first generate
This commit is contained in:
		@ -0,0 +1,44 @@
 | 
			
		||||
/*------------------------------------------------------------------------------
 | 
			
		||||
 * MDK - Component ::Event Recorder
 | 
			
		||||
 * Copyright (c) 2016 ARM Germany GmbH. All rights reserved.
 | 
			
		||||
 *------------------------------------------------------------------------------
 | 
			
		||||
 * Name:    EventRecorderConf.h
 | 
			
		||||
 * Purpose: Event Recorder Configuration
 | 
			
		||||
 * Rev.:    V1.0.0
 | 
			
		||||
 *----------------------------------------------------------------------------*/
 | 
			
		||||
 | 
			
		||||
//-------- <<< Use Configuration Wizard in Context Menu >>> --------------------
 | 
			
		||||
 | 
			
		||||
// <h>Event Recorder
 | 
			
		||||
 | 
			
		||||
//   <o>Number of Records
 | 
			
		||||
//     <8=>8 <16=>16 <32=>32 <64=>64 <128=>128 <256=>256 <512=>512 <1024=>1024
 | 
			
		||||
//     <2048=>2048 <4096=>4096 <8192=>8192 <16384=>16384 <32768=>32768
 | 
			
		||||
//     <65536=>65536 <131072=>131072 <262144=>262144 <524288=>524288
 | 
			
		||||
//     <1048576=>1048576
 | 
			
		||||
//   <i>Configure size of Event Record Buffer (each record is 16 bytes)
 | 
			
		||||
//   <i>Must be 2^n (min=8, max=1048576)
 | 
			
		||||
#define EVENT_RECORD_COUNT      64U
 | 
			
		||||
 | 
			
		||||
//   <o>Time Stamp Source
 | 
			
		||||
//      <0=> DWT Cycle Counter  <1=> SysTick
 | 
			
		||||
//      <3=> User Timer (Normal Reset)  <4=> User Timer (Power-On Reset)
 | 
			
		||||
//   <i>Selects source for 32-bit time stamp
 | 
			
		||||
#define EVENT_TIMESTAMP_SOURCE  1
 | 
			
		||||
 | 
			
		||||
//   <h>SysTick Configuration
 | 
			
		||||
//   <i>Configure values when Time Stamp Source is set to SysTick
 | 
			
		||||
 | 
			
		||||
//     <o>SysTick Input Clock Frequency [Hz] <1-1000000000>
 | 
			
		||||
//     <i>Defines SysTick input clock (typical identical with processor clock)
 | 
			
		||||
#define SYSTICK_CLOCK           100000000U
 | 
			
		||||
 | 
			
		||||
//     <o>SysTick Interrupt Period [us] <1-1000000000>
 | 
			
		||||
//     <i>Defines time period of the SysTick timer interrupt
 | 
			
		||||
#define SYSTICK_PERIOD_US       1000U
 | 
			
		||||
 | 
			
		||||
//   </h>
 | 
			
		||||
 | 
			
		||||
// </h>
 | 
			
		||||
 | 
			
		||||
//------------- <<< end of configuration section >>> ---------------------------
 | 
			
		||||
@ -0,0 +1,24 @@
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Auto generated Run-Time-Environment Component Configuration File
 | 
			
		||||
 *      *** Do not modify ! ***
 | 
			
		||||
 *
 | 
			
		||||
 * Project: 'arm_nnexamples_cifar10' 
 | 
			
		||||
 * Target:  'ARMCM0' 
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#ifndef RTE_COMPONENTS_H
 | 
			
		||||
#define RTE_COMPONENTS_H
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Define the Device Header File: 
 | 
			
		||||
 */
 | 
			
		||||
#define CMSIS_device_header "ARMCM0.h"
 | 
			
		||||
 | 
			
		||||
#define RTE_Compiler_EventRecorder
 | 
			
		||||
          #define RTE_Compiler_EventRecorder_DAP
 | 
			
		||||
#define RTE_Compiler_IO_STDOUT          /* Compiler I/O: STDOUT */
 | 
			
		||||
          #define RTE_Compiler_IO_STDOUT_EVR      /* Compiler I/O: STDOUT EVR */
 | 
			
		||||
 | 
			
		||||
#endif /* RTE_COMPONENTS_H */
 | 
			
		||||
@ -0,0 +1,22 @@
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Auto generated Run-Time-Environment Component Configuration File
 | 
			
		||||
 *      *** Do not modify ! ***
 | 
			
		||||
 *
 | 
			
		||||
 * Project: 'arm_nnexamples_cifar10' 
 | 
			
		||||
 * Target:  'ARMCM3' 
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#ifndef RTE_COMPONENTS_H
 | 
			
		||||
#define RTE_COMPONENTS_H
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Define the Device Header File: 
 | 
			
		||||
 */
 | 
			
		||||
#define CMSIS_device_header "ARMCM3.h"
 | 
			
		||||
 | 
			
		||||
#define RTE_Compiler_IO_STDOUT          /* Compiler I/O: STDOUT */
 | 
			
		||||
          #define RTE_Compiler_IO_STDOUT_ITM      /* Compiler I/O: STDOUT ITM */
 | 
			
		||||
 | 
			
		||||
#endif /* RTE_COMPONENTS_H */
 | 
			
		||||
@ -0,0 +1,22 @@
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Auto generated Run-Time-Environment Component Configuration File
 | 
			
		||||
 *      *** Do not modify ! ***
 | 
			
		||||
 *
 | 
			
		||||
 * Project: 'arm_nnexamples_cifar10' 
 | 
			
		||||
 * Target:  'ARMCM4_FP' 
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#ifndef RTE_COMPONENTS_H
 | 
			
		||||
#define RTE_COMPONENTS_H
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Define the Device Header File: 
 | 
			
		||||
 */
 | 
			
		||||
#define CMSIS_device_header "ARMCM4_FP.h"
 | 
			
		||||
 | 
			
		||||
#define RTE_Compiler_IO_STDOUT          /* Compiler I/O: STDOUT */
 | 
			
		||||
          #define RTE_Compiler_IO_STDOUT_ITM      /* Compiler I/O: STDOUT ITM */
 | 
			
		||||
 | 
			
		||||
#endif /* RTE_COMPONENTS_H */
 | 
			
		||||
@ -0,0 +1,22 @@
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Auto generated Run-Time-Environment Component Configuration File
 | 
			
		||||
 *      *** Do not modify ! ***
 | 
			
		||||
 *
 | 
			
		||||
 * Project: 'arm_nnexamples_cifar10' 
 | 
			
		||||
 * Target:  'ARMCM7_SP' 
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#ifndef RTE_COMPONENTS_H
 | 
			
		||||
#define RTE_COMPONENTS_H
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Define the Device Header File: 
 | 
			
		||||
 */
 | 
			
		||||
#define CMSIS_device_header "ARMCM7_SP.h"
 | 
			
		||||
 | 
			
		||||
#define RTE_Compiler_IO_STDOUT          /* Compiler I/O: STDOUT */
 | 
			
		||||
          #define RTE_Compiler_IO_STDOUT_ITM      /* Compiler I/O: STDOUT ITM */
 | 
			
		||||
 | 
			
		||||
#endif /* RTE_COMPONENTS_H */
 | 
			
		||||
@ -0,0 +1,196 @@
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
* Copyright (C) 2010-2018 Arm Limited. All rights reserved.
 | 
			
		||||
*
 | 
			
		||||
*
 | 
			
		||||
* Project:       CMSIS NN Library
 | 
			
		||||
* Title:         arm_nnexamples_cifar10.cpp
 | 
			
		||||
*
 | 
			
		||||
* Description:   Convolutional Neural Network Example
 | 
			
		||||
*
 | 
			
		||||
* Target Processor: Cortex-M4/Cortex-M7
 | 
			
		||||
*
 | 
			
		||||
* Redistribution and use in source and binary forms, with or without
 | 
			
		||||
* modification, are permitted provided that the following conditions
 | 
			
		||||
* are met:
 | 
			
		||||
*   - Redistributions of source code must retain the above copyright
 | 
			
		||||
*     notice, this list of conditions and the following disclaimer.
 | 
			
		||||
*   - Redistributions in binary form must reproduce the above copyright
 | 
			
		||||
*     notice, this list of conditions and the following disclaimer in
 | 
			
		||||
*     the documentation and/or other materials provided with the
 | 
			
		||||
*     distribution.
 | 
			
		||||
*   - Neither the name of Arm LIMITED nor the names of its contributors
 | 
			
		||||
*     may be used to endorse or promote products derived from this
 | 
			
		||||
*     software without specific prior written permission.
 | 
			
		||||
*
 | 
			
		||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
			
		||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
			
		||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 | 
			
		||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 | 
			
		||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 | 
			
		||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 | 
			
		||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 | 
			
		||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | 
			
		||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | 
			
		||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 | 
			
		||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | 
			
		||||
* POSSIBILITY OF SUCH DAMAGE.
 | 
			
		||||
* -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @ingroup groupExamples
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @defgroup CNNExample Convolutional Neural Network Example
 | 
			
		||||
 *
 | 
			
		||||
 * \par Description:
 | 
			
		||||
 * \par
 | 
			
		||||
 * Demonstrates a convolutional neural network (CNN) example with the use of convolution,
 | 
			
		||||
 * ReLU activation, pooling and fully-connected functions.
 | 
			
		||||
 *
 | 
			
		||||
 * \par Model definition:
 | 
			
		||||
 * \par
 | 
			
		||||
 * The CNN used in this example is based on CIFAR-10 example from Caffe [1]. 
 | 
			
		||||
 * The neural network consists
 | 
			
		||||
 * of 3 convolution layers interspersed by ReLU activation and max pooling layers, followed by a 
 | 
			
		||||
 * fully-connected layer at the end. The input to the network is a 32x32 pixel color image, which will 
 | 
			
		||||
 * be classified into one of the 10 output classes. 
 | 
			
		||||
 * This example model implementation needs 32.3 KB to store weights, 40 KB for activations and 
 | 
			
		||||
 * 3.1 KB for storing the \c im2col data.
 | 
			
		||||
 *
 | 
			
		||||
 * \image html CIFAR10_CNN.gif "Neural Network model definition"
 | 
			
		||||
 *
 | 
			
		||||
 * \par Variables Description:
 | 
			
		||||
 * \par
 | 
			
		||||
 * \li \c conv1_wt, \c conv2_wt, \c conv3_wt are convolution layer weight matrices
 | 
			
		||||
 * \li \c conv1_bias, \c conv2_bias, \c conv3_bias are convolution layer bias arrays
 | 
			
		||||
 * \li \c ip1_wt, ip1_bias point to fully-connected layer weights and biases
 | 
			
		||||
 * \li \c input_data points to the input image data
 | 
			
		||||
 * \li \c output_data points to the classification output
 | 
			
		||||
 * \li \c col_buffer is a buffer to store the \c im2col output
 | 
			
		||||
 * \li \c scratch_buffer is used to store the activation data (intermediate layer outputs)
 | 
			
		||||
 *
 | 
			
		||||
 * \par CMSIS DSP Software Library Functions Used:
 | 
			
		||||
 * \par
 | 
			
		||||
 * - arm_convolve_HWC_q7_RGB()
 | 
			
		||||
 * - arm_convolve_HWC_q7_fast()
 | 
			
		||||
 * - arm_relu_q7()
 | 
			
		||||
 * - arm_maxpool_q7_HWC()
 | 
			
		||||
 * - arm_avepool_q7_HWC()
 | 
			
		||||
 * - arm_fully_connected_q7_opt()
 | 
			
		||||
 * - arm_fully_connected_q7()
 | 
			
		||||
 *
 | 
			
		||||
 * <b> Refer  </b>
 | 
			
		||||
 * \link arm_nnexamples_cifar10.cpp \endlink
 | 
			
		||||
 *
 | 
			
		||||
 * \par [1] https://github.com/BVLC/caffe
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <stdint.h>
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_nnexamples_cifar10_parameter.h"
 | 
			
		||||
#include "arm_nnexamples_cifar10_weights.h"
 | 
			
		||||
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
#include "arm_nnexamples_cifar10_inputs.h"
 | 
			
		||||
 | 
			
		||||
#ifdef _RTE_
 | 
			
		||||
#include "RTE_Components.h"
 | 
			
		||||
#ifdef RTE_Compiler_EventRecorder
 | 
			
		||||
#include "EventRecorder.h"
 | 
			
		||||
#endif
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
// include the input and weights
 | 
			
		||||
 | 
			
		||||
static q7_t conv1_wt[CONV1_IM_CH * CONV1_KER_DIM * CONV1_KER_DIM * CONV1_OUT_CH] = CONV1_WT;
 | 
			
		||||
static q7_t conv1_bias[CONV1_OUT_CH] = CONV1_BIAS;
 | 
			
		||||
 | 
			
		||||
static q7_t conv2_wt[CONV2_IM_CH * CONV2_KER_DIM * CONV2_KER_DIM * CONV2_OUT_CH] = CONV2_WT;
 | 
			
		||||
static q7_t conv2_bias[CONV2_OUT_CH] = CONV2_BIAS;
 | 
			
		||||
 | 
			
		||||
static q7_t conv3_wt[CONV3_IM_CH * CONV3_KER_DIM * CONV3_KER_DIM * CONV3_OUT_CH] = CONV3_WT;
 | 
			
		||||
static q7_t conv3_bias[CONV3_OUT_CH] = CONV3_BIAS;
 | 
			
		||||
 | 
			
		||||
static q7_t ip1_wt[IP1_DIM * IP1_OUT] = IP1_WT;
 | 
			
		||||
static q7_t ip1_bias[IP1_OUT] = IP1_BIAS;
 | 
			
		||||
 | 
			
		||||
/* Here the image_data should be the raw uint8 type RGB image in [RGB, RGB, RGB ... RGB] format */
 | 
			
		||||
uint8_t   image_data[CONV1_IM_CH * CONV1_IM_DIM * CONV1_IM_DIM] = IMG_DATA;
 | 
			
		||||
q7_t      output_data[IP1_OUT];
 | 
			
		||||
 | 
			
		||||
//vector buffer: max(im2col buffer,average pool buffer, fully connected buffer)
 | 
			
		||||
q7_t      col_buffer[2 * 5 * 5 * 32 * 2];
 | 
			
		||||
 | 
			
		||||
q7_t      scratch_buffer[32 * 32 * 10 * 4];
 | 
			
		||||
 | 
			
		||||
int main()
 | 
			
		||||
{
 | 
			
		||||
  #ifdef RTE_Compiler_EventRecorder
 | 
			
		||||
  EventRecorderInitialize (EventRecordAll, 1);  // initialize and start Event Recorder
 | 
			
		||||
  #endif
 | 
			
		||||
 | 
			
		||||
  printf("start execution\n");
 | 
			
		||||
  /* start the execution */
 | 
			
		||||
 | 
			
		||||
  q7_t     *img_buffer1 = scratch_buffer;
 | 
			
		||||
  q7_t     *img_buffer2 = img_buffer1 + 32 * 32 * 32;
 | 
			
		||||
 | 
			
		||||
  /* input pre-processing */
 | 
			
		||||
  int mean_data[3] = INPUT_MEAN_SHIFT;
 | 
			
		||||
  unsigned int scale_data[3] = INPUT_RIGHT_SHIFT;
 | 
			
		||||
  for (int i=0;i<32*32*3; i+=3) {
 | 
			
		||||
    img_buffer2[i] =   (q7_t)__SSAT( ((((int)image_data[i]   - mean_data[0])<<7) + (0x1<<(scale_data[0]-1)))
 | 
			
		||||
                             >> scale_data[0], 8);
 | 
			
		||||
    img_buffer2[i+1] = (q7_t)__SSAT( ((((int)image_data[i+1] - mean_data[1])<<7) + (0x1<<(scale_data[1]-1)))
 | 
			
		||||
                             >> scale_data[1], 8);
 | 
			
		||||
    img_buffer2[i+2] = (q7_t)__SSAT( ((((int)image_data[i+2] - mean_data[2])<<7) + (0x1<<(scale_data[2]-1)))
 | 
			
		||||
                             >> scale_data[2], 8);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  // conv1 img_buffer2 -> img_buffer1
 | 
			
		||||
  arm_convolve_HWC_q7_RGB(img_buffer2, CONV1_IM_DIM, CONV1_IM_CH, conv1_wt, CONV1_OUT_CH, CONV1_KER_DIM, CONV1_PADDING,
 | 
			
		||||
                          CONV1_STRIDE, conv1_bias, CONV1_BIAS_LSHIFT, CONV1_OUT_RSHIFT, img_buffer1, CONV1_OUT_DIM,
 | 
			
		||||
                          (q15_t *) col_buffer, NULL);
 | 
			
		||||
 | 
			
		||||
  arm_relu_q7(img_buffer1, CONV1_OUT_DIM * CONV1_OUT_DIM * CONV1_OUT_CH);
 | 
			
		||||
 | 
			
		||||
  // pool1 img_buffer1 -> img_buffer2
 | 
			
		||||
  arm_maxpool_q7_HWC(img_buffer1, CONV1_OUT_DIM, CONV1_OUT_CH, POOL1_KER_DIM,
 | 
			
		||||
                     POOL1_PADDING, POOL1_STRIDE, POOL1_OUT_DIM, NULL, img_buffer2);
 | 
			
		||||
 | 
			
		||||
  // conv2 img_buffer2 -> img_buffer1
 | 
			
		||||
  arm_convolve_HWC_q7_fast(img_buffer2, CONV2_IM_DIM, CONV2_IM_CH, conv2_wt, CONV2_OUT_CH, CONV2_KER_DIM,
 | 
			
		||||
                           CONV2_PADDING, CONV2_STRIDE, conv2_bias, CONV2_BIAS_LSHIFT, CONV2_OUT_RSHIFT, img_buffer1,
 | 
			
		||||
                           CONV2_OUT_DIM, (q15_t *) col_buffer, NULL);
 | 
			
		||||
 | 
			
		||||
  arm_relu_q7(img_buffer1, CONV2_OUT_DIM * CONV2_OUT_DIM * CONV2_OUT_CH);
 | 
			
		||||
 | 
			
		||||
  // pool2 img_buffer1 -> img_buffer2
 | 
			
		||||
  arm_maxpool_q7_HWC(img_buffer1, CONV2_OUT_DIM, CONV2_OUT_CH, POOL2_KER_DIM,
 | 
			
		||||
                     POOL2_PADDING, POOL2_STRIDE, POOL2_OUT_DIM, col_buffer, img_buffer2);
 | 
			
		||||
 | 
			
		||||
// conv3 img_buffer2 -> img_buffer1
 | 
			
		||||
  arm_convolve_HWC_q7_fast(img_buffer2, CONV3_IM_DIM, CONV3_IM_CH, conv3_wt, CONV3_OUT_CH, CONV3_KER_DIM,
 | 
			
		||||
                           CONV3_PADDING, CONV3_STRIDE, conv3_bias, CONV3_BIAS_LSHIFT, CONV3_OUT_RSHIFT, img_buffer1,
 | 
			
		||||
                           CONV3_OUT_DIM, (q15_t *) col_buffer, NULL);
 | 
			
		||||
 | 
			
		||||
  arm_relu_q7(img_buffer1, CONV3_OUT_DIM * CONV3_OUT_DIM * CONV3_OUT_CH);
 | 
			
		||||
 | 
			
		||||
  // pool3 img_buffer-> img_buffer2
 | 
			
		||||
  arm_maxpool_q7_HWC(img_buffer1, CONV3_OUT_DIM, CONV3_OUT_CH, POOL3_KER_DIM,
 | 
			
		||||
                     POOL3_PADDING, POOL3_STRIDE, POOL3_OUT_DIM, col_buffer, img_buffer2);
 | 
			
		||||
 | 
			
		||||
  arm_fully_connected_q7_opt(img_buffer2, ip1_wt, IP1_DIM, IP1_OUT, IP1_BIAS_LSHIFT, IP1_OUT_RSHIFT, ip1_bias,
 | 
			
		||||
                             output_data, (q15_t *) img_buffer1);
 | 
			
		||||
 | 
			
		||||
  arm_softmax_q7(output_data, 10, output_data);
 | 
			
		||||
 | 
			
		||||
  for (int i = 0; i < 10; i++)
 | 
			
		||||
  {
 | 
			
		||||
      printf("%d: %d\n", i, output_data[i]);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  return 0;
 | 
			
		||||
}
 | 
			
		||||
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							@ -0,0 +1,43 @@
 | 
			
		||||
#define CONV1_IM_DIM 32
 | 
			
		||||
#define CONV1_IM_CH 3
 | 
			
		||||
#define CONV1_KER_DIM 5
 | 
			
		||||
#define CONV1_PADDING 2
 | 
			
		||||
#define CONV1_STRIDE 1
 | 
			
		||||
#define CONV1_OUT_CH 32
 | 
			
		||||
#define CONV1_OUT_DIM 32
 | 
			
		||||
 | 
			
		||||
#define POOL1_KER_DIM 3
 | 
			
		||||
#define POOL1_STRIDE 2
 | 
			
		||||
#define POOL1_PADDING 0
 | 
			
		||||
#define POOL1_OUT_DIM 16
 | 
			
		||||
 | 
			
		||||
#define CONV2_IM_DIM 16
 | 
			
		||||
#define CONV2_IM_CH 32
 | 
			
		||||
#define CONV2_KER_DIM 5
 | 
			
		||||
#define CONV2_PADDING 2
 | 
			
		||||
#define CONV2_STRIDE 1
 | 
			
		||||
#define CONV2_OUT_CH 16
 | 
			
		||||
#define CONV2_OUT_DIM 16
 | 
			
		||||
 | 
			
		||||
#define POOL2_KER_DIM 3
 | 
			
		||||
#define POOL2_STRIDE 2
 | 
			
		||||
#define POOL2_PADDING 0
 | 
			
		||||
#define POOL2_OUT_DIM 8
 | 
			
		||||
 | 
			
		||||
#define CONV3_IM_DIM 8
 | 
			
		||||
#define CONV3_IM_CH 16
 | 
			
		||||
#define CONV3_KER_DIM 5
 | 
			
		||||
#define CONV3_PADDING 2
 | 
			
		||||
#define CONV3_STRIDE 1
 | 
			
		||||
#define CONV3_OUT_CH 32
 | 
			
		||||
#define CONV3_OUT_DIM 8
 | 
			
		||||
 | 
			
		||||
#define POOL3_KER_DIM 3
 | 
			
		||||
#define POOL3_STRIDE 2
 | 
			
		||||
#define POOL3_PADDING 0
 | 
			
		||||
#define POOL3_OUT_DIM 4
 | 
			
		||||
 | 
			
		||||
#define IP1_DIM 4*4*32
 | 
			
		||||
#define IP1_IM_DIM 4
 | 
			
		||||
#define IP1_IM_CH 32
 | 
			
		||||
#define IP1_OUT 10
 | 
			
		||||
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							@ -0,0 +1,4 @@
 | 
			
		||||
CMSIS NN Lib example arm_nnexample_cifar10 for
 | 
			
		||||
  Cortex-M4 and Cortex-M7.
 | 
			
		||||
 | 
			
		||||
The example is configured for uVision Simulator.
 | 
			
		||||
@ -0,0 +1,44 @@
 | 
			
		||||
/*------------------------------------------------------------------------------
 | 
			
		||||
 * MDK - Component ::Event Recorder
 | 
			
		||||
 * Copyright (c) 2016 ARM Germany GmbH. All rights reserved.
 | 
			
		||||
 *------------------------------------------------------------------------------
 | 
			
		||||
 * Name:    EventRecorderConf.h
 | 
			
		||||
 * Purpose: Event Recorder Configuration
 | 
			
		||||
 * Rev.:    V1.0.0
 | 
			
		||||
 *----------------------------------------------------------------------------*/
 | 
			
		||||
 | 
			
		||||
//-------- <<< Use Configuration Wizard in Context Menu >>> --------------------
 | 
			
		||||
 | 
			
		||||
// <h>Event Recorder
 | 
			
		||||
 | 
			
		||||
//   <o>Number of Records
 | 
			
		||||
//     <8=>8 <16=>16 <32=>32 <64=>64 <128=>128 <256=>256 <512=>512 <1024=>1024
 | 
			
		||||
//     <2048=>2048 <4096=>4096 <8192=>8192 <16384=>16384 <32768=>32768
 | 
			
		||||
//     <65536=>65536 <131072=>131072 <262144=>262144 <524288=>524288
 | 
			
		||||
//     <1048576=>1048576
 | 
			
		||||
//   <i>Configure size of Event Record Buffer (each record is 16 bytes)
 | 
			
		||||
//   <i>Must be 2^n (min=8, max=1048576)
 | 
			
		||||
#define EVENT_RECORD_COUNT      64U
 | 
			
		||||
 | 
			
		||||
//   <o>Time Stamp Source
 | 
			
		||||
//      <0=> DWT Cycle Counter  <1=> SysTick
 | 
			
		||||
//      <3=> User Timer (Normal Reset)  <4=> User Timer (Power-On Reset)
 | 
			
		||||
//   <i>Selects source for 32-bit time stamp
 | 
			
		||||
#define EVENT_TIMESTAMP_SOURCE  1
 | 
			
		||||
 | 
			
		||||
//   <h>SysTick Configuration
 | 
			
		||||
//   <i>Configure values when Time Stamp Source is set to SysTick
 | 
			
		||||
 | 
			
		||||
//     <o>SysTick Input Clock Frequency [Hz] <1-1000000000>
 | 
			
		||||
//     <i>Defines SysTick input clock (typical identical with processor clock)
 | 
			
		||||
#define SYSTICK_CLOCK           100000000U
 | 
			
		||||
 | 
			
		||||
//     <o>SysTick Interrupt Period [us] <1-1000000000>
 | 
			
		||||
//     <i>Defines time period of the SysTick timer interrupt
 | 
			
		||||
#define SYSTICK_PERIOD_US       1000U
 | 
			
		||||
 | 
			
		||||
//   </h>
 | 
			
		||||
 | 
			
		||||
// </h>
 | 
			
		||||
 | 
			
		||||
//------------- <<< end of configuration section >>> ---------------------------
 | 
			
		||||
@ -0,0 +1,24 @@
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Auto generated Run-Time-Environment Component Configuration File
 | 
			
		||||
 *      *** Do not modify ! ***
 | 
			
		||||
 *
 | 
			
		||||
 * Project: 'arm_nnexamples_gru' 
 | 
			
		||||
 * Target:  'ARMCM0' 
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#ifndef RTE_COMPONENTS_H
 | 
			
		||||
#define RTE_COMPONENTS_H
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Define the Device Header File: 
 | 
			
		||||
 */
 | 
			
		||||
#define CMSIS_device_header "ARMCM0.h"
 | 
			
		||||
 | 
			
		||||
#define RTE_Compiler_EventRecorder
 | 
			
		||||
          #define RTE_Compiler_EventRecorder_DAP
 | 
			
		||||
#define RTE_Compiler_IO_STDOUT          /* Compiler I/O: STDOUT */
 | 
			
		||||
          #define RTE_Compiler_IO_STDOUT_EVR      /* Compiler I/O: STDOUT EVR */
 | 
			
		||||
 | 
			
		||||
#endif /* RTE_COMPONENTS_H */
 | 
			
		||||
@ -0,0 +1,22 @@
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Auto generated Run-Time-Environment Component Configuration File
 | 
			
		||||
 *      *** Do not modify ! ***
 | 
			
		||||
 *
 | 
			
		||||
 * Project: 'arm_nnexamples_gru' 
 | 
			
		||||
 * Target:  'ARMCM3' 
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#ifndef RTE_COMPONENTS_H
 | 
			
		||||
#define RTE_COMPONENTS_H
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Define the Device Header File: 
 | 
			
		||||
 */
 | 
			
		||||
#define CMSIS_device_header "ARMCM3.h"
 | 
			
		||||
 | 
			
		||||
#define RTE_Compiler_IO_STDOUT          /* Compiler I/O: STDOUT */
 | 
			
		||||
          #define RTE_Compiler_IO_STDOUT_ITM      /* Compiler I/O: STDOUT ITM */
 | 
			
		||||
 | 
			
		||||
#endif /* RTE_COMPONENTS_H */
 | 
			
		||||
@ -0,0 +1,22 @@
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Auto generated Run-Time-Environment Component Configuration File
 | 
			
		||||
 *      *** Do not modify ! ***
 | 
			
		||||
 *
 | 
			
		||||
 * Project: 'arm_nnexamples_gru' 
 | 
			
		||||
 * Target:  'ARMCM4_FP' 
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#ifndef RTE_COMPONENTS_H
 | 
			
		||||
#define RTE_COMPONENTS_H
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Define the Device Header File: 
 | 
			
		||||
 */
 | 
			
		||||
#define CMSIS_device_header "ARMCM4_FP.h"
 | 
			
		||||
 | 
			
		||||
#define RTE_Compiler_IO_STDOUT          /* Compiler I/O: STDOUT */
 | 
			
		||||
          #define RTE_Compiler_IO_STDOUT_ITM      /* Compiler I/O: STDOUT ITM */
 | 
			
		||||
 | 
			
		||||
#endif /* RTE_COMPONENTS_H */
 | 
			
		||||
@ -0,0 +1,22 @@
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Auto generated Run-Time-Environment Component Configuration File
 | 
			
		||||
 *      *** Do not modify ! ***
 | 
			
		||||
 *
 | 
			
		||||
 * Project: 'arm_nnexamples_gru' 
 | 
			
		||||
 * Target:  'ARMCM7_SP' 
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#ifndef RTE_COMPONENTS_H
 | 
			
		||||
#define RTE_COMPONENTS_H
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Define the Device Header File: 
 | 
			
		||||
 */
 | 
			
		||||
#define CMSIS_device_header "ARMCM7_SP.h"
 | 
			
		||||
 | 
			
		||||
#define RTE_Compiler_IO_STDOUT          /* Compiler I/O: STDOUT */
 | 
			
		||||
          #define RTE_Compiler_IO_STDOUT_ITM      /* Compiler I/O: STDOUT ITM */
 | 
			
		||||
 | 
			
		||||
#endif /* RTE_COMPONENTS_H */
 | 
			
		||||
@ -0,0 +1,221 @@
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
* Copyright (C) 2010-2018 Arm Limited. All rights reserved.
 | 
			
		||||
*
 | 
			
		||||
*
 | 
			
		||||
* Project:       CMSIS NN Library
 | 
			
		||||
* Title:         arm_nnexamples_gru.cpp
 | 
			
		||||
*
 | 
			
		||||
* Description:   Gated Recurrent Unit Example
 | 
			
		||||
*
 | 
			
		||||
* Target Processor: Cortex-M4/Cortex-M7
 | 
			
		||||
*
 | 
			
		||||
* Redistribution and use in source and binary forms, with or without
 | 
			
		||||
* modification, are permitted provided that the following conditions
 | 
			
		||||
* are met:
 | 
			
		||||
*   - Redistributions of source code must retain the above copyright
 | 
			
		||||
*     notice, this list of conditions and the following disclaimer.
 | 
			
		||||
*   - Redistributions in binary form must reproduce the above copyright
 | 
			
		||||
*     notice, this list of conditions and the following disclaimer in
 | 
			
		||||
*     the documentation and/or other materials provided with the
 | 
			
		||||
*     distribution.
 | 
			
		||||
*   - Neither the name of Arm LIMITED nor the names of its contributors
 | 
			
		||||
*     may be used to endorse or promote products derived from this
 | 
			
		||||
*     software without specific prior written permission.
 | 
			
		||||
*
 | 
			
		||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
			
		||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
			
		||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 | 
			
		||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 | 
			
		||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 | 
			
		||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 | 
			
		||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 | 
			
		||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | 
			
		||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | 
			
		||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 | 
			
		||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | 
			
		||||
* POSSIBILITY OF SUCH DAMAGE.
 | 
			
		||||
* -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @ingroup groupExamples
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @defgroup GRUExample Gated Recurrent Unit Example
 | 
			
		||||
 *
 | 
			
		||||
 * \par Description:
 | 
			
		||||
 * \par
 | 
			
		||||
 * Demonstrates a gated recurrent unit (GRU) example with the use of fully-connected,
 | 
			
		||||
 * Tanh/Sigmoid activation functions.
 | 
			
		||||
 *
 | 
			
		||||
 * \par Model definition:
 | 
			
		||||
 * \par
 | 
			
		||||
 * GRU is a type of recurrent neural network (RNN). It contains two sigmoid gates and one hidden
 | 
			
		||||
 * state. 
 | 
			
		||||
 * \par
 | 
			
		||||
 * The computation can be summarized as:
 | 
			
		||||
 * <pre>z[t] = sigmoid( W_z ⋅ {h[t-1],x[t]} )
 | 
			
		||||
 * r[t] = sigmoid( W_r ⋅ {h[t-1],x[t]} ) 
 | 
			
		||||
 * n[t] = tanh( W_n ⋅ [r[t] × {h[t-1], x[t]} ) 
 | 
			
		||||
 * h[t] = (1 - z[t]) × h[t-1] + z[t] × n[t] </pre>
 | 
			
		||||
 * \image html GRU.gif "Gate Recurrent Unit Diagram"
 | 
			
		||||
 *
 | 
			
		||||
 * \par Variables Description:
 | 
			
		||||
 * \par
 | 
			
		||||
 * \li \c update_gate_weights, \c reset_gate_weights, \c hidden_state_weights are weights corresponding to update gate (W_z), reset gate (W_r), and hidden state (W_n).
 | 
			
		||||
 * \li \c update_gate_bias, \c reset_gate_bias, \c hidden_state_bias are layer bias arrays
 | 
			
		||||
 * \li \c test_input1, \c test_input2, \c test_history are the inputs and initial history
 | 
			
		||||
 *
 | 
			
		||||
 * \par
 | 
			
		||||
 * The buffer is allocated as:
 | 
			
		||||
 * \par
 | 
			
		||||
 * | reset | input | history | update | hidden_state |
 | 
			
		||||
 * \par
 | 
			
		||||
 * In this way, the concatination is automatically done since (reset, input) and (input, history)
 | 
			
		||||
 * are physically concatinated in memory.
 | 
			
		||||
 * \par
 | 
			
		||||
 *  The ordering of the weight matrix should be adjusted accordingly.
 | 
			
		||||
 *
 | 
			
		||||
  *
 | 
			
		||||
 * 
 | 
			
		||||
 * \par CMSIS DSP Software Library Functions Used:
 | 
			
		||||
 * \par
 | 
			
		||||
 * - arm_fully_connected_mat_q7_vec_q15_opt()
 | 
			
		||||
 * - arm_nn_activations_direct_q15()
 | 
			
		||||
 * - arm_mult_q15()
 | 
			
		||||
 * - arm_offset_q15()
 | 
			
		||||
 * - arm_sub_q15()
 | 
			
		||||
 * - arm_copy_q15()
 | 
			
		||||
 *
 | 
			
		||||
 * <b> Refer  </b>
 | 
			
		||||
 * \link arm_nnexamples_gru.cpp \endlink
 | 
			
		||||
 *
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
#include <math.h>
 | 
			
		||||
#include "arm_nnexamples_gru_test_data.h"
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
#ifdef _RTE_
 | 
			
		||||
#include "RTE_Components.h"
 | 
			
		||||
#ifdef RTE_Compiler_EventRecorder
 | 
			
		||||
#include "EventRecorder.h"
 | 
			
		||||
#endif
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#define DIM_HISTORY 32
 | 
			
		||||
#define DIM_INPUT 32
 | 
			
		||||
#define DIM_VEC 64
 | 
			
		||||
 | 
			
		||||
#define USE_X4
 | 
			
		||||
 | 
			
		||||
#ifndef USE_X4
 | 
			
		||||
static q7_t update_gate_weights[DIM_VEC * DIM_HISTORY] = UPDATE_GATE_WEIGHT_X2;
 | 
			
		||||
static q7_t reset_gate_weights[DIM_VEC * DIM_HISTORY] = RESET_GATE_WEIGHT_X2;
 | 
			
		||||
static q7_t hidden_state_weights[DIM_VEC * DIM_HISTORY] = HIDDEN_STATE_WEIGHT_X2;
 | 
			
		||||
#else
 | 
			
		||||
static q7_t update_gate_weights[DIM_VEC * DIM_HISTORY] = UPDATE_GATE_WEIGHT_X4;
 | 
			
		||||
static q7_t reset_gate_weights[DIM_VEC * DIM_HISTORY] = RESET_GATE_WEIGHT_X4;
 | 
			
		||||
static q7_t hidden_state_weights[DIM_VEC * DIM_HISTORY] = HIDDEN_STATE_WEIGHT_X4;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
static q7_t update_gate_bias[DIM_HISTORY] = UPDATE_GATE_BIAS;
 | 
			
		||||
static q7_t reset_gate_bias[DIM_HISTORY] = RESET_GATE_BIAS;
 | 
			
		||||
static q7_t hidden_state_bias[DIM_HISTORY] = HIDDEN_STATE_BIAS;
 | 
			
		||||
 | 
			
		||||
static q15_t test_input1[DIM_INPUT] = INPUT_DATA1;
 | 
			
		||||
static q15_t test_input2[DIM_INPUT] = INPUT_DATA2;
 | 
			
		||||
static q15_t test_history[DIM_HISTORY] = HISTORY_DATA;
 | 
			
		||||
 | 
			
		||||
q15_t     scratch_buffer[DIM_HISTORY * 4 + DIM_INPUT];
 | 
			
		||||
 | 
			
		||||
void gru_example(q15_t * scratch_input, uint16_t input_size, uint16_t history_size,
 | 
			
		||||
                 q7_t * weights_update, q7_t * weights_reset, q7_t * weights_hidden_state,
 | 
			
		||||
                 q7_t * bias_update, q7_t * bias_reset, q7_t * bias_hidden_state)
 | 
			
		||||
{
 | 
			
		||||
  q15_t    *reset = scratch_input;
 | 
			
		||||
  q15_t    *input = scratch_input + history_size;
 | 
			
		||||
  q15_t    *history = scratch_input + history_size + input_size;
 | 
			
		||||
  q15_t    *update = scratch_input + 2 * history_size + input_size;
 | 
			
		||||
  q15_t    *hidden_state = scratch_input + 3 * history_size + input_size;
 | 
			
		||||
 | 
			
		||||
  // reset gate calculation
 | 
			
		||||
  // the range of the output can be adjusted with bias_shift and output_shift
 | 
			
		||||
#ifndef USE_X4
 | 
			
		||||
  arm_fully_connected_mat_q7_vec_q15(input, weights_reset, input_size + history_size, history_size, 0, 15, bias_reset,
 | 
			
		||||
                                     reset, NULL);
 | 
			
		||||
#else
 | 
			
		||||
  arm_fully_connected_mat_q7_vec_q15_opt(input, weights_reset, input_size + history_size, history_size, 0, 15,
 | 
			
		||||
                                         bias_reset, reset, NULL);
 | 
			
		||||
#endif
 | 
			
		||||
  // sigmoid function, the size of the integer bit-width should be consistent with out_shift
 | 
			
		||||
  arm_nn_activations_direct_q15(reset, history_size, 0, ARM_SIGMOID);
 | 
			
		||||
  arm_mult_q15(history, reset, reset, history_size);
 | 
			
		||||
 | 
			
		||||
  // update gate calculation
 | 
			
		||||
  // the range of the output can be adjusted with bias_shift and output_shift
 | 
			
		||||
#ifndef USE_X4
 | 
			
		||||
  arm_fully_connected_mat_q7_vec_q15(input, weights_update, input_size + history_size, history_size, 0, 15,
 | 
			
		||||
                                     bias_update, update, NULL);
 | 
			
		||||
#else
 | 
			
		||||
  arm_fully_connected_mat_q7_vec_q15_opt(input, weights_update, input_size + history_size, history_size, 0, 15,
 | 
			
		||||
                                         bias_update, update, NULL);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
  // sigmoid function, the size of the integer bit-width should be consistent with out_shift
 | 
			
		||||
  arm_nn_activations_direct_q15(update, history_size, 0, ARM_SIGMOID);
 | 
			
		||||
 | 
			
		||||
  // hidden state calculation
 | 
			
		||||
#ifndef USE_X4
 | 
			
		||||
  arm_fully_connected_mat_q7_vec_q15(reset, weights_hidden_state, input_size + history_size, history_size, 0, 15,
 | 
			
		||||
                                     bias_hidden_state, hidden_state, NULL);
 | 
			
		||||
#else
 | 
			
		||||
  arm_fully_connected_mat_q7_vec_q15_opt(reset, weights_hidden_state, input_size + history_size, history_size, 0, 15,
 | 
			
		||||
                                         bias_hidden_state, hidden_state, NULL);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
  // tanh function, the size of the integer bit-width should be consistent with out_shift
 | 
			
		||||
  arm_nn_activations_direct_q15(hidden_state, history_size, 0, ARM_TANH);
 | 
			
		||||
  arm_mult_q15(update, hidden_state, hidden_state, history_size);
 | 
			
		||||
 | 
			
		||||
  // we calculate z - 1 here
 | 
			
		||||
  // so final addition becomes substraction
 | 
			
		||||
  arm_offset_q15(update, 0x8000, update, history_size);
 | 
			
		||||
  // multiply history
 | 
			
		||||
  arm_mult_q15(history, update, update, history_size);
 | 
			
		||||
  // calculate history_out
 | 
			
		||||
  arm_sub_q15(hidden_state, update, history, history_size);
 | 
			
		||||
 | 
			
		||||
  return;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int main()
 | 
			
		||||
{
 | 
			
		||||
  #ifdef RTE_Compiler_EventRecorder
 | 
			
		||||
  EventRecorderInitialize (EventRecordAll, 1);  // initialize and start Event Recorder
 | 
			
		||||
  #endif
 | 
			
		||||
 | 
			
		||||
  printf("Start GRU execution\n");
 | 
			
		||||
  int       input_size = DIM_INPUT;
 | 
			
		||||
  int       history_size = DIM_HISTORY;
 | 
			
		||||
 | 
			
		||||
  // copy over the input data 
 | 
			
		||||
  arm_copy_q15(test_input1, scratch_buffer + history_size, input_size);
 | 
			
		||||
  arm_copy_q15(test_history, scratch_buffer + history_size + input_size, history_size);
 | 
			
		||||
 | 
			
		||||
  gru_example(scratch_buffer, input_size, history_size,
 | 
			
		||||
              update_gate_weights, reset_gate_weights, hidden_state_weights,
 | 
			
		||||
              update_gate_bias, reset_gate_bias, hidden_state_bias);
 | 
			
		||||
  printf("Complete first iteration on GRU\n");
 | 
			
		||||
 | 
			
		||||
  arm_copy_q15(test_input2, scratch_buffer + history_size, input_size);
 | 
			
		||||
  gru_example(scratch_buffer, input_size, history_size,
 | 
			
		||||
              update_gate_weights, reset_gate_weights, hidden_state_weights,
 | 
			
		||||
              update_gate_bias, reset_gate_bias, hidden_state_bias);
 | 
			
		||||
  printf("Complete second iteration on GRU\n");
 | 
			
		||||
 | 
			
		||||
  return 0;
 | 
			
		||||
}
 | 
			
		||||
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							@ -0,0 +1,4 @@
 | 
			
		||||
CMSIS NN Lib example arm_nnexample_gru0 for
 | 
			
		||||
  Cortex-M4 and Cortex-M7.
 | 
			
		||||
 | 
			
		||||
The example is configured for uVision Simulator.
 | 
			
		||||
							
								
								
									
										59
									
								
								Drivers/CMSIS/NN/Include/arm_nn_tables.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										59
									
								
								Drivers/CMSIS/NN/Include/arm_nn_tables.h
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,59 @@
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_nn_tables.h
 | 
			
		||||
 * Description:  Extern declaration for NN tables
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        17. January 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#ifndef _ARM_NN_TABLES_H
 | 
			
		||||
#define _ARM_NN_TABLES_H
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
* @brief tables for various activation functions
 | 
			
		||||
*
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
extern const q15_t sigmoidTable_q15[256];
 | 
			
		||||
extern const q7_t sigmoidTable_q7[256];
 | 
			
		||||
 | 
			
		||||
extern const q7_t tanhTable_q7[256];
 | 
			
		||||
extern const q15_t tanhTable_q15[256];
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * @brief 2-way tables for various activation functions
 | 
			
		||||
   *
 | 
			
		||||
   * 2-way table, H table for value larger than 1/4
 | 
			
		||||
   * L table for value smaller than 1/4, H table for remaining
 | 
			
		||||
   * We have this only for the q15_t version. It does not make
 | 
			
		||||
   * sense to have it for q7_t type
 | 
			
		||||
   */
 | 
			
		||||
extern const q15_t sigmoidHTable_q15[192];
 | 
			
		||||
extern const q15_t sigmoidLTable_q15[128];
 | 
			
		||||
 | 
			
		||||
extern const q15_t sigmoidLTable_q15[128];
 | 
			
		||||
extern const q15_t sigmoidHTable_q15[192];
 | 
			
		||||
 | 
			
		||||
#endif                          /*  ARM_NN_TABLES_H */
 | 
			
		||||
							
								
								
									
										1010
									
								
								Drivers/CMSIS/NN/Include/arm_nnfunctions.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1010
									
								
								Drivers/CMSIS/NN/Include/arm_nnfunctions.h
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										202
									
								
								Drivers/CMSIS/NN/Include/arm_nnsupportfunctions.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										202
									
