT16_MIN;
|
||||
sm_check_battery_temperature(&id_highest_temp, &highest_temp);
|
||||
|
||||
data[0] = ((state.current_state << 4) | (powerground_status >> 4)); // 1 bit emptyy | 3 bit state | 4 bit powerground
|
||||
data[1] = ((powerground_status << 4) | (state.error_source >> 4)); // 4 bit powerground | 4 bit error
|
||||
data[2] = ((state.error_source << 4) | (0)); // 4 bit error | 4 bit state of charge
|
||||
data[3] = ((0) + (RELAY_BAT_SIDE_VOLTAGE >> 12)); // 4 bit state of charge | 4 bit battery voltage
|
||||
data[4] = ((RELAY_BAT_SIDE_VOLTAGE >> 4));
|
||||
data[5] = ((CURRENT_MEASUREMENT >> 8));
|
||||
data[6] = ((CURRENT_MEASUREMENT & 0x00F0) | (highest_temp >> 12));
|
||||
data[7] = ((highest_temp) >> 4);
|
||||
|
||||
ftcan_transmit(CAN_ID_OUT, data, sizeof(data));
|
||||
|
||||
int8_t id_lowest_temp = -1;
|
||||
int16_t lowest_temp = INT16_MIN;
|
||||
for (int i = 0; i < N_TEMP_SENSORS; i++) {
|
||||
if (tmp1075_temps[i] < lowest_temp){
|
||||
id_lowest_temp = i;
|
||||
lowest_temp = tmp1075_temps[i];
|
||||
}
|
||||
}
|
||||
|
||||
int8_t id_lowest_volt = -1;
|
||||
int16_t lowest_volt = INT16_MIN;
|
||||
int8_t id_highest_volt = -1;
|
||||
int16_t highest_volt = INT16_MIN;
|
||||
|
||||
for (int i = 0; i < module.sumOfCellMeasurements; i++) {
|
||||
if (sm_return_cell_voltage(i) < lowest_temp){
|
||||
id_lowest_volt = i;
|
||||
lowest_volt = sm_return_cell_voltage(i);
|
||||
}
|
||||
if (sm_return_cell_voltage(i) > highest_temp){
|
||||
id_highest_volt = i;
|
||||
highest_volt = sm_return_cell_voltage(i);
|
||||
}
|
||||
}
|
||||
|
||||
data[0] = ((id_highest_temp & 0x0F) << 4 | (id_lowest_temp & 0x0F));
|
||||
data[1] = ((lowest_temp) >> 8);
|
||||
data[2] = ((lowest_temp & 0x00F0) | (id_lowest_volt & 0x0F));
|
||||
data[3] = (lowest_volt >> 8);
|
||||
data[4] = ((lowest_volt & 0x00F0) | (id_highest_volt & 0x0F));
|
||||
data[5] = ((highest_volt >> 8));
|
||||
data[6] = ((highest_volt & 0x00F0));
|
||||
data[7] = 0;
|
||||
|
||||
ftcan_transmit(CAN_ID_OUT, data, sizeof(data));
|
||||
}
|
||||
|
||||
/*
|
||||
can_handle_recieve_command() should only check if the message is valid and then hand it
|
||||
to the sm_handle_ams_in() which handles the state machine transition.
|
||||
|
||||
This function recieves a command from the Autobox with the CAN ID of 0x501.
|
||||
with format of:
|
||||
data[0] = target state
|
||||
0x0 STATE_INACTIVE | disconnect power to the ESC of powerground. Send it to return the mvbms to idle/monitoring mode. If data[1] != 0 -> assume bad CAN message.
|
||||
0x1 STATE_READY | conneect power to the ESC of powerground and but with no PWM signal. If data[1] != 0 -> assume bad CAN message.
|
||||
0x2 STATE_ACTIVE | activate powerground at (data[1]) percent. If data[1] > 100 -> assume bad CAN message.
|
||||
|
||||
allowed transitions:
|
||||
STATE_INACTIVE -> STATE_READY
|
||||
STATE_READY -> STATE_INACTIVE, STATE_ACTIVE
|
||||
STATE_ACTIVE -> STATE_INACTIVE, STATE_READY
|
||||
*/
|
||||
void can_handle_recieve_command(const uint8_t *data){
|
||||
if (data[0] == 0x00 && data[1] == 0x00){
|
||||
sm_handle_ams_in(data);
|
||||
} else if (data[0] == 0x01 && data[1] == 0x00){
|
||||
sm_handle_ams_in(data);
|
||||
} else if (data[0] == 0x02 && data[1] <= 100) {
|
||||
sm_handle_ams_in(data);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
implements the _weak method ftcan_msg_recieved_cb() which throws an interrupt when a CAN message is recieved.
|
||||
it only checks if the id is and datalen is correct thans hands data over to can_handle_recieve_command().