								
								Drivers/CMSIS/NN/Include/arm_nnsupportfunctions.h
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,202 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_nnsupportfunctions.h
 | 
			
		||||
 * Description:  Public header file of support functions for CMSIS NN Library
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        13. July 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#ifndef _ARM_NNSUPPORTFUNCTIONS_H_
 | 
			
		||||
#define _ARM_NNSUPPORTFUNCTIONS_H_
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_common_tables.h"
 | 
			
		||||
//#include <cstring>
 | 
			
		||||
 | 
			
		||||
#ifdef __cplusplus
 | 
			
		||||
extern    "C"
 | 
			
		||||
{
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief Union for SIMD access of Q31/Q15/Q7 types
 | 
			
		||||
 */
 | 
			
		||||
union arm_nnword
 | 
			
		||||
{
 | 
			
		||||
    q31_t     word;
 | 
			
		||||
               /**< Q31 type */
 | 
			
		||||
    q15_t     half_words[2];
 | 
			
		||||
               /**< Q15 type */
 | 
			
		||||
    q7_t      bytes[4];
 | 
			
		||||
               /**< Q7 type */
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief Struct for specifying activation function types
 | 
			
		||||
 *
 | 
			
		||||
 */
 | 
			
		||||
typedef enum
 | 
			
		||||
{
 | 
			
		||||
    ARM_SIGMOID = 0,
 | 
			
		||||
                /**< Sigmoid activation function */
 | 
			
		||||
    ARM_TANH = 1,
 | 
			
		||||
             /**< Tanh activation function */
 | 
			
		||||
} arm_nn_activation_type;
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @defgroup nndata_convert Neural Network Data Conversion Functions
 | 
			
		||||
 *
 | 
			
		||||
 * Perform data type conversion in-between neural network operations
 | 
			
		||||
 *
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief Converts the elements of the Q7 vector to Q15 vector without left-shift 
 | 
			
		||||
 * @param[in]       *pSrc points to the Q7 input vector    
 | 
			
		||||
 * @param[out]      *pDst points to the Q15 output vector   
 | 
			
		||||
 * @param[in]       blockSize length of the input vector    
 | 
			
		||||
 * @return none.    
 | 
			
		||||
 *
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
void      arm_q7_to_q15_no_shift(const q7_t * pSrc, q15_t * pDst, uint32_t blockSize);
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief  Converts the elements of the Q7 vector to reordered Q15 vector without left-shift
 | 
			
		||||
 * @param[in]       *pSrc points to the Q7 input vector    
 | 
			
		||||
 * @param[out]      *pDst points to the Q15 output vector   
 | 
			
		||||
 * @param[in]       blockSize length of the input vector    
 | 
			
		||||
 * @return none.    
 | 
			
		||||
 *
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
void      arm_q7_to_q15_reordered_no_shift(const q7_t * pSrc, q15_t * pDst, uint32_t blockSize);
 | 
			
		||||
 | 
			
		||||
#if defined (ARM_MATH_DSP)
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief read and expand one Q7 word into two Q15 words
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
__STATIC_FORCEINLINE void *read_and_pad(void *source, q31_t * out1, q31_t * out2)
 | 
			
		||||
{
 | 
			
		||||
        q31_t     inA = *__SIMD32(source)++;
 | 
			
		||||
        q31_t     inAbuf1 = __SXTB16(__ROR(inA, 8));
 | 
			
		||||
        q31_t     inAbuf2 = __SXTB16(inA);
 | 
			
		||||
 | 
			
		||||
#ifndef ARM_MATH_BIG_ENDIAN
 | 
			
		||||
        *out2 = __PKHTB(inAbuf1, inAbuf2, 16);
 | 
			
		||||
        *out1 = __PKHBT(inAbuf2, inAbuf1, 16);
 | 
			
		||||
#else
 | 
			
		||||
        *out1 = __PKHTB(inAbuf1, inAbuf2, 16);
 | 
			
		||||
        *out2 = __PKHBT(inAbuf2, inAbuf1, 16);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
        return source;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief read and expand one Q7 word into two Q15 words with reordering
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
__STATIC_FORCEINLINE void *read_and_pad_reordered(void *source, q31_t * out1, q31_t * out2)
 | 
			
		||||
{
 | 
			
		||||
        q31_t     inA = *__SIMD32(source)++;
 | 
			
		||||
#ifndef ARM_MATH_BIG_ENDIAN
 | 
			
		||||
        *out2 = __SXTB16(__ROR(inA, 8));
 | 
			
		||||
        *out1 = __SXTB16(inA);
 | 
			
		||||
#else
 | 
			
		||||
        *out1 = __SXTB16(__ROR(inA, 8));
 | 
			
		||||
        *out2 = __SXTB16(inA);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
        return source;
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @defgroup NNBasicMath Basic Math Functions for Neural Network Computation
 | 
			
		||||
 *
 | 
			
		||||
 * Basic Math Functions for Neural Network Computation
 | 
			
		||||
 *
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief           Q7 vector multiplication with variable output shifts
 | 
			
		||||
 * @param[in]       *pSrcA        pointer to the first input vector
 | 
			
		||||
 * @param[in]       *pSrcB        pointer to the second input vector
 | 
			
		||||
 * @param[out]      *pDst         pointer to the output vector
 | 
			
		||||
 * @param[in]       out_shift     amount of right-shift for output
 | 
			
		||||
 * @param[in]       blockSize     number of samples in each vector
 | 
			
		||||
 * @return none.
 | 
			
		||||
 *
 | 
			
		||||
 * <b>Scaling and Overflow Behavior:</b>
 | 
			
		||||
 * \par
 | 
			
		||||
 * The function uses saturating arithmetic.
 | 
			
		||||
 * Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
void arm_nn_mult_q15(
 | 
			
		||||
  q15_t * pSrcA,
 | 
			
		||||
  q15_t * pSrcB,
 | 
			
		||||
  q15_t * pDst,
 | 
			
		||||
  const uint16_t out_shift,
 | 
			
		||||
  uint32_t blockSize);
 | 
			
		||||
  
 | 
			
		||||
/**
 | 
			
		||||
 * @brief           Q7 vector multiplication with variable output shifts
 | 
			
		||||
 * @param[in]       *pSrcA        pointer to the first input vector
 | 
			
		||||
 * @param[in]       *pSrcB        pointer to the second input vector
 | 
			
		||||
 * @param[out]      *pDst         pointer to the output vector
 | 
			
		||||
 * @param[in]       out_shift     amount of right-shift for output
 | 
			
		||||
 * @param[in]       blockSize     number of samples in each vector
 | 
			
		||||
 * @return none.
 | 
			
		||||
 *
 | 
			
		||||
 * <b>Scaling and Overflow Behavior:</b>
 | 
			
		||||
 * \par
 | 
			
		||||
 * The function uses saturating arithmetic.
 | 
			
		||||
 * Results outside of the allowable Q7 range [0x80 0x7F] will be saturated.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
void arm_nn_mult_q7(
 | 
			
		||||
  q7_t * pSrcA,
 | 
			
		||||
  q7_t * pSrcB,
 | 
			
		||||
  q7_t * pDst,
 | 
			
		||||
  const uint16_t out_shift,
 | 
			
		||||
  uint32_t blockSize);
 | 
			
		||||
 
 | 
			
		||||
/**
 | 
			
		||||
 * @brief defition to adding rouding offset
 | 
			
		||||
 */
 | 
			
		||||
#ifndef ARM_NN_TRUNCATE
 | 
			
		||||
    #define NN_ROUND(out_shift) ( 0x1 << (out_shift - 1) )
 | 
			
		||||
#else
 | 
			
		||||
    #define NN_ROUND(out_shift) 0
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef __cplusplus
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@ -0,0 +1,20 @@
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Auto generated Run-Time-Environment Component Configuration File
 | 
			
		||||
 *      *** Do not modify ! ***
 | 
			
		||||
 *
 | 
			
		||||
 * Project: 'arm_nnexamples_cifar10' 
 | 
			
		||||
 * Target:  'ARMCM0' 
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#ifndef RTE_COMPONENTS_H
 | 
			
		||||
#define RTE_COMPONENTS_H
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Define the Device Header File: 
 | 
			
		||||
 */
 | 
			
		||||
#define CMSIS_device_header "ARMCM0.h"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#endif /* RTE_COMPONENTS_H */
 | 
			
		||||
@ -0,0 +1,26 @@
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Auto generated Run-Time-Environment Component Configuration File
 | 
			
		||||
 *      *** Do not modify ! ***
 | 
			
		||||
 *
 | 
			
		||||
 * Project: 'arm_nnexamples_nn_test' 
 | 
			
		||||
 * Target:  'ARMCM3' 
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#ifndef RTE_COMPONENTS_H
 | 
			
		||||
#define RTE_COMPONENTS_H
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Define the Device Header File: 
 | 
			
		||||
 */
 | 
			
		||||
#define CMSIS_device_header "ARMCM3.h"
 | 
			
		||||
 | 
			
		||||
#define RTE_Compiler_IO_STDERR          /* Compiler I/O: STDERR */
 | 
			
		||||
          #define RTE_Compiler_IO_STDERR_ITM      /* Compiler I/O: STDERR ITM */
 | 
			
		||||
#define RTE_Compiler_IO_STDOUT          /* Compiler I/O: STDOUT */
 | 
			
		||||
          #define RTE_Compiler_IO_STDOUT_ITM      /* Compiler I/O: STDOUT ITM */
 | 
			
		||||
#define RTE_Compiler_IO_TTY             /* Compiler I/O: TTY */
 | 
			
		||||
          #define RTE_Compiler_IO_TTY_ITM         /* Compiler I/O: TTY ITM */
 | 
			
		||||
 | 
			
		||||
#endif /* RTE_COMPONENTS_H */
 | 
			
		||||
@ -0,0 +1,26 @@
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Auto generated Run-Time-Environment Component Configuration File
 | 
			
		||||
 *      *** Do not modify ! ***
 | 
			
		||||
 *
 | 
			
		||||
 * Project: 'arm_nnexamples_nn_test' 
 | 
			
		||||
 * Target:  'ARMCM4_FP' 
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#ifndef RTE_COMPONENTS_H
 | 
			
		||||
#define RTE_COMPONENTS_H
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Define the Device Header File: 
 | 
			
		||||
 */
 | 
			
		||||
#define CMSIS_device_header "ARMCM4_FP.h"
 | 
			
		||||
 | 
			
		||||
#define RTE_Compiler_IO_STDERR          /* Compiler I/O: STDERR */
 | 
			
		||||
          #define RTE_Compiler_IO_STDERR_ITM      /* Compiler I/O: STDERR ITM */
 | 
			
		||||
#define RTE_Compiler_IO_STDOUT          /* Compiler I/O: STDOUT */
 | 
			
		||||
          #define RTE_Compiler_IO_STDOUT_ITM      /* Compiler I/O: STDOUT ITM */
 | 
			
		||||
#define RTE_Compiler_IO_TTY             /* Compiler I/O: TTY */
 | 
			
		||||
          #define RTE_Compiler_IO_TTY_ITM         /* Compiler I/O: TTY ITM */
 | 
			
		||||
 | 
			
		||||
#endif /* RTE_COMPONENTS_H */
 | 
			
		||||
@ -0,0 +1,26 @@
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Auto generated Run-Time-Environment Component Configuration File
 | 
			
		||||
 *      *** Do not modify ! ***
 | 
			
		||||
 *
 | 
			
		||||
 * Project: 'arm_nnexamples_nn_test' 
 | 
			
		||||
 * Target:  'ARMCM7_SP' 
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#ifndef RTE_COMPONENTS_H
 | 
			
		||||
#define RTE_COMPONENTS_H
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Define the Device Header File: 
 | 
			
		||||
 */
 | 
			
		||||
#define CMSIS_device_header "ARMCM7_SP.h"
 | 
			
		||||
 | 
			
		||||
#define RTE_Compiler_IO_STDERR          /* Compiler I/O: STDERR */
 | 
			
		||||
          #define RTE_Compiler_IO_STDERR_ITM      /* Compiler I/O: STDERR ITM */
 | 
			
		||||
#define RTE_Compiler_IO_STDOUT          /* Compiler I/O: STDOUT */
 | 
			
		||||
          #define RTE_Compiler_IO_STDOUT_ITM      /* Compiler I/O: STDOUT ITM */
 | 
			
		||||
#define RTE_Compiler_IO_TTY             /* Compiler I/O: TTY */
 | 
			
		||||
          #define RTE_Compiler_IO_TTY_ITM         /* Compiler I/O: TTY ITM */
 | 
			
		||||
 | 
			
		||||
#endif /* RTE_COMPONENTS_H */
 | 
			
		||||
@ -0,0 +1,71 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "ref_functions.h"
 | 
			
		||||
 | 
			
		||||
void arm_convolve_HWC_q15_ref(const q15_t * Im_in,  // input image
 | 
			
		||||
                              const uint16_t dim_im_in, // input image dimention
 | 
			
		||||
                              const uint16_t ch_im_in,  // number of input image channels
 | 
			
		||||
                              const q15_t * wt, // kernel weights 
 | 
			
		||||
                              const uint16_t ch_im_out, // number of filters, i.e., output image channels
 | 
			
		||||
                              const uint16_t dim_kernel,    // filter kernel size
 | 
			
		||||
                              const uint16_t padding,   // padding sizes
 | 
			
		||||
                              const uint16_t stride,    // stride
 | 
			
		||||
                              const q15_t * bias,   // bias
 | 
			
		||||
                              const uint16_t bias_shift, const uint16_t out_shift, q15_t * Im_out,  // output image
 | 
			
		||||
                              const uint16_t dim_im_out,    // output image dimension
 | 
			
		||||
                              q15_t * bufferA,  //buffer space for input
 | 
			
		||||
                              q7_t * bufferB    //buffer space for output
 | 
			
		||||
    )
 | 
			
		||||
{
 | 
			
		||||
    int       i, j, k, l, m, n;
 | 
			
		||||
    int       conv_out;
 | 
			
		||||
    int       in_row, in_col;
 | 
			
		||||
 | 
			
		||||
    for (i = 0; i < ch_im_out; i++)
 | 
			
		||||
    {
 | 
			
		||||
        for (j = 0; j < dim_im_out; j++)
 | 
			
		||||
        {
 | 
			
		||||
            for (k = 0; k < dim_im_out; k++)
 | 
			
		||||
            {
 | 
			
		||||
#ifndef ARM_NN_TRUNCATE
 | 
			
		||||
                conv_out = (bias[i] << bias_shift) + (0x1 << (out_shift - 1));
 | 
			
		||||
#else
 | 
			
		||||
                conv_out = bias[i] << bias_shift;
 | 
			
		||||
#endif
 | 
			
		||||
                for (m = 0; m < dim_kernel; m++)
 | 
			
		||||
                {
 | 
			
		||||
                    for (n = 0; n < dim_kernel; n++)
 | 
			
		||||
                    {
 | 
			
		||||
                        in_row = stride * j + m - padding;
 | 
			
		||||
                        in_col = stride * k + n - padding;
 | 
			
		||||
                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
 | 
			
		||||
                        {
 | 
			
		||||
                            for (l = 0; l < ch_im_in; l++)
 | 
			
		||||
                            {
 | 
			
		||||
                                conv_out += Im_in[(in_row * dim_im_in + in_col) * ch_im_in + l] *
 | 
			
		||||
                                    wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + n) * ch_im_in + l];
 | 
			
		||||
                            }
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
                Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
@ -0,0 +1,83 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "ref_functions.h"
 | 
			
		||||
 | 
			
		||||
void
 | 
			
		||||
arm_convolve_HWC_q15_nonsquare_ref(const q15_t * Im_in,
 | 
			
		||||
                          const uint16_t dim_im_in_x,
 | 
			
		||||
                          const uint16_t dim_im_in_y,
 | 
			
		||||
                          const uint16_t ch_im_in,
 | 
			
		||||
                          const q15_t * wt,
 | 
			
		||||
                          const uint16_t ch_im_out,
 | 
			
		||||
                          const uint16_t dim_kernel_x,
 | 
			
		||||
                          const uint16_t dim_kernel_y,
 | 
			
		||||
                          const uint16_t padding_x,
 | 
			
		||||
                          const uint16_t padding_y,
 | 
			
		||||
                          const uint16_t stride_x,
 | 
			
		||||
                          const uint16_t stride_y,
 | 
			
		||||
                          const q15_t * bias,
 | 
			
		||||
                          const uint16_t bias_shift,
 | 
			
		||||
                          const uint16_t out_shift,
 | 
			
		||||
                          q15_t * Im_out,
 | 
			
		||||
                          const uint16_t dim_im_out_x,
 | 
			
		||||
                          const uint16_t dim_im_out_y, 
 | 
			
		||||
                          q15_t * bufferA, 
 | 
			
		||||
                          q7_t * bufferB)
 | 
			
		||||
 | 
			
		||||
{	
 | 
			
		||||
    uint16_t  i, j, k, l, m, n;
 | 
			
		||||
    int       conv_out;
 | 
			
		||||
    signed char in_row, in_col;
 | 
			
		||||
 | 
			
		||||
    for (i = 0; i < ch_im_out; i++)
 | 
			
		||||
    {
 | 
			
		||||
        for (j = 0; j < dim_im_out_y; j++)
 | 
			
		||||
        {
 | 
			
		||||
            for (k = 0; k < dim_im_out_x; k++)
 | 
			
		||||
            {
 | 
			
		||||
#ifndef ARM_NN_TRUNCATE
 | 
			
		||||
                conv_out = (bias[i] << bias_shift) + (0x1 << (out_shift - 1));
 | 
			
		||||
#else
 | 
			
		||||
                conv_out = bias[i] << bias_shift;
 | 
			
		||||
#endif
 | 
			
		||||
                for (m = 0; m < dim_kernel_y; m++)
 | 
			
		||||
                {
 | 
			
		||||
                    for (n = 0; n < dim_kernel_x; n++)
 | 
			
		||||
                    {
 | 
			
		||||
                        in_row = stride_y * j + m - padding_y;
 | 
			
		||||
                        in_col = stride_x * k + n - padding_x;
 | 
			
		||||
                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
 | 
			
		||||
                        {
 | 
			
		||||
                            for (l = 0; l < ch_im_in; l++)
 | 
			
		||||
                            {
 | 
			
		||||
                                conv_out +=
 | 
			
		||||
                                    Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in +
 | 
			
		||||
                                          l] * wt[i * ch_im_in * dim_kernel_x * dim_kernel_y + (m * dim_kernel_x +
 | 
			
		||||
                                                                                            n) * ch_im_in + l];
 | 
			
		||||
                            }
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
                Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}	
 | 
			
		||||
 | 
			
		||||
	
 | 
			
		||||
@ -0,0 +1,72 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "ref_functions.h"
 | 
			
		||||
 | 
			
		||||
void arm_convolve_HWC_q7_ref(const q7_t * Im_in,    // input image
 | 
			
		||||
                             const uint16_t dim_im_in,  // input image dimention
 | 
			
		||||
                             const uint16_t ch_im_in,   // number of input image channels
 | 
			
		||||
                             const q7_t * wt,   // kernel weights 
 | 
			
		||||
                             const uint16_t ch_im_out,  // number of filters, i.e., output image channels
 | 
			
		||||
                             const uint16_t dim_kernel, // filter kernel size
 | 
			
		||||
                             const uint16_t padding,    // padding sizes
 | 
			
		||||
                             const uint16_t stride, // stride
 | 
			
		||||
                             const q7_t * bias, // bias
 | 
			
		||||
                             const uint16_t bias_shift, const uint16_t out_shift, q7_t * Im_out,    // output image
 | 
			
		||||
                             const uint16_t dim_im_out, // output image dimension
 | 
			
		||||
                             q15_t * bufferA,   //buffer space for input
 | 
			
		||||
                             q7_t * bufferB //buffer space for output
 | 
			
		||||
    )
 | 
			
		||||
{
 | 
			
		||||
    int       i, j, k, l, m, n;
 | 
			
		||||
    int       conv_out;
 | 
			
		||||
    int       in_row, in_col;
 | 
			
		||||
 | 
			
		||||
    for (i = 0; i < ch_im_out; i++)
 | 
			
		||||
    {
 | 
			
		||||
        for (j = 0; j < dim_im_out; j++)
 | 
			
		||||
        {
 | 
			
		||||
            for (k = 0; k < dim_im_out; k++)
 | 
			
		||||
            {
 | 
			
		||||
#ifndef ARM_NN_TRUNCATE
 | 
			
		||||
                conv_out = ((q31_t) (bias[i]) << bias_shift) + (0x1 << (out_shift - 1));
 | 
			
		||||
#else
 | 
			
		||||
                conv_out = bias[i] << bias_shift;
 | 
			
		||||
#endif
 | 
			
		||||
                for (m = 0; m < dim_kernel; m++)
 | 
			
		||||
                {
 | 
			
		||||
                    for (n = 0; n < dim_kernel; n++)
 | 
			
		||||
                    {
 | 
			
		||||
                        // if-for implementation
 | 
			
		||||
                        in_row = stride * j + m - padding;
 | 
			
		||||
                        in_col = stride * k + n - padding;
 | 
			
		||||
                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
 | 
			
		||||
                        {
 | 
			
		||||
                            for (l = 0; l < ch_im_in; l++)
 | 
			
		||||
                            {
 | 
			
		||||
                                conv_out += Im_in[(in_row * dim_im_in + in_col) * ch_im_in + l] *
 | 
			
		||||
                                    wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + n) * ch_im_in + l];
 | 
			
		||||
                            }
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
                Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
@ -0,0 +1,78 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "ref_functions.h"
 | 
			
		||||
 | 
			
		||||
void arm_convolve_HWC_q7_ref_nonsquare(const q7_t * Im_in,  // input image
 | 
			
		||||
                                       const uint16_t dim_im_in_x,  // input image dimention x
 | 
			
		||||
                                       const uint16_t dim_im_in_y,  // input image dimention y
 | 
			
		||||
                                       const uint16_t ch_im_in, // number of input image channels
 | 
			
		||||
                                       const q7_t * wt, // kernel weights 
 | 
			
		||||
                                       const uint16_t ch_im_out,    // number of filters, i.e., output image channels
 | 
			
		||||
                                       const uint16_t dim_kernel_x, // filter kernel size x
 | 
			
		||||
                                       const uint16_t dim_kernel_y, // filter kernel size y
 | 
			
		||||
                                       const uint16_t padding_x,    // padding sizes x
 | 
			
		||||
                                       const uint16_t padding_y,    // padding sizes y
 | 
			
		||||
                                       const uint16_t stride_x, // stride x
 | 
			
		||||
                                       const uint16_t stride_y, // stride y
 | 
			
		||||
                                       const q7_t * bias,   // bias
 | 
			
		||||
                                       const uint16_t bias_shift, const uint16_t out_shift, q7_t * Im_out,  // output image
 | 
			
		||||
                                       const uint16_t dim_im_out_x, // output image dimension x
 | 
			
		||||
                                       const uint16_t dim_im_out_y, // output image dimension y
 | 
			
		||||
                                       q15_t * bufferA, //buffer space for input
 | 
			
		||||
                                       q7_t * bufferB   //buffer space for output
 | 
			
		||||
    )
 | 
			
		||||
{
 | 
			
		||||
    int       i, j, k, l, m, n;
 | 
			
		||||
    int       conv_out;
 | 
			
		||||
    int       in_row, in_col;
 | 
			
		||||
 | 
			
		||||
    for (i = 0; i < ch_im_out; i++)
 | 
			
		||||
    {
 | 
			
		||||
        for (j = 0; j < dim_im_out_y; j++)
 | 
			
		||||
        {
 | 
			
		||||
            for (k = 0; k < dim_im_out_x; k++)
 | 
			
		||||
            {
 | 
			
		||||
#ifndef ARM_NN_TRUNCATE
 | 
			
		||||
                conv_out = ((q31_t) (bias[i]) << bias_shift) + (0x1 << (out_shift - 1));
 | 
			
		||||
#else
 | 
			
		||||
                conv_out = bias[i] << bias_shift;
 | 
			
		||||
#endif
 | 
			
		||||
                for (m = 0; m < dim_kernel_y; m++)
 | 
			
		||||
                {
 | 
			
		||||
                    for (n = 0; n < dim_kernel_x; n++)
 | 
			
		||||
                    {
 | 
			
		||||
                        // if-for implementation
 | 
			
		||||
                        in_row = stride_y * j + m - padding_y;
 | 
			
		||||
                        in_col = stride_x * k + n - padding_x;
 | 
			
		||||
                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
 | 
			
		||||
                        {
 | 
			
		||||
                            for (l = 0; l < ch_im_in; l++)
 | 
			
		||||
                            {
 | 
			
		||||
                                conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] *
 | 
			
		||||
                                    wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + (m * dim_kernel_x + n) * ch_im_in +
 | 
			
		||||
                                       l];
 | 
			
		||||
                            }
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
                Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
@ -0,0 +1,70 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "ref_functions.h"
 | 
			
		||||
 | 
			
		||||
void arm_depthwise_separable_conv_HWC_q7_ref(const q7_t * Im_in,    // input image
 | 
			
		||||
                                             const uint16_t dim_im_in,  // input image dimention
 | 
			
		||||
                                             const uint16_t ch_im_in,   // number of input image channels
 | 
			
		||||
                                             const q7_t * wt,   // kernel weights 
 | 
			
		||||
                                             const uint16_t ch_im_out,  // number of filters, i.e., output image channels
 | 
			
		||||
                                             const uint16_t dim_kernel, // filter kernel size
 | 
			
		||||
                                             const uint16_t padding,    // padding sizes
 | 
			
		||||
                                             const uint16_t stride, // stride
 | 
			
		||||
                                             const q7_t * bias, // bias
 | 
			
		||||
                                             const uint16_t bias_shift, // amount of left-shift for bias
 | 
			
		||||
                                             const uint16_t out_shift,  // amount of right-shift for output
 | 
			
		||||
                                             q7_t * Im_out, // output image
 | 
			
		||||
                                             const uint16_t dim_im_out, // output image dimension
 | 
			
		||||
                                             q15_t * bufferA,   //buffer space for input
 | 
			
		||||
                                             q7_t * bufferB //buffer space for output
 | 
			
		||||
    )
 | 
			
		||||
{
 | 
			
		||||
    int       i_out_y, i_out_x, i_ch_out;
 | 
			
		||||
    int       i_ker_y, i_ker_x;
 | 
			
		||||
    for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
 | 
			
		||||
    {
 | 
			
		||||
        for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
 | 
			
		||||
        {
 | 
			
		||||
            for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++)
 | 
			
		||||
            {
 | 
			
		||||
                // for each output
 | 
			
		||||
#ifndef ARM_NN_TRUNCATE
 | 
			
		||||
                int       conv_out = (bias[i_ch_out] << bias_shift) + (0x1 << (out_shift - 1));
 | 
			
		||||
#else
 | 
			
		||||
                int       conv_out = bias[i_ch_out] << bias_shift;
 | 
			
		||||
#endif
 | 
			
		||||
                for (i_ker_y = 0; i_ker_y < dim_kernel; i_ker_y++)
 | 
			
		||||
                {
 | 
			
		||||
                    for (i_ker_x = 0; i_ker_x < dim_kernel; i_ker_x++)
 | 
			
		||||
                    {
 | 
			
		||||
                        int       in_row = stride * i_out_y + i_ker_y - padding;
 | 
			
		||||
                        int       in_col = stride * i_out_x + i_ker_x - padding;
 | 
			
		||||
                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
 | 
			
		||||
                        {
 | 
			
		||||
                            conv_out += Im_in[(in_row * dim_im_in + in_col) * ch_im_in + i_ch_out] *
 | 
			
		||||
                                wt[(i_ker_y * dim_kernel + i_ker_x) * ch_im_out + i_ch_out];
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
                Im_out[(i_out_y * dim_im_out + i_out_x) * ch_im_out + i_ch_out] =
 | 
			
		||||
                    (q7_t) __SSAT((conv_out >> out_shift), 8);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
@ -0,0 +1,75 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "ref_functions.h"
 | 
			
		||||
 | 
			
		||||
void arm_depthwise_separable_conv_HWC_q7_ref_nonsquare(const q7_t * Im_in,  // input image
 | 
			
		||||
                                                       const uint16_t dim_im_in_x,  // input image dimention x
 | 
			
		||||
                                                       const uint16_t dim_im_in_y,  // input image dimention y
 | 
			
		||||
                                                       const uint16_t ch_im_in, // number of input image channels
 | 
			
		||||
                                                       const q7_t * wt, // kernel weights 
 | 
			
		||||
                                                       const uint16_t ch_im_out,    // number of filters, i.e., output image channels
 | 
			
		||||
                                                       const uint16_t dim_kernel_x, // filter kernel size x
 | 
			
		||||
                                                       const uint16_t dim_kernel_y, // filter kernel size y
 | 
			
		||||
                                                       const uint16_t padding_x,    // padding sizes x
 | 
			
		||||
                                                       const uint16_t padding_y,    // padding sizes y
 | 
			
		||||
                                                       const uint16_t stride_x, // stride x
 | 
			
		||||
                                                       const uint16_t stride_y, // stride y
 | 
			
		||||
                                                       const q7_t * bias,   // bias
 | 
			
		||||
                                                       const uint16_t bias_shift,   // amount of left-shift for bias
 | 
			
		||||
                                                       const uint16_t out_shift,    // amount of right-shift for output
 | 
			
		||||
                                                       q7_t * Im_out,   // output image
 | 
			
		||||
                                                       const uint16_t dim_im_out_x, // output image dimension x
 | 
			
		||||
                                                       const uint16_t dim_im_out_y, // output image dimension y
 | 
			
		||||
                                                       q15_t * bufferA, //buffer space for input
 | 
			
		||||
                                                       q7_t * bufferB   //buffer space for output
 | 
			
		||||
    )
 | 
			
		||||
{
 | 
			
		||||
    int       i_out_y, i_out_x, i_ch_out;
 | 
			
		||||
    int       i_ker_y, i_ker_x;
 | 
			
		||||
    for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
 | 
			
		||||
    {
 | 
			
		||||
        for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
 | 
			
		||||
        {
 | 
			
		||||
            for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++)
 | 
			
		||||
            {
 | 
			
		||||
                // for each output
 | 
			
		||||
#ifndef ARM_NN_TRUNCATE
 | 
			
		||||
                int       conv_out = (bias[i_ch_out] << bias_shift) + (0x1 << (out_shift - 1));
 | 
			
		||||
#else
 | 
			
		||||
                int       conv_out = bias[i_ch_out] << bias_shift;
 | 
			
		||||
#endif
 | 
			
		||||
                for (i_ker_y = 0; i_ker_y < dim_kernel_y; i_ker_y++)
 | 
			
		||||
                {
 | 
			
		||||
                    for (i_ker_x = 0; i_ker_x < dim_kernel_x; i_ker_x++)
 | 
			
		||||
                    {
 | 
			
		||||
                        int       in_row = stride_y * i_out_y + i_ker_y - padding_y;
 | 
			
		||||
                        int       in_col = stride_x * i_out_x + i_ker_x - padding_x;
 | 
			
		||||
                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
 | 
			
		||||
                        {
 | 
			
		||||
                            conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + i_ch_out] *
 | 
			
		||||
                                wt[(i_ker_y * dim_kernel_x + i_ker_x) * ch_im_out + i_ch_out];
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
                Im_out[(i_out_y * dim_im_out_x + i_out_x) * ch_im_out + i_ch_out] =
 | 
			
		||||
                    (q7_t) __SSAT((conv_out >> out_shift), 8);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
@ -0,0 +1,120 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "ref_functions.h"
 | 
			
		||||
 | 
			
		||||
void arm_fully_connected_mat_q7_vec_q15_opt_ref(const q15_t * pV,   // pointer to vector
 | 
			
		||||
                                                const q7_t * pM,    // pointer to matrix
 | 
			
		||||
                                                const uint16_t dim_vec, // length of the vector
 | 
			
		||||
                                                const uint16_t num_of_rows, // numCol of A
 | 
			
		||||
                                                const uint16_t bias_shift,  // amount of left-shift for bias
 | 
			
		||||
                                                const uint16_t out_shift,   // amount of right-shift for output
 | 
			
		||||
                                                const q7_t * bias, q15_t * pOut,    // output operand
 | 
			
		||||
                                                q15_t * vec_buffer)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
    uint16_t  rowCnt = num_of_rows >> 2;
 | 
			
		||||
    const q7_t *pB = pM;
 | 
			
		||||
    const q15_t *pA;
 | 
			
		||||
    q15_t    *pO = pOut;
 | 
			
		||||
    const q7_t *pBias = bias;
 | 
			
		||||
 | 
			
		||||
    while (rowCnt)
 | 
			
		||||
    {
 | 
			
		||||
        pA = pV;
 | 
			
		||||
#ifndef ARM_NN_TRUNCATE
 | 
			
		||||
        q31_t     sum = (*pBias++ << bias_shift) + (0x1 << (out_shift - 1));
 | 
			
		||||
        q31_t     sum2 = (*pBias++ << bias_shift) + (0x1 << (out_shift - 1));
 | 
			
		||||
        q31_t     sum3 = (*pBias++ << bias_shift) + (0x1 << (out_shift - 1));
 | 
			
		||||
        q31_t     sum4 = (*pBias++ << bias_shift) + (0x1 << (out_shift - 1));
 | 
			
		||||
#else
 | 
			
		||||
        q31_t     sum = *pBias++ << bias_shift;
 | 
			
		||||
        q31_t     sum2 = *pBias++ << bias_shift;
 | 
			
		||||
        q31_t     sum3 = *pBias++ << bias_shift;
 | 
			
		||||
        q31_t     sum4 = *pBias++ << bias_shift;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
        uint16_t  colCnt = dim_vec >> 1;
 | 
			
		||||
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q15_t     inA1 = *pA++;
 | 
			
		||||
            q15_t     inA2 = *pA++;
 | 
			
		||||
 | 
			
		||||
            q7_t      inB1 = *pB++;
 | 
			
		||||
            q7_t      inB3 = *pB++;
 | 
			
		||||
            q7_t      inB2 = *pB++;
 | 
			
		||||
            q7_t      inB4 = *pB++;
 | 
			
		||||
 | 
			
		||||
            sum += inA1 * inB1 + inA2 * inB2;
 | 
			
		||||
            sum2 += inA1 * inB3 + inA2 * inB4;
 | 
			
		||||
 | 
			
		||||
            inB1 = *pB++;
 | 
			
		||||
            inB3 = *pB++;
 | 
			
		||||
            inB2 = *pB++;
 | 
			
		||||
            inB4 = *pB++;
 | 
			
		||||
 | 
			
		||||
            sum3 += inA1 * inB1 + inA2 * inB2;
 | 
			
		||||
            sum4 += inA1 * inB3 + inA2 * inB4;
 | 
			
		||||
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
        colCnt = dim_vec & 0x1;
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q15_t     inA = *pA++;
 | 
			
		||||
            q7_t      inB = *pB++;
 | 
			
		||||
            sum += inA * inB;
 | 
			
		||||
            inB = *pB++;
 | 
			
		||||
            sum2 += inA * inB;
 | 
			
		||||
            inB = *pB++;
 | 
			
		||||
            sum3 += inA * inB;
 | 
			
		||||
            inB = *pB++;
 | 
			
		||||
            sum4 += inA * inB;
 | 
			
		||||
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
        *pO++ = (q15_t) __SSAT((sum >> out_shift), 16);
 | 
			
		||||
        *pO++ = (q15_t) __SSAT((sum2 >> out_shift), 16);
 | 
			
		||||
        *pO++ = (q15_t) __SSAT((sum3 >> out_shift), 16);
 | 
			
		||||
        *pO++ = (q15_t) __SSAT((sum4 >> out_shift), 16);
 | 
			
		||||
 | 
			
		||||
        rowCnt--;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    rowCnt = num_of_rows & 0x3;
 | 
			
		||||
 | 
			
		||||
    while (rowCnt)
 | 
			
		||||
    {
 | 
			
		||||
        pA = pV;
 | 
			
		||||
#ifndef ARM_NN_TRUNCATE
 | 
			
		||||
        int       ip_out = (*pBias++ << bias_shift) + (0x1 << (out_shift - 1));
 | 
			
		||||
#else
 | 
			
		||||
        int       ip_out = *pBias++ << bias_shift;
 | 
			
		||||
#endif
 | 
			
		||||
        for (int j = 0; j < dim_vec; j++)
 | 
			
		||||
        {
 | 
			
		||||
            q15_t     inA = *pA++;
 | 
			
		||||
            q7_t      inB = *pB++;
 | 
			
		||||
            ip_out += inA * inB;
 | 
			
		||||
        }
 | 
			
		||||
        *pO++ = (q15_t) __SSAT((ip_out >> out_shift), 16);
 | 
			
		||||
 | 
			
		||||
        rowCnt--;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
@ -0,0 +1,43 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "ref_functions.h"
 | 
			
		||||
 | 
			
		||||
void arm_fully_connected_mat_q7_vec_q15_ref(const q15_t * pV,   // pointer to vector
 | 
			
		||||
                                            const q7_t * pM,    // pointer to matrix
 | 
			
		||||
                                            const uint16_t dim_vec, // length of the vector
 | 
			
		||||
                                            const uint16_t num_of_rows, // numCol of A
 | 
			
		||||
                                            const uint16_t bias_shift,  // amount of left-shift for bias
 | 
			
		||||
                                            const uint16_t out_shift,   // amount of right-shift for output
 | 
			
		||||
                                            const q7_t * bias, q15_t * pOut,    // output operand
 | 
			
		||||
                                            q15_t * vec_buffer)
 | 
			
		||||
{
 | 
			
		||||
    for (int i = 0; i < num_of_rows; i++)
 | 
			
		||||
    {
 | 
			
		||||
#ifndef ARM_NN_TRUNCATE
 | 
			
		||||
        int       ip_out = (bias[i] << bias_shift) + (0x1 << (out_shift - 1));
 | 
			
		||||
#else
 | 
			
		||||
        int       ip_out = bias[i] << bias_shift;
 | 
			
		||||
#endif
 | 
			
		||||
        for (int j = 0; j < dim_vec; j++)
 | 
			
		||||
        {
 | 
			
		||||
            ip_out += pV[j] * pM[i * dim_vec + j];
 | 
			
		||||
        }
 | 
			
		||||
        pOut[i] = (q15_t) __SSAT((ip_out >> out_shift), 16);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
@ -0,0 +1,119 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "ref_functions.h"
 | 
			
		||||
 | 
			
		||||
void arm_fully_connected_q15_opt_ref(const q15_t * pV,  // pointer to vector
 | 
			
		||||
                                     const q15_t * pM,  // pointer to matrix
 | 
			
		||||
                                     const uint16_t dim_vec,    // length of the vector
 | 
			
		||||
                                     const uint16_t num_of_rows,    // numCol of A
 | 
			
		||||
                                     const uint16_t bias_shift, // amount of left-shift for bias
 | 
			
		||||
                                     const uint16_t out_shift,  // amount of right-shift for output
 | 
			
		||||
                                     const q15_t * bias, q15_t * pOut,  // output operand
 | 
			
		||||
                                     q15_t * vec_buffer)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
    uint16_t  rowCnt = num_of_rows >> 2;
 | 
			
		||||
    const q15_t *pB = pM;
 | 
			
		||||
    const q15_t *pA;
 | 
			
		||||
    q15_t    *pO = pOut;
 | 
			
		||||
    const q15_t *pBias = bias;
 | 
			
		||||
 | 
			
		||||
    while (rowCnt)
 | 
			
		||||
    {
 | 
			
		||||
        pA = pV;
 | 
			
		||||
#ifndef ARM_NN_TRUNCATE
 | 
			
		||||
        q31_t     sum = (*pBias++ << bias_shift) + (0x1 << (out_shift - 1));
 | 
			
		||||
        q31_t     sum2 = (*pBias++ << bias_shift) + (0x1 << (out_shift - 1));
 | 
			
		||||
        q31_t     sum3 = (*pBias++ << bias_shift) + (0x1 << (out_shift - 1));
 | 
			
		||||
        q31_t     sum4 = (*pBias++ << bias_shift) + (0x1 << (out_shift - 1));
 | 
			
		||||
#else
 | 
			
		||||
        q31_t     sum = *pBias++ << bias_shift;
 | 
			
		||||
        q31_t     sum2 = *pBias++ << bias_shift;
 | 
			
		||||
        q31_t     sum3 = *pBias++ << bias_shift;
 | 
			
		||||
        q31_t     sum4 = *pBias++ << bias_shift;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
        uint16_t  colCnt = dim_vec >> 1;
 | 
			
		||||
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q15_t     inA1 = *pA++;
 | 
			
		||||
            q15_t     inA2 = *pA++;
 | 
			
		||||
 | 
			
		||||
            q15_t     inB1 = *pB++;
 | 
			
		||||
            q15_t     inB2 = *pB++;
 | 
			
		||||
            sum += inA1 * inB1 + inA2 * inB2;
 | 
			
		||||
 | 
			
		||||
            inB1 = *pB++;
 | 
			
		||||
            inB2 = *pB++;
 | 
			
		||||
            sum2 += inA1 * inB1 + inA2 * inB2;
 | 
			
		||||
 | 
			
		||||
            inB1 = *pB++;
 | 
			
		||||
            inB2 = *pB++;
 | 
			
		||||
            sum3 += inA1 * inB1 + inA2 * inB2;
 | 
			
		||||
 | 
			
		||||
            inB1 = *pB++;
 | 
			
		||||
            inB2 = *pB++;
 | 
			
		||||
            sum4 += inA1 * inB1 + inA2 * inB2;
 | 
			
		||||
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
        colCnt = dim_vec & 0x1;
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q15_t     inA = *pA++;
 | 
			
		||||
            q15_t     inB = *pB++;
 | 
			
		||||
            sum += inA * inB;
 | 
			
		||||
            inB = *pB++;
 | 
			
		||||
            sum2 += inA * inB;
 | 
			
		||||
            inB = *pB++;
 | 
			
		||||
            sum3 += inA * inB;
 | 
			
		||||
            inB = *pB++;
 | 
			
		||||
            sum4 += inA * inB;
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
        *pO++ = (q15_t) __SSAT((sum >> out_shift), 16);
 | 
			
		||||
        *pO++ = (q15_t) __SSAT((sum2 >> out_shift), 16);
 | 
			
		||||
        *pO++ = (q15_t) __SSAT((sum3 >> out_shift), 16);
 | 
			
		||||
        *pO++ = (q15_t) __SSAT((sum4 >> out_shift), 16);
 | 
			
		||||
 | 
			
		||||
        rowCnt--;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    rowCnt = num_of_rows & 0x3;
 | 
			
		||||
 | 
			
		||||
    while (rowCnt)
 | 
			
		||||
    {
 | 
			
		||||
        pA = pV;
 | 
			
		||||
#ifndef ARM_NN_TRUNCATE
 | 
			
		||||
        int       ip_out = (*pBias++ << bias_shift) + (0x1 << (out_shift - 1));
 | 
			
		||||
#else
 | 
			
		||||
        int       ip_out = *pBias++ << bias_shift;
 | 
			
		||||
#endif
 | 
			
		||||
        for (int j = 0; j < dim_vec; j++)
 | 
			
		||||
        {
 | 
			
		||||
            q15_t     inA = *pA++;
 | 
			
		||||
            q15_t     inB = *pB++;
 | 
			
		||||
            ip_out += inA * inB;
 | 
			
		||||
        }
 | 
			
		||||
        *pO++ = (q15_t) __SSAT((ip_out >> out_shift), 16);
 | 
			
		||||
 | 
			
		||||
        rowCnt--;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
@ -0,0 +1,43 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "ref_functions.h"
 | 
			
		||||
 | 
			
		||||
void arm_fully_connected_q15_ref(const q15_t * pV,  // pointer to vector
 | 
			
		||||
                                 const q15_t * pM,  // pointer to matrix
 | 
			
		||||
                                 const uint16_t dim_vec,    // length of the vector
 | 
			
		||||
                                 const uint16_t num_of_rows,    // numCol of A
 | 
			
		||||
                                 const uint16_t bias_shift, // amount of left-shift for bias
 | 
			
		||||
                                 const uint16_t out_shift,  // amount of right-shift for output
 | 
			
		||||
                                 const q15_t * bias, q15_t * pOut,  // output operand
 | 
			
		||||
                                 q15_t * vec_buffer)
 | 
			
		||||
{
 | 
			
		||||
    for (int i = 0; i < num_of_rows; i++)
 | 
			
		||||
    {
 | 
			
		||||
#ifndef ARM_NN_TRUNCATE
 | 
			
		||||
        int       ip_out = (bias[i] << bias_shift) + (0x1 << (out_shift - 1));
 | 
			
		||||
#else
 | 
			
		||||
        int       ip_out = bias[i] << bias_shift;
 | 
			
		||||
#endif
 | 
			
		||||
        for (int j = 0; j < dim_vec; j++)
 | 
			
		||||
        {
 | 
			
		||||
            ip_out += pV[j] * pM[i * dim_vec + j];
 | 
			
		||||
        }
 | 
			
		||||
        pOut[i] = (q15_t) __SSAT((ip_out >> out_shift), 16);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
@ -0,0 +1,138 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "ref_functions.h"
 | 
			
		||||
 | 
			
		||||
void arm_fully_connected_q7_opt_ref(const q7_t * pV,    // pointer to vector
 | 
			
		||||
                                    const q7_t * pM,    // pointer to matrix
 | 
			
		||||
                                    const uint16_t dim_vec, // length of the vector
 | 
			
		||||
                                    const uint16_t num_of_rows, // numCol of A
 | 
			
		||||
                                    const uint16_t bias_shift,  // amount of left-shift for bias
 | 
			
		||||
                                    const uint16_t out_shift,   // amount of right-shift for output
 | 
			
		||||
                                    const q7_t * bias, q7_t * pOut, // output operand
 | 
			
		||||
                                    q15_t * vec_buffer)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
    uint16_t  rowCnt = num_of_rows >> 2;
 | 
			
		||||
    const q7_t *pB = pM;
 | 
			
		||||
    const q7_t *pA;
 | 
			
		||||
    q7_t     *pO = pOut;
 | 
			
		||||
    const q7_t *pBias = bias;
 | 
			
		||||
 | 
			
		||||
    while (rowCnt)
 | 
			
		||||
    {
 | 
			
		||||
        pA = pV;
 | 
			
		||||
#ifndef ARM_NN_TRUNCATE
 | 
			
		||||
        q31_t     sum = (*pBias++ << bias_shift) + (0x1 << (out_shift - 1));
 | 
			
		||||
        q31_t     sum2 = (*pBias++ << bias_shift) + (0x1 << (out_shift - 1));
 | 
			
		||||
        q31_t     sum3 = (*pBias++ << bias_shift) + (0x1 << (out_shift - 1));
 | 
			
		||||
        q31_t     sum4 = (*pBias++ << bias_shift) + (0x1 << (out_shift - 1));
 | 
			
		||||
#else
 | 
			
		||||
        q31_t     sum = *pBias++ << bias_shift;
 | 
			
		||||
        q31_t     sum2 = *pBias++ << bias_shift;
 | 
			
		||||
        q31_t     sum3 = *pBias++ << bias_shift;
 | 
			
		||||
        q31_t     sum4 = *pBias++ << bias_shift;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
        uint16_t  colCnt = dim_vec >> 2;
 | 
			
		||||
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q7_t      inA1 = *pA++;
 | 
			
		||||
            q7_t      inA3 = *pA++;
 | 
			
		||||
            q7_t      inA2 = *pA++;
 | 
			
		||||
            q7_t      inA4 = *pA++;
 | 
			
		||||
 | 
			
		||||
            q7_t      inB1 = *pB++;
 | 
			
		||||
            q7_t      inB3 = *pB++;
 | 
			
		||||
            q7_t      inB2 = *pB++;
 | 
			
		||||
            q7_t      inB4 = *pB++;
 | 
			
		||||
 | 
			
		||||
            sum += inA1 * inB1 + inA2 * inB2;
 | 
			
		||||
            sum2 += inA1 * inB3 + inA2 * inB4;
 | 
			
		||||
 | 
			
		||||
            inB1 = *pB++;
 | 
			
		||||
            inB3 = *pB++;
 | 
			
		||||
            inB2 = *pB++;
 | 
			
		||||
            inB4 = *pB++;
 | 
			
		||||
 | 
			
		||||
            sum3 += inA1 * inB1 + inA2 * inB2;
 | 
			
		||||
            sum4 += inA1 * inB3 + inA2 * inB4;
 | 
			
		||||
 | 
			
		||||
            inB1 = *pB++;
 | 
			
		||||
            inB3 = *pB++;
 | 
			
		||||
            inB2 = *pB++;
 | 
			
		||||
            inB4 = *pB++;
 | 
			
		||||
 | 
			
		||||
            sum += inA3 * inB1 + inA4 * inB2;
 | 
			
		||||
            sum2 += inA3 * inB3 + inA4 * inB4;
 | 
			
		||||
 | 
			
		||||
            inB1 = *pB++;
 | 
			
		||||
            inB3 = *pB++;
 | 
			
		||||
            inB2 = *pB++;
 | 
			
		||||
            inB4 = *pB++;
 | 
			
		||||
 | 
			
		||||
            sum3 += inA3 * inB1 + inA4 * inB2;
 | 
			
		||||
            sum4 += inA3 * inB3 + inA4 * inB4;
 | 
			
		||||
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
        colCnt = dim_vec & 0x3;
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q7_t      inA = *pA++;
 | 
			
		||||
            q7_t      inB = *pB++;
 | 
			
		||||
            sum += inA * inB;
 | 
			
		||||
            inB = *pB++;
 | 
			
		||||
            sum2 += inA * inB;
 | 
			
		||||
            inB = *pB++;
 | 
			
		||||
            sum3 += inA * inB;
 | 
			
		||||
            inB = *pB++;
 | 
			
		||||
            sum4 += inA * inB;
 | 
			
		||||
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
        *pO++ = (q7_t) __SSAT((sum >> out_shift), 8);
 | 
			
		||||
        *pO++ = (q7_t) __SSAT((sum2 >> out_shift), 8);
 | 
			
		||||
        *pO++ = (q7_t) __SSAT((sum3 >> out_shift), 8);
 | 
			
		||||
        *pO++ = (q7_t) __SSAT((sum4 >> out_shift), 8);
 | 
			
		||||
 | 
			
		||||
        rowCnt--;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    rowCnt = num_of_rows & 0x3;
 | 
			
		||||
 | 
			
		||||
    while (rowCnt)
 | 
			
		||||
    {
 | 
			
		||||
        pA = pV;
 | 
			
		||||
#ifndef ARM_NN_TRUNCATE
 | 
			
		||||
        int       ip_out = (*pBias++ << bias_shift) + (0x1 << (out_shift - 1));
 | 
			
		||||
#else
 | 
			
		||||
        int       ip_out = *pBias++ << bias_shift;
 | 
			
		||||
#endif
 | 
			
		||||
        for (int j = 0; j < dim_vec; j++)
 | 
			
		||||
        {
 | 
			
		||||
            q7_t      inA = *pA++;
 | 
			
		||||
            q7_t      inB = *pB++;
 | 
			
		||||
            ip_out += inA * inB;
 | 
			
		||||
        }
 | 
			
		||||
        *pO++ = (q7_t) __SSAT((ip_out >> out_shift), 8);
 | 
			
		||||
 | 
			
		||||
        rowCnt--;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
@ -0,0 +1,43 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "ref_functions.h"
 | 
			
		||||
 | 
			
		||||
void arm_fully_connected_q7_ref(const q7_t * pV,    // pointer to vector
 | 
			
		||||
                                const q7_t * pM,    // pointer to matrix
 | 
			
		||||
                                const uint16_t dim_vec, // length of the vector
 | 
			
		||||
                                const uint16_t num_of_rows, // numCol of A
 | 
			
		||||
                                const uint16_t bias_shift,  // amount of left-shift for bias
 | 
			
		||||
                                const uint16_t out_shift,   // amount of right-shift for output
 | 
			
		||||
                                const q7_t * bias, q7_t * pOut, // output operand
 | 
			
		||||
                                q15_t * vec_buffer)
 | 
			
		||||
{
 | 
			
		||||
    for (int i = 0; i < num_of_rows; i++)
 | 
			
		||||
    {
 | 
			
		||||
#ifndef ARM_NN_TRUNCATE
 | 
			
		||||
        int       ip_out = (bias[i] << bias_shift) + (0x1 << (out_shift - 1));
 | 
			
		||||
#else
 | 
			
		||||
        int       ip_out = bias[i] << bias_shift;
 | 
			
		||||
#endif
 | 
			
		||||
        for (int j = 0; j < dim_vec; j++)
 | 
			
		||||
        {
 | 
			
		||||
            ip_out += pV[j] * pM[i * dim_vec + j];
 | 
			
		||||
        }
 | 
			
		||||
        pOut[i] = (q7_t) __SSAT((ip_out >> out_shift), 8);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
@ -0,0 +1,58 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
void      arm_nn_mult_q7_ref(q7_t * pSrcA, 
 | 
			