|
||||
|
||||
in MXCUBE under CAN NVIC settings "USB low priority or CAN_RX0 interrupts" has to be on
|
||||
*/
|
||||
void ftcan_msg_received_cb(uint16_t id, size_t datalen, const uint8_t *data){
|
||||
if (id == 0x501 && datalen == 2){
|
||||
can_handle_recieve_command(data);
|
||||
}
|
||||
}
|
@ -1,13 +0,0 @@
|
||||
#include "errors.h"
|
||||
#include "stm32f3xx_hal.h"
|
||||
|
||||
SlaveErrorData error_data;
|
||||
|
||||
void set_error_source(int source) {
|
||||
if (!error_data.error_sources) {
|
||||
error_data.errors_since = HAL_GetTick();
|
||||
}
|
||||
error_data.error_sources |= source;
|
||||
}
|
||||
|
||||
void clear_error_source(int source) { error_data.error_sources &= ~source; }
|
@ -21,17 +21,7 @@
|
||||
|
||||
/* Private includes ----------------------------------------------------------*/
|
||||
/* USER CODE BEGIN Includes */
|
||||
#include "ADBMS_Abstraction.h"
|
||||
#include "ADBMS_CMD_MAKROS.h"
|
||||
#include "PWM_control.h"
|
||||
#include "can.h"
|
||||
#include "AMS_HighLevel.h"
|
||||
#include "state_machine.h"
|
||||
#include "TMP1075.h"
|
||||
#include "errors.h"
|
||||
#include "stm32f302xc.h"
|
||||
#include "stm32f3xx_hal.h"
|
||||
#include "stm32f3xx_hal_tim.h"
|
||||
|
||||
/* USER CODE END Includes */
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
@ -119,12 +109,7 @@ int main(void)
|
||||
MX_USART1_UART_Init();
|
||||
MX_TIM1_Init();
|
||||
/* USER CODE BEGIN 2 */
|
||||
sm_init();
|
||||
tmp1075_init(&hi2c1);
|
||||
AMS_Init(&hspi1);
|
||||
can_init(&hcan);
|
||||
PWM_control_init(&htim15, &htim1);
|
||||
HAL_Delay(10);
|
||||
|
||||
/* USER CODE END 2 */
|
||||
|
||||
/* Infinite loop */
|
||||
@ -134,10 +119,6 @@ int main(void)
|
||||
/* USER CODE END WHILE */
|
||||
|
||||
/* USER CODE BEGIN 3 */
|
||||
AMS_Loop();
|
||||
sm_update();
|
||||
//sm_test_cycle_states();
|
||||
can_handle_send_status();
|
||||
}
|
||||
/* USER CODE END 3 */
|
||||
}
|
||||
@ -155,11 +136,12 @@ void SystemClock_Config(void)
|
||||
/** Initializes the RCC Oscillators according to the specified parameters
|
||||
* in the RCC_OscInitTypeDef structure.
|
||||
*/
|
||||
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_HSE;
|
||||
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
|
||||
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
|
||||
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
|
||||
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
|
||||
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
|
||||
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
|
||||
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
|
||||
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL4;
|
||||
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
|
||||
{
|
||||
Error_Handler();
|
||||
@ -169,7 +151,7 @@ void SystemClock_Config(void)
|
||||
*/
|
||||
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|
||||
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
|
||||
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE;
|
||||
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
|
||||
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
|
||||
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
|
||||
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
|
||||
@ -205,15 +187,15 @@ static void MX_CAN_Init(void)
|
||||
|
||||
/* USER CODE END CAN_Init 1 */
|
||||
hcan.Instance = CAN;
|
||||
hcan.Init.Prescaler = 2;
|
||||
hcan.Init.Prescaler = 16;
|
||||
hcan.Init.Mode = CAN_MODE_NORMAL;
|
||||
hcan.Init.SyncJumpWidth = CAN_SJW_1TQ;
|
||||
hcan.Init.TimeSeg1 = CAN_BS1_13TQ;
|
||||
hcan.Init.TimeSeg2 = CAN_BS2_2TQ;
|
||||
hcan.Init.TimeSeg1 = CAN_BS1_1TQ;
|
||||
hcan.Init.TimeSeg2 = CAN_BS2_1TQ;
|
||||
hcan.Init.TimeTriggeredMode = DISABLE;
|
||||
hcan.Init.AutoBusOff = ENABLE;
|
||||
hcan.Init.AutoBusOff = DISABLE;
|
||||
hcan.Init.AutoWakeUp = DISABLE;
|
||||
hcan.Init.AutoRetransmission = ENABLE;
|
||||
hcan.Init.AutoRetransmission = DISABLE;
|
||||
hcan.Init.ReceiveFifoLocked = DISABLE;
|
||||
hcan.Init.TransmitFifoPriority = DISABLE;
|
||||
if (HAL_CAN_Init(&hcan) != HAL_OK)
|
||||
@ -404,9 +386,9 @@ static void MX_TIM15_Init(void)
|
||||
|
||||
/* USER CODE END TIM15_Init 1 */
|
||||
htim15.Instance = TIM15;
|
||||
htim15.Init.Prescaler = 7;
|
||||
htim15.Init.Prescaler = 0;
|
||||
htim15.Init.CounterMode = TIM_COUNTERMODE_UP;
|
||||
htim15.Init.Period = 39999;
|
||||
htim15.Init.Period = 65535;
|
||||