		||||
                             q7_t * pSrcB, 
 | 
			
		||||
                             q7_t * pDst, 
 | 
			
		||||
                             const uint16_t out_shift, 
 | 
			
		||||
                             uint32_t blockSize) {
 | 
			
		||||
    uint16_t  i;
 | 
			
		||||
 | 
			
		||||
for (i = 0; i < blockSize; i++)
 | 
			
		||||
    {
 | 
			
		||||
		q31_t product = pSrcA[i] * pSrcB[i];
 | 
			
		||||
#ifndef ARM_NN_TRUNCATE
 | 
			
		||||
        pDst[i] = (q7_t)__SSAT((product + (0x1 << (out_shift - 1)))>>out_shift, 8);
 | 
			
		||||
#else
 | 
			
		||||
        pDst[i] = (q7_t)__SSAT(product >> out_shift, 8);
 | 
			
		||||
#endif
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void     arm_nn_mult_q15_ref(q15_t * pSrcA, 
 | 
			
		||||
                             q15_t * pSrcB, 
 | 
			
		||||
                             q15_t * pDst, 
 | 
			
		||||
                             const uint16_t out_shift, 
 | 
			
		||||
                             uint32_t blockSize) {
 | 
			
		||||
    uint16_t  i;
 | 
			
		||||
 | 
			
		||||
for (i = 0; i < blockSize; i++)
 | 
			
		||||
    {
 | 
			
		||||
		q31_t product = pSrcA[i] * pSrcB[i];
 | 
			
		||||
#ifndef ARM_NN_TRUNCATE
 | 
			
		||||
        pDst[i] = (q15_t)__SSAT((product + (0x1 << (out_shift - 1)))>>out_shift, 16);
 | 
			
		||||
#else
 | 
			
		||||
        pDst[i] = (q15_t)__SSAT(product >> out_shift, 16);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
@ -0,0 +1,96 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "ref_functions.h"
 | 
			
		||||
 | 
			
		||||
void arm_avepool_q7_HWC_ref(const q7_t * Im_in, // input image
 | 
			
		||||
                            const uint16_t dim_im_in,   // input image dimension
 | 
			
		||||
                            const uint16_t ch_im_in,    // number of input image channels
 | 
			
		||||
                            const uint16_t dim_kernel,  // window kernel size
 | 
			
		||||
                            const uint16_t padding, // padding sizes
 | 
			
		||||
                            const uint16_t stride,  // stride
 | 
			
		||||
                            const uint16_t dim_im_out,  // output image dimension
 | 
			
		||||
                            q7_t * bufferA, // a buffer for local storage
 | 
			
		||||
                            q7_t * Im_out)
 | 
			
		||||
{
 | 
			
		||||
    int16_t   i_ch_in, i_x, i_y;
 | 
			
		||||
    int16_t   k_x, k_y;
 | 
			
		||||
 | 
			
		||||
    for (i_ch_in = 0; i_ch_in < ch_im_in; i_ch_in++)
 | 
			
		||||
    {
 | 
			
		||||
        for (i_y = 0; i_y < dim_im_out; i_y++)
 | 
			
		||||
        {
 | 
			
		||||
            for (i_x = 0; i_x < dim_im_out; i_x++)
 | 
			
		||||
            {
 | 
			
		||||
                int       sum = 0;
 | 
			
		||||
                int       count = 0;
 | 
			
		||||
                for (k_y = i_y * stride - padding; k_y < i_y * stride - padding + dim_kernel; k_y++)
 | 
			
		||||
                {
 | 
			
		||||
                    for (k_x = i_x * stride - padding; k_x < i_x * stride - padding + dim_kernel; k_x++)
 | 
			
		||||
                    {
 | 
			
		||||
                        if (k_y >= 0 && k_x >= 0 && k_y < dim_im_in && k_x < dim_im_in)
 | 
			
		||||
                        {
 | 
			
		||||
                            sum += Im_in[i_ch_in + ch_im_in * (k_x + k_y * dim_im_in)];
 | 
			
		||||
                            count++;
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
                Im_out[i_ch_in + ch_im_in * (i_x + i_y * dim_im_out)] = sum / count;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void arm_maxpool_q7_HWC_ref(const q7_t * Im_in, // input image
 | 
			
		||||
                            const uint16_t dim_im_in,   // input image dimension
 | 
			
		||||
                            const uint16_t ch_im_in,    // number of input image channels
 | 
			
		||||
                            const uint16_t dim_kernel,  // window kernel size
 | 
			
		||||
                            const uint16_t padding, // padding sizes
 | 
			
		||||
                            const uint16_t stride,  // stride
 | 
			
		||||
                            const uint16_t dim_im_out,  // output image dimension
 | 
			
		||||
                            q7_t * bufferA, // a buffer for local storage
 | 
			
		||||
                            q7_t * Im_out)
 | 
			
		||||
{
 | 
			
		||||
    int16_t   i_ch_in, i_x, i_y;
 | 
			
		||||
    int16_t   k_x, k_y;
 | 
			
		||||
 | 
			
		||||
    for (i_ch_in = 0; i_ch_in < ch_im_in; i_ch_in++)
 | 
			
		||||
    {
 | 
			
		||||
        for (i_y = 0; i_y < dim_im_out; i_y++)
 | 
			
		||||
        {
 | 
			
		||||
            for (i_x = 0; i_x < dim_im_out; i_x++)
 | 
			
		||||
            {
 | 
			
		||||
                int       max = -129;
 | 
			
		||||
                for (k_y = i_y * stride - padding; k_y < i_y * stride - padding + dim_kernel; k_y++)
 | 
			
		||||
                {
 | 
			
		||||
                    for (k_x = i_x * stride - padding; k_x < i_x * stride - padding + dim_kernel; k_x++)
 | 
			
		||||
                    {
 | 
			
		||||
                        if (k_y >= 0 && k_x >= 0 && k_y < dim_im_in && k_x < dim_im_in)
 | 
			
		||||
                        {
 | 
			
		||||
                            if (Im_in[i_ch_in + ch_im_in * (k_x + k_y * dim_im_in)] > max)
 | 
			
		||||
                            {
 | 
			
		||||
                                max = Im_in[i_ch_in + ch_im_in * (k_x + k_y * dim_im_in)];
 | 
			
		||||
                            }
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
                Im_out[i_ch_in + ch_im_in * (i_x + i_y * dim_im_out)] = max;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
@ -0,0 +1,42 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
void arm_relu_q7_ref(q7_t * data, uint16_t size)
 | 
			
		||||
{
 | 
			
		||||
    uint16_t  i;
 | 
			
		||||
 | 
			
		||||
    for (i = 0; i < size; i++)
 | 
			
		||||
    {
 | 
			
		||||
        if (data[i] < 0)
 | 
			
		||||
            data[i] = 0;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void arm_relu_q15_ref(q15_t * data, uint16_t size)
 | 
			
		||||
{
 | 
			
		||||
    uint16_t  i;
 | 
			
		||||
 | 
			
		||||
    for (i = 0; i < size; i++)
 | 
			
		||||
    {
 | 
			
		||||
        if (data[i] < 0)
 | 
			
		||||
            data[i] = 0;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							@ -0,0 +1,250 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#ifndef _REF_FUNCTIONS_H_
 | 
			
		||||
#define _REF_FUNCTIONS_H_
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
//#include "arm_nnsupportfunctions.h"
 | 
			
		||||
#include "fully_connected_testing_weights.h"
 | 
			
		||||
 | 
			
		||||
#ifdef __cplusplus
 | 
			
		||||
extern    "C"
 | 
			
		||||
{
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 *
 | 
			
		||||
 * Convolution reference implemenation
 | 
			
		||||
 *
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
    void      arm_convolve_HWC_q7_ref(const q7_t * Im_in,   // input image
 | 
			
		||||
                                      const uint16_t dim_im_in, // input image dimention
 | 
			
		||||
                                      const uint16_t ch_im_in,  // number of input image channels
 | 
			
		||||
                                      const q7_t * wt,  // kernel weights 
 | 
			
		||||
                                      const uint16_t ch_im_out, // number of filters, i.e., output image channels
 | 
			
		||||
                                      const uint16_t dim_kernel,    // filter kernel size
 | 
			
		||||
                                      const uint16_t padding,   // padding sizes
 | 
			
		||||
                                      const uint16_t stride,    // stride
 | 
			
		||||
                                      const q7_t * bias,    // bias
 | 
			
		||||
                                      const uint16_t bias_shift, const uint16_t out_shift, q7_t * Im_out,   // output image
 | 
			
		||||
                                      const uint16_t dim_im_out,    // output image dimension
 | 
			
		||||
                                      q15_t * bufferA,  //buffer space for input
 | 
			
		||||
                                      q7_t * bufferB    //buffer space for output
 | 
			
		||||
        );
 | 
			
		||||
 | 
			
		||||
    void      arm_convolve_HWC_q7_ref_nonsquare(const q7_t * Im_in, // input image
 | 
			
		||||
                                                const uint16_t dim_im_in_x, // input image dimention x
 | 
			
		||||
                                                const uint16_t dim_im_in_y, // input image dimention y
 | 
			
		||||
                                                const uint16_t ch_im_in,    // number of input image channels
 | 
			
		||||
                                                const q7_t * wt,    // kernel weights 
 | 
			
		||||
                                                const uint16_t ch_im_out,   // number of filters, i.e., output image channels
 | 
			
		||||
                                                const uint16_t dim_kernel_x,    // filter kernel size x
 | 
			
		||||
                                                const uint16_t dim_kernel_y,    // filter kernel size y
 | 
			
		||||
                                                const uint16_t padding_x,   // padding sizes x
 | 
			
		||||
                                                const uint16_t padding_y,   // padding sizes y
 | 
			
		||||
                                                const uint16_t stride_x,    // stride x
 | 
			
		||||
                                                const uint16_t stride_y,    // stride y
 | 
			
		||||
                                                const q7_t * bias,  // bias
 | 
			
		||||
                                                const uint16_t bias_shift, const uint16_t out_shift, q7_t * Im_out, // output image
 | 
			
		||||
                                                const uint16_t dim_im_out_x,    // output image dimension x
 | 
			
		||||
                                                const uint16_t dim_im_out_y,    // output image dimension y
 | 
			
		||||
                                                q15_t * bufferA,    //buffer space for input
 | 
			
		||||
                                                q7_t * bufferB  //buffer space for output
 | 
			
		||||
        );
 | 
			
		||||
 | 
			
		||||
    void      arm_convolve_HWC_q15_ref(const q15_t * Im_in, // input image
 | 
			
		||||
                                       const uint16_t dim_im_in,    // input image dimention
 | 
			
		||||
                                       const uint16_t ch_im_in, // number of input image channels
 | 
			
		||||
                                       const q15_t * wt,    // kernel weights 
 | 
			
		||||
                                       const uint16_t ch_im_out,    // number of filters, i.e., output image channels
 | 
			
		||||
                                       const uint16_t dim_kernel,   // filter kernel size
 | 
			
		||||
                                       const uint16_t padding,  // padding sizes
 | 
			
		||||
                                       const uint16_t stride,   // stride
 | 
			
		||||
                                       const q15_t * bias,  // bias
 | 
			
		||||
                                       const uint16_t bias_shift, const uint16_t out_shift, q15_t * Im_out, // output image
 | 
			
		||||
                                       const uint16_t dim_im_out,   // output image dimension
 | 
			
		||||
                                       q15_t * bufferA, //buffer space for input
 | 
			
		||||
                                       q7_t * bufferB   //buffer space for output
 | 
			
		||||
        );
 | 
			
		||||
    void      arm_convolve_HWC_q15_nonsquare_ref(const q15_t * Im_in,
 | 
			
		||||
                                                      const uint16_t dim_im_in_x,
 | 
			
		||||
                                                      const uint16_t dim_im_in_y,
 | 
			
		||||
                                                      const uint16_t ch_im_in,
 | 
			
		||||
                                                      const q15_t * wt,
 | 
			
		||||
                                                      const uint16_t ch_im_out,
 | 
			
		||||
                                                      const uint16_t dim_kernel_x,
 | 
			
		||||
                                                      const uint16_t dim_kernel_y,
 | 
			
		||||
                                                      const uint16_t padding_x,
 | 
			
		||||
                                                      const uint16_t padding_y,
 | 
			
		||||
                                                      const uint16_t stride_x,
 | 
			
		||||
                                                      const uint16_t stride_y,
 | 
			
		||||
                                                      const q15_t * bias,
 | 
			
		||||
                                                      const uint16_t bias_shift,
 | 
			
		||||
                                                      const uint16_t out_shift,
 | 
			
		||||
                                                      q15_t * Im_out,
 | 
			
		||||
                                                      const uint16_t dim_im_out_x,
 | 
			
		||||
                                                      const uint16_t dim_im_out_y, 
 | 
			
		||||
                                                      q15_t * bufferA, 
 | 
			
		||||
                                                      q7_t * bufferB);
 | 
			
		||||
													  
 | 
			
		||||
    void      arm_depthwise_separable_conv_HWC_q7_ref(const q7_t * Im_in,   // input image
 | 
			
		||||
                                                      const uint16_t dim_im_in, // input image dimention
 | 
			
		||||
                                                      const uint16_t ch_im_in,  // number of input image channels
 | 
			
		||||
                                                      const q7_t * wt,  // kernel weights 
 | 
			
		||||
                                                      const uint16_t ch_im_out, // number of filters, i.e., output image channels
 | 
			
		||||
                                                      const uint16_t dim_kernel,    // filter kernel size
 | 
			
		||||
                                                      const uint16_t padding,   // padding sizes
 | 
			
		||||
                                                      const uint16_t stride,    // stride
 | 
			
		||||
                                                      const q7_t * bias,    // bias
 | 
			
		||||
                                                      const uint16_t bias_shift,    // amount of left-shift for bias
 | 
			
		||||
                                                      const uint16_t out_shift, // amount of right-shift for output
 | 
			
		||||
                                                      q7_t * Im_out,    // output image
 | 
			
		||||
                                                      const uint16_t dim_im_out,    // output image dimension
 | 
			
		||||
                                                      q15_t * bufferA,  //buffer space for input
 | 
			
		||||
                                                      q7_t * bufferB    //buffer space for output
 | 
			
		||||
        );
 | 
			
		||||
    void      arm_depthwise_separable_conv_HWC_q7_ref_nonsquare(const q7_t * Im_in, // input image
 | 
			
		||||
                                                                const uint16_t dim_im_in_x, // input image dimention x
 | 
			
		||||
                                                                const uint16_t dim_im_in_y, // input image dimention y
 | 
			
		||||
                                                                const uint16_t ch_im_in,    // number of input image channels
 | 
			
		||||
                                                                const q7_t * wt,    // kernel weights 
 | 
			
		||||
                                                                const uint16_t ch_im_out,   // number of filters, i.e., output image channels
 | 
			
		||||
                                                                const uint16_t dim_kernel_x,    // filter kernel size x
 | 
			
		||||
                                                                const uint16_t dim_kernel_y,    // filter kernel size y
 | 
			
		||||
                                                                const uint16_t padding_x,   // padding sizes x
 | 
			
		||||
                                                                const uint16_t padding_y,   // padding sizes y
 | 
			
		||||
                                                                const uint16_t stride_x,    // stride x
 | 
			
		||||
                                                                const uint16_t stride_y,    // stride y
 | 
			
		||||
                                                                const q7_t * bias,  // bias
 | 
			
		||||
                                                                const uint16_t bias_shift,  // amount of left-shift for bias
 | 
			
		||||
                                                                const uint16_t out_shift,   // amount of right-shift for output
 | 
			
		||||
                                                                q7_t * Im_out,  // output image
 | 
			
		||||
                                                                const uint16_t dim_im_out_x,    // output image dimension x
 | 
			
		||||
                                                                const uint16_t dim_im_out_y,    // output image dimension y
 | 
			
		||||
                                                                q15_t * bufferA,    //buffer space for input
 | 
			
		||||
                                                                q7_t * bufferB  //buffer space for output
 | 
			
		||||
        );
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 *
 | 
			
		||||
 * Fully-connected reference implemenation
 | 
			
		||||
 *
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
    void      arm_fully_connected_q7_ref(const q7_t * pV,   // pointer to vector
 | 
			
		||||
                                         const q7_t * pM,   // pointer to matrix
 | 
			
		||||
                                         const uint16_t dim_vec,    // length of the vector
 | 
			
		||||
                                         const uint16_t num_of_rows,    // numCol of A
 | 
			
		||||
                                         const uint16_t bias_shift, // amount of left-shift for bias
 | 
			
		||||
                                         const uint16_t out_shift,  // amount of right-shift for output
 | 
			
		||||
                                         const q7_t * bias, q7_t * pOut,    // output operand
 | 
			
		||||
                                         q15_t * vec_buffer);
 | 
			
		||||
 | 
			
		||||
    void      arm_fully_connected_q15_ref(const q15_t * pV, // pointer to vector
 | 
			
		||||
                                          const q15_t * pM, // pointer to matrix
 | 
			
		||||
                                          const uint16_t dim_vec,   // length of the vector
 | 
			
		||||
                                          const uint16_t num_of_rows,   // numCol of A
 | 
			
		||||
                                          const uint16_t bias_shift,    // amount of left-shift for bias
 | 
			
		||||
                                          const uint16_t out_shift, // amount of right-shift for output
 | 
			
		||||
                                          const q15_t * bias, q15_t * pOut, // output operand
 | 
			
		||||
                                          q15_t * vec_buffer);
 | 
			
		||||
 | 
			
		||||
    void      arm_fully_connected_mat_q7_vec_q15_ref(const q15_t * pV,  // pointer to vector
 | 
			
		||||
                                                     const q7_t * pM,   // pointer to matrix
 | 
			
		||||
                                                     const uint16_t dim_vec,    // length of the vector
 | 
			
		||||
                                                     const uint16_t num_of_rows,    // numCol of A
 | 
			
		||||
                                                     const uint16_t bias_shift, // amount of left-shift for bias
 | 
			
		||||
                                                     const uint16_t out_shift,  // amount of right-shift for output
 | 
			
		||||
                                                     const q7_t * bias, q15_t * pOut,   // output operand
 | 
			
		||||
                                                     q15_t * vec_buffer);
 | 
			
		||||
 | 
			
		||||
    void      arm_fully_connected_q7_opt_ref(const q7_t * pV,   // pointer to vector
 | 
			
		||||
                                             const q7_t * pM,   // pointer to matrix
 | 
			
		||||
                                             const uint16_t dim_vec,    // length of the vector
 | 
			
		||||
                                             const uint16_t num_of_rows,    // numCol of A
 | 
			
		||||
                                             const uint16_t bias_shift, // amount of left-shift for bias
 | 
			
		||||
                                             const uint16_t out_shift,  // amount of right-shift for output
 | 
			
		||||
                                             const q7_t * bias, q7_t * pOut,    // output operand
 | 
			
		||||
                                             q15_t * vec_buffer);
 | 
			
		||||
 | 
			
		||||
    void      arm_fully_connected_q15_opt_ref(const q15_t * pV, // pointer to vector
 | 
			
		||||
                                              const q15_t * pM, // pointer to matrix
 | 
			
		||||
                                              const uint16_t dim_vec,   // length of the vector
 | 
			
		||||
                                              const uint16_t num_of_rows,   // numCol of A
 | 
			
		||||
                                              const uint16_t bias_shift,    // amount of left-shift for bias
 | 
			
		||||
                                              const uint16_t out_shift, // amount of right-shift for output
 | 
			
		||||
                                              const q15_t * bias, q15_t * pOut, // output operand
 | 
			
		||||
                                              q15_t * vec_buffer);
 | 
			
		||||
 | 
			
		||||
    void      arm_fully_connected_mat_q7_vec_q15_opt_ref(const q15_t * pV,  // pointer to vector
 | 
			
		||||
                                                         const q7_t * pM,   // pointer to matrix
 | 
			
		||||
                                                         const uint16_t dim_vec,    // length of the vector
 | 
			
		||||
                                                         const uint16_t num_of_rows,    // numCol of A
 | 
			
		||||
                                                         const uint16_t bias_shift, // amount of left-shift for bias
 | 
			
		||||
                                                         const uint16_t out_shift,  // amount of right-shift for output
 | 
			
		||||
                                                         const q7_t * bias, q15_t * pOut,   // output operand
 | 
			
		||||
                                                         q15_t * vec_buffer);
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 *
 | 
			
		||||
 * Pooling reference implemenation
 | 
			
		||||
 *
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
    void      arm_avepool_q7_HWC_ref(const q7_t * Im_in,    // input image
 | 
			
		||||
                                     const uint16_t dim_im_in,  // input image dimension
 | 
			
		||||
                                     const uint16_t ch_im_in,   // number of input image channels
 | 
			
		||||
                                     const uint16_t dim_kernel, // window kernel size
 | 
			
		||||
                                     const uint16_t padding,    // padding sizes
 | 
			
		||||
                                     const uint16_t stride, // stride
 | 
			
		||||
                                     const uint16_t dim_im_out, // output image dimension
 | 
			
		||||
                                     q7_t * bufferA,    // a buffer for local storage
 | 
			
		||||
                                     q7_t * Im_out);
 | 
			
		||||
 | 
			
		||||
    void      arm_maxpool_q7_HWC_ref(const q7_t * Im_in,    // input image
 | 
			
		||||
                                     const uint16_t dim_im_in,  // input image dimension
 | 
			
		||||
                                     const uint16_t ch_im_in,   // number of input image channels
 | 
			
		||||
                                     const uint16_t dim_kernel, // window kernel size
 | 
			
		||||
                                     const uint16_t padding,    // padding sizes
 | 
			
		||||
                                     const uint16_t stride, // stride
 | 
			
		||||
                                     const uint16_t dim_im_out, // output image dimension
 | 
			
		||||
                                     q7_t * bufferA,    // a buffer for local storage
 | 
			
		||||
                                     q7_t * Im_out);
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 *
 | 
			
		||||
 * Other reference implemenation
 | 
			
		||||
 *
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
    void      arm_relu_q7_ref(q7_t * data, uint16_t size);
 | 
			
		||||
 | 
			
		||||
    void      arm_relu_q15_ref(q15_t * data, uint16_t size);
 | 
			
		||||
 | 
			
		||||
    void      arm_nn_mult_q7_ref(q7_t * pSrcA, q7_t * pSrcB, q7_t * pDst, const uint16_t out_shift, uint32_t blockSize);
 | 
			
		||||
 | 
			
		||||
    void      arm_nn_mult_q15_ref(q15_t * pSrcA, q15_t * pSrcB, q15_t * pDst, const uint16_t out_shift, uint32_t blockSize);
 | 
			
		||||
 | 
			
		||||
#ifdef __cplusplus
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
							
								
								
									
										801
									
								
								Drivers/CMSIS/NN/NN_Lib_Tests/nn_test/arm_nnexamples_nn_test.cpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										801
									
								
								Drivers/CMSIS/NN/NN_Lib_Tests/nn_test/arm_nnexamples_nn_test.cpp
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,801 @@
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
* Copyright (C) 2010-2018 Arm Limited. All rights reserved.
 | 
			
		||||
*
 | 
			
		||||
*
 | 
			
		||||
* Project:       CMSIS NN Library
 | 
			
		||||
* Title:         arm_nnexamples_nn_test.cpp
 | 
			
		||||
*
 | 
			
		||||
* Description:   Example code for NN kernel testing.
 | 
			
		||||
*
 | 
			
		||||
* Target Processor: Cortex-M cores
 | 
			
		||||
*
 | 
			
		||||
* Redistribution and use in source and binary forms, with or without
 | 
			
		||||
* modification, are permitted provided that the following conditions
 | 
			
		||||
* are met:
 | 
			
		||||
*   - Redistributions of source code must retain the above copyright
 | 
			
		||||
*     notice, this list of conditions and the following disclaimer.
 | 
			
		||||
*   - Redistributions in binary form must reproduce the above copyright
 | 
			
		||||
*     notice, this list of conditions and the following disclaimer in
 | 
			
		||||
*     the documentation and/or other materials provided with the
 | 
			
		||||
*     distribution.
 | 
			
		||||
*   - Neither the name of ARM LIMITED nor the names of its contributors
 | 
			
		||||
*     may be used to endorse or promote products derived from this
 | 
			
		||||
*     software without specific prior written permission.
 | 
			
		||||
*
 | 
			
		||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
			
		||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
			
		||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 | 
			
		||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 | 
			
		||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 | 
			
		||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 | 
			
		||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 | 
			
		||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | 
			
		||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | 
			
		||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 | 
			
		||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | 
			
		||||
* POSSIBILITY OF SUCH DAMAGE.
 | 
			
		||||
* -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#include "arm_nnexamples_nn_test.h"
 | 
			
		||||
 | 
			
		||||
//#define TEST_SIGMOID
 | 
			
		||||
//#define TEST_TANH
 | 
			
		||||
#define TEST_POOL
 | 
			
		||||
#define TEST_RELU
 | 
			
		||||
#define TEST_IP
 | 
			
		||||
#define TEST_CONV
 | 
			
		||||
#define TEST_NONSQUARE
 | 
			
		||||
#define TEST_NNMULT
 | 
			
		||||
 | 
			
		||||
int test_index = 0;
 | 
			
		||||
q7_t test_flags[50];
 | 
			
		||||
bool test_pass;
 | 
			
		||||
 | 
			
		||||
int main()
 | 
			
		||||
{
 | 
			
		||||
    printf("start tests\n");
 | 
			
		||||
 | 
			
		||||
    srand(1);
 | 
			
		||||
 | 
			
		||||
    // common pointers for testing data
 | 
			
		||||
    q7_t     *test1;
 | 
			
		||||
    q15_t    *test2;
 | 
			
		||||
    q7_t     *test3;
 | 
			
		||||
    q15_t    *test4;
 | 
			
		||||
 | 
			
		||||
    for (test_index = 0; test_index<50; test_index++) {
 | 
			
		||||
        test_flags[test_index] = -1;
 | 
			
		||||
    }
 | 
			
		||||
    test_index = 0;
 | 
			
		||||
 | 
			
		||||
#ifdef TEST_NNMULT
 | 
			
		||||
#define NNMULT_DIM 128
 | 
			
		||||
    test1 = new q7_t[NNMULT_DIM*2];
 | 
			
		||||
    test2 = new q15_t[NNMULT_DIM*2];
 | 
			
		||||
    test3 = new q7_t[NNMULT_DIM*2];
 | 
			
		||||
    test4 = new q15_t[NNMULT_DIM*2];
 | 
			
		||||
 | 
			
		||||
    q7_t * mult_out_q7 = test3;
 | 
			
		||||
    q7_t * mult_ref_q7 = test3 + NNMULT_DIM;
 | 
			
		||||
    q15_t * mult_out_q15 = test4;
 | 
			
		||||
    q15_t * mult_ref_q15 = test4 + NNMULT_DIM;
 | 
			
		||||
 | 
			
		||||
    for (int i=0;i<NNMULT_DIM*2;i++) {
 | 
			
		||||
        test1[i] = (rand() % 256 - 128);
 | 
			
		||||
        test2[i] = (rand() % 65536 - 32768);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Test q7
 | 
			
		||||
    arm_nn_mult_q7(test1, test1+NNMULT_DIM, mult_out_q7, 5, NNMULT_DIM);
 | 
			
		||||
 | 
			
		||||
    arm_nn_mult_q7_ref(test1, test1+NNMULT_DIM, mult_ref_q7, 5, NNMULT_DIM);
 | 
			
		||||
 | 
			
		||||
    verify_results_q7(mult_out_q7, mult_ref_q7, NNMULT_DIM);
 | 
			
		||||
 | 
			
		||||
    arm_nn_mult_q7(test1, test1+NNMULT_DIM, mult_out_q7, 9, NNMULT_DIM);
 | 
			
		||||
 | 
			
		||||
    arm_nn_mult_q7_ref(test1, test1+NNMULT_DIM, mult_ref_q7, 9, NNMULT_DIM);
 | 
			
		||||
 | 
			
		||||
    verify_results_q7(mult_out_q7, mult_ref_q7, NNMULT_DIM);
 | 
			
		||||
 | 
			
		||||
    // Test q15
 | 
			
		||||
    arm_nn_mult_q15(test2, test2+NNMULT_DIM, mult_out_q15, 13, NNMULT_DIM);
 | 
			
		||||
 | 
			
		||||
    arm_nn_mult_q15_ref(test2, test2+NNMULT_DIM, mult_ref_q15, 13, NNMULT_DIM);
 | 
			
		||||
 | 
			
		||||
    verify_results_q15(mult_out_q15, mult_ref_q15, NNMULT_DIM);
 | 
			
		||||
 | 
			
		||||
    arm_nn_mult_q15(test2, test2+NNMULT_DIM, mult_out_q15, 18, NNMULT_DIM);
 | 
			
		||||
 | 
			
		||||
    arm_nn_mult_q15_ref(test2, test2+NNMULT_DIM, mult_ref_q15, 18, NNMULT_DIM);
 | 
			
		||||
 | 
			
		||||
    verify_results_q15(mult_out_q15, mult_ref_q15, NNMULT_DIM);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef TEST_SIGMOID
 | 
			
		||||
 | 
			
		||||
#define SIGMOID_DIM 128
 | 
			
		||||
 | 
			
		||||
    /* This part tests the running of sigmoid functions */
 | 
			
		||||
 | 
			
		||||
    test1 = new q7_t[SIGMOID_DIM];
 | 
			
		||||
    test2 = new q15_t[SIGMOID_DIM];
 | 
			
		||||
    test3 = new q7_t[SIGMOID_DIM];
 | 
			
		||||
    test4 = new q15_t[SIGMOID_DIM];
 | 
			
		||||
 | 
			
		||||
    srand(1);
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < SIGMOID_DIM; i++)
 | 
			
		||||
    {
 | 
			
		||||
        test1[i] = (rand() % 256 - 128);
 | 
			
		||||
        test2[i] = (rand() % 65536 - 32768);
 | 
			
		||||
        test3[i] = test1[i];
 | 
			
		||||
        test4[i] = test2[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    arm_nn_activations_direct_q7(test3, SIGMOID_DIM, 3, ARM_SIGMOID);
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < SIGMOID_DIM; i++)
 | 
			
		||||
    {
 | 
			
		||||
        printf("in: %d  out: %d\n", test1[i], test3[i]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    printf("start testing q15_t sigmoid\n\n");
 | 
			
		||||
 | 
			
		||||
    arm_nn_activations_direct_q15(test4, SIGMOID_DIM, 3, ARM_SIGMOID);
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < SIGMOID_DIM; i++)
 | 
			
		||||
    {
 | 
			
		||||
        printf("in: %d  out: %d\n", test2[i], test4[i]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    delete[]test1;
 | 
			
		||||
    delete[]test2;
 | 
			
		||||
    delete[]test3;
 | 
			
		||||
    delete[]test4;
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef TEST_TANH
 | 
			
		||||
 | 
			
		||||
#define TANH_DIM 128
 | 
			
		||||
 | 
			
		||||
    /* This part tests the running of sigmoid functions */
 | 
			
		||||
 | 
			
		||||
    test1 = new q7_t[TANH_DIM];
 | 
			
		||||
    test2 = new q15_t[TANH_DIM];
 | 
			
		||||
    test3 = new q7_t[TANH_DIM];
 | 
			
		||||
    test4 = new q15_t[TANH_DIM];
 | 
			
		||||
 | 
			
		||||
    srand(1);
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < TANH_DIM; i++)
 | 
			
		||||
    {
 | 
			
		||||
        test1[i] = (rand() % 256 - 128);
 | 
			
		||||
        test2[i] = (rand() % 65536 - 32768);
 | 
			
		||||
        test3[i] = test1[i];
 | 
			
		||||
        test4[i] = test2[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    arm_nn_activations_direct_q7(test3, TANH_DIM, 3, ARM_TANH);
 | 
			
		||||
 | 
			
		||||
    printf("start testing q7_t tanh\n\n");
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < TANH_DIM; i++)
 | 
			
		||||
    {
 | 
			
		||||
        printf("in: %d  out: %d\n", test1[i], test3[i]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    printf("start testing q15_t tanh\n\n");
 | 
			
		||||
 | 
			
		||||
    arm_nn_activations_direct_q15(test4, TANH_DIM, 3, ARM_TANH);
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < TANH_DIM; i++)
 | 
			
		||||
    {
 | 
			
		||||
        printf("in: %d  out: %d\n", test2[i], test4[i]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    delete[]test1;
 | 
			
		||||
    delete[]test2;
 | 
			
		||||
    delete[]test3;
 | 
			
		||||
    delete[]test4;
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef TEST_POOL
 | 
			
		||||
 | 
			
		||||
#define POOL_IM_DIM 32
 | 
			
		||||
#define POOL_IM_CH 8
 | 
			
		||||
 | 
			
		||||
    test1 = new q7_t[POOL_IM_DIM * POOL_IM_DIM * POOL_IM_CH * 2];
 | 
			
		||||
    test2 = new q15_t[POOL_IM_DIM * POOL_IM_CH];
 | 
			
		||||
    test3 = new q7_t[POOL_IM_DIM * POOL_IM_DIM * POOL_IM_CH];
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < POOL_IM_DIM * POOL_IM_DIM * POOL_IM_CH; i++)
 | 
			
		||||
    {
 | 
			
		||||
        test1[i] = (rand() % 256 - 128);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    q7_t     *img_in = test1 + POOL_IM_DIM * POOL_IM_DIM * POOL_IM_CH;
 | 
			
		||||
    q7_t     *pool_out_ref = test3;
 | 
			
		||||
    q7_t     *pool_out_opt = test3 + POOL_IM_DIM * POOL_IM_DIM * POOL_IM_CH / 2;
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < POOL_IM_DIM * POOL_IM_DIM * POOL_IM_CH; i++)
 | 
			
		||||
    {
 | 
			
		||||
        test3[i] = 0;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // copy over the img input
 | 
			
		||||
    for (int i = 0; i < POOL_IM_DIM * POOL_IM_DIM * POOL_IM_CH; i++)
 | 
			
		||||
    {
 | 
			
		||||
        img_in[i] = test1[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    initialize_results_q7(pool_out_ref, pool_out_opt, POOL_IM_DIM / 2 * POOL_IM_DIM / 2 * POOL_IM_CH);
 | 
			
		||||
 | 
			
		||||
    printf("Start maxpool reference implementation\n");
 | 
			
		||||
 | 
			
		||||
    arm_maxpool_q7_HWC_ref(img_in, POOL_IM_DIM, POOL_IM_CH, 3, 0, 2, POOL_IM_DIM / 2, (q7_t *) test2, pool_out_ref);
 | 
			
		||||
 | 
			
		||||
    // copy over the img input
 | 
			
		||||
    for (int i = 0; i < POOL_IM_DIM * POOL_IM_DIM * POOL_IM_CH; i++)
 | 
			
		||||
    {
 | 
			
		||||
        img_in[i] = test1[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    printf("Start maxpool opt implementation\n");
 | 
			
		||||
 | 
			
		||||
    arm_maxpool_q7_HWC(img_in, POOL_IM_DIM, POOL_IM_CH, 3, 0, 2, POOL_IM_DIM / 2, (q7_t *) test2, pool_out_opt);
 | 
			
		||||
 | 
			
		||||
    verify_results_q7(pool_out_ref, pool_out_opt, POOL_IM_DIM / 2 * POOL_IM_DIM / 2 * POOL_IM_CH);
 | 
			
		||||
 | 
			
		||||
    // copy over the img input
 | 
			
		||||
    for (int i = 0; i < POOL_IM_DIM * POOL_IM_DIM * POOL_IM_CH; i++)
 | 
			
		||||
    {
 | 
			
		||||
        img_in[i] = test1[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // copy over the img input
 | 
			
		||||
    for (int i = 0; i < POOL_IM_DIM * POOL_IM_DIM * POOL_IM_CH; i++)
 | 
			
		||||
    {
 | 
			
		||||
        img_in[i] = test1[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    printf("Start avepool ref implementation\n");
 | 
			
		||||
 | 
			
		||||
    arm_avepool_q7_HWC_ref(img_in, POOL_IM_DIM, POOL_IM_CH, 3, 0, 2, POOL_IM_DIM / 2, (q7_t *) test2, pool_out_ref);
 | 
			
		||||
 | 
			
		||||
    // copy over the img input
 | 
			
		||||
    for (int i = 0; i < POOL_IM_DIM * POOL_IM_DIM * POOL_IM_CH; i++)
 | 
			
		||||
    {
 | 
			
		||||
        img_in[i] = test1[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    printf("Start avepool opt implementation\n");
 | 
			
		||||
 | 
			
		||||
    arm_avepool_q7_HWC(img_in, POOL_IM_DIM, POOL_IM_CH, 3, 0, 2, POOL_IM_DIM / 2, (q7_t *) test2, pool_out_opt);
 | 
			
		||||
 | 
			
		||||
    // special check here
 | 
			
		||||
    bool      if_ave_pool_match = true;
 | 
			
		||||
    for (int i = 0; i < POOL_IM_DIM / 2 * POOL_IM_DIM / 2 * POOL_IM_CH; i++)
 | 
			
		||||
    {
 | 
			
		||||
        // we tolerate at most difference of 1 here because of rounding errors
 | 
			
		||||
        if (pool_out_ref[i] - pool_out_opt[i] >= 2 || pool_out_opt[i] - pool_out_ref[i] >= 2)
 | 
			
		||||
        {
 | 
			
		||||
            printf("Output mismatch at %d, expected %d, actual %d\n", i, pool_out_ref[i], pool_out_opt[i]);
 | 
			
		||||
            if_ave_pool_match = false;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    if (if_ave_pool_match == true)
 | 
			
		||||
    {
 | 
			
		||||
        printf("Outputs match.\n");
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    delete[]test1;
 | 
			
		||||
    delete[]test2;
 | 
			
		||||
    delete[]test3;
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef TEST_RELU
 | 
			
		||||
 | 
			
		||||
#define RELU_DIM 127
 | 
			
		||||
 | 
			
		||||
    test1 = new q7_t[RELU_DIM];
 | 
			
		||||
    test2 = new q15_t[RELU_DIM];
 | 
			
		||||
    test3 = new q7_t[RELU_DIM];
 | 
			
		||||
    test4 = new q15_t[RELU_DIM];
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < RELU_DIM; i++)
 | 
			
		||||
    {
 | 
			
		||||
        test1[i] = (rand() % 256 - 128);
 | 
			
		||||
        test2[i] = (rand() % 65536 - 32768);
 | 
			
		||||
        test3[i] = test1[i];
 | 
			
		||||
        test4[i] = test2[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    q7_t     *relu_ref_data_q7 = test1;
 | 
			
		||||
    q7_t     *relu_opt_data_q7 = test3;
 | 
			
		||||
    q15_t    *relu_ref_data_q15 = test2;
 | 
			
		||||
    q15_t    *relu_opt_data_q15 = test4;
 | 
			
		||||
 | 
			
		||||
    printf("Start ref relu q7 implementation\n");
 | 
			
		||||
 | 
			
		||||
    arm_relu_q7_ref(relu_ref_data_q7, RELU_DIM);
 | 
			
		||||
 | 
			
		||||
    printf("Start opt relu q7 implementation\n");
 | 
			
		||||
 | 
			
		||||
    arm_relu_q7(relu_opt_data_q7, RELU_DIM);
 | 
			
		||||
 | 
			
		||||
    verify_results_q7(relu_ref_data_q7, relu_opt_data_q7, RELU_DIM);
 | 
			
		||||
 | 
			
		||||
    printf("Start ref relu q15 implementation\n");
 | 
			
		||||
 | 
			
		||||
    arm_relu_q15_ref(relu_ref_data_q15, RELU_DIM);
 | 
			
		||||
 | 
			
		||||
    printf("Start opt relu q15 implementation\n");
 | 
			
		||||
 | 
			
		||||
    arm_relu_q15(relu_opt_data_q15, RELU_DIM);
 | 
			
		||||
 | 
			
		||||
    verify_results_q15(relu_ref_data_q15, relu_opt_data_q15, RELU_DIM);
 | 
			
		||||
 | 
			
		||||
    delete[]test1;
 | 
			
		||||
    delete[]test2;
 | 
			
		||||
    delete[]test3;
 | 
			
		||||
    delete[]test4;
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef TEST_IP
 | 
			
		||||
 | 
			
		||||
#define IP_ROW_DIM 127
 | 
			
		||||
#define IP_COL_DIM 127
 | 
			
		||||
 | 
			
		||||
    q7_t      ip_weights[IP_ROW_DIM * IP_COL_DIM] = IP2_WEIGHT;
 | 
			
		||||
    q7_t      ip_q7_opt_weights[IP_ROW_DIM * IP_COL_DIM] = IP4_WEIGHT;
 | 
			
		||||
    q7_t      ip_q7_q15_opt_weights[IP_ROW_DIM * IP_COL_DIM] = IP4_q7_q15_WEIGHT;
 | 
			
		||||
    q15_t     ip_q15_weights[IP_ROW_DIM * IP_COL_DIM] = IP2_WEIGHT;
 | 
			
		||||
    q15_t     ip_q15_opt_weights[IP_ROW_DIM * IP_COL_DIM] = IP4_WEIGHT_Q15;
 | 
			
		||||
 | 
			
		||||
    test1 = new q7_t[IP_COL_DIM + IP_ROW_DIM];
 | 
			
		||||
    test2 = new q15_t[IP_COL_DIM];
 | 
			
		||||
    test3 = new q7_t[IP_ROW_DIM * 3];
 | 
			
		||||
    test4 = new q15_t[IP_COL_DIM + IP_ROW_DIM * 2];
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < IP_ROW_DIM + IP_COL_DIM; i++)
 | 
			
		||||
    {
 | 
			
		||||
        test1[i] = rand() % 256 - 100;
 | 
			
		||||
    }
 | 
			
		||||
    for (int i = 0; i < IP_ROW_DIM * 3; i++)
 | 
			
		||||
    {
 | 
			
		||||
        test3[i] = 0;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    q7_t     *ip_bias_q7 = test1 + IP_COL_DIM;
 | 
			
		||||
 | 
			
		||||
    q7_t     *ip_out_q7_ref = test3;
 | 
			
		||||
    q7_t     *ip_out_q7_opt = test3 + IP_ROW_DIM;
 | 
			
		||||
    q7_t     *ip_out_q7_opt_fast = test3 + 2 * IP_ROW_DIM;
 | 
			
		||||
    q15_t    *ip_out_q15_ref = test4 + IP_COL_DIM;
 | 
			
		||||
    q15_t    *ip_out_q15_opt = test4 + IP_COL_DIM + IP_ROW_DIM;
 | 
			
		||||
 | 
			
		||||
    initialize_results_q7(ip_out_q7_ref, ip_out_q7_opt, IP_ROW_DIM);
 | 
			
		||||
    initialize_results_q7(ip_out_q7_ref, ip_out_q7_opt_fast, IP_ROW_DIM);
 | 
			
		||||
    initialize_results_q7(ip_out_q7_ref, ip_out_q7_opt_fast, IP_ROW_DIM);
 | 
			
		||||
 | 
			
		||||
    printf("Start ref q7 implementation\n");
 | 
			
		||||
 | 
			
		||||
    arm_fully_connected_q7_ref(test1, ip_weights, IP_COL_DIM, IP_ROW_DIM, 1, 7, ip_bias_q7, ip_out_q7_ref, test2);
 | 
			
		||||
 | 
			
		||||
    printf("Start q7 implementation\n");
 | 
			
		||||
 | 
			
		||||
    arm_fully_connected_q7(test1, ip_weights, IP_COL_DIM, IP_ROW_DIM, 1, 7, ip_bias_q7, ip_out_q7_opt, test2);
 | 
			
		||||
 | 
			
		||||
    verify_results_q7(ip_out_q7_ref, ip_out_q7_opt, IP_ROW_DIM);
 | 
			
		||||
 | 
			
		||||
    printf("Start q7 ref opt implementation\n");
 | 
			
		||||
 | 
			
		||||
    arm_fully_connected_q7_opt_ref(test1, ip_q7_opt_weights, IP_COL_DIM, IP_ROW_DIM, 1, 7, ip_bias_q7,
 | 
			
		||||
                                   ip_out_q7_opt_fast, test2);
 | 
			
		||||
 | 
			
		||||
    verify_results_q7(ip_out_q7_ref, ip_out_q7_opt_fast, IP_ROW_DIM);
 | 
			
		||||
 | 
			
		||||
    printf("Start q7 opt implementation\n");
 | 
			
		||||
 | 
			
		||||
    arm_fully_connected_q7_opt(test1, ip_q7_opt_weights, IP_COL_DIM, IP_ROW_DIM, 1, 7, ip_bias_q7, ip_out_q7_opt_fast,
 | 
			
		||||
                               test2);
 | 
			
		||||
 | 
			
		||||
    verify_results_q7(ip_out_q7_ref, ip_out_q7_opt_fast, IP_ROW_DIM);
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < IP_ROW_DIM + IP_COL_DIM; i++)
 | 
			
		||||
    {
 | 
			
		||||
        test4[i] = (rand() % 65536 - 32768);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    initialize_results_q15(ip_out_q15_ref, ip_out_q15_opt, IP_ROW_DIM);
 | 
			
		||||
 | 
			
		||||
    printf("Start ref q15 implementation\n");
 | 
			
		||||
 | 
			
		||||
    arm_fully_connected_q15_ref(test4, ip_q15_weights, IP_COL_DIM, IP_ROW_DIM, 1, 7, test2, ip_out_q15_ref, NULL);
 | 
			
		||||
 | 
			
		||||
    printf("Start q15 implementation\n");
 | 
			
		||||
 | 
			
		||||
    arm_fully_connected_q15(test4, ip_q15_weights, IP_COL_DIM, IP_ROW_DIM, 1, 7, test2, ip_out_q15_opt, NULL);
 | 
			
		||||
 | 
			
		||||
    verify_results_q15(ip_out_q15_ref, ip_out_q15_opt, IP_ROW_DIM);
 | 
			
		||||
 | 
			
		||||
    printf("Start ref opt q15 implementation\n");
 | 
			
		||||
 | 
			
		||||
    arm_fully_connected_q15_opt_ref(test4, ip_q15_opt_weights, IP_COL_DIM, IP_ROW_DIM, 1, 7, test2, ip_out_q15_opt,
 | 
			
		||||
                                    NULL);
 | 
			
		||||
 | 
			
		||||
    verify_results_q15(ip_out_q15_ref, ip_out_q15_opt, IP_ROW_DIM);
 | 
			
		||||
 | 
			
		||||
    printf("Start opt q15 implementation\n");
 | 
			
		||||
 | 
			
		||||
    arm_fully_connected_q15_opt(test4, ip_q15_opt_weights, IP_COL_DIM, IP_ROW_DIM, 1, 7, test2, ip_out_q15_opt, NULL);
 | 
			
		||||
 | 
			
		||||
    verify_results_q15(ip_out_q15_ref, ip_out_q15_opt, IP_ROW_DIM);
 | 
			
		||||
 | 
			
		||||
    initialize_results_q15(ip_out_q15_ref, ip_out_q15_opt, IP_ROW_DIM);
 | 
			
		||||
 | 
			
		||||
    printf("Start ref q7_q15 implementation\n");
 | 
			
		||||
 | 
			
		||||
    arm_fully_connected_mat_q7_vec_q15_ref(test4, ip_weights, IP_COL_DIM, IP_ROW_DIM, 1, 7, ip_bias_q7, ip_out_q15_ref,
 | 
			
		||||
                                           test2);
 | 
			
		||||
 | 
			
		||||
    printf("Start q7_q15 implementation\n");
 | 
			
		||||
 | 
			
		||||
    arm_fully_connected_mat_q7_vec_q15(test4, ip_weights, IP_COL_DIM, IP_ROW_DIM, 1, 7, ip_bias_q7, ip_out_q15_opt,
 | 
			
		||||
                                       test2);
 | 
			
		||||
 | 
			
		||||
    verify_results_q15(ip_out_q15_ref, ip_out_q15_opt, IP_ROW_DIM);
 | 
			
		||||
 | 
			
		||||
    printf("Start ref opt q7_q15 implementation\n");
 | 
			
		||||
 | 
			
		||||
    arm_fully_connected_mat_q7_vec_q15_opt_ref(test4, ip_q7_q15_opt_weights, IP_COL_DIM, IP_ROW_DIM, 1, 7, ip_bias_q7,
 | 
			
		||||
                                               ip_out_q15_opt, test2);
 | 
			
		||||
 | 
			
		||||
    verify_results_q15(ip_out_q15_ref, ip_out_q15_opt, IP_ROW_DIM);
 | 
			
		||||
 | 
			
		||||
    printf("Start opt q7_q15 implementation\n");
 | 
			
		||||
 | 
			
		||||
    arm_fully_connected_mat_q7_vec_q15_opt(test4, ip_q7_q15_opt_weights, IP_COL_DIM, IP_ROW_DIM, 1, 7, ip_bias_q7,
 | 
			
		||||
                                           ip_out_q15_opt, test2);
 | 
			
		||||
 | 
			
		||||
    verify_results_q15(ip_out_q15_ref, ip_out_q15_opt, IP_ROW_DIM);
 | 
			
		||||
 | 
			
		||||
    delete[]test1;
 | 
			
		||||
    delete[]test2;
 | 
			
		||||
    delete[]test3;
 | 
			
		||||
    delete[]test4;
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef TEST_NONSQUARE
 | 
			
		||||
 | 
			
		||||
/* Use RCONV to differential with square CONV */
 | 
			
		||||
 | 
			
		||||
#define RCONV_IM_DIM_X 10
 | 
			
		||||
#define RCONV_IM_DIM_Y 8
 | 
			
		||||
#define RCONV_IM_CH 4
 | 
			
		||||
#define RCONV_KER_DIM_X 5
 | 
			
		||||
#define RCONV_KER_DIM_Y 3
 | 
			
		||||
#define RCONV_STRIDE_X 1
 | 
			
		||||
#define RCONV_STRIDE_Y 1
 | 
			
		||||
#define RCONV_PADDING_X 2
 | 
			
		||||
#define RCONV_PADDING_Y 1
 | 
			
		||||
#define RCONV_OUT_CH 4
 | 
			
		||||
#define RCONV_OUT_DIM_X 10
 | 
			
		||||
#define RCONV_OUT_DIM_Y 8
 | 
			
		||||
 | 
			
		||||
    test1 = new q7_t[RCONV_KER_DIM_Y * RCONV_KER_DIM_X * RCONV_IM_CH * RCONV_OUT_CH + RCONV_OUT_CH];
 | 
			
		||||
    test2 = new q15_t[2 * RCONV_KER_DIM_Y * RCONV_KER_DIM_X * RCONV_IM_CH];
 | 
			
		||||
    test3 =
 | 
			
		||||
        new q7_t[RCONV_IM_DIM_Y * RCONV_IM_DIM_X * RCONV_IM_CH + 2 * RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH];
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < RCONV_KER_DIM_Y * RCONV_KER_DIM_X * RCONV_IM_CH * RCONV_OUT_CH + RCONV_OUT_CH; i++)
 | 
			
		||||
    {
 | 
			
		||||
        test1[i] = rand() % 256 - 100;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (int i = 0;
 | 
			
		||||
         i < RCONV_IM_DIM_Y * RCONV_IM_DIM_X * RCONV_IM_CH + 2 * RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH; i++)
 | 
			
		||||
    {
 | 
			
		||||
        test3[i] = rand() % 256 - 100;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    q7_t     *rconv_weight_q7 = test1;
 | 
			
		||||
    q7_t     *rconv_bias_q7 = test1 + RCONV_KER_DIM_Y * RCONV_KER_DIM_X * RCONV_IM_CH * RCONV_OUT_CH;
 | 
			
		||||
 | 
			
		||||
    q15_t    *rconv_buf = test2;
 | 
			
		||||
 | 
			
		||||
    q7_t     *rconv_im_in_q7 = test3;
 | 
			
		||||
    q7_t     *rconv_im_out_ref_q7 = test3 + RCONV_IM_DIM_Y * RCONV_IM_DIM_X * RCONV_IM_CH;
 | 
			
		||||
    q7_t     *rconv_im_out_opt_q7 =
 | 
			
		||||
        test3 + RCONV_IM_DIM_Y * RCONV_IM_DIM_X * RCONV_IM_CH + RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH;
 | 
			
		||||
 | 
			
		||||
    initialize_results_q7(rconv_im_out_ref_q7, rconv_im_out_opt_q7, RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH);
 | 
			
		||||
 | 
			
		||||
    printf("start conv q7 nonsquare ref implementation\n");
 | 
			
		||||
    arm_convolve_HWC_q7_ref_nonsquare(rconv_im_in_q7, RCONV_IM_DIM_X, RCONV_IM_DIM_Y, RCONV_IM_CH, rconv_weight_q7,
 | 
			
		||||
                                      RCONV_OUT_CH, RCONV_KER_DIM_X, RCONV_KER_DIM_Y, RCONV_PADDING_X, RCONV_PADDING_Y,
 | 
			
		||||
                                      RCONV_STRIDE_X, RCONV_STRIDE_Y, rconv_bias_q7, 1, 7, rconv_im_out_ref_q7,
 | 
			
		||||
                                      RCONV_OUT_DIM_X, RCONV_OUT_DIM_Y, rconv_buf, NULL);
 | 
			
		||||
 | 
			
		||||
    printf("start conv q7 nonsquare opt implementation\n");
 | 
			
		||||
    arm_convolve_HWC_q7_fast_nonsquare(rconv_im_in_q7, RCONV_IM_DIM_X, RCONV_IM_DIM_Y, RCONV_IM_CH, rconv_weight_q7,
 | 
			
		||||
                                       RCONV_OUT_CH, RCONV_KER_DIM_X, RCONV_KER_DIM_Y, RCONV_PADDING_X, RCONV_PADDING_Y,
 | 
			
		||||
                                       RCONV_STRIDE_X, RCONV_STRIDE_Y, rconv_bias_q7, 1, 7, rconv_im_out_opt_q7,
 | 
			
		||||
                                       RCONV_OUT_DIM_X, RCONV_OUT_DIM_Y, rconv_buf, NULL);
 | 
			
		||||
 | 
			
		||||
    verify_results_q7(rconv_im_out_ref_q7, rconv_im_out_opt_q7, RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH);
 | 
			
		||||
 | 
			
		||||
    initialize_results_q7(rconv_im_out_ref_q7, rconv_im_out_opt_q7, RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH);
 | 
			
		||||
 | 
			
		||||
    printf("start conv q7 nonsquare ref implementation\n");
 | 
			
		||||
    arm_convolve_HWC_q7_ref_nonsquare(rconv_im_in_q7, RCONV_IM_DIM_X, RCONV_IM_DIM_Y, RCONV_IM_CH, rconv_weight_q7,
 | 
			
		||||
                                      RCONV_OUT_CH, RCONV_KER_DIM_X, RCONV_KER_DIM_Y, RCONV_PADDING_X, RCONV_PADDING_Y,
 | 
			
		||||
                                      RCONV_STRIDE_X, RCONV_STRIDE_Y, rconv_bias_q7, 1, 7, rconv_im_out_ref_q7,
 | 
			
		||||
                                      RCONV_OUT_DIM_X, RCONV_OUT_DIM_Y, rconv_buf, NULL);
 | 
			
		||||
 | 
			
		||||
    printf("start conv q7 nonsquare basic implementation\n");
 | 
			
		||||
    arm_convolve_HWC_q7_basic_nonsquare(rconv_im_in_q7, RCONV_IM_DIM_X, RCONV_IM_DIM_Y, RCONV_IM_CH, rconv_weight_q7,
 | 
			
		||||
                                       RCONV_OUT_CH, RCONV_KER_DIM_X, RCONV_KER_DIM_Y, RCONV_PADDING_X, RCONV_PADDING_Y,
 | 
			
		||||
                                       RCONV_STRIDE_X, RCONV_STRIDE_Y, rconv_bias_q7, 1, 7, rconv_im_out_opt_q7,
 | 
			
		||||
                                       RCONV_OUT_DIM_X, RCONV_OUT_DIM_Y, rconv_buf, NULL);
 | 
			
		||||
 | 
			
		||||
    verify_results_q7(rconv_im_out_ref_q7, rconv_im_out_opt_q7, RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH);
 | 
			
		||||
 | 
			
		||||
    initialize_results_q7(rconv_im_out_ref_q7, rconv_im_out_opt_q7, RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH);
 | 
			
		||||
 | 
			
		||||
    printf("start 1x1 conv q7 nonsquare fast implementation\n");
 | 
			
		||||
    arm_convolve_HWC_q7_fast_nonsquare(rconv_im_in_q7, RCONV_IM_DIM_X, RCONV_IM_DIM_Y, RCONV_IM_CH, rconv_weight_q7,
 | 
			
		||||
                                       RCONV_OUT_CH, 1, 1, 0, 0, RCONV_STRIDE_X,
 | 
			
		||||
                                       RCONV_STRIDE_Y, rconv_bias_q7, 1, 7, rconv_im_out_ref_q7, RCONV_OUT_DIM_X,
 | 
			
		||||
                                       RCONV_OUT_DIM_Y, rconv_buf, NULL);
 | 
			
		||||
 | 
			
		||||
    printf("start 1x1 conv q7 nonsquare dedicated function implementation\n");
 | 
			
		||||
    arm_convolve_1x1_HWC_q7_fast_nonsquare(rconv_im_in_q7, RCONV_IM_DIM_X, RCONV_IM_DIM_Y, RCONV_IM_CH, rconv_weight_q7,
 | 
			
		||||
                                           RCONV_OUT_CH, 1, 1, 0, 0, RCONV_STRIDE_X,
 | 
			
		||||
                                           RCONV_STRIDE_Y, rconv_bias_q7, 1, 7, rconv_im_out_opt_q7, RCONV_OUT_DIM_X,
 | 
			
		||||
                                           RCONV_OUT_DIM_Y, rconv_buf, NULL);
 | 
			
		||||
 | 
			
		||||
    verify_results_q7(rconv_im_out_ref_q7, rconv_im_out_opt_q7, RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH);
 | 
			
		||||
 | 
			
		||||
    printf("start depthwise separable conv q7 nonsquare ref implementation\n");
 | 
			
		||||
    arm_depthwise_separable_conv_HWC_q7_ref_nonsquare(rconv_im_in_q7, RCONV_IM_DIM_X, RCONV_IM_DIM_Y, RCONV_IM_CH,
 | 
			
		||||
                                                      rconv_weight_q7, RCONV_OUT_CH, RCONV_KER_DIM_X, RCONV_KER_DIM_Y,
 | 
			
		||||
                                                      RCONV_PADDING_X, RCONV_PADDING_Y, RCONV_STRIDE_X, RCONV_STRIDE_Y,
 | 
			
		||||
                                                      rconv_bias_q7, 1, 7, rconv_im_out_ref_q7, RCONV_OUT_DIM_X,
 | 
			
		||||
                                                      RCONV_OUT_DIM_Y, rconv_buf, NULL);
 | 
			
		||||
 | 
			
		||||
    printf("start depthwise separable conv q7 nonsquare opt implementation\n");
 | 
			
		||||
    arm_depthwise_separable_conv_HWC_q7_nonsquare(rconv_im_in_q7, RCONV_IM_DIM_X, RCONV_IM_DIM_Y, RCONV_IM_CH,
 | 
			
		||||
                                                  rconv_weight_q7, RCONV_OUT_CH, RCONV_KER_DIM_X, RCONV_KER_DIM_Y,
 | 
			
		||||
                                                  RCONV_PADDING_X, RCONV_PADDING_Y, RCONV_STRIDE_X, RCONV_STRIDE_Y,
 | 
			
		||||
                                                  rconv_bias_q7, 1, 7, rconv_im_out_opt_q7, RCONV_OUT_DIM_X,
 | 
			
		||||
                                                  RCONV_OUT_DIM_Y, rconv_buf, NULL);
 | 
			
		||||
 | 
			
		||||
    verify_results_q7(rconv_im_out_ref_q7, rconv_im_out_opt_q7, RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH);
 | 
			
		||||
 | 
			
		||||
    delete[]test1;
 | 
			
		||||
    delete[]test2;
 | 
			
		||||
    delete[]test3;
 | 
			
		||||
	
 | 
			
		||||
	test2 = new q15_t[RCONV_KER_DIM_Y * RCONV_KER_DIM_X * RCONV_IM_CH * RCONV_OUT_CH + RCONV_OUT_CH]; // weights + bias
 | 
			
		||||
	test4 = new q15_t[2 * RCONV_KER_DIM_Y * RCONV_KER_DIM_X * RCONV_IM_CH   //buffer
 | 
			
		||||
	         + RCONV_IM_DIM_Y * RCONV_IM_DIM_X * RCONV_IM_CH + 2 * RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH]; // i/o
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < RCONV_KER_DIM_Y * RCONV_KER_DIM_X * RCONV_IM_CH * RCONV_OUT_CH + RCONV_OUT_CH; i++)
 | 
			
		||||
    {
 | 
			
		||||
        test2[i] = rand() % 256 - 100;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (int i = 0;
 | 
			
		||||
         i < 2 * RCONV_KER_DIM_Y * RCONV_KER_DIM_X * RCONV_IM_CH
 | 
			
		||||
         + RCONV_IM_DIM_Y * RCONV_IM_DIM_X * RCONV_IM_CH + 2 * RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH;
 | 
			
		||||
        i++)
 | 
			
		||||
    {
 | 
			
		||||
        test4[i] = rand() % 256 - 100;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    q15_t     *rconv_weight_q15 = test2;
 | 
			
		||||
    q15_t     *rconv_bias_q15 = test2 + RCONV_KER_DIM_Y * RCONV_KER_DIM_X * RCONV_IM_CH * RCONV_OUT_CH;
 | 
			
		||||
 | 
			
		||||
    rconv_buf = test4;
 | 
			
		||||
 | 
			
		||||
    q15_t     *rconv_im_in_q15 = test4 + 2 * RCONV_KER_DIM_Y * RCONV_KER_DIM_X * RCONV_IM_CH;
 | 
			
		||||
    q15_t     *rconv_im_out_ref_q15 = rconv_im_in_q15 + RCONV_IM_DIM_Y * RCONV_IM_DIM_X * RCONV_IM_CH;
 | 
			
		||||
    q15_t     *rconv_im_out_opt_q15 = rconv_im_out_ref_q15 + RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH;
 | 
			
		||||
 | 
			
		||||
    initialize_results_q15(rconv_im_out_ref_q15, rconv_im_out_opt_q15, RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH);
 | 
			
		||||
 | 
			
		||||
    printf("start conv q15 nonsquare ref implementation\n");
 | 
			
		||||
    arm_convolve_HWC_q15_nonsquare_ref(rconv_im_in_q15, RCONV_IM_DIM_X, RCONV_IM_DIM_Y, RCONV_IM_CH, rconv_weight_q15,
 | 
			
		||||
                                      RCONV_OUT_CH, RCONV_KER_DIM_X, RCONV_KER_DIM_Y, RCONV_PADDING_X, RCONV_PADDING_Y,
 | 
			
		||||
                                      RCONV_STRIDE_X, RCONV_STRIDE_Y, rconv_bias_q15, 1, 7, rconv_im_out_ref_q15,
 | 
			
		||||
                                      RCONV_OUT_DIM_X, RCONV_OUT_DIM_Y, rconv_buf, NULL);
 | 
			
		||||
 | 
			
		||||
    printf("start conv q5 nonsquare opt implementation\n");
 | 
			
		||||
    arm_convolve_HWC_q15_fast_nonsquare(rconv_im_in_q15, RCONV_IM_DIM_X, RCONV_IM_DIM_Y, RCONV_IM_CH, rconv_weight_q15,
 | 
			
		||||
                                       RCONV_OUT_CH, RCONV_KER_DIM_X, RCONV_KER_DIM_Y, RCONV_PADDING_X, RCONV_PADDING_Y,
 | 
			
		||||
                                       RCONV_STRIDE_X, RCONV_STRIDE_Y, rconv_bias_q15, 1, 7, rconv_im_out_opt_q15,
 | 
			
		||||
                                       RCONV_OUT_DIM_X, RCONV_OUT_DIM_Y, rconv_buf, NULL);
 | 
			
		||||
 | 
			
		||||
    verify_results_q15(rconv_im_out_ref_q15, rconv_im_out_opt_q15, RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH);
 | 
			
		||||
	
 | 
			
		||||
    delete [] test2;
 | 
			
		||||
    delete [] test4;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef TEST_CONV
 | 
			
		||||
 | 
			
		||||
#define CONV_IM_DIM 16
 | 
			
		||||
#define CONV_IM_CH 16
 | 
			
		||||
#define CONV_KER_DIM 5
 | 
			
		||||
#define CONV_OUT_CH 16
 | 
			
		||||
#define CONV_OUT_DIM 16
 | 
			
		||||
 | 
			
		||||
    test1 = new q7_t[CONV_KER_DIM * CONV_KER_DIM * CONV_IM_CH * CONV_OUT_CH + CONV_OUT_CH];
 | 
			
		||||
    test2 =
 | 
			
		||||
        new q15_t[CONV_KER_DIM * CONV_KER_DIM * CONV_IM_CH * CONV_OUT_CH +
 | 
			
		||||
                  2 * CONV_KER_DIM * CONV_KER_DIM * CONV_IM_CH * CONV_OUT_CH + CONV_OUT_CH];
 | 
			
		||||
    test3 = new q7_t[CONV_IM_DIM * CONV_IM_DIM * CONV_IM_CH + 2 * CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH];
 | 
			
		||||
    test4 = new q15_t[CONV_IM_DIM * CONV_IM_DIM * CONV_IM_CH + 2 * CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH];
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < CONV_KER_DIM * CONV_KER_DIM * CONV_IM_CH * CONV_OUT_CH + CONV_OUT_CH; i++)
 | 
			
		||||
    {
 | 
			
		||||
        test1[i] = rand() % 256 - 100;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (int i = 0;
 | 
			
		||||
         i <
 | 
			
		||||
         CONV_KER_DIM * CONV_KER_DIM * CONV_IM_CH * CONV_OUT_CH +
 | 
			
		||||
         2 * CONV_KER_DIM * CONV_KER_DIM * CONV_IM_CH * CONV_OUT_CH + CONV_OUT_CH; i++)
 | 
			
		||||
    {
 | 
			
		||||
        test2[i] = (rand() % 65536 - 32768);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < CONV_IM_DIM * CONV_IM_DIM * CONV_IM_CH + 2 * CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH; i++)
 | 
			
		||||
    {
 | 
			
		||||
        test3[i] = rand() % 256 - 100;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < CONV_IM_DIM * CONV_IM_DIM * CONV_IM_CH + 2 * CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH; i++)
 | 
			
		||||
    {
 | 
			
		||||
        test4[i] = (rand() % 65536 - 32768);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    q7_t     *conv_weight_q7 = test1;
 | 
			
		||||
    q7_t     *conv_bias_q7 = test1 + CONV_KER_DIM * CONV_KER_DIM * CONV_IM_CH * CONV_OUT_CH;
 | 
			
		||||
 | 
			
		||||
    q15_t    *conv_weight_q15 = test2;
 | 
			
		||||
    q15_t    *conv_buf = test2 + CONV_KER_DIM * CONV_KER_DIM * CONV_IM_CH * CONV_OUT_CH;
 | 
			
		||||
    q15_t    *conv_bias_q15 =
 | 
			
		||||
        test2 + CONV_KER_DIM * CONV_KER_DIM * CONV_IM_CH * CONV_OUT_CH +
 | 
			
		||||
        2 * CONV_KER_DIM * CONV_KER_DIM * CONV_IM_CH * CONV_OUT_CH;
 | 
			
		||||
 | 
			
		||||
    q7_t     *conv_im_in_q7 = test3;
 | 
			
		||||
    q7_t     *conv_im_out_ref_q7 = test3 + CONV_IM_DIM * CONV_IM_DIM * CONV_IM_CH;
 | 
			
		||||
    q7_t     *conv_im_out_opt_q7 =
 | 
			
		||||
        test3 + CONV_IM_DIM * CONV_IM_DIM * CONV_IM_CH + CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH;
 | 
			
		||||
 | 
			
		||||
    q15_t    *conv_im_in_q15 = test4;
 | 
			
		||||
    q15_t    *conv_im_out_ref_q15 = test4 + CONV_IM_DIM * CONV_IM_DIM * CONV_IM_CH;
 | 
			
		||||
    q15_t    *conv_im_out_opt_q15 =
 | 
			
		||||
        test4 + CONV_IM_DIM * CONV_IM_DIM * CONV_IM_CH + CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH;
 | 
			
		||||
 | 
			
		||||
    initialize_results_q7(conv_im_out_ref_q7, conv_im_out_opt_q7, CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH);
 | 
			
		||||
 | 
			
		||||
    printf("start q7 ref implementation\n");
 | 
			
		||||
 | 
			
		||||
    arm_convolve_HWC_q7_ref(conv_im_in_q7, CONV_IM_DIM, CONV_IM_CH, conv_weight_q7,
 | 
			
		||||
                            CONV_OUT_CH, CONV_KER_DIM, 2, 1, conv_bias_q7, 1, 7, conv_im_out_ref_q7,
 | 
			
		||||
                            CONV_OUT_DIM, conv_buf, NULL);
 | 
			
		||||
 | 
			
		||||
    printf("start q7 basic implementation\n");
 | 
			
		||||
 | 
			
		||||
    arm_convolve_HWC_q7_basic(conv_im_in_q7, CONV_IM_DIM, CONV_IM_CH, conv_weight_q7,
 | 
			
		||||
                              CONV_OUT_CH, CONV_KER_DIM, 2, 1, conv_bias_q7, 1, 7, conv_im_out_opt_q7,
 | 
			
		||||
                              CONV_OUT_DIM, conv_buf, NULL);
 | 
			
		||||
 | 
			
		||||
    verify_results_q7(conv_im_out_ref_q7, conv_im_out_opt_q7, CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH);
 | 
			
		||||
 | 
			
		||||
    printf("start q7 fast implementation\n");
 | 
			
		||||
 | 
			
		||||
    arm_convolve_HWC_q7_fast(conv_im_in_q7, CONV_IM_DIM, CONV_IM_CH, conv_weight_q7,
 | 
			
		||||
                             CONV_OUT_CH, CONV_KER_DIM, 2, 1, conv_bias_q7, 1, 7, conv_im_out_opt_q7,
 | 
			
		||||
                             CONV_OUT_DIM, conv_buf, NULL);
 | 
			
		||||
 | 
			
		||||
    verify_results_q7(conv_im_out_ref_q7, conv_im_out_opt_q7, CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH);
 | 
			
		||||
 | 
			
		||||
    // testing with RGB
 | 
			
		||||
    printf("start q7 ref implementation for RGB\n");
 | 
			
		||||
 | 
			
		||||
    arm_convolve_HWC_q7_ref(conv_im_in_q7, CONV_IM_DIM, 3, conv_weight_q7,
 | 
			
		||||
                            CONV_OUT_CH, CONV_KER_DIM, 2, 1, conv_bias_q7, 1, 7, conv_im_out_ref_q7,
 | 
			
		||||
                            CONV_OUT_DIM, conv_buf, NULL);
 | 
			
		||||
 | 
			
		||||
    printf("start q7 basic implementation for RGB\n");
 | 
			
		||||
 | 
			
		||||
    arm_convolve_HWC_q7_basic(conv_im_in_q7, CONV_IM_DIM, 3, conv_weight_q7,
 | 
			
		||||
                              CONV_OUT_CH, CONV_KER_DIM, 2, 1, conv_bias_q7, 1, 7, conv_im_out_opt_q7,
 | 
			
		||||
                              CONV_OUT_DIM, conv_buf, NULL);
 | 
			
		||||
 | 
			
		||||
    verify_results_q7(conv_im_out_ref_q7, conv_im_out_opt_q7, CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH);
 | 
			
		||||
 | 
			
		||||
    printf("start q7 RGB implementation for RGB\n");
 | 
			
		||||
 | 
			
		||||
    arm_convolve_HWC_q7_RGB(conv_im_in_q7, CONV_IM_DIM, 3, conv_weight_q7,
 | 
			
		||||
                            CONV_OUT_CH, CONV_KER_DIM, 2, 1, conv_bias_q7, 1, 7, conv_im_out_opt_q7,
 | 
			
		||||
                            CONV_OUT_DIM, conv_buf, NULL);
 | 
			
		||||
 | 
			
		||||
    verify_results_q7(conv_im_out_ref_q7, conv_im_out_opt_q7, CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH);
 | 
			
		||||
 | 
			
		||||
    // testing q15
 | 
			
		||||
    initialize_results_q15(conv_im_out_ref_q15, conv_im_out_opt_q15, CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH);
 | 
			
		||||
 | 
			
		||||
    printf("start q15 ref implementation\n");
 | 
			
		||||
 | 
			
		||||
    arm_convolve_HWC_q15_ref(conv_im_in_q15, CONV_IM_DIM, CONV_IM_CH, conv_weight_q15,
 | 
			
		||||
                             CONV_OUT_CH, CONV_KER_DIM, 2, 1, conv_bias_q15, 0, 15, conv_im_out_ref_q15,
 | 
			
		||||
                             CONV_OUT_DIM, conv_buf, NULL);
 | 
			
		||||
 | 
			
		||||
    printf("start q15 basic implementation\n");
 | 
			
		||||
 | 
			
		||||
    arm_convolve_HWC_q15_basic(conv_im_in_q15, CONV_IM_DIM, CONV_IM_CH, conv_weight_q15,
 | 
			
		||||
                               CONV_OUT_CH, CONV_KER_DIM, 2, 1, conv_bias_q15, 0, 15, conv_im_out_opt_q15,
 | 
			
		||||
                               CONV_OUT_DIM, conv_buf, NULL);
 | 
			
		||||
 | 
			
		||||
    verify_results_q15(conv_im_out_ref_q15, conv_im_out_opt_q15, CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH);
 | 
			
		||||
 | 
			
		||||
    printf("start q15 fast implementation\n");
 | 
			
		||||
 | 
			
		||||
    arm_convolve_HWC_q15_fast(conv_im_in_q15, CONV_IM_DIM, CONV_IM_CH, conv_weight_q15,
 | 
			
		||||
                              CONV_OUT_CH, CONV_KER_DIM, 2, 1, conv_bias_q15, 0, 15, conv_im_out_opt_q15,
 | 
			
		||||
                              CONV_OUT_DIM, conv_buf, NULL);
 | 
			
		||||
 | 
			
		||||
    verify_results_q15(conv_im_out_ref_q15, conv_im_out_opt_q15, CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH);
 | 
			
		||||
 | 
			
		||||
    // depthwise separable conv
 | 
			
		||||
    initialize_results_q7(conv_im_out_ref_q7, conv_im_out_opt_q7, CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH);
 | 
			
		||||
 | 
			
		||||
    printf("start q7 depthwise_separable_conv ref implementation\n");
 | 
			
		||||
 | 
			
		||||
    arm_depthwise_separable_conv_HWC_q7_ref(conv_im_in_q7, CONV_IM_DIM, CONV_IM_CH, conv_weight_q7,
 | 
			
		||||
                                            CONV_OUT_CH, CONV_KER_DIM, 2, 1, conv_bias_q7, 1, 7, conv_im_out_ref_q7,
 | 
			
		||||
                                            CONV_OUT_DIM, conv_buf, NULL);
 | 
			
		||||
 | 
			
		||||
    printf("start q7 depthwise_separable_conv implementation\n");
 | 
			
		||||
 | 
			
		||||
    arm_depthwise_separable_conv_HWC_q7(conv_im_in_q7, CONV_IM_DIM, CONV_IM_CH, conv_weight_q7,
 | 
			
		||||
                                        CONV_OUT_CH, CONV_KER_DIM, 2, 1, conv_bias_q7, 1, 7, conv_im_out_opt_q7,
 | 
			
		||||
                                        CONV_OUT_DIM, conv_buf, NULL);
 | 
			
		||||
 | 
			
		||||
    verify_results_q7(conv_im_out_ref_q7, conv_im_out_opt_q7, CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH);
 | 
			
		||||
 | 
			
		||||
    delete[]test1;
 | 
			
		||||
    delete[]test2;
 | 
			
		||||
    delete[]test3;
 | 
			
		||||
    delete[]test4;
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
    test_pass = true;
 | 
			
		||||
    test_index = 0;
 | 
			
		||||
    while (test_flags[test_index] != -1) {
 | 
			
		||||
        if (test_flags[test_index]) {
 | 
			
		||||
             test_pass = false;
 | 
			
		||||
        }
 | 
			
		||||
        test_index ++;
 | 
			
		||||
    }
 | 
			
		||||
    if (test_pass) {
 | 
			
		||||
        printf("All tests passed\n");
 | 
			
		||||
    } else {
 | 
			
		||||
        printf("Test failed passed\n");
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return 0;
 | 
			
		||||
}
 | 
			
		||||
@ -0,0 +1,78 @@
 | 
			
		||||
#ifndef _MAIN_H_
 | 
			
		||||
#define _MAIN_H_
 | 
			
		||||
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
#include <math.h>
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
#include "ref_functions.h"
 | 
			
		||||
 | 
			
		||||
extern int test_index;
 | 
			
		||||
extern q7_t test_flags[50];
 | 
			
		||||
 | 
			
		||||
void initialize_results_q7(q7_t * ref, q7_t * opt, int length)
 | 
			
		||||
{
 | 
			
		||||
    arm_fill_q7(0, ref, length);
 | 
			
		||||
    arm_fill_q7(37, opt, length);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void initialize_results_q15(q15_t * ref, q15_t * opt, int length)
 | 
			
		||||
{
 | 
			
		||||
    arm_fill_q15(0, ref, length);
 | 
			
		||||
    arm_fill_q15(0x5F5, opt, length);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void verify_results_q7(q7_t * ref, q7_t * opt, int length)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
    bool      if_match = true;
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < length; i++)
 | 
			
		||||
    {
 | 
			
		||||
        if (ref[i] != opt[i])
 | 
			
		||||
        {
 | 
			
		||||
            printf("Output mismatch at %d, expected %d, actual %d\r\n", i, ref[i], opt[i]);
 | 
			
		||||
 | 
			
		||||
            if_match = false;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (if_match == true)
 | 
			
		||||
    {
 | 
			
		||||
        printf("Outputs match.\r\n\r\n");
 | 
			
		||||
        test_flags[test_index++] = 0;
 | 
			
		||||
    } else {
 | 
			
		||||
        test_flags[test_index++] = 1;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void verify_results_q15(q15_t * ref, q15_t * opt, int length)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
    bool      if_match = true;
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < length; i++)
 | 
			
		||||
    {
 | 
			
		||||
        if (ref[i] != opt[i])
 | 
			
		||||
        {
 | 
			
		||||
            printf("Output mismatch at %d, expected %d, actual %d\r\n", i, ref[i], opt[i]);
 | 
			
		||||
 | 
			
		||||
            if_match = false;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (if_match == true)
 | 
			
		||||
    {
 | 
			
		||||
        printf("Outputs match.\r\n\r\n");
 | 
			
		||||
        test_flags[test_index++] = 0;
 | 
			
		||||
    } else {
 | 
			
		||||
        test_flags[test_index++] = 1;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
							
								
								
									
										4
									
								
								Drivers/CMSIS/NN/NN_Lib_Tests/nn_test/readme.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										4
									
								
								Drivers/CMSIS/NN/NN_Lib_Tests/nn_test/readme.txt
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,4 @@
 | 
			
		||||
CMSIS DSP_Lib example arm_nnexample_nn_test for
 | 
			
		||||
  Cortex-M3, Cortex-M4 and Cortex-M7.
 | 
			
		||||
 | 
			
		||||
The example is configured for uVision Simulator.
 | 
			
		||||
@ -0,0 +1,101 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_nn_activations_q15.c
 | 
			
		||||
 * Description:  Q15 neural network activation function using direct table look-up
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        17. January 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_common_tables.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 *  @ingroup groupNN
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @addtogroup Acti
 | 
			
		||||
 * @{
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * @brief Q15 neural network activation function using direct table look-up
 | 
			
		||||
   * @param[in,out]   data        pointer to input
 | 
			
		||||
   * @param[in]       size        number of elements
 | 
			
		||||
   * @param[in]       int_width   bit-width of the integer part, assume to be smaller than 3
 | 
			
		||||
   * @param[in]       type        type of activation functions
 | 
			
		||||
   * @return none.
 | 
			
		||||
   *
 | 
			
		||||
   * @details
 | 
			
		||||
   * 
 | 
			
		||||
   * This is the direct table look-up approach.
 | 
			
		||||
   *
 | 
			
		||||
   * Assume here the integer part of the fixed-point is <= 3.
 | 
			
		||||
   * More than 3 just not making much sense, makes no difference with
 | 
			
		||||
   * saturation followed by any of these activation functions. 
 | 
			
		||||
   */
 | 
			
		||||
 | 
			
		||||
void arm_nn_activations_direct_q15(q15_t * data, uint16_t size, uint16_t int_width, arm_nn_activation_type type)
 | 
			
		||||
{
 | 
			
		||||
    uint16_t  i = size;
 | 
			
		||||
    q15_t    *pIn = data;
 | 
			
		||||
    q15_t    *pOut = data;
 | 
			
		||||
    uint16_t  shift_size = 8 + 3 - int_width;
 | 
			
		||||
    uint32_t  bit_mask = 0x7FF >> int_width;
 | 
			
		||||
    uint32_t  full_frac = bit_mask + 1;
 | 
			
		||||
    const q15_t *lookup_table;
 | 
			
		||||
 | 
			
		||||
    switch (type)
 | 
			
		||||
    {
 | 
			
		||||
    case ARM_SIGMOID:
 | 
			
		||||
        lookup_table = sigmoidTable_q15;
 | 
			
		||||
        break;
 | 
			
		||||
    case ARM_TANH:
 | 
			
		||||
    default:
 | 
			
		||||
        lookup_table = tanhTable_q15;
 | 
			
		||||
        break;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    while (i)
 | 
			
		||||
    {
 | 
			
		||||
        q15_t     out;
 | 
			
		||||
        q15_t     in = *pIn++;
 | 
			
		||||
        q15_t     frac = (uint32_t) in & bit_mask;
 | 
			
		||||
        q15_t     value = lookup_table[__USAT(in >> shift_size, 8)];
 | 
			
		||||
        q15_t     value2 = lookup_table[__USAT(1 + (in >> shift_size), 8)];
 | 
			
		||||
 | 
			
		||||
        /* doing the interpolation here for better accuracy */
 | 
			
		||||
        out = ((q31_t) (full_frac - frac) * value + (q31_t) value2 * frac) >> shift_size;
 | 
			
		||||
 | 
			
		||||
        *pOut++ = out;
 | 
			
		||||
        i--;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @} end of Acti group
 | 
			
		||||
 */
 | 
			
		||||
@ -0,0 +1,91 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_nn_activations_q7.c
 | 
			
		||||
 * Description:  Q7 neural network activation function using direct table look-up
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        17. January 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_common_tables.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 *  @ingroup groupNN
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @addtogroup Acti
 | 
			
		||||
 * @{
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * @brief Q7 neural network activation function using direct table look-up
 | 
			
		||||
   * @param[in,out]   data        pointer to input
 | 
			
		||||
   * @param[in]       size        number of elements
 | 
			
		||||
   * @param[in]       int_width   bit-width of the integer part, assume to be smaller than 3
 | 
			
		||||
   * @param[in]       type        type of activation functions
 | 
			
		||||
   * @return none.
 | 
			
		||||
   *
 | 
			
		||||
   * @details
 | 
			
		||||
   * 
 | 
			
		||||
   * This is the direct table look-up approach.
 | 
			
		||||
   *
 | 
			
		||||
   * Assume here the integer part of the fixed-point is <= 3.
 | 
			
		||||
   * More than 3 just not making much sense, makes no difference with
 | 
			
		||||
   * saturation followed by any of these activation functions. 
 | 
			
		||||
   */
 | 
			
		||||
 | 
			
		||||
void arm_nn_activations_direct_q7(q7_t * data, uint16_t size, uint16_t int_width, arm_nn_activation_type type)
 | 
			
		||||
{
 | 
			
		||||
    uint16_t  i = size;
 | 
			
		||||
    q7_t     *pIn = data;
 | 
			
		||||
    q7_t     *pOut = data;
 | 
			
		||||
    q7_t      in;
 | 
			
		||||
    q7_t      out;
 | 
			
		||||
    uint16_t  shift_size = 3 - int_width;
 | 
			
		||||
    const q7_t *lookup_table;
 | 
			
		||||
    switch (type)
 | 
			
		||||
    {
 | 
			
		||||
    case ARM_SIGMOID:
 | 
			
		||||
        lookup_table = sigmoidTable_q7;
 | 
			
		||||
        break;
 | 
			
		||||
    case ARM_TANH:
 | 
			
		||||
    default:
 | 
			
		||||
        lookup_table = tanhTable_q7;
 | 
			
		||||
        break;
 | 
			
		||||
    }
 | 
			
		||||
    while (i)
 | 
			
		||||
    {
 | 
			
		||||
        in = *pIn++;
 | 
			
		||||
        out = lookup_table[(uint8_t) (in >> shift_size)];
 | 
			
		||||
        *pOut++ = out;
 | 
			
		||||
        i--;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @} end of Acti group
 | 
			
		||||
 */
 | 
			
		||||
							
								
								
									
										106
									
								
								Drivers/CMSIS/NN/Source/ActivationFunctions/arm_relu_q15.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										106
									
								
								Drivers/CMSIS/NN/Source/ActivationFunctions/arm_relu_q15.c
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,106 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_relu_q15.c
 | 
			
		||||
 * Description:  Q15 version of ReLU
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        17. January 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 *  @ingroup groupNN
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @addtogroup Acti
 | 
			
		||||
 * @{
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * @brief Q15 RELU function
 | 
			
		||||
   * @param[in,out]   data        pointer to input
 | 
			
		||||
   * @param[in]       size        number of elements
 | 
			
		||||
   * @return none.
 | 
			
		||||
   * 
 | 
			
		||||
   * @details
 | 
			
		||||
   *
 | 
			
		||||
   * Optimized relu with QSUB instructions.
 | 
			
		||||
   *
 | 
			
		||||
   */
 | 
			
		||||
 | 
			
		||||
void arm_relu_q15(q15_t * data, uint16_t size)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
#if defined (ARM_MATH_DSP)
 | 
			
		||||
    /* Run the following code for Cortex-M4 and Cortex-M7 */
 | 
			
		||||
 | 
			
		||||
    uint16_t  i = size >> 1;
 | 
			
		||||
    q15_t    *pIn = data;
 | 
			
		||||
    q15_t    *pOut = data;
 | 
			
		||||
    q31_t     in;
 | 
			
		||||
    q31_t     buf;
 | 
			
		||||
    q31_t     mask;
 | 
			
		||||
 | 
			
		||||
    while (i)
 | 
			
		||||
    {
 | 
			
		||||
        in = *__SIMD32(pIn)++;
 | 
			
		||||
 | 
			
		||||
        /* extract the first bit */
 | 
			
		||||
        buf = __ROR(in & 0x80008000, 15);
 | 
			
		||||
 | 
			
		||||
        /* if MSB=1, mask will be 0xFF, 0x0 otherwise */
 | 
			
		||||
        mask = __QSUB16(0x00000000, buf);
 | 
			
		||||
 | 
			
		||||
        *__SIMD32(pOut)++ = in & (~mask);
 | 
			
		||||
        i--;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (size & 0x1)
 | 
			
		||||
    {
 | 
			
		||||
        if (*pIn < 0)
 | 
			
		||||
        {
 | 
			
		||||
            *pIn = 0;
 | 
			
		||||
        }
 | 
			
		||||
        pIn++;
 | 
			
		||||
    }
 | 
			
		||||
#else
 | 
			
		||||
    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
 | 
			
		||||
    uint16_t  i;
 | 
			
		||||
 | 
			
		||||
    for (i = 0; i < size; i++)
 | 
			
		||||
    {
 | 
			
		||||
        if (data[i] < 0)
 | 
			
		||||
            data[i] = 0;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#endif                          /* ARM_MATH_DSP */
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @} end of Acti group
 | 
			
		||||
 */
 | 
			
		||||
							
								
								
									
										110
									
								
								Drivers/CMSIS/NN/Source/ActivationFunctions/arm_relu_q7.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										110
									
								
								Drivers/CMSIS/NN/Source/ActivationFunctions/arm_relu_q7.c
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,110 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_relu_q7.c
 | 
			
		||||
 * Description:  Q7 version of ReLU
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        17. January 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 *  @ingroup groupNN
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @addtogroup Acti
 | 
			
		||||
 * @{
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * @brief Q7 RELU function
 | 
			
		||||
   * @param[in,out]   data        pointer to input
 | 
			
		||||
   * @param[in]       size        number of elements
 | 
			
		||||
   * @return none.
 | 
			
		||||
   * 
 | 
			
		||||
   * @details
 | 
			
		||||
   *
 | 
			
		||||
   * Optimized relu with QSUB instructions.
 | 
			
		||||
   *
 | 
			
		||||
   */
 | 
			
		||||
 | 
			
		||||
void arm_relu_q7(q7_t * data, uint16_t size)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
#if defined (ARM_MATH_DSP)
 | 
			
		||||
    /* Run the following code for Cortex-M4 and Cortex-M7 */
 | 
			
		||||
 | 
			
		||||
    uint16_t  i = size >> 2;
 | 
			
		||||
    q7_t     *pIn = data;
 | 
			
		||||
    q7_t     *pOut = data;
 | 
			
		||||
    q31_t     in;
 | 
			
		||||
    q31_t     buf;
 | 
			
		||||
    q31_t     mask;
 | 
			
		||||
 | 
			
		||||
    while (i)
 | 
			
		||||
    {
 | 
			
		||||
        in = *__SIMD32(pIn)++;
 | 
			
		||||
 | 
			
		||||
        /* extract the first bit */
 | 
			
		||||
        buf = __ROR(in & 0x80808080, 7);
 | 
			
		||||
 | 
			
		||||
        /* if MSB=1, mask will be 0xFF, 0x0 otherwise */
 | 
			
		||||
        mask = __QSUB8(0x00000000, buf);
 | 
			
		||||
 | 
			
		||||
        *__SIMD32(pOut)++ = in & (~mask);
 | 
			
		||||
        i--;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    i = size & 0x3;
 | 
			
		||||
    while (i)
 | 
			
		||||
    {
 | 
			
		||||
        if (*pIn < 0)
 | 
			
		||||
        {
 | 
			
		||||
            *pIn = 0;
 | 
			
		||||
        }
 | 
			
		||||
        pIn++;
 | 
			
		||||
        i--;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
 | 
			
		||||
 | 
			
		||||
    uint16_t  i;
 | 
			
		||||
 | 
			
		||||
    for (i = 0; i < size; i++)
 | 
			
		||||
    {
 | 
			
		||||
        if (data[i] < 0)
 | 
			
		||||
            data[i] = 0;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#endif                          /* ARM_MATH_DSP */
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @} end of Acti group
 | 
			
		||||
 */
 | 
			
		||||
@ -0,0 +1,235 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_convolve_1x1_HWC_q7_fast_nonsquare.c
 | 
			
		||||
 * Description:  Fast Q7 version of 1x1 convolution (non-square shape)
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        17. January 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 *  @ingroup groupNN
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @addtogroup NNConv
 | 
			
		||||
 * @{
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief Fast Q7 version of 1x1 convolution (non-sqaure shape)
 | 
			
		||||
 * @param[in]       Im_in        pointer to input tensor
 | 
			
		||||
 * @param[in]       dim_im_in_x  input tensor dimention x
 | 
			
		||||
 * @param[in]       dim_im_in_y  input tensor dimention y
 | 
			
		||||
 * @param[in]       ch_im_in     number of input tensor channels
 | 
			
		||||
 * @param[in]       wt           pointer to kernel weights
 | 
			
		||||
 * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
 | 
			
		||||
 * @param[in]       dim_kernel_x filter kernel size x
 | 
			
		||||
 * @param[in]       dim_kernel_y filter kernel size y
 | 
			
		||||
 * @param[in]       padding_x    padding size x
 | 
			
		||||
 * @param[in]       padding_y    padding size y
 | 
			
		||||
 * @param[in]       stride_x     convolution stride x
 | 
			
		||||
 * @param[in]       stride_y     convolution stride y
 | 
			
		||||
 * @param[in]       bias         pointer to bias
 | 
			
		||||
 * @param[in]       bias_shift   amount of left-shift for bias
 | 
			
		||||
 * @param[in]       out_shift    amount of right-shift for output
 | 
			
		||||
 * @param[in,out]   Im_out       pointer to output tensor
 | 
			
		||||
 * @param[in]       dim_im_out_x output tensor dimension x
 | 
			
		||||
 * @param[in]       dim_im_out_y output tensor dimension y
 | 
			
		||||
 * @param[in,out]   bufferA      pointer to buffer space for input 
 | 
			
		||||
 * @param[in,out]   bufferB      pointer to buffer space for output
 | 
			
		||||
 * @return     The function returns either
 | 
			
		||||
 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
 | 
			
		||||
 *
 | 
			
		||||
 * This function is optimized for convolution with 1x1 kernel size (i.e., dim_kernel_x=1
 | 
			
		||||
 * and dim_kernel_y=1). It can be used for the second half of MobileNets [1] after depthwise 
 | 
			
		||||
 * separable convolution.
 | 
			
		||||
 *
 | 
			
		||||
 * This function is the version with full list of optimization tricks, but with
 | 
			
		||||
 * some contraints:
 | 
			
		||||
 *   ch_im_in is multiple of 4
 | 
			
		||||
 *   ch_im_out is multiple of 2
 | 
			
		||||
 *
 | 
			
		||||
 * [1] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
 | 
			
		||||
 * https://arxiv.org/abs/1704.04861
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t * Im_in,
 | 
			
		||||
                                                  const uint16_t dim_im_in_x,
 | 
			
		||||
                                                  const uint16_t dim_im_in_y,
 | 
			
		||||
                                                  const uint16_t ch_im_in,
 | 
			
		||||
                                                  const q7_t * wt,
 | 
			
		||||
                                                  const uint16_t ch_im_out,
 | 
			
		||||
                                                  const uint16_t dim_kernel_x,
 | 
			
		||||
                                                  const uint16_t dim_kernel_y,
 | 
			
		||||
                                                  const uint16_t padding_x,
 | 
			
		||||
                                                  const uint16_t padding_y,
 | 
			
		||||
                                                  const uint16_t stride_x,
 | 
			
		||||
                                                  const uint16_t stride_y,
 | 
			
		||||
                                                  const q7_t * bias,
 | 
			
		||||
                                                  const uint16_t bias_shift,
 | 
			
		||||
                                                  const uint16_t out_shift,
 | 
			
		||||
                                                  q7_t * Im_out,
 | 
			
		||||
                                                  const uint16_t dim_im_out_x,
 | 
			
		||||
                                                  const uint16_t dim_im_out_y, 
 | 
			
		||||
                                                  q15_t * bufferA, 
 | 
			
		||||
                                                  q7_t * bufferB)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
#if defined (ARM_MATH_DSP)
 | 
			
		||||
    /* Run the following code for Cortex-M4 and Cortex-M7 */
 | 
			
		||||
 | 
			
		||||
    int16_t   i_out_y, i_out_x;
 | 
			
		||||
    int16_t   i_ch_out;
 | 
			
		||||
 | 
			
		||||
    /* -----------------------
 | 
			
		||||
     *  Here we use bufferA as q15_t internally as computation are done with q15_t level
 | 
			
		||||
     *  im2col are done to output in q15_t format from q7_t input
 | 
			
		||||
     */
 | 
			
		||||
 | 
			
		||||
    q15_t    *pBuffer = bufferA;
 | 
			
		||||
    q7_t     *pOut = Im_out;
 | 
			
		||||
 | 
			
		||||
    if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0 || dim_kernel_x != 1 || dim_kernel_y != 1
 | 
			
		||||
        || padding_x != 0 || padding_y != 0 || stride_x != 1 || stride_y != 1)
 | 
			
		||||
    {
 | 
			
		||||
        /* check if the input dimension meets the constraints */
 | 
			
		||||
        return ARM_MATH_SIZE_MISMATCH;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
 | 
			
		||||
    {
 | 
			
		||||
        for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
 | 
			
		||||
        {
 | 
			
		||||
            /* This part implements the im2col function */
 | 
			
		||||
            arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_out_y * dim_im_in_x + i_out_x) * ch_im_in, pBuffer,
 | 
			
		||||
                                             ch_im_in);
 | 
			
		||||
            pBuffer += ch_im_in;
 | 
			
		||||
 | 
			
		||||
            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
 | 
			
		||||
            {
 | 
			
		||||
                pOut =
 | 
			
		||||
                    arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in, bias_shift, out_shift, bias, pOut);
 | 
			
		||||
                /* counter reset */
 | 
			
		||||
                pBuffer = bufferA;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* check if there is left-over for compute */
 | 
			
		||||
    if (pBuffer != bufferA)
 | 
			
		||||
    {
 | 
			
		||||
        const q7_t *pA = wt;
 | 
			
		||||
        for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++)
 | 
			
		||||
        {
 | 
			
		||||
            q31_t     sum = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
            q15_t    *pB = bufferA;
 | 
			
		||||
            /* basically each time it process 4 entries */
 | 
			
		||||
            uint16_t  colCnt = ch_im_in * dim_kernel_x * dim_kernel_y >> 2;
 | 
			
		||||
 | 
			
		||||
            while (colCnt)
 | 
			
		||||
            {
 | 
			
		||||
 | 
			
		||||
                q31_t     inA1, inA2;
 | 
			
		||||
                q31_t     inB1, inB2;
 | 
			
		||||
 | 
			
		||||
                pA = (const q7_t *)read_and_pad_reordered((void *)pA, &inA1, &inA2);
 | 
			
		||||
 | 
			
		||||
                inB1 = *__SIMD32(pB)++;
 | 
			
		||||
                sum = __SMLAD(inA1, inB1, sum);
 | 
			
		||||
                inB2 = *__SIMD32(pB)++;
 | 
			
		||||
                sum = __SMLAD(inA2, inB2, sum);
 | 
			
		||||
 | 
			
		||||
                colCnt--;
 | 
			
		||||
            }
 | 
			
		||||
            colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x3;
 | 
			
		||||
            while (colCnt)
 | 
			
		||||
            {
 | 
			
		||||
                q7_t      inA1 = *pA++;
 | 
			
		||||
                q15_t     inB1 = *pB++;
 | 
			
		||||
                sum += inA1 * inB1;
 | 
			
		||||
                colCnt--;
 | 
			
		||||
            }
 | 
			
		||||
            *pOut = (q7_t) __SSAT((sum >> out_shift), 8);
 | 
			
		||||
            pOut++;
 | 
			
		||||
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
 | 
			
		||||
		
 | 
			
		||||
    int       i, j, k, l, m, n;
 | 
			
		||||
    int       conv_out;
 | 
			
		||||
    int       in_row, in_col;
 | 
			
		||||
 | 
			
		||||
    if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0 || dim_kernel_x != 1 || dim_kernel_y != 1
 | 
			