htim15.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
|
||||
htim15.Init.RepetitionCounter = 0;
|
||||
htim15.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
|
||||
@ -513,7 +495,7 @@ static void MX_GPIO_Init(void)
|
||||
HAL_GPIO_WritePin(GPIOB, STATUS_LED_R_Pin|STATUS_LED_B_Pin|STATUS_LED_G_Pin, GPIO_PIN_SET);
|
||||
|
||||
/*Configure GPIO pin Output Level */
|
||||
HAL_GPIO_WritePin(PRECHARGE_EN_GPIO_Port, PRECHARGE_EN_Pin, GPIO_PIN_RESET);
|
||||
HAL_GPIO_WritePin(GPIOB, PRECHARGE_EN_Pin|AUX_IN_Pin, GPIO_PIN_RESET);
|
||||
|
||||
/*Configure GPIO pins : PC13 PC14 PC15 */
|
||||
GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15;
|
||||
@ -528,21 +510,29 @@ static void MX_GPIO_Init(void)
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
||||
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
|
||||
|
||||
/*Configure GPIO pins : STATUS_LED_R_Pin STATUS_LED_B_Pin STATUS_LED_G_Pin PRECHARGE_EN_Pin */
|
||||
GPIO_InitStruct.Pin = STATUS_LED_R_Pin|STATUS_LED_B_Pin|STATUS_LED_G_Pin|PRECHARGE_EN_Pin;
|
||||
/*Configure GPIO pins : STATUS_LED_R_Pin STATUS_LED_B_Pin STATUS_LED_G_Pin PRECHARGE_EN_Pin
|
||||
AUX_IN_Pin */
|
||||
GPIO_InitStruct.Pin = STATUS_LED_R_Pin|STATUS_LED_B_Pin|STATUS_LED_G_Pin|PRECHARGE_EN_Pin
|
||||
|AUX_IN_Pin;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
|
||||
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
||||
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
|
||||
|
||||
/*Configure GPIO pins : PB10 PB12 PB13 PB14
|
||||
PB4 PB5 PB8 */
|
||||
GPIO_InitStruct.Pin = GPIO_PIN_10|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14
|
||||
|GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_8;
|
||||
/*Configure GPIO pins : PB10 PB12 PB4 PB5
|
||||
PB8 */
|
||||
GPIO_InitStruct.Pin = GPIO_PIN_10|GPIO_PIN_12|GPIO_PIN_4|GPIO_PIN_5
|
||||
|GPIO_PIN_8;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
|
||||
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
||||
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
|
||||
|
||||
/*Configure GPIO pin : AUX_OUT_Pin */
|
||||
GPIO_InitStruct.Pin = AUX_OUT_Pin;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
|
||||
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
||||
HAL_GPIO_Init(AUX_OUT_GPIO_Port, &GPIO_InitStruct);
|
||||
|
||||
/*Configure GPIO pins : RELAY_BATT_SIDE_ON_Pin RELAY_ESC_SIDE_ON_Pin CURRENT_SENSOR_ON_Pin */
|
||||
GPIO_InitStruct.Pin = RELAY_BATT_SIDE_ON_Pin|RELAY_ESC_SIDE_ON_Pin|CURRENT_SENSOR_ON_Pin;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
|
||||
|
@ -1,325 +0,0 @@
|
||||
#include "state_machine.h"
|
||||
#include "AMS_HighLevel.h"
|
||||
#include "TMP1075.h"
|
||||
#include "errors.h"
|
||||
#include "stm32f3xx_hal.h"
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
|
||||
StateHandle state;
|
||||
int16_t RELAY_BAT_SIDE_VOLTAGE;
|
||||
int16_t RELAY_ESC_SIDE_VOLTAGE;
|
||||
int16_t CURRENT_MEASUREMENT;
|
||||
uint8_t powerground_status;
|
||||
|
||||
uint32_t timestamp;
|
||||
|
||||
void sm_init(){
|
||||
state.current_state = STATE_INACTIVE;
|
||||
state.target_state = STATE_INACTIVE;
|
||||
state.error_source = 0;
|
||||
}
|
||||
|
||||
void sm_update(){
|
||||
sm_check_errors();
|
||||
|
||||
RELAY_BAT_SIDE_VOLTAGE = module.auxVoltages[0] * 12.42; // the calculation says the factor is 11.989. 12.42 yields the better result
|
||||
RELAY_ESC_SIDE_VOLTAGE = module.auxVoltages[1] * 12.42;
|
||||
CURRENT_MEASUREMENT = (module.auxVoltages[2] - 2496) * 300;
|
||||
|
||||
switch (state.current_state) {
|
||||
case STATE_INACTIVE:
|
||||
state.current_state = sm_update_inactive(); // monitor only
|
||||
break;
|
||||
case STATE_PRECHARGE:
|
||||
state.current_state = sm_update_precharge(); // set PRECHARGE and turn on cooling at 50% or such
|
||||
break;
|
||||
case STATE_READY:
|
||||
state.current_state = sm_update_ready(); // keep cooling at 50%, get ready to turn on powerground
|
||||
break;
|
||||
case STATE_ACTIVE:
|
||||
state.current_state = sm_update_active(); // set PRECHARGE and turn on cooling at 50% or such
|
||||
break;
|
||||
case STATE_DISCHARGE:
|
||||
state.current_state = sm_update_discharge(); // open the main relay, keep PRECHARGE closed
|
||||
break;
|
||||
case STATE_CHARGING_PRECHARGE:
|
||||
state.current_state = sm_update_charging_precharge();
|
||||
break;
|
||||
case STATE_CHARGING:
|
||||
state.current_state = sm_update_charging(); // monitor and turn on cooling if needed.
|
||||
break;
|
||||
case STATE_ERROR:
|
||||
state.current_state = sm_update_error(); // enter the correct ERROR state
|
||||
break;
|
||||
}
|
||||
|
||||
sm_set_relay_positions(state.current_state);
|
||||
state.target_state = state.current_state;
|
||||
}
|
||||
|
||||
State sm_update_inactive(){
|
||||
switch (state.target_state) {
|
||||
case STATE_PRECHARGE:
|
||||
return STATE_PRECHARGE;
|
||||
case STATE_CHARGING_PRECHARGE:
|
||||
return STATE_CHARGING_PRECHARGE;
|
||||
default:
|
||||
return STATE_INACTIVE;
|
||||
}
|
||||
}
|
||||
|
||||
State sm_update_precharge(){
|
||||
switch (state.target_state) {
|
||||
case STATE_INACTIVE: // if CAN Signal 0000 0000 then immidiete shutdown
|
||||
return STATE_DISCHARGE;
|
||||
case STATE_PRECHARGE:
|
||||
if (RELAY_BAT_SIDE_VOLTAGE-RELAY_ESC_SIDE_VOLTAGE < 100){
|
||||
PWM_set_throttle();
|
||||
return STATE_READY;
|
||||
}
|
||||
break;
|
||||
case STATE_DISCHARGE:
|
||||
return STATE_DISCHARGE;
|
||||
default:
|
||||
return STATE_PRECHARGE;
|
||||
}
|
||||
}
|
||||
|
||||
State sm_update_ready(){
|
||||
switch (state.target_state) {
|
||||
case STATE_ACTIVE: // if CAN Signal 1100 0000 then turn on powerground
|
||||
return STATE_ACTIVE;
|
||||
case STATE_DISCHARGE: // if CAN Signal 0000 0000 then shutdown
|
||||
return STATE_DISCHARGE;
|
||||
default:
|
||||
return STATE_READY;
|
||||
}
|
||||
}
|
||||
|
||||
State sm_update_active(){
|
||||
switch (state.target_state) {
|
||||
case STATE_READY: // if CAN Signal 1000 0000 then turn oof powerground but stay ready
|
||||
return STATE_READY;
|
||||
case STATE_DISCHARGE: // if CAN Signal 0000 0000 then shutdown
|
||||
return STATE_DISCHARGE;
|
||||
default:
|
||||
return STATE_ACTIVE;
|
||||
}
|
||||
}
|
||||
|
||||
State sm_update_discharge(){
|
||||
switch (state.target_state) {
|
||||
case STATE_DISCHARGE:
|
||||
if (RELAY_ESC_SIDE_VOLTAGE < 5000)
|
||||
return STATE_INACTIVE;
|
||||
case STATE_PRECHARGE: // if CAN Signal 1000 0000 then get ready
|
||||
return STATE_PRECHARGE;
|
||||
default:
|
||||
return STATE_DISCHARGE;
|
||||
}
|
||||
}
|
||||
|
||||
State sm_update_charging_precharge(){
|
||||
switch (state.target_state) {
|
||||
case STATE_CHARGING:
|
||||
return STATE_CHARGING;
|
||||
case STATE_DISCHARGE:
|
||||
return STATE_DISCHARGE;
|
||||
default:
|
||||
return STATE_CHARGING_PRECHARGE;
|
||||
}
|
||||
}
|
||||
|
||||
State sm_update_charging(){
|
||||
switch (state.target_state) {
|
||||
case STATE_DISCHARGE:
|
||||
return STATE_DISCHARGE;
|
||||
default:
|
||||
return STATE_CHARGING;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
State sm_update_error(){
|
||||
switch (state.target_state) {
|
||||
case STATE_DISCHARGE:
|
||||
return STATE_DISCHARGE;
|
||||
default:
|
||||
return STATE_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
void sm_set_relay_positions(State current_state){
|
||||
switch (state.current_state) {
|
||||
case STATE_INACTIVE:
|
||||
sm_set_relay(RELAY_MAIN, 0);
|
||||
sm_set_relay(RELAY_PRECHARGE, 0);
|
||||
break;
|
||||
case STATE_PRECHARGE:
|
||||
sm_set_relay(RELAY_MAIN, 0);
|
||||
sm_set_relay(RELAY_PRECHARGE, 1);
|
||||
break;
|
||||
case STATE_READY:
|
||||
sm_set_relay(RELAY_MAIN, 1);
|
||||
sm_set_relay(RELAY_PRECHARGE, 0);
|
||||
break;
|
||||
case STATE_ACTIVE:
|
||||
sm_set_relay(RELAY_MAIN, 1);
|
||||
sm_set_relay(RELAY_PRECHARGE, 0);
|
||||