		||||
        || padding_x != 0 || padding_y != 0 || stride_x != 1 || stride_y != 1)
 | 
			
		||||
    {
 | 
			
		||||
        /* check if the input dimension meets the constraints */
 | 
			
		||||
        return ARM_MATH_SIZE_MISMATCH;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (i = 0; i < ch_im_out; i++)
 | 
			
		||||
    {
 | 
			
		||||
        for (j = 0; j < dim_im_out_y; j++)
 | 
			
		||||
        {
 | 
			
		||||
            for (k = 0; k < dim_im_out_x; k++)
 | 
			
		||||
            {
 | 
			
		||||
                conv_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
                for (m = 0; m < dim_kernel_y; m++)
 | 
			
		||||
                {
 | 
			
		||||
                    for (n = 0; n < dim_kernel_x; n++)
 | 
			
		||||
                    {
 | 
			
		||||
                        // if-for implementation
 | 
			
		||||
                        in_row = stride_y * j + m - padding_y;
 | 
			
		||||
                        in_col = stride_x * k + n - padding_x;
 | 
			
		||||
                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
 | 
			
		||||
                        {
 | 
			
		||||
                            for (l = 0; l < ch_im_in; l++)
 | 
			
		||||
                            {
 | 
			
		||||
                                conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] *
 | 
			
		||||
                                    wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + (m * dim_kernel_y + n) * ch_im_in + l];
 | 
			
		||||
                            }
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
                Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#endif                          /* ARM_MATH_DSP */
 | 
			
		||||
 | 
			
		||||
    /* Return to application */
 | 
			
		||||
    return ARM_MATH_SUCCESS;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @} end of NNConv group
 | 
			
		||||
 */
 | 
			
		||||
@ -0,0 +1,207 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_convolve_HWC_q15_basic.c
 | 
			
		||||
 * Description:  Q15 version of convolution
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        17. January 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 *  @ingroup groupNN
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @addtogroup NNConv
 | 
			
		||||
 * @{
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * @brief Basic Q15 convolution function
 | 
			
		||||
   * @param[in]       Im_in       pointer to input tensor
 | 
			
		||||
   * @param[in]       dim_im_in   input tensor dimention
 | 
			
		||||
   * @param[in]       ch_im_in    number of input tensor channels
 | 
			
		||||
   * @param[in]       wt          pointer to kernel weights
 | 
			
		||||
   * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
 | 
			
		||||
   * @param[in]       dim_kernel  filter kernel size
 | 
			
		||||
   * @param[in]       padding     padding sizes
 | 
			
		||||
   * @param[in]       stride      convolution stride
 | 
			
		||||
   * @param[in]       bias        pointer to bias
 | 
			
		||||
   * @param[in]       bias_shift  amount of left-shift for bias
 | 
			
		||||
   * @param[in]       out_shift   amount of right-shift for output
 | 
			
		||||
   * @param[in,out]   Im_out      pointer to output tensor
 | 
			
		||||
   * @param[in]       dim_im_out  output tensor dimension
 | 
			
		||||
   * @param[in,out]   bufferA     pointer to buffer space for input
 | 
			
		||||
   * @param[in,out]   bufferB     pointer to buffer space for output
 | 
			
		||||
   * @return     The function returns <code>ARM_MATH_SUCCESS</code> 
 | 
			
		||||
   *
 | 
			
		||||
   * @details
 | 
			
		||||
   *
 | 
			
		||||
   * <b>Buffer size:</b>
 | 
			
		||||
   *
 | 
			
		||||
   * bufferA size: ch_im_in*dim_kernel*dim_kernel
 | 
			
		||||
   *
 | 
			
		||||
   * bufferB size: 0
 | 
			
		||||
   *
 | 
			
		||||
   * This basic version is designed to work for any input tensor and weight
 | 
			
		||||
   * dimension. 
 | 
			
		||||
   */
 | 
			
		||||
 | 
			
		||||
arm_status
 | 
			
		||||
arm_convolve_HWC_q15_basic(const q15_t * Im_in,
 | 
			
		||||
                           const uint16_t dim_im_in,
 | 
			
		||||
                           const uint16_t ch_im_in,
 | 
			
		||||
                           const q15_t * wt,
 | 
			
		||||
                           const uint16_t ch_im_out,
 | 
			
		||||
                           const uint16_t dim_kernel,
 | 
			
		||||
                           const uint16_t padding,
 | 
			
		||||
                           const uint16_t stride,
 | 
			
		||||
                           const q15_t * bias,
 | 
			
		||||
                           const uint16_t bias_shift,
 | 
			
		||||
                           const uint16_t out_shift,
 | 
			
		||||
                           q15_t * Im_out, 
 | 
			
		||||
                           const uint16_t dim_im_out, 
 | 
			
		||||
                           q15_t * bufferA, 
 | 
			
		||||
                           q7_t * bufferB)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
#if defined (ARM_MATH_DSP)
 | 
			
		||||
    /* Run the following code for Cortex-M4 and Cortex-M7 */
 | 
			
		||||
 | 
			
		||||
    int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x;
 | 
			
		||||
 | 
			
		||||
    uint16_t  im2col_out_pixel_index = 0;
 | 
			
		||||
    q15_t    *pBuffer = bufferA;
 | 
			
		||||
    q15_t    *pOut = Im_out;
 | 
			
		||||
    q15_t    *im_buffer = bufferA;
 | 
			
		||||
    const q15_t *pA;
 | 
			
		||||
    int       i;
 | 
			
		||||
 | 
			
		||||
    /* This part implements the im2col function */
 | 
			
		||||
    for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
 | 
			
		||||
    {
 | 
			
		||||
        for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
 | 
			
		||||
        {
 | 
			
		||||
            for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
 | 
			
		||||
            {
 | 
			
		||||
                for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
 | 
			
		||||
                {
 | 
			
		||||
                    if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
 | 
			
		||||
                    {
 | 
			
		||||
                        /* Filling 0 for out-of-bound paddings */
 | 
			
		||||
                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
 | 
			
		||||
                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
 | 
			
		||||
                    } else
 | 
			
		||||
                    {
 | 
			
		||||
                        /* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */
 | 
			
		||||
                        memcpy(pBuffer, (q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, sizeof(q15_t)*ch_im_in);
 | 
			
		||||
                    }
 | 
			
		||||
                    pBuffer += ch_im_in;
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            pA = wt;
 | 
			
		||||
            for (i = 0; i < ch_im_out; i++)
 | 
			
		||||
            {
 | 
			
		||||
                q31_t     sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
                q15_t    *pB = im_buffer;
 | 
			
		||||
                uint16_t  colCnt = ch_im_in * dim_kernel * dim_kernel >> 2;
 | 
			
		||||
                while (colCnt)
 | 
			
		||||
                {
 | 
			
		||||
                    q31_t     inA1 = *__SIMD32(pA)++;
 | 
			
		||||
                    q31_t     inB1 = *__SIMD32(pB)++;
 | 
			
		||||
                    q31_t     inA2 = *__SIMD32(pA)++;
 | 
			
		||||
                    q31_t     inB2 = *__SIMD32(pB)++;
 | 
			
		||||
 | 
			
		||||
                    sum = __SMLAD(inA1, inB1, sum);
 | 
			
		||||
                    sum = __SMLAD(inA2, inB2, sum);
 | 
			
		||||
 | 
			
		||||
                    colCnt--;
 | 
			
		||||
                }
 | 
			
		||||
                colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3;
 | 
			
		||||
                while (colCnt)
 | 
			
		||||
                {
 | 
			
		||||
                    q15_t     inA1 = *pA++;
 | 
			
		||||
                    q15_t     inB1 = *pB++;
 | 
			
		||||
                    sum += inA1 * inB1;
 | 
			
		||||
                    colCnt--;
 | 
			
		||||
                }
 | 
			
		||||
                *pOut = (q15_t) __SSAT((sum >> out_shift), 16);
 | 
			
		||||
                pOut++;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            /* counter reset */
 | 
			
		||||
            pBuffer = im_buffer;
 | 
			
		||||
            im2col_out_pixel_index++;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
 | 
			
		||||
    uint16_t  i, j, k, l, m, n;
 | 
			
		||||
    int       conv_out;
 | 
			
		||||
    signed char in_row, in_col;
 | 
			
		||||
 | 
			
		||||
    for (i = 0; i < ch_im_out; i++)
 | 
			
		||||
    {
 | 
			
		||||
        for (j = 0; j < dim_im_out; j++)
 | 
			
		||||
        {
 | 
			
		||||
            for (k = 0; k < dim_im_out; k++)
 | 
			
		||||
            {
 | 
			
		||||
                conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
                for (m = 0; m < dim_kernel; m++)
 | 
			
		||||
                {
 | 
			
		||||
                    for (n = 0; n < dim_kernel; n++)
 | 
			
		||||
                    {
 | 
			
		||||
                        in_row = stride * j + m - padding;
 | 
			
		||||
                        in_col = stride * k + n - padding;
 | 
			
		||||
                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
 | 
			
		||||
                        {
 | 
			
		||||
                            for (l = 0; l < ch_im_in; l++)
 | 
			
		||||
                            {
 | 
			
		||||
                                conv_out +=
 | 
			
		||||
                                    Im_in[(in_row * dim_im_in + in_col) * ch_im_in +
 | 
			
		||||
                                          l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel +
 | 
			
		||||
                                                                                            n) * ch_im_in + l];
 | 
			
		||||
                            }
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
                Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#endif                          /* ARM_MATH_DSP */
 | 
			
		||||
 | 
			
		||||
    /* Return to application */
 | 
			
		||||
    return ARM_MATH_SUCCESS;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @} end of NNConv group
 | 
			
		||||
 */
 | 
			
		||||
@ -0,0 +1,255 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_convolve_HWC_q15_fast.c
 | 
			
		||||
 * Description:  Fast Q15 version of convolution
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        17. January 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 *  @ingroup groupNN
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @addtogroup NNConv
 | 
			
		||||
 * @{
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * @brief Fast Q15 convolution function
 | 
			
		||||
   * @param[in]       Im_in       pointer to input tensor
 | 
			
		||||
   * @param[in]       dim_im_in   input tensor dimention
 | 
			
		||||
   * @param[in]       ch_im_in    number of input tensor channels
 | 
			
		||||
   * @param[in]       wt          pointer to kernel weights
 | 
			
		||||
   * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
 | 
			
		||||
   * @param[in]       dim_kernel  filter kernel size
 | 
			
		||||
   * @param[in]       padding     padding sizes
 | 
			
		||||
   * @param[in]       stride      convolution stride
 | 
			
		||||
   * @param[in]       bias        pointer to bias
 | 
			
		||||
   * @param[in]       bias_shift  amount of left-shift for bias
 | 
			
		||||
   * @param[in]       out_shift   amount of right-shift for output
 | 
			
		||||
   * @param[in,out]   Im_out      pointer to output tensor
 | 
			
		||||
   * @param[in]       dim_im_out  output tensor dimension
 | 
			
		||||
   * @param[in,out]   bufferA     pointer to buffer space for input 
 | 
			
		||||
   * @param[in,out]   bufferB     pointer to buffer space for output
 | 
			
		||||
   * @return     The function returns either
 | 
			
		||||
   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
 | 
			
		||||
   *
 | 
			
		||||
   * @details
 | 
			
		||||
   *
 | 
			
		||||
   * <b>Buffer size:</b>
 | 
			
		||||
   *
 | 
			
		||||
   * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
 | 
			
		||||
   *
 | 
			
		||||
   * bufferB size: 0
 | 
			
		||||
   *
 | 
			
		||||
   * <b>Input dimension constraints:</b>
 | 
			
		||||
   *
 | 
			
		||||
   * ch_im_in is multiple of 2 
 | 
			
		||||
   *
 | 
			
		||||
   * ch_im_out is multipe of 2
 | 
			
		||||
   *
 | 
			
		||||
   */
 | 
			
		||||
 | 
			
		||||
arm_status
 | 
			
		||||
arm_convolve_HWC_q15_fast(const q15_t * Im_in,
 | 
			
		||||
                          const uint16_t dim_im_in,
 | 
			
		||||
                          const uint16_t ch_im_in,
 | 
			
		||||
                          const q15_t * wt,
 | 
			
		||||
                          const uint16_t ch_im_out,
 | 
			
		||||
                          const uint16_t dim_kernel,
 | 
			
		||||
                          const uint16_t padding,
 | 
			
		||||
                          const uint16_t stride,
 | 
			
		||||
                          const q15_t * bias,
 | 
			
		||||
                          const uint16_t bias_shift,
 | 
			
		||||
                          const uint16_t out_shift,
 | 
			
		||||
                          q15_t * Im_out, 
 | 
			
		||||
                          const uint16_t dim_im_out, 
 | 
			
		||||
                          q15_t * bufferA, 
 | 
			
		||||
                          q7_t * bufferB)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
#if defined (ARM_MATH_DSP)
 | 
			
		||||
    int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x;
 | 
			
		||||
 | 
			
		||||
    q15_t    *pBuffer = bufferA;
 | 
			
		||||
    q15_t    *im_buffer = bufferA;
 | 
			
		||||
    q15_t    *pOut = Im_out;
 | 
			
		||||
 | 
			
		||||
    if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0)
 | 
			
		||||
    {
 | 
			
		||||
        /* check if the input dimension meets the constraints */
 | 
			
		||||
        return ARM_MATH_SIZE_MISMATCH;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* Run the following code for Cortex-M4 and Cortex-M7 */
 | 
			
		||||
 | 
			
		||||
    /* This part implements the im2col function */
 | 
			
		||||
    for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
 | 
			
		||||
    {
 | 
			
		||||
        for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
 | 
			
		||||
        {
 | 
			
		||||
            for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
 | 
			
		||||
            {
 | 
			
		||||
                for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
 | 
			
		||||
                {
 | 
			
		||||
                    if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
 | 
			
		||||
                    {
 | 
			
		||||
                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
 | 
			
		||||
                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
 | 
			
		||||
                    } else
 | 
			
		||||
                    {
 | 
			
		||||
                        /* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */
 | 
			
		||||
                        memcpy(pBuffer, (q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, sizeof(q15_t)*ch_im_in);
 | 
			
		||||
                    }
 | 
			
		||||
                    pBuffer += ch_im_in;
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            if (i_out_x & 0x1)
 | 
			
		||||
            {
 | 
			
		||||
                int       i;
 | 
			
		||||
                /* initialize the matrix pointers for A */
 | 
			
		||||
                const q15_t *pA = wt;
 | 
			
		||||
 | 
			
		||||
                /* set up the second output pointers */
 | 
			
		||||
                q15_t    *pOut2 = pOut + ch_im_out;
 | 
			
		||||
 | 
			
		||||
                /* this loop over rows in A */
 | 
			
		||||
                for (i = 0; i < ch_im_out; i += 2)
 | 
			
		||||
                {
 | 
			
		||||
                    /* setup pointers for B */
 | 
			
		||||
                    q15_t    *pB = im_buffer;
 | 
			
		||||
                    const q15_t *pB2 = pB + ch_im_in * dim_kernel * dim_kernel;
 | 
			
		||||
 | 
			
		||||
                    /* aling the second pointer for A */
 | 
			
		||||
                    const q15_t *pA2 = pA + ch_im_in * dim_kernel * dim_kernel;
 | 
			
		||||
 | 
			
		||||
                    /* init the sum with bias */
 | 
			
		||||
                    q31_t     sum =  ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
                    q31_t     sum2 = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
                    q31_t     sum3 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
                    q31_t     sum4 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
 | 
			
		||||
                    uint16_t  colCnt = ch_im_in * dim_kernel * dim_kernel >> 1;
 | 
			
		||||
                    /* accumulate over the vector */
 | 
			
		||||
                    while (colCnt)
 | 
			
		||||
                    {
 | 
			
		||||
                        q31_t     inA1 = *__SIMD32(pA)++;
 | 
			
		||||
                        q31_t     inB1 = *__SIMD32(pB)++;
 | 
			
		||||
                        q31_t     inA2 = *__SIMD32(pA2)++;
 | 
			
		||||
                        q31_t     inB2 = *__SIMD32(pB2)++;
 | 
			
		||||
 | 
			
		||||
                        sum = __SMLAD(inA1, inB1, sum);
 | 
			
		||||
                        sum2 = __SMLAD(inA1, inB2, sum2);
 | 
			
		||||
                        sum3 = __SMLAD(inA2, inB1, sum3);
 | 
			
		||||
                        sum4 = __SMLAD(inA2, inB2, sum4);
 | 
			
		||||
 | 
			
		||||
                        colCnt--;
 | 
			
		||||
                    }           /* while over colCnt */
 | 
			
		||||
                    colCnt = ch_im_in * dim_kernel * dim_kernel & 0x1;
 | 
			
		||||
                    while (colCnt)
 | 
			
		||||
                    {
 | 
			
		||||
                        q15_t     inA1 = *pA++;
 | 
			
		||||
                        q15_t     inB1 = *pB++;
 | 
			
		||||
                        q15_t     inA2 = *pA2++;
 | 
			
		||||
                        q15_t     inB2 = *pB2++;
 | 
			
		||||
 | 
			
		||||
                        sum += inA1 * inB1;
 | 
			
		||||
                        sum2 += inA1 * inB2;
 | 
			
		||||
                        sum3 += inA2 * inB1;
 | 
			
		||||
                        sum4 += inA2 * inB2;
 | 
			
		||||
                        colCnt--;
 | 
			
		||||
                    }           /* while over colCnt */
 | 
			
		||||
                    *pOut++ = (q15_t) __SSAT(sum >> out_shift, 16);
 | 
			
		||||
                    *pOut++ = (q15_t) __SSAT(sum3 >> out_shift, 16);
 | 
			
		||||
                    *pOut2++ = (q15_t) __SSAT(sum2 >> out_shift, 16);
 | 
			
		||||
                    *pOut2++ = (q15_t) __SSAT(sum4 >> out_shift, 16);
 | 
			
		||||
 | 
			
		||||
                    /* skip the row computed with A2 */
 | 
			
		||||
                    pA += ch_im_in * dim_kernel * dim_kernel;
 | 
			
		||||
                }               /* for over ch_im_out */
 | 
			
		||||
 | 
			
		||||
                pOut += ch_im_out;
 | 
			
		||||
                /* counter reset */
 | 
			
		||||
                pBuffer = im_buffer;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
 | 
			
		||||
    uint16_t  i, j, k, l, m, n;
 | 
			
		||||
    int       conv_out;
 | 
			
		||||
    signed char in_row, in_col;
 | 
			
		||||
 | 
			
		||||
    if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0)
 | 
			
		||||
    {
 | 
			
		||||
        /* check if the input dimension meets the constraints */
 | 
			
		||||
        return ARM_MATH_SIZE_MISMATCH;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (i = 0; i < ch_im_out; i++)
 | 
			
		||||
    {
 | 
			
		||||
        for (j = 0; j < dim_im_out; j++)
 | 
			
		||||
        {
 | 
			
		||||
            for (k = 0; k < dim_im_out; k++)
 | 
			
		||||
            {
 | 
			
		||||
                conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
                for (m = 0; m < dim_kernel; m++)
 | 
			
		||||
                {
 | 
			
		||||
                    for (n = 0; n < dim_kernel; n++)
 | 
			
		||||
                    {
 | 
			
		||||
                        in_row = stride * j + m - padding;
 | 
			
		||||
                        in_col = stride * k + n - padding;
 | 
			
		||||
                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
 | 
			
		||||
                        {
 | 
			
		||||
                            for (l = 0; l < ch_im_in; l++)
 | 
			
		||||
                            {
 | 
			
		||||
                                conv_out +=
 | 
			
		||||
                                    Im_in[(in_row * dim_im_in + in_col) * ch_im_in +
 | 
			
		||||
                                          l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel +
 | 
			
		||||
                                                                                            n) * ch_im_in + l];
 | 
			
		||||
                            }
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
                Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#endif                          /* ARM_MATH_DSP */
 | 
			
		||||
 | 
			
		||||
    /* Return to application */
 | 
			
		||||
    return ARM_MATH_SUCCESS;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @} end of NNConv group
 | 
			
		||||
 */
 | 
			
		||||
@ -0,0 +1,265 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_convolve_HWC_q15_fast.c
 | 
			
		||||
 * Description:  Fast Q15 version of convolution
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        24. May 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 *  @ingroup groupNN
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @addtogroup NNConv
 | 
			
		||||
 * @{
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * @brief Fast Q15 convolution function (non-sqaure shape)
 | 
			
		||||
   * @param[in]       Im_in        pointer to input tensor
 | 
			
		||||
   * @param[in]       dim_im_in_x  input tensor dimention x
 | 
			
		||||
   * @param[in]       dim_im_in_y  input tensor dimention y
 | 
			
		||||
   * @param[in]       ch_im_in     number of input tensor channels
 | 
			
		||||
   * @param[in]       wt           pointer to kernel weights
 | 
			
		||||
   * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
 | 
			
		||||
   * @param[in]       dim_kernel_x filter kernel size x
 | 
			
		||||
   * @param[in]       dim_kernel_y filter kernel size y
 | 
			
		||||
   * @param[in]       padding_x    padding size x
 | 
			
		||||
   * @param[in]       padding_y    padding size y
 | 
			
		||||
   * @param[in]       stride_x     convolution stride x
 | 
			
		||||
   * @param[in]       stride_y     convolution stride y
 | 
			
		||||
   * @param[in]       bias         pointer to bias
 | 
			
		||||
   * @param[in]       bias_shift   amount of left-shift for bias
 | 
			
		||||
   * @param[in]       out_shift    amount of right-shift for output
 | 
			
		||||
   * @param[in,out]   Im_out       pointer to output tensor
 | 
			
		||||
   * @param[in]       dim_im_out_x output tensor dimension x
 | 
			
		||||
   * @param[in]       dim_im_out_y output tensor dimension y
 | 
			
		||||
   * @param[in,out]   bufferA      pointer to buffer space for input 
 | 
			
		||||
   * @param[in,out]   bufferB      pointer to buffer space for output
 | 
			
		||||
   * @return     The function returns either
 | 
			
		||||
   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
 | 
			
		||||
   *
 | 
			
		||||
   * @details
 | 
			
		||||
   *
 | 
			
		||||
   * <b>Buffer size:</b>
 | 
			
		||||
   *
 | 
			
		||||
   * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
 | 
			
		||||
   *
 | 
			
		||||
   * bufferB size: 0
 | 
			
		||||
   *
 | 
			
		||||
   * <b>Input dimension constraints:</b>
 | 
			
		||||
   *
 | 
			
		||||
   * ch_im_in is multiple of 2 
 | 
			
		||||
   *
 | 
			
		||||
   * ch_im_out is multipe of 2
 | 
			
		||||
   *
 | 
			
		||||
   */
 | 
			
		||||
 | 
			
		||||
arm_status
 | 
			
		||||
arm_convolve_HWC_q15_fast_nonsquare(const q15_t * Im_in,
 | 
			
		||||
                                    const uint16_t dim_im_in_x,
 | 
			
		||||
                                    const uint16_t dim_im_in_y,
 | 
			
		||||
                                    const uint16_t ch_im_in,
 | 
			
		||||
                                    const q15_t * wt,
 | 
			
		||||
                                    const uint16_t ch_im_out,
 | 
			
		||||
                                    const uint16_t dim_kernel_x,
 | 
			
		||||
                                    const uint16_t dim_kernel_y,
 | 
			
		||||
                                    const uint16_t padding_x,
 | 
			
		||||
                                    const uint16_t padding_y,
 | 
			
		||||
                                    const uint16_t stride_x,
 | 
			
		||||
                                    const uint16_t stride_y,
 | 
			
		||||
                                    const q15_t * bias,
 | 
			
		||||
                                    const uint16_t bias_shift,
 | 
			
		||||
                                    const uint16_t out_shift,
 | 
			
		||||
                                    q15_t * Im_out,
 | 
			
		||||
                                    const uint16_t dim_im_out_x,
 | 
			
		||||
                                    const uint16_t dim_im_out_y, 
 | 
			
		||||
                                    q15_t * bufferA, 
 | 
			
		||||
                                    q7_t * bufferB)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
#if defined (ARM_MATH_DSP)
 | 
			
		||||
    int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x;
 | 
			
		||||
 | 
			
		||||
    q15_t    *pBuffer = bufferA;
 | 
			
		||||
    q15_t    *im_buffer = bufferA;
 | 
			
		||||
    q15_t    *pOut = Im_out;
 | 
			
		||||
 | 
			
		||||
    if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0)
 | 
			
		||||
    {
 | 
			
		||||
        /* check if the input dimension meets the constraints */
 | 
			
		||||
        return ARM_MATH_SIZE_MISMATCH;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* Run the following code for Cortex-M4 and Cortex-M7 */
 | 
			
		||||
 | 
			
		||||
    /* This part implements the im2col function */
 | 
			
		||||
    for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
 | 
			
		||||
    {
 | 
			
		||||
        for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
 | 
			
		||||
        {
 | 
			
		||||
            for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; i_ker_y++)
 | 
			
		||||
            {
 | 
			
		||||
                for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; i_ker_x++)
 | 
			
		||||
                {
 | 
			
		||||
                    if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)
 | 
			
		||||
                    {
 | 
			
		||||
                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
 | 
			
		||||
                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
 | 
			
		||||
                    } else
 | 
			
		||||
                    {
 | 
			
		||||
                        /* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */
 | 
			
		||||
                        memcpy(pBuffer, (q15_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, sizeof(q15_t)*ch_im_in);
 | 
			
		||||
                    }
 | 
			
		||||
                    pBuffer += ch_im_in;
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            if (i_out_x & 0x1)
 | 
			
		||||
            {
 | 
			
		||||
                int       i;
 | 
			
		||||
                /* initialize the matrix pointers for A */
 | 
			
		||||
                const q15_t *pA = wt;
 | 
			
		||||
 | 
			
		||||
                /* set up the second output pointers */
 | 
			
		||||
                q15_t    *pOut2 = pOut + ch_im_out;
 | 
			
		||||
 | 
			
		||||
                /* this loop over rows in A */
 | 
			
		||||
                for (i = 0; i < ch_im_out; i += 2)
 | 
			
		||||
                {
 | 
			
		||||
                    /* setup pointers for B */
 | 
			
		||||
                    q15_t    *pB = im_buffer;
 | 
			
		||||
                    const q15_t *pB2 = pB + ch_im_in * dim_kernel_y * dim_kernel_x;
 | 
			
		||||
 | 
			
		||||
                    /* aling the second pointer for A */
 | 
			
		||||
                    const q15_t *pA2 = pA + ch_im_in * dim_kernel_y * dim_kernel_x;
 | 
			
		||||
 | 
			
		||||
                    /* init the sum with bias */
 | 
			
		||||
                    q31_t     sum =  ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
                    q31_t     sum2 = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
                    q31_t     sum3 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
                    q31_t     sum4 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
 | 
			
		||||
                    uint16_t  colCnt = ch_im_in * dim_kernel_y * dim_kernel_x >> 1;
 | 
			
		||||
                    /* accumulate over the vector */
 | 
			
		||||
                    while (colCnt)
 | 
			
		||||
                    {
 | 
			
		||||
                        q31_t     inA1 = *__SIMD32(pA)++;
 | 
			
		||||
                        q31_t     inB1 = *__SIMD32(pB)++;
 | 
			
		||||
                        q31_t     inA2 = *__SIMD32(pA2)++;
 | 
			
		||||
                        q31_t     inB2 = *__SIMD32(pB2)++;
 | 
			
		||||
 | 
			
		||||
                        sum = __SMLAD(inA1, inB1, sum);
 | 
			
		||||
                        sum2 = __SMLAD(inA1, inB2, sum2);
 | 
			
		||||
                        sum3 = __SMLAD(inA2, inB1, sum3);
 | 
			
		||||
                        sum4 = __SMLAD(inA2, inB2, sum4);
 | 
			
		||||
 | 
			
		||||
                        colCnt--;
 | 
			
		||||
                    }           /* while over colCnt */
 | 
			
		||||
                    colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x1;
 | 
			
		||||
                    while (colCnt)
 | 
			
		||||
                    {
 | 
			
		||||
                        q15_t     inA1 = *pA++;
 | 
			
		||||
                        q15_t     inB1 = *pB++;
 | 
			
		||||
                        q15_t     inA2 = *pA2++;
 | 
			
		||||
                        q15_t     inB2 = *pB2++;
 | 
			
		||||
 | 
			
		||||
                        sum += inA1 * inB1;
 | 
			
		||||
                        sum2 += inA1 * inB2;
 | 
			
		||||
                        sum3 += inA2 * inB1;
 | 
			
		||||
                        sum4 += inA2 * inB2;
 | 
			
		||||
                        colCnt--;
 | 
			
		||||
                    }           /* while over colCnt */
 | 
			
		||||
                    *pOut++ = (q15_t) __SSAT(sum >> out_shift, 16);
 | 
			
		||||
                    *pOut++ = (q15_t) __SSAT(sum3 >> out_shift, 16);
 | 
			
		||||
                    *pOut2++ = (q15_t) __SSAT(sum2 >> out_shift, 16);
 | 
			
		||||
                    *pOut2++ = (q15_t) __SSAT(sum4 >> out_shift, 16);
 | 
			
		||||
 | 
			
		||||
                    /* skip the row computed with A2 */
 | 
			
		||||
                    pA += ch_im_in * dim_kernel_y * dim_kernel_x;
 | 
			
		||||
                }               /* for over ch_im_out */
 | 
			
		||||
 | 
			
		||||
                pOut += ch_im_out;
 | 
			
		||||
                /* counter reset */
 | 
			
		||||
                pBuffer = im_buffer;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
 | 
			
		||||
    uint16_t  i, j, k, l, m, n;
 | 
			
		||||
    int       conv_out;
 | 
			
		||||
    signed char in_row, in_col;
 | 
			
		||||
 | 
			
		||||
    if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0)
 | 
			
		||||
    {
 | 
			
		||||
        /* check if the input dimension meets the constraints */
 | 
			
		||||
        return ARM_MATH_SIZE_MISMATCH;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (i = 0; i < ch_im_out; i++)
 | 
			
		||||
    {
 | 
			
		||||
        for (j = 0; j < dim_im_out_y; j++)
 | 
			
		||||
        {
 | 
			
		||||
            for (k = 0; k < dim_im_out_x; k++)
 | 
			
		||||
            {
 | 
			
		||||
                conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
                for (m = 0; m < dim_kernel_y; m++)
 | 
			
		||||
                {
 | 
			
		||||
                    for (n = 0; n < dim_kernel_x; n++)
 | 
			
		||||
                    {
 | 
			
		||||
                        in_row = stride_y * j + m - padding_y;
 | 
			
		||||
                        in_col = stride_x * k + n - padding_x;
 | 
			
		||||
                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
 | 
			
		||||
                        {
 | 
			
		||||
                            for (l = 0; l < ch_im_in; l++)
 | 
			
		||||
                            {
 | 
			
		||||
                                conv_out +=
 | 
			
		||||
                                    Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in +
 | 
			
		||||
                                          l] * wt[i * ch_im_in * dim_kernel_x * dim_kernel_y + (m * dim_kernel_x +
 | 
			
		||||
                                                                                            n) * ch_im_in + l];
 | 
			
		||||
                            }
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
                Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#endif                          /* ARM_MATH_DSP */
 | 
			
		||||
 | 
			
		||||
    /* Return to application */
 | 
			
		||||
    return ARM_MATH_SUCCESS;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @} end of NNConv group
 | 
			
		||||
 */
 | 
			
		||||
@ -0,0 +1,279 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_convolve_HWC_q7_RGB.c
 | 
			
		||||
 * Description:  Q7 version of convolution for RGB image
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        17. January 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 *  @ingroup groupNN
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @addtogroup NNConv
 | 
			
		||||
 * @{
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * @brief Q7 convolution function for RGB image
 | 
			
		||||
   * @param[in]       Im_in       pointer to input tensor
 | 
			
		||||
   * @param[in]       dim_im_in   input tensor dimention
 | 
			
		||||
   * @param[in]       ch_im_in    number of input tensor channels
 | 
			
		||||
   * @param[in]       wt          pointer to kernel weights
 | 
			
		||||
   * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
 | 
			
		||||
   * @param[in]       dim_kernel  filter kernel size
 | 
			
		||||
   * @param[in]       padding     padding sizes
 | 
			
		||||
   * @param[in]       stride      convolution stride
 | 
			
		||||
   * @param[in]       bias        pointer to bias
 | 
			
		||||
   * @param[in]       bias_shift  amount of left-shift for bias
 | 
			
		||||
   * @param[in]       out_shift   amount of right-shift for output
 | 
			
		||||
   * @param[in,out]   Im_out      pointer to output tensor
 | 
			
		||||
   * @param[in]       dim_im_out  output tensor dimension
 | 
			
		||||
   * @param[in,out]   bufferA     pointer to buffer space for input
 | 
			
		||||
   * @param[in,out]   bufferB     pointer to buffer space for output
 | 
			
		||||
   * @return     The function returns either
 | 
			
		||||
   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
 | 
			
		||||
   *
 | 
			
		||||
   * @details
 | 
			
		||||
   *
 | 
			
		||||
   * <b>Buffer size:</b>
 | 
			
		||||
   *
 | 
			
		||||
   * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
 | 
			
		||||
   *
 | 
			
		||||
   * bufferB size: 0
 | 
			
		||||
   *
 | 
			
		||||
   * <b>Input dimension constraints:</b>
 | 
			
		||||
   *
 | 
			
		||||
   * ch_im_in equals 3
 | 
			
		||||
   *
 | 
			
		||||
   * This kernel is written exclusively for convolution with ch_im_in
 | 
			
		||||
   * equals 3. This applies on the first layer of CNNs which has input
 | 
			
		||||
   * image with RGB format.
 | 
			
		||||
   */
 | 
			
		||||
 | 
			
		||||
arm_status
 | 
			
		||||
arm_convolve_HWC_q7_RGB(const q7_t * Im_in,
 | 
			
		||||
                        const uint16_t dim_im_in,
 | 
			
		||||
                        const uint16_t ch_im_in,
 | 
			
		||||
                        const q7_t * wt,
 | 
			
		||||
                        const uint16_t ch_im_out,
 | 
			
		||||
                        const uint16_t dim_kernel,
 | 
			
		||||
                        const uint16_t padding,
 | 
			
		||||
                        const uint16_t stride,
 | 
			
		||||
                        const q7_t * bias,
 | 
			
		||||
                        const uint16_t bias_shift,
 | 
			
		||||
                        const uint16_t out_shift,
 | 
			
		||||
                        q7_t * Im_out, const uint16_t dim_im_out, q15_t * bufferA, q7_t * bufferB)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
#if defined (ARM_MATH_DSP)
 | 
			
		||||
    /* Run the following code for Cortex-M4 and Cortex-M7 */
 | 
			
		||||
    int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x;
 | 
			
		||||
 | 
			
		||||
    /*
 | 
			
		||||
     *  Here we use bufferA as q15_t internally as computation are done with q15_t level
 | 
			
		||||
     *  im2col are done to output in q15_t format from q7_t input
 | 
			
		||||
     */
 | 
			
		||||
    q15_t    *pBuffer = bufferA;
 | 
			
		||||
    q7_t     *pOut = Im_out;
 | 
			
		||||
 | 
			
		||||
    // check if number of input channels is 3
 | 
			
		||||
    if (ch_im_in != 3)
 | 
			
		||||
    {
 | 
			
		||||
        return ARM_MATH_SIZE_MISMATCH;
 | 
			
		||||
    }
 | 
			
		||||
    // This part implements the im2col function
 | 
			
		||||
    for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
 | 
			
		||||
    {
 | 
			
		||||
        for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
 | 
			
		||||
        {
 | 
			
		||||
            for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
 | 
			
		||||
            {
 | 
			
		||||
                for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
 | 
			
		||||
                {
 | 
			
		||||
                    if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
 | 
			
		||||
                    {
 | 
			
		||||
                        /* Equivalent to arm_fill_q15(0, pBuffer, ch_im_in) with assumption: ch_im_in = 3 */
 | 
			
		||||
                        *__SIMD32(pBuffer) = 0x0;
 | 
			
		||||
                        *(pBuffer + 2) = 0;
 | 
			
		||||
                        pBuffer += 3;
 | 
			
		||||
                    } else
 | 
			
		||||
                    {
 | 
			
		||||
                        /* 
 | 
			
		||||
                         * Equivalent to:
 | 
			
		||||
                         *  arm_q7_to_q15_no_shift( (q7_t*)Im_in+(i_ker_y*dim_im_in+i_ker_x)*3, pBuffer, 3);
 | 
			
		||||
                         */
 | 
			
		||||
 | 
			
		||||
                        const q7_t *pPixel = Im_in + (i_ker_y * dim_im_in + i_ker_x) * 3;
 | 
			
		||||
                        q31_t     buf = *__SIMD32(pPixel);
 | 
			
		||||
 | 
			
		||||
                        union arm_nnword top;
 | 
			
		||||
                        union arm_nnword bottom;
 | 
			
		||||
 | 
			
		||||
                        top.word = __SXTB16(buf);
 | 
			
		||||
                        bottom.word = __SXTB16(__ROR(buf, 8));
 | 
			
		||||
 | 
			
		||||
#ifndef ARM_MATH_BIG_ENDIAN
 | 
			
		||||
                        /*
 | 
			
		||||
                         *  little-endian, | omit | 3rd  | 2nd  | 1st  |
 | 
			
		||||
                         *                MSB                         LSB
 | 
			
		||||
                         *   top | 3rd | 1st |; bottom | omit | 2nd |
 | 
			
		||||
                         *
 | 
			
		||||
                         *  version 1, need to swap 2nd and 3rd weight
 | 
			
		||||
                         * *__SIMD32(pBuffer) = top.word;
 | 
			
		||||
                         * *(pBuffer+2) = bottom.half_words[0];
 | 
			
		||||
                         *
 | 
			
		||||
                         *  version 2, no weight shuffling required
 | 
			
		||||
                         */
 | 
			
		||||
                        *pBuffer++ = top.half_words[0];
 | 
			
		||||
                        *__SIMD32(pBuffer) = __PKHBT(bottom.word, top.word, 0);
 | 
			
		||||
#else
 | 
			
		||||
                        /*
 | 
			
		||||
                         *  big-endian,    | 1st  | 2nd  | 3rd  | omit | 
 | 
			
		||||
                         *                MSB                         LSB
 | 
			
		||||
                         *  top | 2nd | omit |; bottom | 1st | 3rd |
 | 
			
		||||
                         * 
 | 
			
		||||
                         *  version 1, need to swap 2nd and 3rd weight
 | 
			
		||||
                         * *__SIMD32(pBuffer) = bottom.word;
 | 
			
		||||
                         * *(pBuffer+2) = top.half_words[1];
 | 
			
		||||
                         * 
 | 
			
		||||
                         *  version 2, no weight shuffling required
 | 
			
		||||
                         */
 | 
			
		||||
                        *pBuffer++ = bottom.half_words[0];
 | 
			
		||||
                        *__SIMD32(pBuffer) = __PKHTB(top.word, bottom.word, 0);
 | 
			
		||||
#endif
 | 
			
		||||
                        pBuffer += 2;
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            if (pBuffer == bufferA + 2 * 3 * dim_kernel * dim_kernel)
 | 
			
		||||
            {
 | 
			
		||||
                pOut =
 | 
			
		||||
                    arm_nn_mat_mult_kernel_q7_q15(wt, bufferA,
 | 
			
		||||
                                                  ch_im_out,
 | 
			
		||||
                                                  3 * dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
 | 
			
		||||
 | 
			
		||||
                /* counter reset */
 | 
			
		||||
                pBuffer = bufferA;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* left-over because odd number of output pixels */
 | 
			
		||||
    if (pBuffer != bufferA)
 | 
			
		||||
    {
 | 
			
		||||
        const q7_t *pA = wt;
 | 
			
		||||
        int       i;
 | 
			
		||||
 | 
			
		||||
        for (i = 0; i < ch_im_out; i++)
 | 
			
		||||
        {
 | 
			
		||||
            q31_t     sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
            q15_t    *pB = bufferA;
 | 
			
		||||
            /* basically each time it process 4 entries */
 | 
			
		||||
            uint16_t  colCnt = 3 * dim_kernel * dim_kernel >> 2;
 | 
			
		||||
 | 
			
		||||
            while (colCnt)
 | 
			
		||||
            {
 | 
			
		||||
 | 
			
		||||
                q31_t     inA1, inA2;
 | 
			
		||||
                q31_t     inB1, inB2;
 | 
			
		||||
 | 
			
		||||
                pA = (q7_t *) read_and_pad((void *)pA, &inA1, &inA2);
 | 
			
		||||
 | 
			
		||||
                inB1 = *__SIMD32(pB)++;
 | 
			
		||||
                sum = __SMLAD(inA1, inB1, sum);
 | 
			
		||||
                inB2 = *__SIMD32(pB)++;
 | 
			
		||||
                sum = __SMLAD(inA2, inB2, sum);
 | 
			
		||||
 | 
			
		||||
                colCnt--;
 | 
			
		||||
            }
 | 
			
		||||
            colCnt = 3 * dim_kernel * dim_kernel & 0x3;
 | 
			
		||||
            while (colCnt)
 | 
			
		||||
            {
 | 
			
		||||
                q7_t      inA1 = *pA++;
 | 
			
		||||
                q15_t     inB1 = *pB++;
 | 
			
		||||
                sum += inA1 * inB1;
 | 
			
		||||
                colCnt--;
 | 
			
		||||
            }
 | 
			
		||||
            *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
#else
 | 
			
		||||
    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
 | 
			
		||||
 | 
			
		||||
    uint16_t  i, j, k, l, m, n;
 | 
			
		||||
    int       conv_out;
 | 
			
		||||
    signed char in_row, in_col;
 | 
			
		||||
 | 
			
		||||
    // check if number of input channels is 3
 | 
			
		||||
    if (ch_im_in != 3)
 | 
			
		||||
    {
 | 
			
		||||
        return ARM_MATH_SIZE_MISMATCH;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (i = 0; i < ch_im_out; i++)
 | 
			
		||||
    {
 | 
			
		||||
        for (j = 0; j < dim_im_out; j++)
 | 
			
		||||
        {
 | 
			
		||||
            for (k = 0; k < dim_im_out; k++)
 | 
			
		||||
            {
 | 
			
		||||
                conv_out = (bias[i] << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
                for (m = 0; m < dim_kernel; m++)
 | 
			
		||||
                {
 | 
			
		||||
                    for (n = 0; n < dim_kernel; n++)
 | 
			
		||||
                    {
 | 
			
		||||
                        /* if-for implementation */
 | 
			
		||||
                        in_row = stride * j + m - padding;
 | 
			
		||||
                        in_col = stride * k + n - padding;
 | 
			
		||||
                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
 | 
			
		||||
                        {
 | 
			
		||||
                            for (l = 0; l < ch_im_in; l++)
 | 
			
		||||
                            {
 | 
			
		||||
                                conv_out +=
 | 
			
		||||
                                    Im_in[(in_row * dim_im_in + in_col) * ch_im_in +
 | 
			
		||||
                                          l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel +
 | 
			
		||||
                                                                                            n) * ch_im_in + l];
 | 
			
		||||
                            }
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
                Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#endif                          /* ARM_MATH_DSP */
 | 
			
		||||
 | 
			
		||||
    /* Return to application */
 | 
			
		||||
    return (ARM_MATH_SUCCESS);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @} end of NNConv group
 | 
			
		||||
 */
 | 
			
		||||
@ -0,0 +1,230 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_convolve_HWC_q7_basic.c
 | 
			
		||||
 * Description:	 Q7 version of convolution
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        17. January 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 *  @ingroup groupNN
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @addtogroup NNConv
 | 
			
		||||
 * @{
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * @brief Basic Q7 convolution function
 | 
			
		||||
   * @param[in]       Im_in       pointer to input tensor
 | 
			
		||||
   * @param[in]       dim_im_in   input tensor dimention
 | 
			
		||||
   * @param[in]       ch_im_in    number of input tensor channels
 | 
			
		||||
   * @param[in]       wt          pointer to kernel weights
 | 
			
		||||
   * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
 | 
			
		||||
   * @param[in]       dim_kernel  filter kernel size
 | 
			
		||||
   * @param[in]       padding     padding sizes
 | 
			
		||||
   * @param[in]       stride      convolution stride
 | 
			
		||||
   * @param[in]       bias        pointer to bias
 | 
			
		||||
   * @param[in]       bias_shift  amount of left-shift for bias
 | 
			
		||||
   * @param[in]       out_shift   amount of right-shift for output
 | 
			
		||||
   * @param[in,out]   Im_out      pointer to output tensor
 | 
			
		||||
   * @param[in]       dim_im_out  output tensor dimension
 | 
			
		||||
   * @param[in,out]   bufferA     pointer to buffer space for input 
 | 
			
		||||
   * @param[in,out]   bufferB     pointer to buffer space for output
 | 
			
		||||
   * @return     The function returns <code>ARM_MATH_SUCCESS</code> 
 | 
			
		||||
   *
 | 
			
		||||
   * @details
 | 
			
		||||
   *
 | 
			
		||||
   * <b>Buffer size:</b>
 | 
			
		||||
   *
 | 
			
		||||
   * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
 | 
			
		||||
   *
 | 
			
		||||
   * bufferB size: 0
 | 
			
		||||
   *
 | 
			
		||||
   * This basic version is designed to work for any input tensor and weight
 | 
			
		||||
   * dimension. 
 | 
			
		||||
   */
 | 
			
		||||
 | 
			
		||||
arm_status
 | 
			
		||||
arm_convolve_HWC_q7_basic(const q7_t * Im_in,
 | 
			
		||||
                          const uint16_t dim_im_in,
 | 
			
		||||
                          const uint16_t ch_im_in,
 | 
			
		||||
                          const q7_t * wt,
 | 
			
		||||
                          const uint16_t ch_im_out,
 | 
			
		||||
                          const uint16_t dim_kernel,
 | 
			
		||||
                          const uint16_t padding,
 | 
			
		||||
                          const uint16_t stride,
 | 
			
		||||
                          const q7_t * bias,
 | 
			
		||||
                          const uint16_t bias_shift,
 | 
			
		||||
                          const uint16_t out_shift,
 | 
			
		||||
                          q7_t * Im_out, 
 | 
			
		||||
                          const uint16_t dim_im_out, 
 | 
			
		||||
                          q15_t * bufferA, 
 | 
			
		||||
                          q7_t * bufferB)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
#if defined (ARM_MATH_DSP)
 | 
			
		||||
    /* Run the following code for Cortex-M4 and Cortex-M7 */
 | 
			
		||||
 | 
			
		||||
    int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x;
 | 
			
		||||
 | 
			
		||||
    /* 
 | 
			
		||||
     *  Here we use bufferA as q15_t internally as computation are done with q15_t level
 | 
			
		||||
     *  im2col are done to output in q15_t format from q7_t input
 | 
			
		||||
     */
 | 
			
		||||
    q15_t    *pBuffer = bufferA;
 | 
			
		||||
    q7_t     *pOut = Im_out;
 | 
			
		||||
 | 
			
		||||
    /* This part implements the im2col function */
 | 
			
		||||
    for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
 | 
			
		||||
    {
 | 
			
		||||
        for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
 | 
			
		||||
        {
 | 
			
		||||
            for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
 | 
			
		||||
            {
 | 
			
		||||
                for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
 | 
			
		||||
                {
 | 
			
		||||
                    if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
 | 
			
		||||
                    {
 | 
			
		||||
                        /* Filling 0 for out-of-bound paddings */
 | 
			
		||||
                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
 | 
			
		||||
                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
 | 
			
		||||
                    } else
 | 
			
		||||
                    {
 | 
			
		||||
                        /* Copying the pixel data to column */
 | 
			
		||||
                        arm_q7_to_q15_no_shift((q7_t *)
 | 
			
		||||
                                               Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
 | 
			
		||||
                    }
 | 
			
		||||
                    pBuffer += ch_im_in;
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            /* Computation is filed for every 2 columns */
 | 
			
		||||
            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
 | 
			
		||||
            {
 | 
			
		||||
                pOut =
 | 
			
		||||
                    arm_nn_mat_mult_kernel_q7_q15(wt, bufferA,
 | 
			
		||||
                                                  ch_im_out,
 | 
			
		||||
                                                  ch_im_in *
 | 
			
		||||
                                                  dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
 | 
			
		||||
 | 
			
		||||
                /* counter reset */
 | 
			
		||||
                pBuffer = bufferA;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* left-over because odd number of output pixels */
 | 
			
		||||
    if (pBuffer != bufferA)
 | 
			
		||||
    {
 | 
			
		||||
        const q7_t *pA = wt;
 | 
			
		||||
        int       i;
 | 
			
		||||
 | 
			
		||||
        for (i = 0; i < ch_im_out; i++)
 | 
			
		||||
        {
 | 
			
		||||
            /* Load the accumulator with bias first */
 | 
			
		||||
            q31_t     sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
 | 
			