break;
|
||||
case STATE_DISCHARGE:
|
||||
sm_set_relay(RELAY_MAIN, 0);
|
||||
sm_set_relay(RELAY_PRECHARGE, 0);
|
||||
break;
|
||||
case STATE_CHARGING_PRECHARGE:
|
||||
sm_set_relay(RELAY_MAIN, 0);
|
||||
sm_set_relay(RELAY_PRECHARGE, 1);
|
||||
break;
|
||||
case STATE_CHARGING:
|
||||
sm_set_relay(RELAY_MAIN, 1);
|
||||
sm_set_relay(RELAY_PRECHARGE, 0);
|
||||
break;
|
||||
case STATE_ERROR:
|
||||
sm_set_relay(RELAY_MAIN, 0);
|
||||
sm_set_relay(RELAY_PRECHARGE, 0);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void sm_set_relay(Relay relay, bool closed){
|
||||
GPIO_PinState state = closed ? GPIO_PIN_SET : GPIO_PIN_RESET;
|
||||
switch (relay) {
|
||||
case RELAY_MAIN:
|
||||
HAL_GPIO_WritePin(RELAY_EN_GPIO_Port, RELAY_EN_Pin, state);
|
||||
relay_closed = closed;
|
||||
break;
|
||||
case RELAY_PRECHARGE:
|
||||
HAL_GPIO_WritePin(PRECHARGE_EN_GPIO_Port, PRECHARGE_EN_Pin, state);
|
||||
precharge_closed = closed;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void sm_check_charging(){
|
||||
if (RELAY_BAT_SIDE_VOLTAGE < RELAY_ESC_SIDE_VOLTAGE && timestamp == 0)
|
||||
timestamp = HAL_GetTick() + 5000;
|
||||
if (timestamp < HAL_GetTick())
|
||||
state.target_state = STATE_CHARGING_PRECHARGE;
|
||||
}
|
||||
|
||||
/* returns the ID and temperature of the hottest cell */
|
||||
void sm_check_battery_temperature(int8_t *id, int16_t *temp){
|
||||
for (int i = 0; i < N_TEMP_SENSORS; i++) {
|
||||
if (tmp1075_temps[i] > *temp){
|
||||
*id = i;
|
||||
*temp = tmp1075_temps[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int16_t sm_return_cell_temperature(int id){
|
||||
return tmp1075_temps[id];
|
||||
}
|
||||
|
||||
int16_t sm_return_cell_voltage(int id){
|
||||
return module.cellVoltages[id];
|
||||
}
|
||||
|
||||
void sm_handle_ams_in(const uint8_t *data){
|
||||
switch (data[0]) {
|
||||
case 0x00:
|
||||
if (state.current_state != STATE_INACTIVE){
|
||||
state.target_state = STATE_DISCHARGE;
|
||||
}
|
||||
break;
|
||||
case 0x01:
|
||||
if (state.target_state == STATE_INACTIVE || state.target_state == STATE_DISCHARGE){
|
||||
state.target_state = STATE_PRECHARGE;
|
||||
} else if (state.target_state == STATE_ACTIVE){
|
||||
state.target_state = STATE_READY;
|
||||
}
|
||||
break;
|
||||
case 0x02:
|
||||
if (state.current_state == STATE_READY || state.current_state == STATE_ACTIVE){
|
||||
PWM_powerground_control(data[1]);
|
||||
state.target_state = STATE_ACTIVE; // READY -> ACTIVE
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void sm_set_error(ErrorKind error_kind, bool is_errored){}
|
||||
|
||||
#warning TODO: add error checking for everything here
|
||||
void sm_check_errors(){
|
||||
switch (error_data.data_kind) {
|
||||
case SEK_OVERTEMP:
|
||||
case SEK_UNDERTEMP:
|
||||
case SEK_TOO_FEW_TEMPS:
|
||||
state.error_type.temperature_error = 1;
|
||||
case SEK_OVERVOLT:
|
||||
case SEK_UNDERVOLT:
|
||||
case SEK_OPENWIRE:
|
||||
case SEK_EEPROM_ERR:
|
||||
case SEK_INTERNAL_BMS_TIMEOUT:
|
||||
state.error_type.bms_timeout = 1;
|
||||
case SEK_INTERNAL_BMS_CHECKSUM_FAIL:
|
||||
case SEK_INTERNAL_BMS_OVERTEMP:
|
||||
case SEK_INTERNAL_BMS_FAULT:
|
||||
state.error_type.bms_fault = 1;
|
||||
break;
|
||||
}
|
||||
|
||||
if (1){
|
||||
state.error_type.current_error = 1;
|
||||
}
|
||||
|
||||
if (1){
|
||||
state.error_type.current_sensor_missing = 1;
|
||||
}
|
||||
|
||||
if (RELAY_BAT_SIDE_VOLTAGE < 30000){
|
||||
state.error_type.voltage_error = 1;
|
||||
}
|
||||
|
||||
if (1){
|
||||
state.error_type.voltage_missing = 1;
|
||||
}
|
||||
}
|
||||
|
||||
void sm_test_cycle_states(){
|
||||
RELAY_BAT_SIDE_VOLTAGE = module.auxVoltages[0];
|
||||
RELAY_ESC_SIDE_VOLTAGE = module.auxVoltages[1];
|
||||
CURRENT_MEASUREMENT = module.auxVoltages[2];
|
||||
sm_set_relay_positions(state.current_state);
|
||||
|
||||
if (timestamp > HAL_GetTick())
|
||||
return;
|
||||
switch (state.current_state) {
|
||||
case STATE_INACTIVE:
|
||||
state.current_state = STATE_PRECHARGE;
|
||||
timestamp = HAL_GetTick() + 30000;
|
||||
PWM_powerground_control(0);
|
||||
break;
|
||||
case STATE_PRECHARGE:
|
||||
state.current_state = STATE_READY;
|
||||
timestamp = HAL_GetTick() + 10000;
|
||||
break;
|
||||
case STATE_READY:
|
||||
state.current_state = STATE_ACTIVE;
|
||||
timestamp = HAL_GetTick() + 10000;
|
||||
break;
|
||||
case STATE_ACTIVE:
|
||||
state.current_state = STATE_DISCHARGE;
|
||||
timestamp = HAL_GetTick() + 10000;
|
||||
PWM_powerground_control(1);
|
||||
break;
|
||||
case STATE_DISCHARGE:
|
||||
state.current_state = STATE_INACTIVE;
|
||||
timestamp = HAL_GetTick() + 10000;
|
||||
break;
|
||||
}
|
||||
|
||||
state.target_state = state.current_state;
|
||||
}
|
@ -108,11 +108,6 @@ void HAL_CAN_MspInit(CAN_HandleTypeDef* hcan)
|
||||
GPIO_InitStruct.Alternate = GPIO_AF9_CAN;
|
||||
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
|
||||
|
||||
/* CAN interrupt Init */
|
||||
HAL_NVIC_SetPriority(USB_LP_CAN_RX0_IRQn, 0, 0);
|
||||
HAL_NVIC_EnableIRQ(USB_LP_CAN_RX0_IRQn);
|
||||
HAL_NVIC_SetPriority(CAN_RX1_IRQn, 0, 0);
|
||||
HAL_NVIC_EnableIRQ(CAN_RX1_IRQn);
|
||||
/* USER CODE BEGIN CAN_MspInit 1 */
|
||||
|
||||
/* USER CODE END CAN_MspInit 1 */
|
||||
@ -142,9 +137,6 @@ void HAL_CAN_MspDeInit(CAN_HandleTypeDef* hcan)
|
||||
*/
|
||||
HAL_GPIO_DeInit(GPIOA, GPIO_PIN_11|GPIO_PIN_12);
|
||||
|
||||
/* CAN interrupt DeInit */
|
||||
HAL_NVIC_DisableIRQ(USB_LP_CAN_RX0_IRQn);
|
||||
HAL_NVIC_DisableIRQ(CAN_RX1_IRQn);
|
||||
/* USER CODE BEGIN CAN_MspDeInit 1 */
|
||||
|
||||
/* USER CODE END CAN_MspDeInit 1 */
|
||||
@ -339,12 +331,12 @@ void HAL_TIM_MspPostInit(TIM_HandleTypeDef* htim)
|
||||
/**TIM1 GPIO Configuration
|
||||
PB15 ------> TIM1_CH3N
|
||||
*/
|
||||
GPIO_InitStruct.Pin = PWM_Battery_Cooling_Pin;
|
||||
GPIO_InitStruct.Pin = GPIO_PIN_15;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
|
||||
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
||||
GPIO_InitStruct.Alternate = GPIO_AF4_TIM1;
|
||||
HAL_GPIO_Init(PWM_Battery_Cooling_GPIO_Port, &GPIO_InitStruct);
|
||||
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
|
||||
|
||||
/* USER CODE BEGIN TIM1_MspPostInit 1 */
|
||||
|
||||
|
@ -55,7 +55,7 @@
|
||||
/* USER CODE END 0 */
|
||||
|
||||
/* External variables --------------------------------------------------------*/
|
||||
extern CAN_HandleTypeDef hcan;
|
||||
|
||||
/* USER CODE BEGIN EV */
|
||||
|
||||
/* USER CODE END EV */
|
||||
@ -198,34 +198,6 @@ void SysTick_Handler(void)
|
||||
/* please refer to the startup file (startup_stm32f3xx.s). */
|
||||
/******************************************************************************/
|
||||
|
||||
/**
|
||||
* @brief This function handles USB low priority or CAN_RX0 interrupts.