		||||
            /* Point to the beging of the im2col buffer */
 | 
			
		||||
            q15_t    *pB = bufferA;
 | 
			
		||||
 | 
			
		||||
            /* Each time it process 4 entries */
 | 
			
		||||
            uint16_t  colCnt = ch_im_in * dim_kernel * dim_kernel >> 2;
 | 
			
		||||
 | 
			
		||||
            while (colCnt)
 | 
			
		||||
            {
 | 
			
		||||
                q31_t     inA1, inA2;
 | 
			
		||||
                q31_t     inB1, inB2;
 | 
			
		||||
 | 
			
		||||
                pA = (q7_t *) read_and_pad((void *)pA, &inA1, &inA2);
 | 
			
		||||
 | 
			
		||||
                inB1 = *__SIMD32(pB)++;
 | 
			
		||||
                sum = __SMLAD(inA1, inB1, sum);
 | 
			
		||||
                inB2 = *__SIMD32(pB)++;
 | 
			
		||||
                sum = __SMLAD(inA2, inB2, sum);
 | 
			
		||||
 | 
			
		||||
                colCnt--;
 | 
			
		||||
            }
 | 
			
		||||
            colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3;
 | 
			
		||||
            while (colCnt)
 | 
			
		||||
            {
 | 
			
		||||
                q7_t      inA1 = *pA++;
 | 
			
		||||
                q15_t     inB1 = *pB++;
 | 
			
		||||
                sum += inA1 * inB1;
 | 
			
		||||
                colCnt--;
 | 
			
		||||
            }
 | 
			
		||||
            *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
#else
 | 
			
		||||
    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
 | 
			
		||||
 | 
			
		||||
    uint16_t  i, j, k, l, m, n;
 | 
			
		||||
    int       conv_out;
 | 
			
		||||
    signed char in_row, in_col;
 | 
			
		||||
 | 
			
		||||
    for (i = 0; i < ch_im_out; i++)
 | 
			
		||||
    {
 | 
			
		||||
        for (j = 0; j < dim_im_out; j++)
 | 
			
		||||
        {
 | 
			
		||||
            for (k = 0; k < dim_im_out; k++)
 | 
			
		||||
            {
 | 
			
		||||
                conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
                for (m = 0; m < dim_kernel; m++)
 | 
			
		||||
                {
 | 
			
		||||
                    for (n = 0; n < dim_kernel; n++)
 | 
			
		||||
                    {
 | 
			
		||||
                        // if-for implementation
 | 
			
		||||
                        in_row = stride * j + m - padding;
 | 
			
		||||
                        in_col = stride * k + n - padding;
 | 
			
		||||
                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
 | 
			
		||||
                        {
 | 
			
		||||
                            for (l = 0; l < ch_im_in; l++)
 | 
			
		||||
                            {
 | 
			
		||||
                                conv_out +=
 | 
			
		||||
                                    Im_in[(in_row * dim_im_in + in_col) * ch_im_in +
 | 
			
		||||
                                          l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel +
 | 
			
		||||
                                                                                            n) * ch_im_in + l];
 | 
			
		||||
                            }
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
                Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#endif                          /* ARM_MATH_DSP */
 | 
			
		||||
 | 
			
		||||
    /* Return to application */
 | 
			
		||||
    return ARM_MATH_SUCCESS;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @} end of NNConv group
 | 
			
		||||
 */
 | 
			
		||||
@ -0,0 +1,228 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_convolve_HWC_q7_basic.c
 | 
			
		||||
 * Description:	 Q7 version of convolution
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        13. July 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 *  @ingroup groupNN
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @addtogroup NNConv
 | 
			
		||||
 * @{
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * @brief Basic Q7 convolution function (non-sqaure shape)
 | 
			
		||||
   * @param[in]       Im_in        pointer to input tensor
 | 
			
		||||
   * @param[in]       dim_im_in_x  input tensor dimention x
 | 
			
		||||
   * @param[in]       dim_im_in_y  input tensor dimention y
 | 
			
		||||
   * @param[in]       ch_im_in     number of input tensor channels
 | 
			
		||||
   * @param[in]       wt           pointer to kernel weights
 | 
			
		||||
   * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
 | 
			
		||||
   * @param[in]       dim_kernel_x filter kernel size x
 | 
			
		||||
   * @param[in]       dim_kernel_y filter kernel size y
 | 
			
		||||
   * @param[in]       padding_x    padding size x
 | 
			
		||||
   * @param[in]       padding_y    padding size y
 | 
			
		||||
   * @param[in]       stride_x     convolution stride x
 | 
			
		||||
   * @param[in]       stride_y     convolution stride y
 | 
			
		||||
   * @param[in]       bias         pointer to bias
 | 
			
		||||
   * @param[in]       bias_shift   amount of left-shift for bias
 | 
			
		||||
   * @param[in]       out_shift    amount of right-shift for output
 | 
			
		||||
   * @param[in,out]   Im_out       pointer to output tensor
 | 
			
		||||
   * @param[in]       dim_im_out_x output tensor dimension x
 | 
			
		||||
   * @param[in]       dim_im_out_y output tensor dimension y
 | 
			
		||||
   * @param[in,out]   bufferA      pointer to buffer space for input
 | 
			
		||||
   * @param[in,out]   bufferB      pointer to buffer space for output
 | 
			
		||||
   * @return     The function returns <code>ARM_MATH_SUCCESS</code>
 | 
			
		||||
   */
 | 
			
		||||
 | 
			
		||||
arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t * Im_in,
 | 
			
		||||
                                               const uint16_t dim_im_in_x,
 | 
			
		||||
                                               const uint16_t dim_im_in_y,
 | 
			
		||||
                                               const uint16_t ch_im_in,
 | 
			
		||||
                                               const q7_t * wt,
 | 
			
		||||
                                               const uint16_t ch_im_out,
 | 
			
		||||
                                               const uint16_t dim_kernel_x,
 | 
			
		||||
                                               const uint16_t dim_kernel_y,
 | 
			
		||||
                                               const uint16_t padding_x,
 | 
			
		||||
                                               const uint16_t padding_y,
 | 
			
		||||
                                               const uint16_t stride_x,
 | 
			
		||||
                                               const uint16_t stride_y,
 | 
			
		||||
                                               const q7_t * bias,
 | 
			
		||||
                                               const uint16_t bias_shift,
 | 
			
		||||
                                               const uint16_t out_shift,
 | 
			
		||||
                                               q7_t * Im_out,
 | 
			
		||||
                                               const uint16_t dim_im_out_x,
 | 
			
		||||
                                               const uint16_t dim_im_out_y,
 | 
			
		||||
                                               q15_t * bufferA,
 | 
			
		||||
                                               q7_t * bufferB)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
#if defined (ARM_MATH_DSP)
 | 
			
		||||
    /* Run the following code for Cortex-M4 and Cortex-M7 */
 | 
			
		||||
 | 
			
		||||
    int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x;
 | 
			
		||||
 | 
			
		||||
    /* 
 | 
			
		||||
     *  Here we use bufferA as q15_t internally as computation are done with q15_t level
 | 
			
		||||
     *  im2col are done to output in q15_t format from q7_t input
 | 
			
		||||
     */
 | 
			
		||||
    q15_t    *pBuffer = bufferA;
 | 
			
		||||
    q7_t     *pOut = Im_out;
 | 
			
		||||
 | 
			
		||||
    /* This part implements the im2col function */
 | 
			
		||||
    for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
 | 
			
		||||
    {
 | 
			
		||||
        for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
 | 
			
		||||
        {
 | 
			
		||||
            for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; i_ker_y++)
 | 
			
		||||
            {
 | 
			
		||||
                for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; i_ker_x++)
 | 
			
		||||
                {
 | 
			
		||||
                    if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)
 | 
			
		||||
                    {
 | 
			
		||||
                        /* Filling 0 for out-of-bound paddings */
 | 
			
		||||
                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
 | 
			
		||||
                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
 | 
			
		||||
                    } else
 | 
			
		||||
                    {
 | 
			
		||||
                        /* Copying the pixel data to column */
 | 
			
		||||
                        arm_q7_to_q15_no_shift((q7_t *)
 | 
			
		||||
                                               Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
 | 
			
		||||
                    }
 | 
			
		||||
                    pBuffer += ch_im_in;
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            /* Computation is filed for every 2 columns */
 | 
			
		||||
            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_y * dim_kernel_x)
 | 
			
		||||
            {
 | 
			
		||||
                pOut =
 | 
			
		||||
                    arm_nn_mat_mult_kernel_q7_q15(wt, bufferA,
 | 
			
		||||
                                                  ch_im_out,
 | 
			
		||||
                                                  ch_im_in *
 | 
			
		||||
                                                  dim_kernel_y * dim_kernel_x, bias_shift, out_shift, bias, pOut);
 | 
			
		||||
 | 
			
		||||
                /* counter reset */
 | 
			
		||||
                pBuffer = bufferA;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* left-over because odd number of output pixels */
 | 
			
		||||
    if (pBuffer != bufferA)
 | 
			
		||||
    {
 | 
			
		||||
        const q7_t *pA = wt;
 | 
			
		||||
        int       i;
 | 
			
		||||
 | 
			
		||||
        for (i = 0; i < ch_im_out; i++)
 | 
			
		||||
        {
 | 
			
		||||
            /* Load the accumulator with bias first */
 | 
			
		||||
            q31_t     sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
 | 
			
		||||
            /* Point to the beging of the im2col buffer */
 | 
			
		||||
            q15_t    *pB = bufferA;
 | 
			
		||||
 | 
			
		||||
            /* Each time it process 4 entries */
 | 
			
		||||
            uint16_t  colCnt = ch_im_in * dim_kernel_y * dim_kernel_x >> 2;
 | 
			
		||||
 | 
			
		||||
            while (colCnt)
 | 
			
		||||
            {
 | 
			
		||||
                q31_t     inA1, inA2;
 | 
			
		||||
                q31_t     inB1, inB2;
 | 
			
		||||
 | 
			
		||||
                pA = (q7_t *) read_and_pad((void *)pA, &inA1, &inA2);
 | 
			
		||||
 | 
			
		||||
                inB1 = *__SIMD32(pB)++;
 | 
			
		||||
                sum = __SMLAD(inA1, inB1, sum);
 | 
			
		||||
                inB2 = *__SIMD32(pB)++;
 | 
			
		||||
                sum = __SMLAD(inA2, inB2, sum);
 | 
			
		||||
 | 
			
		||||
                colCnt--;
 | 
			
		||||
            }
 | 
			
		||||
            colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x3;
 | 
			
		||||
            while (colCnt)
 | 
			
		||||
            {
 | 
			
		||||
                q7_t      inA1 = *pA++;
 | 
			
		||||
                q15_t     inB1 = *pB++;
 | 
			
		||||
                sum += inA1 * inB1;
 | 
			
		||||
                colCnt--;
 | 
			
		||||
            }
 | 
			
		||||
            *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
#else
 | 
			
		||||
    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
 | 
			
		||||
 | 
			
		||||
    uint16_t  i, j, k, l, m, n;
 | 
			
		||||
    int       conv_out;
 | 
			
		||||
    signed char in_row, in_col;
 | 
			
		||||
 | 
			
		||||
    for (i = 0; i < ch_im_out; i++)
 | 
			
		||||
    {
 | 
			
		||||
        for (j = 0; j < dim_im_out_y; j++)
 | 
			
		||||
        {
 | 
			
		||||
            for (k = 0; k < dim_im_out_x; k++)
 | 
			
		||||
            {
 | 
			
		||||
                conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
                for (m = 0; m < dim_kernel_y; m++)
 | 
			
		||||
                {
 | 
			
		||||
                    for (n = 0; n < dim_kernel_x; n++)
 | 
			
		||||
                    {
 | 
			
		||||
                        // if-for implementation
 | 
			
		||||
                        in_row = stride_y * j + m - padding_y;
 | 
			
		||||
                        in_col = stride_x * k + n - padding_x;
 | 
			
		||||
                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
 | 
			
		||||
                        {
 | 
			
		||||
                            for (l = 0; l < ch_im_in; l++)
 | 
			
		||||
                            {
 | 
			
		||||
                                conv_out +=
 | 
			
		||||
                                    Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] * 
 | 
			
		||||
                                         wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + 
 | 
			
		||||
                                         (m * dim_kernel_x + n) * ch_im_in + l];
 | 
			
		||||
                            }
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
                Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#endif                          /* ARM_MATH_DSP */
 | 
			
		||||
 | 
			
		||||
    /* Return to application */
 | 
			
		||||
    return ARM_MATH_SUCCESS;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @} end of NNConv group
 | 
			
		||||
 */
 | 
			
		||||
@ -0,0 +1,408 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_convolve_HWC_q7_fast.c
 | 
			
		||||
 * Description:  Fast Q7 version of convolution
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        17. January 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 *  @ingroup groupNN
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @addtogroup NNConv
 | 
			
		||||
 * @{
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * @brief Fast Q7 convolution function
 | 
			
		||||
   * @param[in]       Im_in       pointer to input tensor
 | 
			
		||||
   * @param[in]       dim_im_in   input tensor dimention
 | 
			
		||||
   * @param[in]       ch_im_in    number of input tensor channels
 | 
			
		||||
   * @param[in]       wt          pointer to kernel weights
 | 
			
		||||
   * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
 | 
			
		||||
   * @param[in]       dim_kernel  filter kernel size
 | 
			
		||||
   * @param[in]       padding     padding sizes
 | 
			
		||||
   * @param[in]       stride      convolution stride
 | 
			
		||||
   * @param[in]       bias        pointer to bias
 | 
			
		||||
   * @param[in]       bias_shift  amount of left-shift for bias
 | 
			
		||||
   * @param[in]       out_shift   amount of right-shift for output
 | 
			
		||||
   * @param[in,out]   Im_out      pointer to output tensor
 | 
			
		||||
   * @param[in]       dim_im_out  output tensor dimension
 | 
			
		||||
   * @param[in,out]   bufferA     pointer to buffer space for input 
 | 
			
		||||
   * @param[in,out]   bufferB     pointer to buffer space for output
 | 
			
		||||
   * @return     The function returns either
 | 
			
		||||
   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
 | 
			
		||||
   *
 | 
			
		||||
   * @details
 | 
			
		||||
   *
 | 
			
		||||
   * <b>Buffer size:</b>
 | 
			
		||||
   *
 | 
			
		||||
   * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
 | 
			
		||||
   *
 | 
			
		||||
   * bufferB size: 0
 | 
			
		||||
   *
 | 
			
		||||
   * <b>Input dimension constraints:</b>
 | 
			
		||||
   *
 | 
			
		||||
   * ch_im_in is multiple of 4    ( because of the SIMD32 read and swap )
 | 
			
		||||
   *
 | 
			
		||||
   * ch_im_out is multipe of 2    ( bacause 2x2 mat_mult kernel )
 | 
			
		||||
   *
 | 
			
		||||
   * The im2col converts the Q7 tensor input into Q15 column, which is stored in
 | 
			
		||||
   * bufferA. There is reordering happenning during this im2col process with
 | 
			
		||||
   * arm_q7_to_q15_reordered_no_shift. For every four elements, the second and
 | 
			
		||||
   * third elements are swapped. 
 | 
			
		||||
   *
 | 
			
		||||
   * The computation kernel arm_nn_mat_mult_kernel_q7_q15_reordered does the
 | 
			
		||||
   * GEMM computation with the reordered columns.
 | 
			
		||||
   *
 | 
			
		||||
   * To speed-up the determination of the padding condition, we split the
 | 
			
		||||
   * computation into 3x3 parts, i.e., {top, mid, bottom} X {left, mid, right}.
 | 
			
		||||
   * This reduces the total number of boundary condition checks and improves
 | 
			
		||||
   * the data copying performance.
 | 
			
		||||
   */
 | 
			
		||||
 | 
			
		||||
arm_status
 | 
			
		||||
arm_convolve_HWC_q7_fast(const q7_t * Im_in,
 | 
			
		||||
                         const uint16_t dim_im_in,
 | 
			
		||||
                         const uint16_t ch_im_in,
 | 
			
		||||
                         const q7_t * wt,
 | 
			
		||||
                         const uint16_t ch_im_out,
 | 
			
		||||
                         const uint16_t dim_kernel,
 | 
			
		||||
                         const uint16_t padding,
 | 
			
		||||
                         const uint16_t stride,
 | 
			
		||||
                         const q7_t * bias,
 | 
			
		||||
                         const uint16_t bias_shift,
 | 
			
		||||
                         const uint16_t out_shift,
 | 
			
		||||
                         q7_t * Im_out, 
 | 
			
		||||
                         const uint16_t dim_im_out, 
 | 
			
		||||
                         q15_t * bufferA, 
 | 
			
		||||
                         q7_t * bufferB)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
#if defined (ARM_MATH_DSP)
 | 
			
		||||
    /* Run the following code for Cortex-M4 and Cortex-M7 */
 | 
			
		||||
 | 
			
		||||
    int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x;
 | 
			
		||||
 | 
			
		||||
    /*
 | 
			
		||||
     *  Here we use bufferA as q15_t internally as computation are done with q15_t level
 | 
			
		||||
     *  im2col are done to output in q15_t format from q7_t input
 | 
			
		||||
     */
 | 
			
		||||
 | 
			
		||||
    q15_t    *pBuffer = bufferA;
 | 
			
		||||
    q7_t     *pOut = Im_out;
 | 
			
		||||
 | 
			
		||||
    if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
 | 
			
		||||
    {
 | 
			
		||||
        /* check if the input dimension meets the constraints */
 | 
			
		||||
        return ARM_MATH_SIZE_MISMATCH;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /*
 | 
			
		||||
     *  Here we split the entire matrix into three regions depending on the padding situation
 | 
			
		||||
     *    Top: i_out_y from 0 to padding - 1
 | 
			
		||||
     * Middle: i_out_y from padding to dim_im_out-padding-1
 | 
			
		||||
     * Bottom: i_out_y from dim_im_out-padding to dim_im_out-1
 | 
			
		||||
     */
 | 
			
		||||
 | 
			
		||||
    /* top part */
 | 
			
		||||
    for (i_out_y = 0; i_out_y < padding; i_out_y++)
 | 
			
		||||
    {
 | 
			
		||||
        for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
 | 
			
		||||
        {
 | 
			
		||||
            /* This part implements the im2col function */
 | 
			
		||||
            for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
 | 
			
		||||
            {
 | 
			
		||||
                for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
 | 
			
		||||
                {
 | 
			
		||||
                    if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
 | 
			
		||||
                    {
 | 
			
		||||
                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
 | 
			
		||||
                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
 | 
			
		||||
                    } else
 | 
			
		||||
                    {
 | 
			
		||||
                        arm_q7_to_q15_reordered_no_shift
 | 
			
		||||
                            ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
 | 
			
		||||
                    }
 | 
			
		||||
                    pBuffer += ch_im_in;
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
 | 
			
		||||
            {
 | 
			
		||||
                pOut =
 | 
			
		||||
                    arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
 | 
			
		||||
                                                            bufferA,
 | 
			
		||||
                                                            ch_im_out,
 | 
			
		||||
                                                            ch_im_in
 | 
			
		||||
                                                            *
 | 
			
		||||
                                                            dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
 | 
			
		||||
                /* counter reset */
 | 
			
		||||
                pBuffer = bufferA;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* middle part, here we also divide the x into left, mid and right */
 | 
			
		||||
    for (; i_out_y < dim_im_out - padding; i_out_y++)
 | 
			
		||||
    {
 | 
			
		||||
 | 
			
		||||
        /* left part */
 | 
			
		||||
        for (i_out_x = 0; i_out_x < padding; i_out_x++)
 | 
			
		||||
        {
 | 
			
		||||
            /* This part implements the im2col function */
 | 
			
		||||
            for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
 | 
			
		||||
            {
 | 
			
		||||
                for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
 | 
			
		||||
                {
 | 
			
		||||
                    if (i_ker_x < 0 || i_ker_x >= dim_im_in)
 | 
			
		||||
                    {
 | 
			
		||||
                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
 | 
			
		||||
                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
 | 
			
		||||
                    } else
 | 
			
		||||
                    {
 | 
			
		||||
                        arm_q7_to_q15_reordered_no_shift
 | 
			
		||||
                            ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
 | 
			
		||||
                    }
 | 
			
		||||
                    pBuffer += ch_im_in;
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
 | 
			
		||||
            {
 | 
			
		||||
                pOut =
 | 
			
		||||
                    arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
 | 
			
		||||
                                                            bufferA,
 | 
			
		||||
                                                            ch_im_out,
 | 
			
		||||
                                                            ch_im_in
 | 
			
		||||
                                                            *
 | 
			
		||||
                                                            dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
 | 
			
		||||
                /* counter reset */
 | 
			
		||||
                pBuffer = bufferA;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        /* mid part */
 | 
			
		||||
        for (; i_out_x < dim_im_out - padding; i_out_x++)
 | 
			
		||||
        {
 | 
			
		||||
            /* This part implements the im2col function */
 | 
			
		||||
            for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
 | 
			
		||||
            {
 | 
			
		||||
                arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in
 | 
			
		||||
                                                 +
 | 
			
		||||
                                                 (i_ker_y *
 | 
			
		||||
                                                  dim_im_in +
 | 
			
		||||
                                                  i_out_x *
 | 
			
		||||
                                                  stride - padding) * ch_im_in, pBuffer, ch_im_in * dim_kernel);
 | 
			
		||||
                pBuffer += ch_im_in * dim_kernel;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
 | 
			
		||||
            {
 | 
			
		||||
                pOut =
 | 
			
		||||
                    arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
 | 
			
		||||
                                                            bufferA,
 | 
			
		||||
                                                            ch_im_out,
 | 
			
		||||
                                                            ch_im_in
 | 
			
		||||
                                                            *
 | 
			
		||||
                                                            dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
 | 
			
		||||
                /* counter reset */
 | 
			
		||||
                pBuffer = bufferA;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        /* right part */
 | 
			
		||||
        for (; i_out_x < dim_im_out; i_out_x++)
 | 
			
		||||
        {
 | 
			
		||||
            /* This part implements the im2col function */
 | 
			
		||||
            for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
 | 
			
		||||
            {
 | 
			
		||||
                for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
 | 
			
		||||
                {
 | 
			
		||||
                    if (i_ker_x < 0 || i_ker_x >= dim_im_in)
 | 
			
		||||
                    {
 | 
			
		||||
                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
 | 
			
		||||
                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
 | 
			
		||||
                    } else
 | 
			
		||||
                    {
 | 
			
		||||
                        arm_q7_to_q15_reordered_no_shift
 | 
			
		||||
                            ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
 | 
			
		||||
                    }
 | 
			
		||||
                    pBuffer += ch_im_in;
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
 | 
			
		||||
            {
 | 
			
		||||
                pOut =
 | 
			
		||||
                    arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
 | 
			
		||||
                                                            bufferA,
 | 
			
		||||
                                                            ch_im_out,
 | 
			
		||||
                                                            ch_im_in
 | 
			
		||||
                                                            *
 | 
			
		||||
                                                            dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
 | 
			
		||||
                /* counter reset */
 | 
			
		||||
                pBuffer = bufferA;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (; i_out_y < dim_im_out; i_out_y++)
 | 
			
		||||
    {
 | 
			
		||||
        for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
 | 
			
		||||
        {
 | 
			
		||||
            /* This part implements the im2col function */
 | 
			
		||||
            for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
 | 
			
		||||
            {
 | 
			
		||||
                for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
 | 
			
		||||
                {
 | 
			
		||||
                    if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
 | 
			
		||||
                    {
 | 
			
		||||
                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
 | 
			
		||||
                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
 | 
			
		||||
                    } else
 | 
			
		||||
                    {
 | 
			
		||||
                        arm_q7_to_q15_reordered_no_shift
 | 
			
		||||
                            ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
 | 
			
		||||
                    }
 | 
			
		||||
                    pBuffer += ch_im_in;
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
 | 
			
		||||
            {
 | 
			
		||||
                pOut =
 | 
			
		||||
                    arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
 | 
			
		||||
                                                            bufferA,
 | 
			
		||||
                                                            ch_im_out,
 | 
			
		||||
                                                            ch_im_in
 | 
			
		||||
                                                            *
 | 
			
		||||
                                                            dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
 | 
			
		||||
                /* counter reset */
 | 
			
		||||
                pBuffer = bufferA;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* check if there is left-over for compute */
 | 
			
		||||
    if (pBuffer != bufferA)
 | 
			
		||||
    {
 | 
			
		||||
        const q7_t *pA = wt;
 | 
			
		||||
        int       i;
 | 
			
		||||
 | 
			
		||||
        for (i = 0; i < ch_im_out; i++)
 | 
			
		||||
        {
 | 
			
		||||
            q31_t     sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
            q15_t    *pB = bufferA;
 | 
			
		||||
            /* each time it process 4 entries */
 | 
			
		||||
            uint16_t  colCnt = ch_im_in * dim_kernel * dim_kernel >> 2;
 | 
			
		||||
 | 
			
		||||
            while (colCnt)
 | 
			
		||||
            {
 | 
			
		||||
 | 
			
		||||
                q31_t     inA1, inA2;
 | 
			
		||||
                q31_t     inB1, inB2;
 | 
			
		||||
 | 
			
		||||
                pA = (q7_t *) read_and_pad_reordered((void *)pA, &inA1, &inA2);
 | 
			
		||||
 | 
			
		||||
                inB1 = *__SIMD32(pB)++;
 | 
			
		||||
                sum = __SMLAD(inA1, inB1, sum);
 | 
			
		||||
                inB2 = *__SIMD32(pB)++;
 | 
			
		||||
                sum = __SMLAD(inA2, inB2, sum);
 | 
			
		||||
 | 
			
		||||
                colCnt--;
 | 
			
		||||
            }
 | 
			
		||||
            colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3;
 | 
			
		||||
            while (colCnt)
 | 
			
		||||
            {
 | 
			
		||||
                q7_t      inA1 = *pA++;
 | 
			
		||||
                q15_t     inB1 = *pB++;
 | 
			
		||||
                sum += inA1 * inB1;
 | 
			
		||||
                colCnt--;
 | 
			
		||||
            }
 | 
			
		||||
            *pOut = (q7_t) __SSAT((sum >> out_shift), 8);
 | 
			
		||||
            pOut++;
 | 
			
		||||
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
#else
 | 
			
		||||
    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
 | 
			
		||||
 | 
			
		||||
    uint16_t  i, j, k, l, m, n;
 | 
			
		||||
    int       conv_out;
 | 
			
		||||
    signed char in_row, in_col;
 | 
			
		||||
 | 
			
		||||
    if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
 | 
			
		||||
    {
 | 
			
		||||
        /* check if the input dimension meets the constraints */
 | 
			
		||||
        return ARM_MATH_SIZE_MISMATCH;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (i = 0; i < ch_im_out; i++)
 | 
			
		||||
    {
 | 
			
		||||
        for (j = 0; j < dim_im_out; j++)
 | 
			
		||||
        {
 | 
			
		||||
            for (k = 0; k < dim_im_out; k++)
 | 
			
		||||
            {
 | 
			
		||||
                conv_out = (bias[i] << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
                for (m = 0; m < dim_kernel; m++)
 | 
			
		||||
                {
 | 
			
		||||
                    for (n = 0; n < dim_kernel; n++)
 | 
			
		||||
                    {
 | 
			
		||||
                        // if-for implementation
 | 
			
		||||
                        in_row = stride * j + m - padding;
 | 
			
		||||
                        in_col = stride * k + n - padding;
 | 
			
		||||
                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
 | 
			
		||||
                        {
 | 
			
		||||
                            for (l = 0; l < ch_im_in; l++)
 | 
			
		||||
                            {
 | 
			
		||||
                                conv_out +=
 | 
			
		||||
                                    Im_in[(in_row * dim_im_in + in_col) * ch_im_in +
 | 
			
		||||
                                          l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel +
 | 
			
		||||
                                                                                            n) * ch_im_in + l];
 | 
			
		||||
                            }
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
                Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#endif                          /* ARM_MATH_DSP */
 | 
			
		||||
 | 
			
		||||
    /* Return to application */
 | 
			
		||||
    return ARM_MATH_SUCCESS;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @} end of NNConv group
 | 
			
		||||
 */
 | 
			
		||||
@ -0,0 +1,379 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_convolve_HWC_q7_fast_nonsquare.c
 | 
			
		||||
 * Description:  Fast Q7 version of convolution (non-sqaure shape)
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        17. January 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 *  @ingroup groupNN
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @addtogroup NNConv
 | 
			
		||||
 * @{
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief Fast Q7 convolution function (non-sqaure shape)
 | 
			
		||||
 * @param[in]       Im_in        pointer to input tensor
 | 
			
		||||
 * @param[in]       dim_im_in_x  input tensor dimention x
 | 
			
		||||
 * @param[in]       dim_im_in_y  input tensor dimention y
 | 
			
		||||
 * @param[in]       ch_im_in     number of input tensor channels
 | 
			
		||||
 * @param[in]       wt           pointer to kernel weights
 | 
			
		||||
 * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
 | 
			
		||||
 * @param[in]       dim_kernel_x filter kernel size x
 | 
			
		||||
 * @param[in]       dim_kernel_y filter kernel size y
 | 
			
		||||
 * @param[in]       padding_x    padding size x
 | 
			
		||||
 * @param[in]       padding_y    padding size y
 | 
			
		||||
 * @param[in]       stride_x     convolution stride x
 | 
			
		||||
 * @param[in]       stride_y     convolution stride y
 | 
			
		||||
 * @param[in]       bias         pointer to bias
 | 
			
		||||
 * @param[in]       bias_shift   amount of left-shift for bias
 | 
			
		||||
 * @param[in]       out_shift    amount of right-shift for output
 | 
			
		||||
 * @param[in,out]   Im_out       pointer to output tensor
 | 
			
		||||
 * @param[in]       dim_im_out_x output tensor dimension x
 | 
			
		||||
 * @param[in]       dim_im_out_y output tensor dimension y
 | 
			
		||||
 * @param[in,out]   bufferA      pointer to buffer space for input 
 | 
			
		||||
 * @param[in,out]   bufferB      pointer to buffer space for output
 | 
			
		||||
 * @return     The function returns either
 | 
			
		||||
 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
 | 
			
		||||
 *
 | 
			
		||||
 * This function is the version with full list of optimization tricks, but with
 | 
			
		||||
 * some contraints:
 | 
			
		||||
 *   ch_im_in is multiple of 4
 | 
			
		||||
 *   ch_im_out is multiple of 2
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t * Im_in,
 | 
			
		||||
                                              const uint16_t dim_im_in_x,
 | 
			
		||||
                                              const uint16_t dim_im_in_y,
 | 
			
		||||
                                              const uint16_t ch_im_in,
 | 
			
		||||
                                              const q7_t * wt,
 | 
			
		||||
                                              const uint16_t ch_im_out,
 | 
			
		||||
                                              const uint16_t dim_kernel_x,
 | 
			
		||||
                                              const uint16_t dim_kernel_y,
 | 
			
		||||
                                              const uint16_t padding_x,
 | 
			
		||||
                                              const uint16_t padding_y,
 | 
			
		||||
                                              const uint16_t stride_x,
 | 
			
		||||
                                              const uint16_t stride_y,
 | 
			
		||||
                                              const q7_t * bias,
 | 
			
		||||
                                              const uint16_t bias_shift,
 | 
			
		||||
                                              const uint16_t out_shift,
 | 
			
		||||
                                              q7_t * Im_out,
 | 
			
		||||
                                              const uint16_t dim_im_out_x,
 | 
			
		||||
                                              const uint16_t dim_im_out_y, 
 | 
			
		||||
                                              q15_t * bufferA, 
 | 
			
		||||
                                              q7_t * bufferB)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
#if defined (ARM_MATH_DSP)
 | 
			
		||||
    /* Run the following code for Cortex-M4 and Cortex-M7 */
 | 
			
		||||
 | 
			
		||||
    int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x;
 | 
			
		||||
 | 
			
		||||
    /* -----------------------
 | 
			
		||||
     *  Here we use bufferA as q15_t internally as computation are done with q15_t level
 | 
			
		||||
     *  im2col are done to output in q15_t format from q7_t input
 | 
			
		||||
     */
 | 
			
		||||
 | 
			
		||||
    q15_t    *pBuffer = bufferA;
 | 
			
		||||
    q7_t     *pOut = Im_out;
 | 
			
		||||
 | 
			
		||||
    if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
 | 
			
		||||
    {
 | 
			
		||||
        /* check if the input dimension meets the constraints */
 | 
			
		||||
        return ARM_MATH_SIZE_MISMATCH;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /*
 | 
			
		||||
     *  Here we split the entire matrix into three regions depending on the padding situation
 | 
			
		||||
     *    Top: i_out_y from 0 to padding - 1
 | 
			
		||||
     * Middle: i_out_y from padding to dim_im_out-padding-1
 | 
			
		||||
     * Bottom: i_out_y from dim_im_out-padding to dim_im_out-1
 | 
			
		||||
     */
 | 
			
		||||
 | 
			
		||||
    /* top part */
 | 
			
		||||
    for (i_out_y = 0; i_out_y < padding_y; i_out_y++)
 | 
			
		||||
    {
 | 
			
		||||
        for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
 | 
			
		||||
        {
 | 
			
		||||
            /* This part implements the im2col function */
 | 
			
		||||
            for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
 | 
			
		||||
                 i_ker_y++)
 | 
			
		||||
            {
 | 
			
		||||
                for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
 | 
			
		||||
                     i_ker_x++)
 | 
			
		||||
                {
 | 
			
		||||
                    if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)
 | 
			
		||||
                    {
 | 
			
		||||
                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
 | 
			
		||||
                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
 | 
			
		||||
                    } else
 | 
			
		||||
                    {
 | 
			
		||||
                        arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in,
 | 
			
		||||
                                                         pBuffer, ch_im_in);
 | 
			
		||||
                    }
 | 
			
		||||
                    pBuffer += ch_im_in;
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
 | 
			
		||||
            {
 | 
			
		||||
                pOut =
 | 
			
		||||
                    arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,
 | 
			
		||||
                                                  bias_shift, out_shift, bias, pOut);
 | 
			
		||||
                /* counter reset */
 | 
			
		||||
                pBuffer = bufferA;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* middle part, here we also divide the x into left, mid and right */
 | 
			
		||||
    for (; i_out_y < dim_im_out_y - padding_y; i_out_y++)
 | 
			
		||||
    {
 | 
			
		||||
 | 
			
		||||
        /* left part */
 | 
			
		||||
        for (i_out_x = 0; i_out_x < padding_x; i_out_x++)
 | 
			
		||||
        {
 | 
			
		||||
            /* This part implements the im2col function */
 | 
			
		||||
            for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
 | 
			
		||||
                 i_ker_y++)
 | 
			
		||||
            {
 | 
			
		||||
                for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
 | 
			
		||||
                     i_ker_x++)
 | 
			
		||||
                {
 | 
			
		||||
                    if (i_ker_x < 0 || i_ker_x >= dim_im_in_x)
 | 
			
		||||
                    {
 | 
			
		||||
                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
 | 
			
		||||
                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
 | 
			
		||||
                    } else
 | 
			
		||||
                    {
 | 
			
		||||
                        arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in,
 | 
			
		||||
                                                         pBuffer, ch_im_in);
 | 
			
		||||
                    }
 | 
			
		||||
                    pBuffer += ch_im_in;
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
 | 
			
		||||
            {
 | 
			
		||||
                pOut =
 | 
			
		||||
                    arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,
 | 
			
		||||
                                                  bias_shift, out_shift, bias, pOut);
 | 
			
		||||
                /* counter reset */
 | 
			
		||||
                pBuffer = bufferA;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        /* mid part */
 | 
			
		||||
        for (; i_out_x < dim_im_out_x - padding_x; i_out_x++)
 | 
			
		||||
        {
 | 
			
		||||
            /* This part implements the im2col function */
 | 
			
		||||
            for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
 | 
			
		||||
                 i_ker_y++)
 | 
			
		||||
            {
 | 
			
		||||
                arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in +
 | 
			
		||||
                                                 (i_ker_y * dim_im_in_x + i_out_x * stride_x - padding_x) * ch_im_in,
 | 
			
		||||
                                                 pBuffer, ch_im_in * dim_kernel_x);
 | 
			
		||||
                pBuffer += ch_im_in * dim_kernel_x;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
 | 
			
		||||
            {
 | 
			
		||||
                pOut =
 | 
			
		||||
                    arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,
 | 
			
		||||
                                                  bias_shift, out_shift, bias, pOut);
 | 
			
		||||
                /* counter reset */
 | 
			
		||||
                pBuffer = bufferA;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        /* right part */
 | 
			
		||||
        for (; i_out_x < dim_im_out_x; i_out_x++)
 | 
			
		||||
        {
 | 
			
		||||
            /* This part implements the im2col function */
 | 
			
		||||
            for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
 | 
			
		||||
                 i_ker_y++)
 | 
			
		||||
            {
 | 
			
		||||
                for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
 | 
			
		||||
                     i_ker_x++)
 | 
			
		||||
                {
 | 
			
		||||
                    if (i_ker_x < 0 || i_ker_x >= dim_im_in_x)
 | 
			
		||||
                    {
 | 
			
		||||
                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
 | 
			
		||||
                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
 | 
			
		||||
                    } else
 | 
			
		||||
                    {
 | 
			
		||||
                        arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in,
 | 
			
		||||
                                                         pBuffer, ch_im_in);
 | 
			
		||||
                    }
 | 
			
		||||
                    pBuffer += ch_im_in;
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
 | 
			
		||||
            {
 | 
			
		||||
                pOut =
 | 
			
		||||
                    arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,
 | 
			
		||||
                                                  bias_shift, out_shift, bias, pOut);
 | 
			
		||||
                /* counter reset */
 | 
			
		||||
                pBuffer = bufferA;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (; i_out_y < dim_im_out_y; i_out_y++)
 | 
			
		||||
    {
 | 
			
		||||
        for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
 | 
			
		||||
        {
 | 
			
		||||
            /* This part implements the im2col function */
 | 
			
		||||
            for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
 | 
			
		||||
                 i_ker_y++)
 | 
			
		||||
            {
 | 
			
		||||
                for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
 | 
			
		||||
                     i_ker_x++)
 | 
			
		||||
                {
 | 
			
		||||
                    if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)
 | 
			
		||||
                    {
 | 
			
		||||
                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
 | 
			
		||||
                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
 | 
			
		||||
                    } else
 | 
			
		||||
                    {
 | 
			
		||||
                        arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in,
 | 
			
		||||
                                                         pBuffer, ch_im_in);
 | 
			
		||||
                    }
 | 
			
		||||
                    pBuffer += ch_im_in;
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
 | 
			
		||||
            {
 | 
			
		||||
                pOut =
 | 
			
		||||
                    arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,
 | 
			
		||||
                                                  bias_shift, out_shift, bias, pOut);
 | 
			
		||||
                /* counter reset */
 | 
			
		||||
                pBuffer = bufferA;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* check if there is left-over for compute */
 | 
			
		||||
    if (pBuffer != bufferA)
 | 
			
		||||
    {
 | 
			
		||||
        const q7_t *pA = wt;
 | 
			
		||||
        int       i;
 | 
			
		||||
        for (i = 0; i < ch_im_out; i++)
 | 
			
		||||
        {
 | 
			
		||||
            q31_t     sum = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
            q15_t    *pB = bufferA;
 | 
			
		||||
            /* basically each time it process 4 entries */
 | 
			
		||||
            uint16_t  colCnt = ch_im_in * dim_kernel_x * dim_kernel_y >> 2;
 | 
			
		||||
 | 
			
		||||
            while (colCnt)
 | 
			
		||||
            {
 | 
			
		||||
 | 
			
		||||
                q31_t     inA1, inA2;
 | 
			
		||||
                q31_t     inB1, inB2;
 | 
			
		||||
 | 
			
		||||
                pA = (const q7_t *)read_and_pad_reordered((void *)pA, &inA1, &inA2);
 | 
			
		||||
 | 
			
		||||
                inB1 = *__SIMD32(pB)++;
 | 
			
		||||
                sum = __SMLAD(inA1, inB1, sum);
 | 
			
		||||
                inB2 = *__SIMD32(pB)++;
 | 
			
		||||
                sum = __SMLAD(inA2, inB2, sum);
 | 
			
		||||
 | 
			
		||||
                colCnt--;
 | 
			
		||||
            }
 | 
			
		||||
            colCnt = (ch_im_in * dim_kernel_y * dim_kernel_x) & 0x3;
 | 
			
		||||
            while (colCnt)
 | 
			
		||||
            {
 | 
			
		||||
                q7_t      inA1 = *pA++;
 | 
			
		||||
                q15_t     inB1 = *pB++;
 | 
			
		||||
                sum += inA1 * inB1;
 | 
			
		||||
                colCnt--;
 | 
			
		||||
            }
 | 
			
		||||
            *pOut = (q7_t) __SSAT((sum >> out_shift), 8);
 | 
			
		||||
            pOut++;
 | 
			
		||||
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
 | 
			
		||||
    int       i, j, k, l, m, n;
 | 
			
		||||
    int       conv_out;
 | 
			
		||||
    int       in_row, in_col;
 | 
			
		||||
 | 
			
		||||
    if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
 | 
			
		||||
    {
 | 
			
		||||
        /* check if the input dimension meets the constraints */
 | 
			
		||||
        return ARM_MATH_SIZE_MISMATCH;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (i = 0; i < ch_im_out; i++)
 | 
			
		||||
    {
 | 
			
		||||
        for (j = 0; j < dim_im_out_y; j++)
 | 
			
		||||
        {
 | 
			
		||||
            for (k = 0; k < dim_im_out_x; k++)
 | 
			
		||||
            {
 | 
			
		||||
                conv_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
                for (m = 0; m < dim_kernel_y; m++)
 | 
			
		||||
                {
 | 
			
		||||
                    for (n = 0; n < dim_kernel_x; n++)
 | 
			
		||||
                    {
 | 
			
		||||
                        /* if-for implementation */
 | 
			
		||||
                        in_row = stride_y * j + m - padding_y;
 | 
			
		||||
                        in_col = stride_x * k + n - padding_x;
 | 
			
		||||
                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
 | 
			
		||||
                        {
 | 
			
		||||
                            for (l = 0; l < ch_im_in; l++)
 | 
			
		||||
                            {
 | 
			
		||||
                                conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] *
 | 
			
		||||
                                    wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + (m * dim_kernel_x + n) * ch_im_in + l];      
 | 
			
		||||
                            }
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
                Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#endif                          /* ARM_MATH_DSP */
 | 
			
		||||
 | 
			
		||||
    /* Return to application */
 | 
			
		||||
    return ARM_MATH_SUCCESS;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @} end of NNConv group
 | 
			
		||||
 */
 | 
			
		||||
@ -0,0 +1,418 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_depthwise_separable_conv_HWC_q7.c
 | 
			
		||||
 * Description:  Q7 depthwise separable convolution function
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        17. January 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 *  @ingroup groupNN
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @addtogroup NNConv
 | 
			
		||||
 * @{
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief Q7 depthwise separable convolution function
 | 
			
		||||
 * @param[in]       Im_in       pointer to input tensor
 | 
			
		||||
 * @param[in]       dim_im_in   input tensor dimention
 | 
			
		||||
 * @param[in]       ch_im_in    number of input tensor channels
 | 
			
		||||
 * @param[in]       wt          pointer to kernel weights
 | 
			
		||||
 * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
 | 
			
		||||
 * @param[in]       dim_kernel  filter kernel size
 | 
			
		||||
 * @param[in]       padding     padding sizes
 | 
			
		||||
 * @param[in]       stride      convolution stride
 | 
			
		||||
 * @param[in]       bias        pointer to bias
 | 
			
		||||
 * @param[in]       bias_shift  amount of left-shift for bias
 | 
			
		||||
 * @param[in]       out_shift   amount of right-shift for output
 | 
			
		||||
 * @param[in,out]   Im_out      pointer to output tensor
 | 
			
		||||
 * @param[in]       dim_im_out  output tensor dimension
 | 
			
		||||
 * @param[in,out]   bufferA     pointer to buffer space for input
 | 
			
		||||
 * @param[in,out]   bufferB     pointer to buffer space for output
 | 
			
		||||
 * @return     The function returns either
 | 
			
		||||
 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
 | 
			
		||||
 *
 | 
			
		||||
 * @details
 | 
			
		||||
 *
 | 
			
		||||
 * <b>Buffer size:</b>
 | 
			
		||||
 *
 | 
			
		||||
 * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
 | 
			
		||||
 *
 | 
			
		||||
 * bufferB size: 0
 | 
			
		||||
 *
 | 
			
		||||
 * <b>Input dimension constraints:</b>
 | 
			
		||||
 *
 | 
			
		||||
 * ch_im_in equals ch_im_out
 | 
			
		||||
 *
 | 
			
		||||
 * Implementation:
 | 
			
		||||
 * There are 3 nested loop here:
 | 
			
		||||
 * Inner loop: calculate each output value with MAC instruction over an accumulator
 | 
			
		||||
 * Mid   loop: loop over different output channel
 | 
			
		||||
 * Outer loop: loop over different output (x, y)
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t * Im_in,
 | 
			
		||||
                                               const uint16_t dim_im_in,
 | 
			
		||||
                                               const uint16_t ch_im_in,
 | 
			
		||||
                                               const q7_t * wt,
 | 
			
		||||
                                               const uint16_t ch_im_out,
 | 
			
		||||
                                               const uint16_t dim_kernel,
 | 
			
		||||
                                               const uint16_t padding,
 | 
			
		||||
                                               const uint16_t stride,
 | 
			
		||||
                                               const q7_t * bias,
 | 
			
		||||
                                               const uint16_t bias_shift,
 | 
			
		||||
                                               const uint16_t out_shift,
 | 
			
		||||
                                               q7_t * Im_out, 
 | 
			
		||||
                                               const uint16_t dim_im_out, 
 | 
			
		||||
                                               q15_t * bufferA, 
 | 
			
		||||
                                               q7_t * bufferB)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
#if defined (ARM_MATH_DSP)
 | 
			
		||||
    /* Run the following code for Cortex-M4 and Cortex-M7 */
 | 
			
		||||
 | 
			
		||||
    int16_t   i_out_y, i_out_x;
 | 
			
		||||
    int16_t   i_ker_y, i_ker_x;
 | 
			
		||||
    q7_t     *colBuffer = (q7_t *) bufferA;
 | 
			
		||||
    q7_t     *pBuffer = colBuffer;
 | 
			
		||||
    const q7_t *pBias = bias;
 | 
			
		||||
    q7_t     *pOut = Im_out;
 | 
			
		||||
    uint16_t  rowCnt;
 | 
			
		||||
    uint16_t  row_shift;
 | 
			
		||||
 | 
			
		||||
    /* do some checking here, basically ch_im_in == ch_im_out */
 | 
			
		||||
    if (ch_im_in != ch_im_out)
 | 
			
		||||
    {
 | 
			
		||||
        return ARM_MATH_SIZE_MISMATCH;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
 | 
			
		||||
    {
 | 
			
		||||
        for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
 | 
			
		||||
        {
 | 
			
		||||
            /* we first do im2col here */
 | 
			
		||||
            for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
 | 
			
		||||
            {
 | 
			
		||||
                for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
 | 
			
		||||
                {
 | 
			
		||||
                    if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
 | 
			
		||||
                    {
 | 
			
		||||
                        /* arm_fill_q7(0, pBuffer, ch_im_in); */
 | 
			
		||||
                        memset(pBuffer, 0, ch_im_in);
 | 
			
		||||
                    } else
 | 
			
		||||
                    {
 | 
			
		||||
                        /* arm_copy_q7((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */
 | 
			
		||||
                        memcpy(pBuffer, (q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, ch_im_in);
 | 
			
		||||
                    }
 | 
			
		||||
                    pBuffer += ch_im_in;
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            /* we will do the computation here for each channel */
 | 
			
		||||
            rowCnt = ch_im_out >> 2;
 | 
			
		||||
            row_shift = 0;
 | 
			
		||||
            pBias = bias;
 | 
			
		||||
 | 
			
		||||
            while (rowCnt)
 | 
			
		||||
            {
 | 
			
		||||
                q31_t     sum =  ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
                q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
                q31_t     sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
                q31_t     sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
 | 
			