|
||||
*/
|
||||
void USB_LP_CAN_RX0_IRQHandler(void)
|
||||
{
|
||||
/* USER CODE BEGIN USB_LP_CAN_RX0_IRQn 0 */
|
||||
|
||||
/* USER CODE END USB_LP_CAN_RX0_IRQn 0 */
|
||||
HAL_CAN_IRQHandler(&hcan);
|
||||
/* USER CODE BEGIN USB_LP_CAN_RX0_IRQn 1 */
|
||||
|
||||
/* USER CODE END USB_LP_CAN_RX0_IRQn 1 */
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief This function handles CAN RX1 interrupt.
|
||||
*/
|
||||
void CAN_RX1_IRQHandler(void)
|
||||
{
|
||||
/* USER CODE BEGIN CAN_RX1_IRQn 0 */
|
||||
|
||||
/* USER CODE END CAN_RX1_IRQn 0 */
|
||||
HAL_CAN_IRQHandler(&hcan);
|
||||
/* USER CODE BEGIN CAN_RX1_IRQn 1 */
|
||||
|
||||
/* USER CODE END CAN_RX1_IRQn 1 */
|
||||
}
|
||||
|
||||
/* USER CODE BEGIN 1 */
|
||||
|
||||
/* USER CODE END 1 */
|
||||
|
@ -1,176 +0,0 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file syscalls.c
|
||||
* @author Auto-generated by STM32CubeMX
|
||||
* @brief Minimal System calls file
|
||||
*
|
||||
* For more information about which c-functions
|
||||
* need which of these lowlevel functions
|
||||
* please consult the Newlib libc-manual
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* Copyright (c) 2020-2024 STMicroelectronics.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This software is licensed under terms that can be found in the LICENSE file
|
||||
* in the root directory of this software component.
|
||||
* If no LICENSE file comes with this software, it is provided AS-IS.
|
||||
*
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes */
|
||||
#include <sys/stat.h>
|
||||
#include <stdlib.h>
|
||||
#include <errno.h>
|
||||
#include <stdio.h>
|
||||
#include <signal.h>
|
||||
#include <time.h>
|
||||
#include <sys/time.h>
|
||||
#include <sys/times.h>
|
||||
|
||||
|
||||
/* Variables */
|
||||
extern int __io_putchar(int ch) __attribute__((weak));
|
||||
extern int __io_getchar(void) __attribute__((weak));
|
||||
|
||||
|
||||
char *__env[1] = { 0 };
|
||||
char **environ = __env;
|
||||
|
||||
|
||||
/* Functions */
|
||||
void initialise_monitor_handles()
|
||||
{
|
||||
}
|
||||
|
||||
int _getpid(void)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
|
||||
int _kill(int pid, int sig)
|
||||
{
|
||||
(void)pid;
|
||||
(void)sig;
|
||||
errno = EINVAL;
|
||||
return -1;
|
||||
}
|
||||
|
||||
void _exit (int status)
|
||||
{
|
||||
_kill(status, -1);
|
||||
while (1) {} /* Make sure we hang here */
|
||||
}
|
||||
|
||||
__attribute__((weak)) int _read(int file, char *ptr, int len)
|
||||
{
|
||||
(void)file;
|
||||
int DataIdx;
|
||||
|
||||
for (DataIdx = 0; DataIdx < len; DataIdx++)
|
||||
{
|
||||
*ptr++ = __io_getchar();
|
||||
}
|
||||
|
||||
return len;
|
||||
}
|
||||
|
||||
__attribute__((weak)) int _write(int file, char *ptr, int len)
|
||||
{
|
||||
(void)file;
|
||||
int DataIdx;
|
||||
|
||||
for (DataIdx = 0; DataIdx < len; DataIdx++)
|
||||
{
|
||||
__io_putchar(*ptr++);
|
||||
}
|
||||
return len;
|
||||
}
|
||||
|
||||
int _close(int file)
|
||||
{
|
||||
(void)file;
|
||||
return -1;
|
||||
}
|
||||
|
||||
|
||||
int _fstat(int file, struct stat *st)
|
||||
{
|
||||
(void)file;
|
||||
st->st_mode = S_IFCHR;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int _isatty(int file)
|
||||
{
|
||||
(void)file;
|
||||
return 1;
|
||||
}
|
||||
|
||||
int _lseek(int file, int ptr, int dir)
|
||||
{
|
||||
(void)file;
|
||||
(void)ptr;
|
||||
(void)dir;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int _open(char *path, int flags, ...)