		||||
                uint16_t  colCnt = (dim_kernel * dim_kernel) >> 1;
 | 
			
		||||
                q7_t     *pB = colBuffer + row_shift;
 | 
			
		||||
                const q7_t *pA = wt + row_shift;
 | 
			
		||||
                row_shift += 4;
 | 
			
		||||
 | 
			
		||||
#ifdef USE_INTRINSIC
 | 
			
		||||
 | 
			
		||||
#ifndef ARM_MATH_BIG_ENDIAN
 | 
			
		||||
 | 
			
		||||
                while (colCnt)
 | 
			
		||||
                {
 | 
			
		||||
                    q31_t     inA1, inA2, inB1, inB2, opA, opB;
 | 
			
		||||
 | 
			
		||||
                    inB1 = *__SIMD32(pB);
 | 
			
		||||
                    pB += ch_im_in;
 | 
			
		||||
                    opB = *__SIMD32(pB);
 | 
			
		||||
                    pB += ch_im_in;
 | 
			
		||||
                    inB2 = __PKHTB(opB, inB1, 16);
 | 
			
		||||
                    inB1 = __PKHBT(inB1, opB, 16);
 | 
			
		||||
                    inA1 = *__SIMD32(pA);
 | 
			
		||||
                    pA += ch_im_in;
 | 
			
		||||
                    opB = *__SIMD32(pA);
 | 
			
		||||
                    pA += ch_im_in;
 | 
			
		||||
                    inA2 = __PKHTB(opB, inA1, 16);
 | 
			
		||||
                    inA1 = __PKHBT(inA1, opB, 16);
 | 
			
		||||
                    opA = __SXTB16(inA1);
 | 
			
		||||
                    opB = __SXTB16(inB1);
 | 
			
		||||
                    sum = __SMLAD(opA, opB, sum);
 | 
			
		||||
                    opA = __SXTB16(__ROR(inA1, 8));
 | 
			
		||||
                    opB = __SXTB16(__ROR(inB1, 8));
 | 
			
		||||
                    sum2 = __SMLAD(opA, opB, sum2);
 | 
			
		||||
                    opA = __SXTB16(inA2);
 | 
			
		||||
                    opB = __SXTB16(inB2);
 | 
			
		||||
                    sum3 = __SMLAD(opA, opB, sum3);
 | 
			
		||||
                    opA = __SXTB16(__ROR(inA2, 8));
 | 
			
		||||
                    opB = __SXTB16(__ROR(inB2, 8));
 | 
			
		||||
                    sum4 = __SMLAD(opA, opB, sum4);
 | 
			
		||||
                    colCnt--;
 | 
			
		||||
                }
 | 
			
		||||
#else
 | 
			
		||||
 | 
			
		||||
                while (colCnt)
 | 
			
		||||
                {
 | 
			
		||||
                    q31_t     inA1, inA2, inB1, inB2, opA, opB;
 | 
			
		||||
 | 
			
		||||
                    inB1 = *__SIMD32(pB);
 | 
			
		||||
                    pB += ch_im_in;
 | 
			
		||||
                    opB = *__SIMD32(pB);
 | 
			
		||||
                    pB += ch_im_in;
 | 
			
		||||
                    inB2 = __PKHBT(opB, inB1, 16);
 | 
			
		||||
                    inB1 = __PKHTB(inB1, opB, 16);
 | 
			
		||||
                    inA1 = *__SIMD32(pA);
 | 
			
		||||
                    pA += ch_im_in;
 | 
			
		||||
                    opB = *__SIMD32(pA);
 | 
			
		||||
                    pA += ch_im_in;
 | 
			
		||||
                    inA2 = __PKHBT(opB, inA1, 16);
 | 
			
		||||
                    inA1 = __PKHTB(inA1, opB, 16);
 | 
			
		||||
                    opA = __SXTB16(inA1);
 | 
			
		||||
                    opB = __SXTB16(inB1);
 | 
			
		||||
                    sum2 = __SMLAD(opA, opB, sum2);
 | 
			
		||||
                    opA = __SXTB16(__ROR(inA1, 8));
 | 
			
		||||
                    opB = __SXTB16(__ROR(inB1, 8));
 | 
			
		||||
                    sum = __SMLAD(opA, opB, sum);
 | 
			
		||||
                    opA = __SXTB16(inA2);
 | 
			
		||||
                    opB = __SXTB16(inB2);
 | 
			
		||||
                    sum4 = __SMLAD(opA, opB, sum4);
 | 
			
		||||
                    opA = __SXTB16(__ROR(inA2, 8));
 | 
			
		||||
                    opB = __SXTB16(__ROR(inB2, 8));
 | 
			
		||||
                    sum3 = __SMLAD(opA, opB, sum3);
 | 
			
		||||
                    colCnt--;
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
#endif                          /* ARM_MATH_BIG_ENDIAN */
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
 | 
			
		||||
#ifndef ARM_MATH_BIG_ENDIAN
 | 
			
		||||
                /*
 | 
			
		||||
                 *   r0    r1    r2    r3    r4   r5
 | 
			
		||||
                 *  inA1, inA2, inB1, inB2, opA, opB
 | 
			
		||||
                 */
 | 
			
		||||
 | 
			
		||||
                asm volatile ("COL_LOOP_%=:\n"
 | 
			
		||||
                              "ldr.w r2, [%[pB], #0]\n"
 | 
			
		||||
                              "add.w %[pB], %[pB], %[ch_im_in]\n"
 | 
			
		||||
                              "ldr.w r5, [%[pB], #0]\n"
 | 
			
		||||
                              "add.w %[pB], %[pB], %[ch_im_in]\n"
 | 
			
		||||
                              "pkhtb r3, r5, r2, ASR #16\n"
 | 
			
		||||
                              "pkhbt r2, r2, r5, LSL #16\n"
 | 
			
		||||
                              "ldr.w r0, [%[pA], #0]\n"
 | 
			
		||||
                              "add.w %[pA], %[pA], %[ch_im_in]\n"
 | 
			
		||||
                              "ldr.w r5, [%[pA], #0]\n"
 | 
			
		||||
                              "add.w %[pA], %[pA], %[ch_im_in]\n"
 | 
			
		||||
                              "pkhtb r1, r5, r0, ASR #16\n"
 | 
			
		||||
                              "pkhbt r0, r0, r5, LSL #16\n"
 | 
			
		||||
                              "sxtb16 r4, r0\n"
 | 
			
		||||
                              "sxtb16 r5, r2\n"
 | 
			
		||||
                              "smlad %[sum], r4, r5, %[sum]\n"
 | 
			
		||||
                              "mov.w r4, r0, ror #8\n"
 | 
			
		||||
                              "mov.w r5, r2, ror #8\n"
 | 
			
		||||
                              "sxtb16 r4, r4\n"
 | 
			
		||||
                              "sxtb16 r5, r5\n"
 | 
			
		||||
                              "smlad %[sum2], r4, r5, %[sum2]\n"
 | 
			
		||||
                              "sxtb16 r4, r1\n"
 | 
			
		||||
                              "sxtb16 r5, r3\n"
 | 
			
		||||
                              "smlad %[sum3], r4, r5, %[sum3]\n"
 | 
			
		||||
                              "mov.w r4, r1, ror #8\n"
 | 
			
		||||
                              "mov.w r5, r3, ror #8\n"
 | 
			
		||||
                              "sxtb16 r4, r4\n"
 | 
			
		||||
                              "sxtb16 r5, r5\n"
 | 
			
		||||
                              "smlad %[sum4], r4, r5, %[sum4]\n"
 | 
			
		||||
                              "subs %[colCnt], #1\n"
 | 
			
		||||
                              "bne COL_LOOP_%=\n":[sum]
 | 
			
		||||
                              "+r"(sum),[sum2] "+r"(sum2),
 | 
			
		||||
                              [sum3] "+r"(sum3),
 | 
			
		||||
                              [sum4] "+r"(sum4),[pB] "+r"(pB),
 | 
			
		||||
                              [pA] "+r"(pA):[colCnt]
 | 
			
		||||
                              "r"(colCnt),[ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5");
 | 
			
		||||
#else
 | 
			
		||||
                /*
 | 
			
		||||
                 *  r0    r1    r2    r3    r4   r5
 | 
			
		||||
                 * inA1, inA2, inB1, inB2, opA, opB
 | 
			
		||||
                 */
 | 
			
		||||
                asm volatile ("COL_LOOP_%=:\n"
 | 
			
		||||
                              "ldr.w r2, [%[pB], #0]\n"
 | 
			
		||||
                              "add.w %[pB], %[pB], %[ch_im_in]\n"
 | 
			
		||||
                              "ldr.w r5, [%[pB], #0]\n"
 | 
			
		||||
                              "add.w %[pB], %[pB], %[ch_im_in]\n"
 | 
			
		||||
                              "pkhbt r3, r5, r2, LSL #16\n"
 | 
			
		||||
                              "pkhtb r2, r2, r5, ASR #16\n"
 | 
			
		||||
                              "ldr.w r0, [%[pA], #0]\n"
 | 
			
		||||
                              "add.w %[pA], %[pA], %[ch_im_in]\n"
 | 
			
		||||
                              "ldr.w r5, [%[pA], #0]\n"
 | 
			
		||||
                              "add.w %[pA], %[pA], %[ch_im_in]\n"
 | 
			
		||||
                              "pkhbt r1, r5, r0, LSL #16\n"
 | 
			
		||||
                              "pkhtb r0, r0, r5, ASR #16\n"
 | 
			
		||||
                              "sxtb16 r4, r0\n"
 | 
			
		||||
                              "sxtb16 r5, r2\n"
 | 
			
		||||
                              "smlad %[sum2], r4, r5, %[sum2]\n"
 | 
			
		||||
                              "mov.w r4, r0, ror #8\n"
 | 
			
		||||
                              "mov.w r5, r2, ror #8\n"
 | 
			
		||||
                              "sxtb16 r4, r4\n"
 | 
			
		||||
                              "sxtb16 r5, r5\n"
 | 
			
		||||
                              "smlad %[sum], r4, r5, %[sum]\n"
 | 
			
		||||
                              "sxtb16 r4, r1\n"
 | 
			
		||||
                              "sxtb16 r5, r3\n"
 | 
			
		||||
                              "smlad %[sum4], r4, r5, %[sum4]\n"
 | 
			
		||||
                              "mov.w r4, r1, ror #8\n"
 | 
			
		||||
                              "mov.w r5, r3, ror #8\n"
 | 
			
		||||
                              "sxtb16 r4, r4\n"
 | 
			
		||||
                              "sxtb16 r5, r5\n"
 | 
			
		||||
                              "smlad %[sum3], r4, r5, %[sum3]\n"
 | 
			
		||||
                              "subs %[colCnt], #1\n"
 | 
			
		||||
                              "bne COL_LOOP_%=\n":[sum]
 | 
			
		||||
                              "+r"(sum),[sum2] "+r"(sum2),
 | 
			
		||||
                              [sum3] "+r"(sum3),
 | 
			
		||||
                              [sum4] "+r"(sum4),[pB] "+r"(pB),
 | 
			
		||||
                              [pA] "+r"(pA):[colCnt]
 | 
			
		||||
                              "r"(colCnt),[ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5");
 | 
			
		||||
 | 
			
		||||
#endif                          /* ARM_MATH_BIG_ENDIAN */
 | 
			
		||||
 | 
			
		||||
#endif                          /* USE_INTRINSIC */
 | 
			
		||||
 | 
			
		||||
                colCnt = (dim_kernel * dim_kernel) & 0x1;
 | 
			
		||||
                while (colCnt)
 | 
			
		||||
                {
 | 
			
		||||
                    union arm_nnword inA, inB;
 | 
			
		||||
                    inA.word = *__SIMD32(pA);
 | 
			
		||||
                    pA += ch_im_in;
 | 
			
		||||
                    inB.word = *__SIMD32(pB);
 | 
			
		||||
                    pB += ch_im_in;
 | 
			
		||||
                    sum += inA.bytes[0] * inB.bytes[0];
 | 
			
		||||
                    sum2 += inA.bytes[1] * inB.bytes[1];
 | 
			
		||||
                    sum3 += inA.bytes[2] * inB.bytes[2];
 | 
			
		||||
                    sum4 += inA.bytes[3] * inB.bytes[3];
 | 
			
		||||
                    colCnt--;
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
 | 
			
		||||
                *pOut++ = (q7_t) __SSAT((sum2 >> out_shift), 8);
 | 
			
		||||
                *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8);
 | 
			
		||||
                *pOut++ = (q7_t) __SSAT((sum4 >> out_shift), 8);
 | 
			
		||||
 | 
			
		||||
                rowCnt--;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            rowCnt = ch_im_out & 0x3;
 | 
			
		||||
            while (rowCnt)
 | 
			
		||||
            {
 | 
			
		||||
                q7_t     *pB = colBuffer + row_shift;
 | 
			
		||||
                const q7_t *pA = wt + row_shift;
 | 
			
		||||
                q31_t     sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
                uint16_t  colCnt = (dim_kernel * dim_kernel);
 | 
			
		||||
 | 
			
		||||
                row_shift += 1;
 | 
			
		||||
 | 
			
		||||
                while (colCnt)
 | 
			
		||||
                {
 | 
			
		||||
                    q7_t      A1 = *pA;
 | 
			
		||||
                    q7_t      B1 = *pB;
 | 
			
		||||
                    pA += ch_im_in;
 | 
			
		||||
                    pB += ch_im_in;
 | 
			
		||||
                    sum += A1 * B1;
 | 
			
		||||
 | 
			
		||||
                    colCnt--;
 | 
			
		||||
                }
 | 
			
		||||
                *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
 | 
			
		||||
                rowCnt--;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            /* clear counter and pointers */
 | 
			
		||||
            pBuffer = colBuffer;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
 | 
			
		||||
    int       i_out_y, i_out_x, i_ch_out, i_ker_x, i_ker_y;
 | 
			
		||||
    int       conv_out;
 | 
			
		||||
 | 
			
		||||
    /* do some checking here, basically ch_im_in == ch_im_out */
 | 
			
		||||
    if (ch_im_in != ch_im_out)
 | 
			
		||||
    {
 | 
			
		||||
        return ARM_MATH_SIZE_MISMATCH;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
 | 
			
		||||
    {
 | 
			
		||||
        for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
 | 
			
		||||
        {
 | 
			
		||||
            for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++)
 | 
			
		||||
            {
 | 
			
		||||
                // for each output
 | 
			
		||||
                conv_out = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
                for (i_ker_y = 0; i_ker_y < dim_kernel; i_ker_y++)
 | 
			
		||||
                {
 | 
			
		||||
                    for (i_ker_x = 0; i_ker_x < dim_kernel; i_ker_x++)
 | 
			
		||||
                    {
 | 
			
		||||
                        int       in_row = stride * i_out_y + i_ker_y - padding;
 | 
			
		||||
                        int       in_col = stride * i_out_x + i_ker_x - padding;
 | 
			
		||||
                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
 | 
			
		||||
                        {
 | 
			
		||||
                            conv_out +=
 | 
			
		||||
                                Im_in[(in_row *
 | 
			
		||||
                                       dim_im_in +
 | 
			
		||||
                                       in_col) *
 | 
			
		||||
                                      ch_im_in +
 | 
			
		||||
                                      i_ch_out] * wt[(i_ker_y * dim_kernel + i_ker_x) * ch_im_out + i_ch_out];
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
                Im_out[(i_out_y * dim_im_out +
 | 
			
		||||
                        i_out_x) * ch_im_out + i_ch_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#endif                          /* ARM_MATH_DSP */
 | 
			
		||||
 | 
			
		||||
    /* Return to application */
 | 
			
		||||
    return ARM_MATH_SUCCESS;
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @} end of NNConv group
 | 
			
		||||
 */
 | 
			
		||||
@ -0,0 +1,411 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_depthwise_separable_conv_HWC_q7_nonsquare.c
 | 
			
		||||
 * Description:  Q7 depthwise separable convolution function (non-square shape)
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        17. January 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 *  @ingroup groupNN
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @addtogroup NNConv
 | 
			
		||||
 * @{
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief Q7 depthwise separable convolution function (non-square shape)
 | 
			
		||||
 * @param[in]       Im_in         pointer to input tensor
 | 
			
		||||
 * @param[in]       dim_im_in_x   input tensor dimention x
 | 
			
		||||
 * @param[in]       dim_im_in_y   input tensor dimention y
 | 
			
		||||
 * @param[in]       ch_im_in      number of input tensor channels
 | 
			
		||||
 * @param[in]       wt            pointer to kernel weights
 | 
			
		||||
 * @param[in]       ch_im_out     number of filters, i.e., output tensor channels
 | 
			
		||||
 * @param[in]       dim_kernel_x  filter kernel size x
 | 
			
		||||
 * @param[in]       dim_kernel_y  filter kernel size y
 | 
			
		||||
 * @param[in]       padding_x     padding sizes x
 | 
			
		||||
 * @param[in]       padding_y     padding sizes y
 | 
			
		||||
 * @param[in]       stride_x      convolution stride x
 | 
			
		||||
 * @param[in]       stride_y      convolution stride y
 | 
			
		||||
 * @param[in]       bias          pointer to bias
 | 
			
		||||
 * @param[in]       bias_shift    amount of left-shift for bias
 | 
			
		||||
 * @param[in]       out_shift     amount of right-shift for output
 | 
			
		||||
 * @param[in,out]   Im_out        pointer to output tensor
 | 
			
		||||
 * @param[in]       dim_im_out_x  output tensor dimension x
 | 
			
		||||
 * @param[in]       dim_im_out_y  output tensor dimension y
 | 
			
		||||
 * @param[in,out]   bufferA       pointer to buffer space for input 
 | 
			
		||||
 * @param[in,out]   bufferB       pointer to buffer space for output
 | 
			
		||||
 * @return     The function returns either
 | 
			
		||||
 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
 | 
			
		||||
 *
 | 
			
		||||
 * This function is the version with full list of optimization tricks, but with
 | 
			
		||||
 * some contraints:
 | 
			
		||||
 *   ch_im_in is multiple of 2
 | 
			
		||||
 *   ch_im_out is multiple of 2
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t * Im_in,
 | 
			
		||||
                                                         const uint16_t dim_im_in_x,
 | 
			
		||||
                                                         const uint16_t dim_im_in_y,
 | 
			
		||||
                                                         const uint16_t ch_im_in,
 | 
			
		||||
                                                         const q7_t * wt,
 | 
			
		||||
                                                         const uint16_t ch_im_out,
 | 
			
		||||
                                                         const uint16_t dim_kernel_x,
 | 
			
		||||
                                                         const uint16_t dim_kernel_y,
 | 
			
		||||
                                                         const uint16_t padding_x,
 | 
			
		||||
                                                         const uint16_t padding_y,
 | 
			
		||||
                                                         const uint16_t stride_x,
 | 
			
		||||
                                                         const uint16_t stride_y,
 | 
			
		||||
                                                         const q7_t * bias,
 | 
			
		||||
                                                         const uint16_t bias_shift,
 | 
			
		||||
                                                         const uint16_t out_shift,
 | 
			
		||||
                                                         q7_t * Im_out,
 | 
			
		||||
                                                         const uint16_t dim_im_out_x,
 | 
			
		||||
                                                         const uint16_t dim_im_out_y, 
 | 
			
		||||
                                                         q15_t * bufferA, 
 | 
			
		||||
                                                         q7_t * bufferB)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
#if defined (ARM_MATH_DSP)
 | 
			
		||||
    /* Run the following code for Cortex-M4 and Cortex-M7 */
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Implementation:
 | 
			
		||||
 * There are 3 nested loop here:
 | 
			
		||||
 * Inner loop: calculate each output value with MAC instruction over an accumulator
 | 
			
		||||
 * Mid   loop: loop over different output channel
 | 
			
		||||
 * Outer loop: loop over different output (x, y)
 | 
			
		||||
 *
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
    int16_t   i_out_y, i_out_x;
 | 
			
		||||
    int16_t   i_ker_y, i_ker_x;
 | 
			
		||||
    q7_t     *colBuffer = (q7_t *) bufferA;
 | 
			
		||||
    q7_t     *pBuffer = colBuffer;
 | 
			
		||||
    const q7_t *pBias = bias;
 | 
			
		||||
    q7_t     *pOut = Im_out;
 | 
			
		||||
    uint16_t  rowCnt;
 | 
			
		||||
    uint16_t  row_shift;
 | 
			
		||||
 | 
			
		||||
    /* do some checking here, basically ch_im_in == ch_im_out */
 | 
			
		||||
    if (ch_im_in != ch_im_out)
 | 
			
		||||
    {
 | 
			
		||||
        return ARM_MATH_SIZE_MISMATCH;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
 | 
			
		||||
    {
 | 
			
		||||
        for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
 | 
			
		||||
        {
 | 
			
		||||
            /* we first do im2col here */
 | 
			
		||||
            for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
 | 
			
		||||
                 i_ker_y++)
 | 
			
		||||
            {
 | 
			
		||||
                for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
 | 
			
		||||
                     i_ker_x++)
 | 
			
		||||
                {
 | 
			
		||||
                    if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)
 | 
			
		||||
                    {
 | 
			
		||||
                        /* arm_fill_q7(0, pBuffer, ch_im_in); */
 | 
			
		||||
                        memset(pBuffer, 0, ch_im_in);
 | 
			
		||||
                    } else
 | 
			
		||||
                    {
 | 
			
		||||
                        /* arm_copy_q7((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */
 | 
			
		||||
                        memcpy(pBuffer, (q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, ch_im_in);
 | 
			
		||||
                    }
 | 
			
		||||
                    pBuffer += ch_im_in;
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            /* we will do the computation here for each channel */
 | 
			
		||||
            rowCnt = ch_im_out >> 2;
 | 
			
		||||
            row_shift = 0;
 | 
			
		||||
            pBias = bias;
 | 
			
		||||
 | 
			
		||||
            while (rowCnt)
 | 
			
		||||
            {
 | 
			
		||||
                q31_t     sum =  ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
                q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
                q31_t     sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
                q31_t     sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
 | 
			
		||||
                uint16_t  colCnt = (dim_kernel_x * dim_kernel_y) >> 1;
 | 
			
		||||
                q7_t     *pB = colBuffer + row_shift;
 | 
			
		||||
                const q7_t *pA = wt + row_shift;
 | 
			
		||||
                row_shift += 4;
 | 
			
		||||
 | 
			
		||||
#ifdef USE_INTRINSIC
 | 
			
		||||
 | 
			
		||||
#ifndef ARM_MATH_BIG_ENDIAN
 | 
			
		||||
 | 
			
		||||
                while (colCnt)
 | 
			
		||||
                {
 | 
			
		||||
                    q31_t     inA1, inA2, inB1, inB2, opA, opB;
 | 
			
		||||
 | 
			
		||||
                    inB1 = *__SIMD32(pB);
 | 
			
		||||
                    pB += ch_im_in;
 | 
			
		||||
                    opB = *__SIMD32(pB);
 | 
			
		||||
                    pB += ch_im_in;
 | 
			
		||||
                    inB2 = __PKHTB(opB, inB1, 16);
 | 
			
		||||
                    inB1 = __PKHBT(inB1, opB, 16);
 | 
			
		||||
                    inA1 = *__SIMD32(pA);
 | 
			
		||||
                    pA += ch_im_in;
 | 
			
		||||
                    opB = *__SIMD32(pA);
 | 
			
		||||
                    pA += ch_im_in;
 | 
			
		||||
                    inA2 = __PKHTB(opB, inA1, 16);
 | 
			
		||||
                    inA1 = __PKHBT(inA1, opB, 16);
 | 
			
		||||
                    opA = __SXTB16(inA1);
 | 
			
		||||
                    opB = __SXTB16(inB1);
 | 
			
		||||
                    sum = __SMLAD(opA, opB, sum);
 | 
			
		||||
                    opA = __SXTB16(__ROR(inA1, 8));
 | 
			
		||||
                    opB = __SXTB16(__ROR(inB1, 8));
 | 
			
		||||
                    sum2 = __SMLAD(opA, opB, sum2);
 | 
			
		||||
                    opA = __SXTB16(inA2);
 | 
			
		||||
                    opB = __SXTB16(inB2);
 | 
			
		||||
                    sum3 = __SMLAD(opA, opB, sum3);
 | 
			
		||||
                    opA = __SXTB16(__ROR(inA2, 8));
 | 
			
		||||
                    opB = __SXTB16(__ROR(inB2, 8));
 | 
			
		||||
                    sum4 = __SMLAD(opA, opB, sum4);
 | 
			
		||||
                    colCnt--;
 | 
			
		||||
                }
 | 
			
		||||
#else
 | 
			
		||||
 | 
			
		||||
                while (colCnt)
 | 
			
		||||
                {
 | 
			
		||||
                    q31_t     inA1, inA2, inB1, inB2, opA, opB;
 | 
			
		||||
 | 
			
		||||
                    inB1 = *__SIMD32(pB);
 | 
			
		||||
                    pB += ch_im_in;
 | 
			
		||||
                    opB = *__SIMD32(pB);
 | 
			
		||||
                    pB += ch_im_in;
 | 
			
		||||
                    inB2 = __PKHBT(opB, inB1, 16);
 | 
			
		||||
                    inB1 = __PKHTB(inB1, opB, 16);
 | 
			
		||||
                    inA1 = *__SIMD32(pA);
 | 
			
		||||
                    pA += ch_im_in;
 | 
			
		||||
                    opB = *__SIMD32(pA);
 | 
			
		||||
                    pA += ch_im_in;
 | 
			
		||||
                    inA2 = __PKHBT(opB, inA1, 16);
 | 
			
		||||
                    inA1 = __PKHTB(inA1, opB, 16);
 | 
			
		||||
                    opA = __SXTB16(inA1);
 | 
			
		||||
                    opB = __SXTB16(inB1);
 | 
			
		||||
                    sum2 = __SMLAD(opA, opB, sum2);
 | 
			
		||||
                    opA = __SXTB16(__ROR(inA1, 8));
 | 
			
		||||
                    opB = __SXTB16(__ROR(inB1, 8));
 | 
			
		||||
                    sum = __SMLAD(opA, opB, sum);
 | 
			
		||||
                    opA = __SXTB16(inA2);
 | 
			
		||||
                    opB = __SXTB16(inB2);
 | 
			
		||||
                    sum4 = __SMLAD(opA, opB, sum4);
 | 
			
		||||
                    opA = __SXTB16(__ROR(inA2, 8));
 | 
			
		||||
                    opB = __SXTB16(__ROR(inB2, 8));
 | 
			
		||||
                    sum3 = __SMLAD(opA, opB, sum3);
 | 
			
		||||
                    colCnt--;
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
#endif                          /* ARM_MATH_BIG_ENDIAN */
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
 | 
			
		||||
#ifndef ARM_MATH_BIG_ENDIAN
 | 
			
		||||
                //  r0    r1    r2    r3    r4   r5
 | 
			
		||||
                // inA1, inA2, inB1, inB2, opA, opB
 | 
			
		||||
                asm volatile ("COL_LOOP:\n"
 | 
			
		||||
                              "ldr.w r2, [%[pB], #0]\n"
 | 
			
		||||
                              "add.w %[pB], %[pB], %[ch_im_in]\n"
 | 
			
		||||
                              "ldr.w r5, [%[pB], #0]\n"
 | 
			
		||||
                              "add.w %[pB], %[pB], %[ch_im_in]\n"
 | 
			
		||||
                              "pkhtb r3, r5, r2, ASR #16\n"
 | 
			
		||||
                              "pkhbt r2, r2, r5, LSL #16\n"
 | 
			
		||||
                              "ldr.w r0, [%[pA], #0]\n"
 | 
			
		||||
                              "add.w %[pA], %[pA], %[ch_im_in]\n"
 | 
			
		||||
                              "ldr.w r5, [%[pA], #0]\n"
 | 
			
		||||
                              "add.w %[pA], %[pA], %[ch_im_in]\n"
 | 
			
		||||
                              "pkhtb r1, r5, r0, ASR #16\n"
 | 
			
		||||
                              "pkhbt r0, r0, r5, LSL #16\n"
 | 
			
		||||
                              "sxtb16 r4, r0\n"
 | 
			
		||||
                              "sxtb16 r5, r2\n"
 | 
			
		||||
                              "smlad %[sum], r4, r5, %[sum]\n"
 | 
			
		||||
                              "mov.w r4, r0, ror #8\n"
 | 
			
		||||
                              "mov.w r5, r2, ror #8\n"
 | 
			
		||||
                              "sxtb16 r4, r4\n"
 | 
			
		||||
                              "sxtb16 r5, r5\n"
 | 
			
		||||
                              "smlad %[sum2], r4, r5, %[sum2]\n"
 | 
			
		||||
                              "sxtb16 r4, r1\n"
 | 
			
		||||
                              "sxtb16 r5, r3\n"
 | 
			
		||||
                              "smlad %[sum3], r4, r5, %[sum3]\n"
 | 
			
		||||
                              "mov.w r4, r1, ror #8\n"
 | 
			
		||||
                              "mov.w r5, r3, ror #8\n"
 | 
			
		||||
                              "sxtb16 r4, r4\n"
 | 
			
		||||
                              "sxtb16 r5, r5\n"
 | 
			
		||||
                              "smlad %[sum4], r4, r5, %[sum4]\n"
 | 
			
		||||
                              "subs %[colCnt], #1\n"
 | 
			
		||||
                              "bne COL_LOOP\n":[sum] "+r"(sum),[sum2] "+r"(sum2),[sum3] "+r"(sum3),
 | 
			
		||||
                              [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt),
 | 
			
		||||
                              [ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5");
 | 
			
		||||
#else
 | 
			
		||||
                //  r0    r1    r2    r3    r4   r5
 | 
			
		||||
                // inA1, inA2, inB1, inB2, opA, opB
 | 
			
		||||
                asm volatile ("COL_LOOP:\n"
 | 
			
		||||
                              "ldr.w r2, [%[pB], #0]\n"
 | 
			
		||||
                              "add.w %[pB], %[pB], %[ch_im_in]\n"
 | 
			
		||||
                              "ldr.w r5, [%[pB], #0]\n"
 | 
			
		||||
                              "add.w %[pB], %[pB], %[ch_im_in]\n"
 | 
			
		||||
                              "pkhbt r3, r5, r2, LSL #16\n"
 | 
			
		||||
                              "pkhtb r2, r2, r5, ASR #16\n"
 | 
			
		||||
                              "ldr.w r0, [%[pA], #0]\n"
 | 
			
		||||
                              "add.w %[pA], %[pA], %[ch_im_in]\n"
 | 
			
		||||
                              "ldr.w r5, [%[pA], #0]\n"
 | 
			
		||||
                              "add.w %[pA], %[pA], %[ch_im_in]\n"
 | 
			
		||||
                              "pkhbt r1, r5, r0, LSL #16\n"
 | 
			
		||||
                              "pkhtb r0, r0, r5, ASR #16\n"
 | 
			
		||||
                              "sxtb16 r4, r0\n"
 | 
			
		||||
                              "sxtb16 r5, r2\n"
 | 
			
		||||
                              "smlad %[sum2], r4, r5, %[sum2]\n"
 | 
			
		||||
                              "mov.w r4, r0, ror #8\n"
 | 
			
		||||
                              "mov.w r5, r2, ror #8\n"
 | 
			
		||||
                              "sxtb16 r4, r4\n"
 | 
			
		||||
                              "sxtb16 r5, r5\n"
 | 
			
		||||
                              "smlad %[sum], r4, r5, %[sum]\n"
 | 
			
		||||
                              "sxtb16 r4, r1\n"
 | 
			
		||||
                              "sxtb16 r5, r3\n"
 | 
			
		||||
                              "smlad %[sum4], r4, r5, %[sum4]\n"
 | 
			
		||||
                              "mov.w r4, r1, ror #8\n"
 | 
			
		||||
                              "mov.w r5, r3, ror #8\n"
 | 
			
		||||
                              "sxtb16 r4, r4\n"
 | 
			
		||||
                              "sxtb16 r5, r5\n"
 | 
			
		||||
                              "smlad %[sum3], r4, r5, %[sum3]\n"
 | 
			
		||||
                              "subs %[colCnt], #1\n"
 | 
			
		||||
                              "bne COL_LOOP\n":[sum] "+r"(sum),[sum2] "+r"(sum2),[sum3] "+r"(sum3),
 | 
			
		||||
                              [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt),
 | 
			
		||||
                              [ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5");
 | 
			
		||||
#endif                          /*ARM_MATH_BIG_ENDIAN */
 | 
			
		||||
 | 
			
		||||
#endif                          /* USE_INTRINSIC */
 | 
			
		||||
 | 
			
		||||
                colCnt = (dim_kernel_x * dim_kernel_y) & 0x1;
 | 
			
		||||
                while (colCnt)
 | 
			
		||||
                {
 | 
			
		||||
                    union arm_nnword inA, inB;
 | 
			
		||||
                    inA.word = *__SIMD32(pA);
 | 
			
		||||
                    pA += ch_im_in;
 | 
			
		||||
                    inB.word = *__SIMD32(pB);
 | 
			
		||||
                    pB += ch_im_in;
 | 
			
		||||
                    sum += inA.bytes[0] * inB.bytes[0];
 | 
			
		||||
                    sum2 += inA.bytes[1] * inB.bytes[1];
 | 
			
		||||
                    sum3 += inA.bytes[2] * inB.bytes[2];
 | 
			
		||||
                    sum4 += inA.bytes[3] * inB.bytes[3];
 | 
			
		||||
                    colCnt--;
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
 | 
			
		||||
                *pOut++ = (q7_t) __SSAT((sum2 >> out_shift), 8);
 | 
			
		||||
                *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8);
 | 
			
		||||
                *pOut++ = (q7_t) __SSAT((sum4 >> out_shift), 8);
 | 
			
		||||
 | 
			
		||||
                rowCnt--;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            rowCnt = ch_im_out & 0x3;
 | 
			
		||||
            while (rowCnt)
 | 
			
		||||
            {
 | 
			
		||||
                q7_t     *pB = colBuffer + row_shift;
 | 
			
		||||
                const q7_t *pA = wt + row_shift;
 | 
			
		||||
                q31_t     sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
                uint16_t  colCnt = (dim_kernel_x * dim_kernel_y);
 | 
			
		||||
 | 
			
		||||
                row_shift += 1;
 | 
			
		||||
 | 
			
		||||
                while (colCnt)
 | 
			
		||||
                {
 | 
			
		||||
                    q7_t      A1 = *pA;
 | 
			
		||||
                    q7_t      B1 = *pB;
 | 
			
		||||
                    pA += ch_im_in;
 | 
			
		||||
                    pB += ch_im_in;
 | 
			
		||||
                    sum += A1 * B1;
 | 
			
		||||
 | 
			
		||||
                    colCnt--;
 | 
			
		||||
                }
 | 
			
		||||
                *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
 | 
			
		||||
                rowCnt--;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            // clear counter and pointers
 | 
			
		||||
            pBuffer = colBuffer;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
 | 
			
		||||
    int       i_out_y, i_out_x, i_ch_out;
 | 
			
		||||
    int       i_ker_y, i_ker_x; 
 | 
			
		||||
 | 
			
		||||
    /* do some checking here, basically ch_im_in == ch_im_out */
 | 
			
		||||
    if (ch_im_in != ch_im_out)
 | 
			
		||||
    {
 | 
			
		||||
        return ARM_MATH_SIZE_MISMATCH;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
 | 
			
		||||
    {
 | 
			
		||||
        for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
 | 
			
		||||
        {
 | 
			
		||||
            for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++)
 | 
			
		||||
            {
 | 
			
		||||
                // for each output 
 | 
			
		||||
                int       conv_out = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
                for (i_ker_y = 0; i_ker_y < dim_kernel_y; i_ker_y++)
 | 
			
		||||
                {
 | 
			
		||||
                    for (i_ker_x = 0; i_ker_x < dim_kernel_x; i_ker_x++)
 | 
			
		||||
                    {
 | 
			
		||||
                        int       in_row = stride_y * i_out_y + i_ker_y - padding_y;
 | 
			
		||||
                        int       in_col = stride_x * i_out_x + i_ker_x - padding_x;
 | 
			
		||||
                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
 | 
			
		||||
                        {
 | 
			
		||||
                            conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + i_ch_out] *                        
 | 
			
		||||
                                wt[(i_ker_y * dim_kernel_x + i_ker_x) * ch_im_out + i_ch_out];
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
                Im_out[(i_out_y * dim_im_out_x + i_out_x) * ch_im_out + i_ch_out] =
 | 
			
		||||
                    (q7_t) __SSAT((conv_out >> out_shift), 8);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#endif                          /* ARM_MATH_DSP */
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    /* Return to application */
 | 
			
		||||
    return ARM_MATH_SUCCESS;
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @} end of NNConv group
 | 
			
		||||
 */
 | 
			
		||||
@ -0,0 +1,187 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_nn_mat_mult_kernel_q7_q15.c
 | 
			
		||||
 * Description:  Matrix-multiplication function for convolution
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        17. January 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * @brief Matrix-multiplication function for convolution
 | 
			
		||||
   * @param[in]       pA          pointer to operand A
 | 
			
		||||
   * @param[in]       pInBuffer   pointer to operand B, always conssists of 2 vectors
 | 
			
		||||
   * @param[in]       ch_im_out   numRow of A
 | 
			
		||||
   * @param[in]       numCol_A    numCol of A
 | 
			
		||||
   * @param[in]       bias_shift  amount of left-shift for bias
 | 
			
		||||
   * @param[in]       out_shift   amount of right-shift for output
 | 
			
		||||
   * @param[in]       bias        the bias
 | 
			
		||||
   * @param[in,out]   pOut        pointer to output
 | 
			
		||||
   * @return     The function returns the incremented output pointer
 | 
			
		||||
   *
 | 
			
		||||
   * @details
 | 
			
		||||
   *
 | 
			
		||||
   * This function does the matrix multiplication with weight matrix
 | 
			
		||||
   * and 2 columns from im2col. 
 | 
			
		||||
   */
 | 
			
		||||
 | 
			
		||||
q7_t     *arm_nn_mat_mult_kernel_q7_q15(const q7_t * pA,
 | 
			
		||||
                                        const q15_t * pInBuffer,
 | 
			
		||||
                                        const uint16_t ch_im_out,
 | 
			
		||||
                                        const uint16_t numCol_A,
 | 
			
		||||
                                        const uint16_t bias_shift,
 | 
			
		||||
                                        const uint16_t out_shift, 
 | 
			
		||||
                                        const q7_t * bias, 
 | 
			
		||||
                                        q7_t * pOut)
 | 
			
		||||
{
 | 
			
		||||
#if defined (ARM_MATH_DSP)
 | 
			
		||||
    /* set up the second output pointers */
 | 
			
		||||
    q7_t     *pOut2 = pOut + ch_im_out;
 | 
			
		||||
    const q7_t *pBias = bias;
 | 
			
		||||
 | 
			
		||||
    uint16_t  rowCnt = ch_im_out >> 1;
 | 
			
		||||
    /* this loop over rows in A */
 | 
			
		||||
    while (rowCnt)
 | 
			
		||||
    {
 | 
			
		||||
        /* setup pointers for B */
 | 
			
		||||
        const q15_t *pB = pInBuffer;
 | 
			
		||||
        const q15_t *pB2 = pB + numCol_A;
 | 
			
		||||
 | 
			
		||||
        /* align the second pointer for A */
 | 
			
		||||
        const q7_t *pA2 = pA + numCol_A;
 | 
			
		||||
 | 
			
		||||
        /* init the sum with bias */
 | 
			
		||||
        q31_t     sum =  ((q31_t)(*pBias) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        q31_t     sum3 = ((q31_t)(*pBias) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        q31_t     sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
 | 
			
		||||
        uint16_t  colCnt = numCol_A >> 2;
 | 
			
		||||
        /* accumulate over the vector */
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q31_t     inA11, inA12, inA21, inA22;
 | 
			
		||||
            q31_t     inB1 = *__SIMD32(pB)++;
 | 
			
		||||
            q31_t     inB2 = *__SIMD32(pB2)++;
 | 
			
		||||
 | 
			
		||||
            pA = (q7_t *) read_and_pad((void *)pA, &inA11, &inA12);
 | 
			
		||||
            pA2 = (q7_t *) read_and_pad((void *)pA2, &inA21, &inA22);
 | 
			
		||||
 | 
			
		||||
            sum = __SMLAD(inA11, inB1, sum);
 | 
			
		||||
            sum2 = __SMLAD(inA11, inB2, sum2);
 | 
			
		||||
            sum3 = __SMLAD(inA21, inB1, sum3);
 | 
			
		||||
            sum4 = __SMLAD(inA21, inB2, sum4);
 | 
			
		||||
 | 
			
		||||
            inB1 = *__SIMD32(pB)++;
 | 
			
		||||
            inB2 = *__SIMD32(pB2)++;
 | 
			
		||||
 | 
			
		||||
            sum = __SMLAD(inA12, inB1, sum);
 | 
			
		||||
            sum2 = __SMLAD(inA12, inB2, sum2);
 | 
			
		||||
            sum3 = __SMLAD(inA22, inB1, sum3);
 | 
			
		||||
            sum4 = __SMLAD(inA22, inB2, sum4);
 | 
			
		||||
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }                       /* while over colCnt */
 | 
			
		||||
        colCnt = numCol_A & 0x3;
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q7_t      inA1 = *pA++;
 | 
			
		||||
            q15_t     inB1 = *pB++;
 | 
			
		||||
            q7_t      inA2 = *pA2++;
 | 
			
		||||
            q15_t     inB2 = *pB2++;
 | 
			
		||||
 | 
			
		||||
            sum += inA1 * inB1;
 | 
			
		||||
            sum2 += inA1 * inB2;
 | 
			
		||||
            sum3 += inA2 * inB1;
 | 
			
		||||
            sum4 += inA2 * inB2;
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }                       /* while over colCnt */
 | 
			
		||||
        *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
 | 
			
		||||
        *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8);
 | 
			
		||||
        *pOut2++ = (q7_t) __SSAT((sum2 >> out_shift), 8);
 | 
			
		||||
        *pOut2++ = (q7_t) __SSAT((sum4 >> out_shift), 8);
 | 
			
		||||
 | 
			
		||||
        /* skip the row computed with A2 */
 | 
			
		||||
        pA += numCol_A;
 | 
			
		||||
        rowCnt--;
 | 
			
		||||
    }                           /* for over ch_im_out */
 | 
			
		||||
 | 
			
		||||
    /* compute left-over row if any */
 | 
			
		||||
    if (ch_im_out & 0x1)
 | 
			
		||||
    {
 | 
			
		||||
        /* setup pointers for B */
 | 
			
		||||
        const q15_t *pB = pInBuffer;
 | 
			
		||||
        const q15_t *pB2 = pB + numCol_A;
 | 
			
		||||
 | 
			
		||||
        /* load the bias */
 | 
			
		||||
        q31_t     sum = ((q31_t)(*pBias) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
 | 
			
		||||
        uint16_t  colCnt = numCol_A >> 2;
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q31_t     inA11, inA12;
 | 
			
		||||
            q31_t     inB1 = *__SIMD32(pB)++;
 | 
			
		||||
            q31_t     inB2 = *__SIMD32(pB2)++;
 | 
			
		||||
 | 
			
		||||
            pA = (q7_t *) read_and_pad((void *)pA, &inA11, &inA12);
 | 
			
		||||
 | 
			
		||||
            sum = __SMLAD(inA11, inB1, sum);
 | 
			
		||||
            sum2 = __SMLAD(inA11, inB2, sum2);
 | 
			
		||||
 | 
			
		||||
            inB1 = *__SIMD32(pB)++;
 | 
			
		||||
            inB2 = *__SIMD32(pB2)++;
 | 
			
		||||
            sum = __SMLAD(inA12, inB1, sum);
 | 
			
		||||
            sum2 = __SMLAD(inA12, inB2, sum2);
 | 
			
		||||
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
        colCnt = numCol_A & 0x3;
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q7_t      inA1 = *pA++;
 | 
			
		||||
            q15_t     inB1 = *pB++;
 | 
			
		||||
            q15_t     inB2 = *pB2++;
 | 
			
		||||
 | 
			
		||||
            sum += inA1 * inB1;
 | 
			
		||||
            sum2 += inA1 * inB2;
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
 | 
			
		||||
        *pOut2++ = (q7_t) __SSAT((sum2 >> out_shift), 8);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    pOut += ch_im_out;
 | 
			
		||||
 | 
			
		||||
    /* return the new output pointer with offset */
 | 
			
		||||
    return pOut;
 | 
			
		||||
#else
 | 
			
		||||
    /* To be completed */
 | 
			
		||||
    return NULL;
 | 
			
		||||
#endif                          /* ARM_MATH_DSP */
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
@ -0,0 +1,138 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_nn_mat_mult_kernel_q7_q15_reordered.c
 | 
			
		||||
 * Description:  Matrix-multiplication function for convolution with reordered columns
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        17. January 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * @brief Matrix-multiplication function for convolution with reordered columns
 | 
			
		||||
   * @param[in]       pA          pointer to operand A
 | 
			
		||||
   * @param[in]       pInBuffer   pointer to operand B, always conssists of 2 vectors
 | 
			
		||||
   * @param[in]       ch_im_out   numRow of A
 | 
			
		||||
   * @param[in]       numCol_A    numCol of A
 | 
			
		||||
   * @param[in]       bias_shift  amount of left-shift for bias
 | 
			
		||||
   * @param[in]       out_shift   amount of right-shift for output
 | 
			
		||||
   * @param[in]       bias        the bias
 | 
			
		||||
   * @param[in,out]   pOut        pointer to output
 | 
			
		||||
   * @return     The function returns the incremented output pointer
 | 
			
		||||
   *
 | 
			
		||||
   * @details
 | 
			
		||||
   *
 | 
			
		||||
   * This function assumes that data in pInBuffer are reordered
 | 
			
		||||
   */
 | 
			
		||||
 | 
			
		||||
q7_t     *arm_nn_mat_mult_kernel_q7_q15_reordered(const q7_t * pA,
 | 
			
		||||
                                                  const q15_t * pInBuffer,
 | 
			
		||||
                                                  const uint16_t ch_im_out,
 | 
			
		||||
                                                  const uint16_t numCol_A,
 | 
			
		||||
                                                  const uint16_t bias_shift,
 | 
			
		||||
                                                  const uint16_t out_shift, 
 | 
			
		||||
                                                  const q7_t * bias, 
 | 
			
		||||
                                                  q7_t * pOut)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
#if defined (ARM_MATH_DSP)
 | 
			
		||||
    /* set up the second output pointers */
 | 
			
		||||
    q7_t     *pOut2 = pOut + ch_im_out;
 | 
			
		||||
    int       i;
 | 
			
		||||
 | 
			
		||||
    /* this loop over rows in A */
 | 
			
		||||
    for (i = 0; i < ch_im_out; i += 2)
 | 
			
		||||
    {
 | 
			
		||||
        /* setup pointers for B */
 | 
			
		||||
        const q15_t *pB = pInBuffer;
 | 
			
		||||
        const q15_t *pB2 = pB + numCol_A;
 | 
			
		||||
 | 
			
		||||
        /* align the second pointer for A */
 | 
			
		||||
        const q7_t *pA2 = pA + numCol_A;
 | 
			
		||||
 | 
			
		||||
        /* init the sum with bias */
 | 
			
		||||
        q31_t     sum =  ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        q31_t     sum2 = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        q31_t     sum3 = ((q31_t)(bias[i + 1]) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        q31_t     sum4 = ((q31_t)(bias[i + 1]) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
 | 
			
		||||
        uint16_t  colCnt = numCol_A >> 2;
 | 
			
		||||
        /* accumulate over the vector */
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q31_t     inA11, inA12, inA21, inA22;
 | 
			
		||||
            q31_t     inB1 = *__SIMD32(pB)++;
 | 
			
		||||
            q31_t     inB2 = *__SIMD32(pB2)++;
 | 
			
		||||
 | 
			
		||||
            pA = (q7_t *) read_and_pad_reordered((void *)pA, &inA11, &inA12);
 | 
			
		||||
            pA2 = (q7_t *) read_and_pad_reordered((void *)pA2, &inA21, &inA22);
 | 
			
		||||
 | 
			
		||||
            sum = __SMLAD(inA11, inB1, sum);
 | 
			
		||||
            sum2 = __SMLAD(inA11, inB2, sum2);
 | 
			
		||||
            sum3 = __SMLAD(inA21, inB1, sum3);
 | 
			
		||||
            sum4 = __SMLAD(inA21, inB2, sum4);
 | 
			
		||||
 | 
			
		||||
            inB1 = *__SIMD32(pB)++;
 | 
			
		||||
            inB2 = *__SIMD32(pB2)++;
 | 
			
		||||
 | 
			
		||||
            sum = __SMLAD(inA12, inB1, sum);
 | 
			
		||||
            sum2 = __SMLAD(inA12, inB2, sum2);
 | 
			
		||||
            sum3 = __SMLAD(inA22, inB1, sum3);
 | 
			
		||||
            sum4 = __SMLAD(inA22, inB2, sum4);
 | 
			
		||||
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }                       /* while over colCnt */
 | 
			
		||||
        colCnt = numCol_A & 0x3;
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q7_t      inA1 = *pA++;
 | 
			
		||||
            q15_t     inB1 = *pB++;
 | 
			
		||||
            q7_t      inA2 = *pA2++;
 | 
			
		||||
            q15_t     inB2 = *pB2++;
 | 
			
		||||
 | 
			
		||||
            sum += inA1 * inB1;
 | 
			
		||||
            sum2 += inA1 * inB2;
 | 
			
		||||
            sum3 += inA2 * inB1;
 | 
			
		||||
            sum4 += inA2 * inB2;
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }                       /* while over colCnt */
 | 
			
		||||
        *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
 | 
			
		||||
        *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8);
 | 
			
		||||
        *pOut2++ = (q7_t) __SSAT((sum2 >> out_shift), 8);
 | 
			
		||||
        *pOut2++ = (q7_t) __SSAT((sum4 >> out_shift), 8);
 | 
			
		||||
 | 
			
		||||
        /* skip the row computed with A2 */
 | 
			
		||||
        pA += numCol_A;
 | 
			
		||||
    }                           /* for over ch_im_out */
 | 
			
		||||
 | 
			
		||||
    pOut += ch_im_out;
 | 
			
		||||
 | 
			
		||||
    /* return the new output pointer with offset */
 | 
			
		||||
    return pOut;
 | 
			
		||||
#else
 | 
			
		||||
    /* To be completed */
 | 
			
		||||
    return NULL;
 | 
			
		||||
#endif                          /* ARM_MATH_DSP */
 | 
			
		||||
}
 | 
			
		||||
@ -0,0 +1,199 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_fully_connected_mat_q7_vec_q15.c
 | 
			