|
||||
{
|
||||
(void)path;
|
||||
(void)flags;
|
||||
/* Pretend like we always fail */
|
||||
return -1;
|
||||
}
|
||||
|
||||
int _wait(int *status)
|
||||
{
|
||||
(void)status;
|
||||
errno = ECHILD;
|
||||
return -1;
|
||||
}
|
||||
|
||||
int _unlink(char *name)
|
||||
{
|
||||
(void)name;
|
||||
errno = ENOENT;
|
||||
return -1;
|
||||
}
|
||||
|
||||
int _times(struct tms *buf)
|
||||
{
|
||||
(void)buf;
|
||||
return -1;
|
||||
}
|
||||
|
||||
int _stat(char *file, struct stat *st)
|
||||
{
|
||||
(void)file;
|
||||
st->st_mode = S_IFCHR;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int _link(char *old, char *new)
|
||||
{
|
||||
(void)old;
|
||||
(void)new;
|
||||
errno = EMLINK;
|
||||
return -1;
|
||||
}
|
||||
|
||||
int _fork(void)
|
||||
{
|
||||
errno = EAGAIN;
|
||||
return -1;
|
||||
}
|
||||
|
||||
int _execve(char *name, char **argv, char **env)
|
||||
{
|
||||
(void)name;
|
||||
(void)argv;
|
||||
(void)env;
|
||||
errno = ENOMEM;
|
||||
return -1;
|
||||
}
|
@ -1,79 +0,0 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file sysmem.c
|
||||
* @author Generated by STM32CubeMX
|
||||
* @brief System Memory calls file
|
||||
*
|
||||
* For more information about which C functions
|
||||
* need which of these lowlevel functions
|
||||
* please consult the newlib libc manual
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* Copyright (c) 2024 STMicroelectronics.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This software is licensed under terms that can be found in the LICENSE file
|
||||
* in the root directory of this software component.
|
||||
* If no LICENSE file comes with this software, it is provided AS-IS.
|
||||
*
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes */
|
||||
#include <errno.h>
|
||||
#include <stdint.h>
|
||||
|
||||
/**
|
||||
* Pointer to the current high watermark of the heap usage
|
||||
*/
|
||||
static uint8_t *__sbrk_heap_end = NULL;
|
||||
|
||||
/**
|
||||
* @brief _sbrk() allocates memory to the newlib heap and is used by malloc
|
||||
* and others from the C library
|
||||
*
|
||||
* @verbatim
|
||||
* ############################################################################
|
||||
* # .data # .bss # newlib heap # MSP stack #
|
||||
* # # # # Reserved by _Min_Stack_Size #
|
||||
* ############################################################################
|
||||
* ^-- RAM start ^-- _end _estack, RAM end --^
|
||||
* @endverbatim
|
||||
*
|
||||
* This implementation starts allocating at the '_end' linker symbol
|
||||
* The '_Min_Stack_Size' linker symbol reserves a memory for the MSP stack
|
||||
* The implementation considers '_estack' linker symbol to be RAM end
|
||||
* NOTE: If the MSP stack, at any point during execution, grows larger than the
|
||||
* reserved size, please increase the '_Min_Stack_Size'.
|
||||
*
|
||||
* @param incr Memory size
|
||||
* @return Pointer to allocated memory
|
||||
*/
|
||||
void *_sbrk(ptrdiff_t incr)
|
||||
{
|
||||
extern uint8_t _end; /* Symbol defined in the linker script */
|
||||
extern uint8_t _estack; /* Symbol defined in the linker script */
|
||||
extern uint32_t _Min_Stack_Size; /* Symbol defined in the linker script */
|
||||
const uint32_t stack_limit = (uint32_t)&_estack - (uint32_t)&_Min_Stack_Size;
|
||||
const uint8_t *max_heap = (uint8_t *)stack_limit;
|
||||
uint8_t *prev_heap_end;
|
||||
|
||||
/* Initialize heap end at first call */
|
||||
if (NULL == __sbrk_heap_end)
|
||||
{
|
||||
__sbrk_heap_end = &_end;
|
||||
}
|
||||
|
||||
/* Protect heap from growing into the reserved MSP stack */
|
||||
if (__sbrk_heap_end + incr > max_heap)
|
||||
{
|
||||
errno = ENOMEM;
|
||||
return (void *)-1;
|
||||
}
|
||||
|
||||
prev_heap_end = __sbrk_heap_end;
|
||||
__sbrk_heap_end += incr;
|
||||
|
||||
return (void *)prev_heap_end;
|
||||
}
|
4
Makefile
4
Makefile
@ -1,5 +1,5 @@
|
||||
##########################################################################################################################
|
||||
# File automatically-generated by tool: [projectgenerator] version: [4.3.0-B58] date: [Mon Jun 03 16:11:34 EEST 2024]
|
||||
# File automatically-generated by tool: [projectgenerator] version: [4.3.0-B58] date: [Tue Jul 09 13:45:39 EEST 2024]
|
||||
##########################################################################################################################
|
||||
|
||||
# ------------------------------------------------
|
||||
@ -13,7 +13,7 @@
|
||||
######################################
|
||||
# target
|
||||
######################################
|
||||
TARGET = mvbms
|
||||
TARGET = mvbms-test-24
|
||||
|
||||
|
||||
######################################
|
||||
|
@ -192,7 +192,7 @@ ProjectManager.FreePins=true
|
||||
ProjectManager.HalAssertFull=false
|
||||
ProjectManager.HeapSize=0x200
|
||||
ProjectManager.KeepUserCode=true
|
||||
ProjectManager.LastFirmware=true
|
||||
ProjectManager.LastFirmware=false
|
||||
ProjectManager.LibraryCopy=1
|
||||
ProjectManager.MainLocation=Core/Src
|
||||
ProjectManager.NoMain=false
|
||||
|
Loading…
x
Reference in New Issue
Block a user