		||||
 * Description:  Mixed Q15-Q7 fully-connected layer function
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        17. January 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 *  @ingroup groupNN
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @addtogroup FC
 | 
			
		||||
 * @{
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * @brief Mixed Q15-Q7 fully-connected layer function
 | 
			
		||||
   * @param[in]       pV          pointer to input vector
 | 
			
		||||
   * @param[in]       pM          pointer to matrix weights
 | 
			
		||||
   * @param[in]       dim_vec     length of the vector
 | 
			
		||||
   * @param[in]       num_of_rows number of rows in weight matrix
 | 
			
		||||
   * @param[in]       bias_shift  amount of left-shift for bias
 | 
			
		||||
   * @param[in]       out_shift   amount of right-shift for output
 | 
			
		||||
   * @param[in]       bias        pointer to bias
 | 
			
		||||
   * @param[in,out]   pOut        pointer to output vector
 | 
			
		||||
   * @param[in,out]   vec_buffer  pointer to buffer space for input
 | 
			
		||||
   * @return     The function returns <code>ARM_MATH_SUCCESS</code>
 | 
			
		||||
   *
 | 
			
		||||
   * @details
 | 
			
		||||
   *
 | 
			
		||||
   * <b>Buffer size:</b>
 | 
			
		||||
   *
 | 
			
		||||
   * vec_buffer size: 0
 | 
			
		||||
   *
 | 
			
		||||
   *  Q7_Q15 version of the fully connected layer
 | 
			
		||||
   *
 | 
			
		||||
   *  Weights are in q7_t and Activations are in q15_t
 | 
			
		||||
   *
 | 
			
		||||
   */
 | 
			
		||||
 | 
			
		||||
arm_status
 | 
			
		||||
arm_fully_connected_mat_q7_vec_q15(const q15_t * pV,
 | 
			
		||||
                                   const q7_t * pM,
 | 
			
		||||
                                   const uint16_t dim_vec,
 | 
			
		||||
                                   const uint16_t num_of_rows,
 | 
			
		||||
                                   const uint16_t bias_shift,
 | 
			
		||||
                                   const uint16_t out_shift, 
 | 
			
		||||
                                   const q7_t * bias, 
 | 
			
		||||
                                   q15_t * pOut, 
 | 
			
		||||
                                   q15_t * vec_buffer)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
#if defined (ARM_MATH_DSP)
 | 
			
		||||
    /* Run the following code for Cortex-M4 and Cortex-M7 */
 | 
			
		||||
 | 
			
		||||
    const q7_t *pB = pM;
 | 
			
		||||
    const q7_t *pB2;
 | 
			
		||||
    q15_t    *pO = pOut;
 | 
			
		||||
    const q7_t *pBias = bias;
 | 
			
		||||
    const q15_t *pA = pV;
 | 
			
		||||
 | 
			
		||||
    uint16_t  rowCnt = num_of_rows >> 1;
 | 
			
		||||
 | 
			
		||||
    while (rowCnt)
 | 
			
		||||
    {
 | 
			
		||||
        q31_t     sum =  ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        uint16_t  colCnt = dim_vec >> 2;
 | 
			
		||||
 | 
			
		||||
        pA = pV;
 | 
			
		||||
        pB2 = pB + dim_vec;
 | 
			
		||||
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q31_t     inV, inM11, inM12, inM21, inM22;
 | 
			
		||||
            pB = (q7_t *) read_and_pad((void *)pB, &inM11, &inM12);
 | 
			
		||||
            pB2 = (q7_t *) read_and_pad((void *)pB2, &inM21, &inM22);
 | 
			
		||||
 | 
			
		||||
            inV = *__SIMD32(pA)++;
 | 
			
		||||
 | 
			
		||||
            sum = __SMLAD(inV, inM11, sum);
 | 
			
		||||
            sum2 = __SMLAD(inV, inM21, sum2);
 | 
			
		||||
 | 
			
		||||
            inV = *__SIMD32(pA)++;
 | 
			
		||||
 | 
			
		||||
            sum = __SMLAD(inV, inM12, sum);
 | 
			
		||||
            sum2 = __SMLAD(inV, inM22, sum2);
 | 
			
		||||
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
        colCnt = dim_vec & 0x3;
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q15_t     inV = *pA++;
 | 
			
		||||
            q7_t      inM = *pB++;
 | 
			
		||||
            q7_t      inM2 = *pB2++;
 | 
			
		||||
 | 
			
		||||
            sum += inV * inM;
 | 
			
		||||
            sum2 += inV * inM2;
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }                       /* while over colCnt */
 | 
			
		||||
        *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16));
 | 
			
		||||
        *pO++ = (q15_t) (__SSAT((sum2 >> out_shift), 16));
 | 
			
		||||
 | 
			
		||||
        /*adjust the pointers and counters */
 | 
			
		||||
        pB += dim_vec;
 | 
			
		||||
        rowCnt--;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* left-over part of the rows */
 | 
			
		||||
    rowCnt = num_of_rows & 0x1;
 | 
			
		||||
 | 
			
		||||
    while (rowCnt)
 | 
			
		||||
    {
 | 
			
		||||
        q31_t     sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        uint16_t  colCnt = dim_vec >> 2;
 | 
			
		||||
 | 
			
		||||
        pA = pV;
 | 
			
		||||
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q31_t     inV1, inV2, inM11, inM12;
 | 
			
		||||
 | 
			
		||||
            pB = (q7_t *) read_and_pad((void *)pB, &inM11, &inM12);
 | 
			
		||||
 | 
			
		||||
            inV1 = *__SIMD32(pA)++;
 | 
			
		||||
            sum = __SMLAD(inV1, inM11, sum);
 | 
			
		||||
 | 
			
		||||
            inV2 = *__SIMD32(pA)++;
 | 
			
		||||
            sum = __SMLAD(inV2, inM12, sum);
 | 
			
		||||
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        /* left-over of the vector */
 | 
			
		||||
        colCnt = dim_vec & 0x3;
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q15_t     inV = *pA++;
 | 
			
		||||
            q7_t      inM = *pB++;
 | 
			
		||||
            sum += inV * inM;
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16));
 | 
			
		||||
 | 
			
		||||
        rowCnt--;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
    int       i, j;
 | 
			
		||||
    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
 | 
			
		||||
    for (i = 0; i < num_of_rows; i++)
 | 
			
		||||
    {
 | 
			
		||||
        int       ip_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        for (j = 0; j < dim_vec; j++)
 | 
			
		||||
        {
 | 
			
		||||
            ip_out += pV[j] * pM[i * dim_vec + j];
 | 
			
		||||
        }
 | 
			
		||||
        pOut[i] = (q15_t) __SSAT((ip_out >> out_shift), 16);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#endif                          /* ARM_MATH_DSP */
 | 
			
		||||
 | 
			
		||||
    /* Return to ARM_MATH_SUCCESS */
 | 
			
		||||
    return (ARM_MATH_SUCCESS);
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @} end of FC group
 | 
			
		||||
 */
 | 
			
		||||
@ -0,0 +1,403 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_fully_connected_mat_q7_vec_q15_opt.c
 | 
			
		||||
 * Description:  Mixed Q15-Q7 opt fully-connected layer function
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        17. January 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 *  @ingroup groupNN
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @addtogroup FC
 | 
			
		||||
 * @{
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * @brief Mixed Q15-Q7 opt fully-connected layer function
 | 
			
		||||
   * @param[in]       pV          pointer to input vector
 | 
			
		||||
   * @param[in]       pM          pointer to matrix weights
 | 
			
		||||
   * @param[in]       dim_vec     length of the vector
 | 
			
		||||
   * @param[in]       num_of_rows number of rows in weight matrix
 | 
			
		||||
   * @param[in]       bias_shift  amount of left-shift for bias
 | 
			
		||||
   * @param[in]       out_shift   amount of right-shift for output
 | 
			
		||||
   * @param[in]       bias        pointer to bias
 | 
			
		||||
   * @param[in,out]   pOut        pointer to output vector
 | 
			
		||||
   * @param[in,out]   vec_buffer  pointer to buffer space for input
 | 
			
		||||
   * @return     The function returns <code>ARM_MATH_SUCCESS</code>
 | 
			
		||||
   *
 | 
			
		||||
   * @details
 | 
			
		||||
   *
 | 
			
		||||
   * <b>Buffer size:</b>
 | 
			
		||||
   *
 | 
			
		||||
   * vec_buffer size: 0
 | 
			
		||||
   *
 | 
			
		||||
   *  Q7_Q15 version of the fully connected layer
 | 
			
		||||
   *
 | 
			
		||||
   *  Weights are in q7_t and Activations are in q15_t
 | 
			
		||||
   *
 | 
			
		||||
   *  Limitation: x4 version requires weight reordering to work
 | 
			
		||||
   *
 | 
			
		||||
   *  Here we use only one pointer to read 4 rows in the weight
 | 
			
		||||
   *  matrix. So if the original q7_t matrix looks like this:
 | 
			
		||||
   *
 | 
			
		||||
   *  | a11 | a12 | a13 | a14 | a15 | a16 | a17 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a21 | a22 | a23 | a24 | a25 | a26 | a27 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a31 | a32 | a33 | a34 | a35 | a36 | a37 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a41 | a42 | a43 | a44 | a45 | a46 | a47 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a51 | a52 | a53 | a54 | a55 | a56 | a57 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a61 | a62 | a63 | a64 | a65 | a66 | a67 |
 | 
			
		||||
   *
 | 
			
		||||
   *  We operates on multiple-of-4 rows, so the first four rows becomes
 | 
			
		||||
   *
 | 
			
		||||
   *  | a11 | a21 | a12 | a22 | a31 | a41 | a32 | a42 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a13 | a23 | a14 | a24 | a33 | a43 | a34 | a44 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a15 | a25 | a16 | a26 | a35 | a45 | a36 | a46 |
 | 
			
		||||
   *
 | 
			
		||||
   *  The column left over will be in-order.
 | 
			
		||||
   *  which is:
 | 
			
		||||
   *  | a17 | a27 | a37 | a47 |
 | 
			
		||||
   *
 | 
			
		||||
   *  For the left-over rows, we do 1x1 computation, so the data remains
 | 
			
		||||
   *  as its original order. 
 | 
			
		||||
   *
 | 
			
		||||
   *  So the stored weight matrix looks like this:
 | 
			
		||||
   *
 | 
			
		||||
   *  | a11 | a21 | a12 | a22 | a31 | a41 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a32 | a42 | a13 | a23 | a14 | a24 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a33 | a43 | a34 | a44 | a15 | a25 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a16 | a26 | a35 | a45 | a36 | a46 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a17 | a27 | a37 | a47 | a51 | a52 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a53 | a54 | a55 | a56 | a57 | a61 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a62 | a63 | a64 | a65 | a66 | a67 |
 | 
			
		||||
   *
 | 
			
		||||
   */
 | 
			
		||||
 | 
			
		||||
arm_status
 | 
			
		||||
arm_fully_connected_mat_q7_vec_q15_opt(const q15_t * pV,
 | 
			
		||||
                                       const q7_t * pM,
 | 
			
		||||
                                       const uint16_t dim_vec,
 | 
			
		||||
                                       const uint16_t num_of_rows,
 | 
			
		||||
                                       const uint16_t bias_shift,
 | 
			
		||||
                                       const uint16_t out_shift, const q7_t * bias, q15_t * pOut, q15_t * vec_buffer)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
#if defined (ARM_MATH_DSP)
 | 
			
		||||
    /* Run the following code for Cortex-M4 and Cortex-M7 */
 | 
			
		||||
 | 
			
		||||
    const q7_t *pB = pM;
 | 
			
		||||
    q15_t    *pO = pOut;
 | 
			
		||||
    const q7_t *pBias = bias;
 | 
			
		||||
    const q15_t *pA = pV;
 | 
			
		||||
 | 
			
		||||
    uint16_t  rowCnt = num_of_rows >> 2;
 | 
			
		||||
 | 
			
		||||
    while (rowCnt)
 | 
			
		||||
    {
 | 
			
		||||
        q31_t     sum =  ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        q31_t     sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        q31_t     sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
 | 
			
		||||
        uint16_t  colCnt = dim_vec >> 1;
 | 
			
		||||
 | 
			
		||||
        pA = pV;
 | 
			
		||||
 | 
			
		||||
#ifdef USE_INTRINSIC
 | 
			
		||||
 | 
			
		||||
#ifndef ARM_MATH_BIG_ENDIAN
 | 
			
		||||
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q31_t     inM11, inM12, inM13, inM14;
 | 
			
		||||
            q31_t     inV;
 | 
			
		||||
 | 
			
		||||
            inV = *__SIMD32(pA)++;
 | 
			
		||||
            inM11 = *__SIMD32(pB)++;
 | 
			
		||||
            inM12 = __SXTB16(__ROR(inM11, 8));
 | 
			
		||||
            inM11 = __SXTB16(inM11);
 | 
			
		||||
            sum = __SMLAD(inM11, inV, sum);
 | 
			
		||||
            sum2 = __SMLAD(inM12, inV, sum2);
 | 
			
		||||
            inM13 = *__SIMD32(pB)++;
 | 
			
		||||
            inM14 = __SXTB16(__ROR(inM13, 8));
 | 
			
		||||
            inM13 = __SXTB16(inM13);
 | 
			
		||||
            sum3 = __SMLAD(inM13, inV, sum3);
 | 
			
		||||
            sum4 = __SMLAD(inM14, inV, sum4);
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q31_t     inM11, inM12, inM13, inM14;
 | 
			
		||||
            q31_t     inV;
 | 
			
		||||
 | 
			
		||||
            inV = *__SIMD32(pA)++;
 | 
			
		||||
            inM11 = *__SIMD32(pB)++;
 | 
			
		||||
            inM12 = __SXTB16(__ROR(inM11, 8));
 | 
			
		||||
            inM11 = __SXTB16(inM11);
 | 
			
		||||
            sum = __SMLAD(inM12, inV, sum);
 | 
			
		||||
            sum2 = __SMLAD(inM11, inV, sum2);
 | 
			
		||||
            inM13 = *__SIMD32(pB)++;
 | 
			
		||||
            inM14 = __SXTB16(__ROR(inM13, 8));
 | 
			
		||||
            inM13 = __SXTB16(inM13);
 | 
			
		||||
            sum3 = __SMLAD(inM14, inV, sum3);
 | 
			
		||||
            sum4 = __SMLAD(inM13, inV, sum4);
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
#endif                          /* ARM_MATH_BIG_ENDIAN */
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
 | 
			
		||||
        /*
 | 
			
		||||
         * register needed:
 | 
			
		||||
         * loop counter: colCnt
 | 
			
		||||
         * accumulators: sum, sum2, sum3, sum4
 | 
			
		||||
         * pointers: pB, pA
 | 
			
		||||
         * weight data: inM11, inM12, inM13, inM14
 | 
			
		||||
         * activation data: inV
 | 
			
		||||
         */
 | 
			
		||||
 | 
			
		||||
#ifndef ARM_MATH_BIG_ENDIAN
 | 
			
		||||
        asm volatile ("COL_LOOP_%=:\n"
 | 
			
		||||
                      "ldr.w r4, [%[pA]], #4\n"
 | 
			
		||||
                      "ldr.w r1, [%[pB]], #8\n"
 | 
			
		||||
                      "mov.w r0, r1, ror #8\n"
 | 
			
		||||
                      "sxtb16 r0, r0\n"
 | 
			
		||||
                      "sxtb16 r1, r1\n"
 | 
			
		||||
                      "smlad %[sum], r4, r1, %[sum]\n"
 | 
			
		||||
                      "smlad %[sum2], r4, r0, %[sum2]\n"
 | 
			
		||||
                      "ldr.w r3, [%[pB], #-4]\n"
 | 
			
		||||
                      "mov.w r2, r3, ror #8\n"
 | 
			
		||||
                      "sxtb16 r2, r2\n"
 | 
			
		||||
                      "sxtb16 r3, r3\n"
 | 
			
		||||
                      "smlad %[sum3], r4, r3, %[sum3]\n"
 | 
			
		||||
                      "smlad %[sum4], r4, r2, %[sum4]\n"
 | 
			
		||||
                      "subs %[colCnt], #1\n"
 | 
			
		||||
                      "bne COL_LOOP_%=\n":[sum] "+r"(sum),
 | 
			
		||||
                      [sum2] "+r"(sum2),[sum3] "+r"(sum3),
 | 
			
		||||
                      [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4");
 | 
			
		||||
#else
 | 
			
		||||
        asm volatile ("COL_LOOP_%=:\n"
 | 
			
		||||
                      "ldr.w r4, [%[pA]], #4\n"
 | 
			
		||||
                      "ldr.w r1, [%[pB]], #8\n"
 | 
			
		||||
                      "mov.w r0, r1, ror #8\n"
 | 
			
		||||
                      "sxtb16 r0, r0\n"
 | 
			
		||||
                      "sxtb16 r1, r1\n"
 | 
			
		||||
                      "smlad %[sum], r4, r0, %[sum]\n"
 | 
			
		||||
                      "smlad %[sum2], r4, r1, %[sum2]\n"
 | 
			
		||||
                      "ldr.w r3, [%[pB], #-4]\n"
 | 
			
		||||
                      "mov.w r2, r3, ror #8\n"
 | 
			
		||||
                      "sxtb16 r2, r2\n"
 | 
			
		||||
                      "sxtb16 r3, r3\n"
 | 
			
		||||
                      "smlad %[sum3], r4, r2, %[sum3]\n"
 | 
			
		||||
                      "smlad %[sum4], r4, r3, %[sum4]\n"
 | 
			
		||||
                      "subs %[colCnt], #1\n"
 | 
			
		||||
                      "bne COL_LOOP_%=\n":[sum] "+r"(sum),
 | 
			
		||||
                      [sum2] "+r"(sum2),[sum3] "+r"(sum3),
 | 
			
		||||
                      [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4");
 | 
			
		||||
#endif                          /* ARM_MATH_BIG_ENDIAN */
 | 
			
		||||
 | 
			
		||||
#endif                          /* USE_INTRINSIC */
 | 
			
		||||
 | 
			
		||||
        colCnt = dim_vec & 0x1;
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q15_t     inV = *pA++;
 | 
			
		||||
            q7_t      inM = *pB++;
 | 
			
		||||
            q7_t      inM2 = *pB++;
 | 
			
		||||
            q7_t      inM3 = *pB++;
 | 
			
		||||
            q7_t      inM4 = *pB++;
 | 
			
		||||
 | 
			
		||||
            sum += inV * inM;
 | 
			
		||||
            sum2 += inV * inM2;
 | 
			
		||||
            sum3 += inV * inM3;
 | 
			
		||||
            sum4 += inV * inM4;
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }                       /* while over colCnt */
 | 
			
		||||
        *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16));
 | 
			
		||||
        *pO++ = (q15_t) (__SSAT((sum2 >> out_shift), 16));
 | 
			
		||||
        *pO++ = (q15_t) (__SSAT((sum3 >> out_shift), 16));
 | 
			
		||||
        *pO++ = (q15_t) (__SSAT((sum4 >> out_shift), 16));
 | 
			
		||||
 | 
			
		||||
        /* adjust the pointers and counters */
 | 
			
		||||
        rowCnt--;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* left-over part of the rows */
 | 
			
		||||
    rowCnt = num_of_rows & 0x3;
 | 
			
		||||
 | 
			
		||||
    while (rowCnt)
 | 
			
		||||
    {
 | 
			
		||||
        q31_t     sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
 | 
			
		||||
        uint16_t  colCnt = dim_vec >> 2;
 | 
			
		||||
 | 
			
		||||
        pA = pV;
 | 
			
		||||
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q31_t     inV1, inV2, inM11, inM12;
 | 
			
		||||
 | 
			
		||||
            pB = (q7_t *) read_and_pad((void *)pB, &inM11, &inM12);
 | 
			
		||||
 | 
			
		||||
            inV1 = *__SIMD32(pA)++;
 | 
			
		||||
            sum = __SMLAD(inV1, inM11, sum);
 | 
			
		||||
 | 
			
		||||
            inV2 = *__SIMD32(pA)++;
 | 
			
		||||
            sum = __SMLAD(inV2, inM12, sum);
 | 
			
		||||
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        /* left-over of the vector */
 | 
			
		||||
        colCnt = dim_vec & 0x3;
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q15_t     inV = *pA++;
 | 
			
		||||
            q7_t      inM = *pB++;
 | 
			
		||||
            sum += inV * inM;
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16));
 | 
			
		||||
 | 
			
		||||
        rowCnt--;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
 | 
			
		||||
    uint16_t  rowCnt = num_of_rows >> 2;
 | 
			
		||||
    const q7_t *pB = pM;
 | 
			
		||||
    const q15_t *pA;
 | 
			
		||||
    q15_t    *pO = pOut;
 | 
			
		||||
    const q7_t *pBias = bias;
 | 
			
		||||
 | 
			
		||||
    while (rowCnt)
 | 
			
		||||
    {
 | 
			
		||||
        q31_t     sum =  ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        q31_t     sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); 
 | 
			
		||||
        q31_t     sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); 
 | 
			
		||||
        uint16_t  colCnt = dim_vec >> 1;
 | 
			
		||||
 | 
			
		||||
        pA = pV;
 | 
			
		||||
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q15_t     inA1 = *pA++;
 | 
			
		||||
            q15_t     inA2 = *pA++;
 | 
			
		||||
 | 
			
		||||
            q7_t      inB1 = *pB++;
 | 
			
		||||
            q7_t      inB3 = *pB++;
 | 
			
		||||
            q7_t      inB2 = *pB++;
 | 
			
		||||
            q7_t      inB4 = *pB++;
 | 
			
		||||
 | 
			
		||||
            sum += inA1 * inB1 + inA2 * inB2;
 | 
			
		||||
            sum2 += inA1 * inB3 + inA2 * inB4;
 | 
			
		||||
 | 
			
		||||
            inB1 = *pB++;
 | 
			
		||||
            inB3 = *pB++;
 | 
			
		||||
            inB2 = *pB++;
 | 
			
		||||
            inB4 = *pB++;
 | 
			
		||||
 | 
			
		||||
            sum3 += inA1 * inB1 + inA2 * inB2;
 | 
			
		||||
            sum4 += inA1 * inB3 + inA2 * inB4;
 | 
			
		||||
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        colCnt = dim_vec & 0x1;
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q15_t     inA = *pA++;
 | 
			
		||||
            q7_t      inB = *pB++;
 | 
			
		||||
            sum += inA * inB;
 | 
			
		||||
            inB = *pB++;
 | 
			
		||||
            sum2 += inA * inB;
 | 
			
		||||
            inB = *pB++;
 | 
			
		||||
            sum3 += inA * inB;
 | 
			
		||||
            inB = *pB++;
 | 
			
		||||
            sum4 += inA * inB;
 | 
			
		||||
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
        *pO++ = (q15_t) __SSAT((sum >> out_shift), 16);
 | 
			
		||||
        *pO++ = (q15_t) __SSAT((sum2 >> out_shift), 16);
 | 
			
		||||
        *pO++ = (q15_t) __SSAT((sum3 >> out_shift), 16);
 | 
			
		||||
        *pO++ = (q15_t) __SSAT((sum4 >> out_shift), 16);
 | 
			
		||||
 | 
			
		||||
        rowCnt--;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    rowCnt = num_of_rows & 0x3;
 | 
			
		||||
 | 
			
		||||
    while (rowCnt)
 | 
			
		||||
    {
 | 
			
		||||
        int       ip_out = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        int       j;
 | 
			
		||||
 | 
			
		||||
        pA = pV;
 | 
			
		||||
        for (j = 0; j < dim_vec; j++)
 | 
			
		||||
        {
 | 
			
		||||
            q15_t     inA = *pA++;
 | 
			
		||||
            q7_t      inB = *pB++;
 | 
			
		||||
            ip_out += inA * inB;
 | 
			
		||||
        }
 | 
			
		||||
        *pO++ = (q15_t) __SSAT((ip_out >> out_shift), 16);
 | 
			
		||||
 | 
			
		||||
        rowCnt--;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#endif                          /* ARM_MATH_DSP */
 | 
			
		||||
 | 
			
		||||
    /* Return to ARM_MATH_SUCCESS */
 | 
			
		||||
    return (ARM_MATH_SUCCESS);
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @} end of FC group
 | 
			
		||||
 */
 | 
			
		||||
@ -0,0 +1,193 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_fully_connected_q15.c
 | 
			
		||||
 * Description:  Q15 basic fully-connected layer function
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        17. January 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 *  @ingroup groupNN
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @addtogroup FC
 | 
			
		||||
 * @{
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * @brief Q15 opt fully-connected layer function
 | 
			
		||||
   * @param[in]       pV          pointer to input vector
 | 
			
		||||
   * @param[in]       pM          pointer to matrix weights
 | 
			
		||||
   * @param[in]       dim_vec     length of the vector
 | 
			
		||||
   * @param[in]       num_of_rows number of rows in weight matrix
 | 
			
		||||
   * @param[in]       bias_shift  amount of left-shift for bias
 | 
			
		||||
   * @param[in]       out_shift   amount of right-shift for output
 | 
			
		||||
   * @param[in]       bias        pointer to bias
 | 
			
		||||
   * @param[in,out]   pOut        pointer to output vector
 | 
			
		||||
   * @param[in,out]   vec_buffer  pointer to buffer space for input
 | 
			
		||||
   * @return     The function returns <code>ARM_MATH_SUCCESS</code>
 | 
			
		||||
   *
 | 
			
		||||
   *
 | 
			
		||||
   * @details
 | 
			
		||||
   *
 | 
			
		||||
   * <b>Buffer size:</b>
 | 
			
		||||
   *
 | 
			
		||||
   * vec_buffer size: 0
 | 
			
		||||
   *
 | 
			
		||||
   */
 | 
			
		||||
 | 
			
		||||
arm_status
 | 
			
		||||
arm_fully_connected_q15(const q15_t * pV,
 | 
			
		||||
                        const q15_t * pM,
 | 
			
		||||
                        const uint16_t dim_vec,
 | 
			
		||||
                        const uint16_t num_of_rows,
 | 
			
		||||
                        const uint16_t bias_shift,
 | 
			
		||||
                        const uint16_t out_shift, 
 | 
			
		||||
                        const q15_t * bias, 
 | 
			
		||||
                        q15_t * pOut,
 | 
			
		||||
                        q15_t * vec_buffer)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
#if defined (ARM_MATH_DSP)
 | 
			
		||||
    /* Run the following code for Cortex-M4 and Cortex-M7 */
 | 
			
		||||
 | 
			
		||||
    const q15_t *pB = pM;
 | 
			
		||||
    const q15_t *pB2 = pB + dim_vec;
 | 
			
		||||
    q15_t    *pO = pOut;
 | 
			
		||||
    const q15_t    *pA;
 | 
			
		||||
    const q15_t    *pBias = bias;
 | 
			
		||||
    uint16_t rowCnt = num_of_rows >> 1;
 | 
			
		||||
 | 
			
		||||
    /* this loop loops over different output */
 | 
			
		||||
    while (rowCnt) {
 | 
			
		||||
        q31_t     sum =  ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
 | 
			
		||||
        uint16_t  colCnt = dim_vec >> 2;
 | 
			
		||||
 | 
			
		||||
        pA = pV;
 | 
			
		||||
        pB2 = pB + dim_vec;
 | 
			
		||||
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q31_t     inV1, inM1, inM2;
 | 
			
		||||
            inV1 = *__SIMD32(pA)++;
 | 
			
		||||
            inM1 = *__SIMD32(pB)++;
 | 
			
		||||
            sum = __SMLAD(inV1, inM1, sum);
 | 
			
		||||
            inM2 = *__SIMD32(pB2)++;
 | 
			
		||||
            sum2 = __SMLAD(inV1, inM2, sum2);
 | 
			
		||||
 | 
			
		||||
            inV1 = *__SIMD32(pA)++;
 | 
			
		||||
            inM1 = *__SIMD32(pB)++;
 | 
			
		||||
            sum = __SMLAD(inV1, inM1, sum);
 | 
			
		||||
            inM2 = *__SIMD32(pB2)++;
 | 
			
		||||
            sum2 = __SMLAD(inV1, inM2, sum2);
 | 
			
		||||
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
        colCnt = dim_vec & 0x3;
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q15_t     inV = *pA++;
 | 
			
		||||
            q15_t     inM = *pB++;
 | 
			
		||||
            q15_t     inM2 = *pB2++;
 | 
			
		||||
 | 
			
		||||
            sum += inV * inM;
 | 
			
		||||
            sum2 += inV * inM2;
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }                       /* while over colCnt */
 | 
			
		||||
        *pO++ =  (q15_t) (__SSAT((sum >> out_shift), 16));
 | 
			
		||||
        *pO++ = (q15_t) (__SSAT((sum2>> out_shift), 16));
 | 
			
		||||
		
 | 
			
		||||
        /* adjust the pointers and counters */
 | 
			
		||||
        pB = pB + dim_vec;
 | 
			
		||||
        rowCnt --;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    rowCnt = num_of_rows & 0x1;
 | 
			
		||||
 | 
			
		||||
    while (rowCnt) {
 | 
			
		||||
        q31_t     sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
 | 
			
		||||
        uint16_t  colCnt = dim_vec >> 2;
 | 
			
		||||
 | 
			
		||||
        pA = pV;
 | 
			
		||||
      
 | 
			
		||||
        while (colCnt) {
 | 
			
		||||
            q31_t     inV1, inM1;
 | 
			
		||||
            inV1 = *__SIMD32(pA)++;
 | 
			
		||||
            inM1 = *__SIMD32(pB)++;
 | 
			
		||||
            sum = __SMLAD(inV1, inM1, sum);
 | 
			
		||||
            
 | 
			
		||||
            inV1 = *__SIMD32(pA)++;
 | 
			
		||||
            inM1 = *__SIMD32(pB)++;
 | 
			
		||||
            sum = __SMLAD(inV1, inM1, sum);
 | 
			
		||||
				
 | 
			
		||||
            colCnt--;
 | 
			
		||||
	}
 | 
			
		||||
			
 | 
			
		||||
	/* left-over of the vector */
 | 
			
		||||
	colCnt = dim_vec & 0x3;
 | 
			
		||||
	while(colCnt) {
 | 
			
		||||
            q15_t     inV = *pA++;
 | 
			
		||||
            q15_t     inM = *pB++;
 | 
			
		||||
 | 
			
		||||
            sum += inV * inM;
 | 
			
		||||
 | 
			
		||||
            colCnt--;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
        *pO++ =  (q15_t) (__SSAT((sum >> out_shift), 16));
 | 
			
		||||
			
 | 
			
		||||
        rowCnt --;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
    int       i, j;
 | 
			
		||||
    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
 | 
			
		||||
    for (i = 0; i < num_of_rows; i++)
 | 
			
		||||
    {
 | 
			
		||||
        int       ip_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        for (j = 0; j < dim_vec; j++)
 | 
			
		||||
        {
 | 
			
		||||
            ip_out += pV[j] * pM[i * dim_vec + j];
 | 
			
		||||
        }
 | 
			
		||||
        pOut[i] = (q15_t) __SSAT((ip_out >> out_shift), 16);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#endif                          /* ARM_MATH_DSP */
 | 
			
		||||
 | 
			
		||||
    /* Return to application */
 | 
			
		||||
    return (ARM_MATH_SUCCESS);
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @} end of FC group
 | 
			
		||||
 */
 | 
			
		||||
@ -0,0 +1,332 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_fully_connected_q15_opt.c
 | 
			
		||||
 * Description:  Q15 opt fully-connected layer function
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        17. January 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 *  @ingroup groupNN
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @addtogroup FC
 | 
			
		||||
 * @{
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * @brief Q15 opt fully-connected layer function
 | 
			
		||||
   * @param[in]       pV          pointer to input vector
 | 
			
		||||
   * @param[in]       pM          pointer to matrix weights
 | 
			
		||||
   * @param[in]       dim_vec     length of the vector
 | 
			
		||||
   * @param[in]       num_of_rows number of rows in weight matrix
 | 
			
		||||
   * @param[in]       bias_shift  amount of left-shift for bias
 | 
			
		||||
   * @param[in]       out_shift   amount of right-shift for output
 | 
			
		||||
   * @param[in]       bias        pointer to bias
 | 
			
		||||
   * @param[in,out]   pOut        pointer to output vector
 | 
			
		||||
   * @param[in,out]   vec_buffer  pointer to buffer space for input
 | 
			
		||||
   * @return     The function returns <code>ARM_MATH_SUCCESS</code>
 | 
			
		||||
   *
 | 
			
		||||
   *
 | 
			
		||||
   * @details
 | 
			
		||||
   *
 | 
			
		||||
   * <b>Buffer size:</b>
 | 
			
		||||
   *
 | 
			
		||||
   * vec_buffer size: 0
 | 
			
		||||
   *
 | 
			
		||||
   *  Here we use only one pointer to read 4 rows in the weight
 | 
			
		||||
   *  matrix. So if the original matrix looks like this:
 | 
			
		||||
   *
 | 
			
		||||
   *  | a11 | a12 | a13 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a21 | a22 | a23 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a31 | a32 | a33 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a41 | a42 | a43 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a51 | a52 | a53 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a61 | a62 | a63 |
 | 
			
		||||
   *
 | 
			
		||||
   *  We operates on multiple-of-4 rows, so the first four rows becomes
 | 
			
		||||
   *
 | 
			
		||||
   *  | a11 | a12 | a21 | a22 | a31 | a32 | a41 | a42 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a13 | a23 | a33 | a43 |
 | 
			
		||||
   *
 | 
			
		||||
   *  Remaining rows are kept the same original order.
 | 
			
		||||
   *
 | 
			
		||||
   *  So the stored weight matrix looks like this:
 | 
			
		||||
   *
 | 
			
		||||
   *
 | 
			
		||||
   *  | a11 | a12 | a21 | a22 | a31 | a32 | a41 | a42 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a13 | a23 | a33 | a43 | a51 | a52 | a53 | a61 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a62 | a63 |
 | 
			
		||||
   */
 | 
			
		||||
 | 
			
		||||
arm_status
 | 
			
		||||
arm_fully_connected_q15_opt(const q15_t * pV,
 | 
			
		||||
                            const q15_t * pM,
 | 
			
		||||
                            const uint16_t dim_vec,
 | 
			
		||||
                            const uint16_t num_of_rows,
 | 
			
		||||
                            const uint16_t bias_shift,
 | 
			
		||||
                            const uint16_t out_shift, 
 | 
			
		||||
                            const q15_t * bias, 
 | 
			
		||||
                            q15_t * pOut, 
 | 
			
		||||
                            q15_t * vec_buffer)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
#if defined (ARM_MATH_DSP)
 | 
			
		||||
    /* Run the following code for Cortex-M4 and Cortex-M7 */
 | 
			
		||||
 | 
			
		||||
    const q15_t *pB = pM;
 | 
			
		||||
    q15_t    *pO = pOut;
 | 
			
		||||
    const q15_t *pBias = bias;
 | 
			
		||||
    const q15_t *pA = pV;
 | 
			
		||||
 | 
			
		||||
    uint16_t  rowCnt = num_of_rows >> 2;
 | 
			
		||||
 | 
			
		||||
    while (rowCnt)
 | 
			
		||||
    {
 | 
			
		||||
        q31_t     sum =  ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); 
 | 
			
		||||
        q31_t     sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); 
 | 
			
		||||
        q31_t     sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); 
 | 
			
		||||
 | 
			
		||||
        uint16_t  colCnt = dim_vec >> 1;
 | 
			
		||||
 | 
			
		||||
        pA = pV;
 | 
			
		||||
 | 
			
		||||
#ifdef USE_INTRINSIC
 | 
			
		||||
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q31_t     inM11, inM12, inM13, inM14;
 | 
			
		||||
            q31_t     inV;
 | 
			
		||||
 | 
			
		||||
            inV = *__SIMD32(pA)++;
 | 
			
		||||
            inM11 = *__SIMD32(pB)++;
 | 
			
		||||
            sum = __SMLAD(inV, inM11, sum);
 | 
			
		||||
            inM12 = *__SIMD32(pB)++;
 | 
			
		||||
            sum2 = __SMLAD(inV, inM12, sum2);
 | 
			
		||||
            inM13 = *__SIMD32(pB)++;
 | 
			
		||||
            sum3 = __SMLAD(inV, inM13, sum3);
 | 
			
		||||
            inM14 = *__SIMD32(pB)++;
 | 
			
		||||
            sum4 = __SMLAD(inV, inM14, sum4);
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
 | 
			
		||||
        /*
 | 
			
		||||
         * register needed:
 | 
			
		||||
         * loop counter: colCnt
 | 
			
		||||
         * accumulators: sum, sum2, sum3, sum4
 | 
			
		||||
         * pointers: pB, pA
 | 
			
		||||
         * weight data: inM11, inM12, inM13, inM14
 | 
			
		||||
         * activation data: inV
 | 
			
		||||
         */
 | 
			
		||||
 | 
			
		||||
        asm volatile ("COL_LOOP_%=:\n"
 | 
			
		||||
                      "ldr.w r4, [%[pA]], #4\n"
 | 
			
		||||
                      "ldr.w r0, [%[pB]], #16\n"
 | 
			
		||||
                      "smlad %[sum], r4, r0, %[sum]\n"
 | 
			
		||||
                      "ldr.w r1, [%[pB] , #-12]\n"
 | 
			
		||||
                      "smlad %[sum2], r4, r1, %[sum2]\n"
 | 
			
		||||
                      "ldr.w r2, [%[pB] , #-8]\n"
 | 
			
		||||
                      "smlad %[sum3], r4, r2, %[sum3]\n"
 | 
			
		||||
                      "ldr.w r3, [%[pB] , #-4]\n"
 | 
			
		||||
                      "smlad %[sum4], r4, r3, %[sum4]\n"
 | 
			
		||||
                      "subs %[colCnt], #1\n"
 | 
			
		||||
                      "bne COL_LOOP_%=\n":[sum] "+r"(sum),
 | 
			
		||||
                      [sum2] "+r"(sum2),[sum3] "+r"(sum3),
 | 
			
		||||
                      [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4");
 | 
			
		||||
 | 
			
		||||
#endif                          /* USE_INTRINSIC */
 | 
			
		||||
 | 
			
		||||
        colCnt = dim_vec & 0x1;
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
 | 
			
		||||
            q15_t     inV = *pA++;
 | 
			
		||||
            q15_t     inM = *pB++;
 | 
			
		||||
            q15_t     inM2 = *pB++;
 | 
			
		||||
            q15_t     inM3 = *pB++;
 | 
			
		||||
            q15_t     inM4 = *pB++;
 | 
			
		||||
 | 
			
		||||
            sum += inV * inM;
 | 
			
		||||
            sum2 += inV * inM2;
 | 
			
		||||
            sum3 += inV * inM3;
 | 
			
		||||
            sum4 += inV * inM4;
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }                       /* while over colCnt */
 | 
			
		||||
        *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16));
 | 
			
		||||
        *pO++ = (q15_t) (__SSAT((sum2 >> out_shift), 16));
 | 
			
		||||
        *pO++ = (q15_t) (__SSAT((sum3 >> out_shift), 16));
 | 
			
		||||
        *pO++ = (q15_t) (__SSAT((sum4 >> out_shift), 16));
 | 
			
		||||
 | 
			
		||||
        /* adjust the pointers and counters */
 | 
			
		||||
        rowCnt--;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* left-over part of the rows */
 | 
			
		||||
    rowCnt = num_of_rows & 0x3;
 | 
			
		||||
 | 
			
		||||
    while (rowCnt)
 | 
			
		||||
    {
 | 
			
		||||
        q31_t     sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
 | 
			
		||||
        uint16_t  colCnt = dim_vec >> 2;
 | 
			
		||||
 | 
			
		||||
        pA = pV;
 | 
			
		||||
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q31_t     inV1, inV2, inM1, inM2;
 | 
			
		||||
 | 
			
		||||
            inM1 = *__SIMD32(pB)++;
 | 
			
		||||
            inV1 = *__SIMD32(pA)++;
 | 
			
		||||
            sum = __SMLAD(inV1, inM1, sum);
 | 
			
		||||
 | 
			
		||||
            inM2 = *__SIMD32(pB)++;
 | 
			
		||||
            inV2 = *__SIMD32(pA)++;
 | 
			
		||||
            sum = __SMLAD(inV2, inM2, sum);
 | 
			
		||||
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        /* left-over of the vector */
 | 
			
		||||
        colCnt = dim_vec & 0x3;
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q15_t     inV = *pA++;
 | 
			
		||||
            q15_t     inM = *pB++;
 | 
			
		||||
            sum += inV * inM;
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16));
 | 
			
		||||
 | 
			
		||||
        rowCnt--;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
 | 
			
		||||
    uint16_t  rowCnt = num_of_rows >> 2;
 | 
			
		||||
    const q15_t *pB = pM;
 | 
			
		||||
    const q15_t *pA;
 | 
			
		||||
    q15_t    *pO = pOut;
 | 
			
		||||
    const q15_t *pBias = bias;
 | 
			
		||||
 | 
			
		||||
    while (rowCnt)
 | 
			
		||||
    {
 | 
			
		||||
        q31_t     sum =  ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        q31_t     sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        q31_t     sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
 | 
			
		||||
        uint16_t  colCnt = dim_vec >> 1;
 | 
			
		||||
 | 
			
		||||
        pA = pV;
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q15_t     inA1 = *pA++;
 | 
			
		||||
            q15_t     inA2 = *pA++;
 | 
			
		||||
 | 
			
		||||
            q15_t     inB1 = *pB++;
 | 
			
		||||
            q15_t     inB2 = *pB++;
 | 
			
		||||
            sum += inA1 * inB1 + inA2 * inB2;
 | 
			
		||||
 | 
			
		||||
            inB1 = *pB++;
 | 
			
		||||
            inB2 = *pB++;
 | 
			
		||||
            sum2 += inA1 * inB1 + inA2 * inB2;
 | 
			
		||||
 | 
			
		||||
            inB1 = *pB++;
 | 
			
		||||
            inB2 = *pB++;
 | 
			
		||||
            sum3 += inA1 * inB1 + inA2 * inB2;
 | 
			
		||||
 | 
			
		||||
            inB1 = *pB++;
 | 
			
		||||
            inB2 = *pB++;
 | 
			
		||||
            sum4 += inA1 * inB1 + inA2 * inB2;
 | 
			
		||||
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
        colCnt = dim_vec & 0x1;
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q15_t     inA = *pA++;
 | 
			
		||||
            q15_t     inB = *pB++;
 | 
			
		||||
            sum += inA * inB;
 | 
			
		||||
            inB = *pB++;
 | 
			
		||||
            sum2 += inA * inB;
 | 
			
		||||
            inB = *pB++;
 | 
			
		||||
            sum3 += inA * inB;
 | 
			
		||||
            inB = *pB++;
 | 
			
		||||
            sum4 += inA * inB;
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
        *pO++ = (q15_t) __SSAT((sum >> out_shift), 16);
 | 
			
		||||
        *pO++ = (q15_t) __SSAT((sum2 >> out_shift), 16);
 | 
			
		||||
        *pO++ = (q15_t) __SSAT((sum3 >> out_shift), 16);
 | 
			
		||||
        *pO++ = (q15_t) __SSAT((sum4 >> out_shift), 16);
 | 
			
		||||
 | 
			
		||||
        rowCnt--;
 | 
			
		||||
    }
 | 
			
		||||
    rowCnt = num_of_rows & 0x3;
 | 
			
		||||
 | 
			
		||||
    while (rowCnt)
 | 
			
		||||
    {
 | 
			
		||||
        int       ip_out = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        int       j;
 | 
			
		||||
 | 
			
		||||
        pA = pV;
 | 
			
		||||
        for (j = 0; j < dim_vec; j++)
 | 
			
		||||
        {
 | 
			
		||||
            q15_t     inA = *pA++;
 | 
			
		||||
            q15_t     inB = *pB++;
 | 
			
		||||
            ip_out += inA * inB;
 | 
			
		||||
        }
 | 
			
		||||
        *pO++ = (q15_t) __SSAT((ip_out >> out_shift), 16);
 | 
			
		||||
 | 
			
		||||
        rowCnt--;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#endif                          /* ARM_MATH_DSP */
 | 
			
		||||
 | 
			
		||||
    /* Return to ARM_MATH_SUCCESS */
 | 
			
		||||
    return (ARM_MATH_SUCCESS);
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @} end of FC group
 | 
			
		||||
 */
 | 
			
		||||
@ -0,0 +1,198 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_fully_connected_q7.c
 | 
			
		||||
 * Description:  Q7 basic fully-connected layer function
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        17. January 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 *  @ingroup groupNN
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @addtogroup FC
 | 
			
		||||
 * @{
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * @brief Q7 basic fully-connected layer function
 | 
			
		||||
   * @param[in]       pV          pointer to input vector
 | 
			
		||||
   * @param[in]       pM          pointer to matrix weights
 | 
			
		||||
   * @param[in]       dim_vec     length of the vector
 | 
			
		||||
   * @param[in]       num_of_rows number of rows in weight matrix
 | 
			
		||||
   * @param[in]       bias_shift  amount of left-shift for bias
 | 
			
		||||
   * @param[in]       out_shift   amount of right-shift for output
 | 
			
		||||
   * @param[in]       bias        pointer to bias
 | 
			
		||||
   * @param[in,out]   pOut        pointer to output vector
 | 
			
		||||
   * @param[in,out]   vec_buffer  pointer to buffer space for input
 | 
			
		||||
   * @return     The function returns <code>ARM_MATH_SUCCESS</code>
 | 
			
		||||
   *
 | 
			
		||||
   * @details
 | 
			
		||||
   *
 | 
			
		||||
   * <b>Buffer size:</b>
 | 
			
		||||
   *
 | 
			
		||||
   * vec_buffer size: dim_vec
 | 
			
		||||
   *
 | 
			
		||||
   * This basic function is designed to work with regular weight
 | 
			
		||||
   * matrix without interleaving.
 | 
			
		||||
   *
 | 
			
		||||
   */
 | 
			
		||||
 | 
			
		||||
arm_status
 | 
			
		||||
arm_fully_connected_q7(const q7_t * pV,
 | 
			
		||||
                       const q7_t * pM,
 | 
			
		||||
                       const uint16_t dim_vec,
 | 
			
		||||
                       const uint16_t num_of_rows,
 | 
			
		||||
                       const uint16_t bias_shift,
 | 
			
		||||
                       const uint16_t out_shift, const q7_t * bias, q7_t * pOut, q15_t * vec_buffer)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
#if defined (ARM_MATH_DSP)
 | 
			
		||||
    /* Run the following code for Cortex-M4 and Cortex-M7 */
 | 
			
		||||
 | 
			
		||||
    const q7_t *pB = pM;
 | 
			
		||||
    const q7_t *pB2;
 | 
			
		||||
    q7_t     *pO = pOut;
 | 
			
		||||
    const q7_t *pBias = bias;
 | 
			
		||||
    q15_t    *pA;
 | 
			
		||||
    uint16_t  rowCnt = num_of_rows >> 1;
 | 
			
		||||
 | 
			
		||||
    /* expand the vector into the buffer */
 | 
			
		||||
    arm_q7_to_q15_reordered_no_shift(pV, vec_buffer, dim_vec);
 | 
			
		||||
 | 
			
		||||
    while (rowCnt)
 | 
			
		||||
    {
 | 
			
		||||
        q31_t     sum =  ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        uint16_t  colCnt = dim_vec >> 2;
 | 
			
		||||
 | 
			
		||||
        pA = vec_buffer;
 | 
			
		||||
        pB2 = pB + dim_vec;
 | 
			
		||||
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q31_t     inV, inM11, inM12, inM21, inM22;
 | 
			
		||||
            pB = (q7_t *) read_and_pad_reordered((void *)pB, &inM11, &inM12);
 | 
			
		||||
            pB2 = (q7_t *) read_and_pad_reordered((void *)pB2, &inM21, &inM22);
 | 
			
		||||
 | 
			
		||||
            inV = *__SIMD32(pA)++;
 | 
			
		||||
 | 
			
		||||
            sum = __SMLAD(inV, inM11, sum);
 | 
			
		||||
            sum2 = __SMLAD(inV, inM21, sum2);
 | 
			
		||||
 | 
			
		||||
            inV = *__SIMD32(pA)++;
 | 
			
		||||
 | 
			
		||||
            sum = __SMLAD(inV, inM12, sum);
 | 
			
		||||
            sum2 = __SMLAD(inV, inM22, sum2);
 | 
			
		||||
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
        colCnt = dim_vec & 0x3;
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q7_t      inV = *pA++;
 | 
			
		||||
            q15_t     inM = *pB++;
 | 
			
		||||
            q15_t     inM2 = *pB2++;
 | 
			
		||||
 | 
			
		||||
            sum += inV * inM;
 | 
			
		||||
            sum2 += inV * inM2;
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }                       /* while over colCnt */
 | 
			
		||||
        *pO++ = (q7_t) (__SSAT((sum >> out_shift), 8));
 | 
			
		||||
        *pO++ = (q7_t) (__SSAT((sum2 >> out_shift), 8));
 | 
			
		||||
 | 
			
		||||
        /* adjust the pointers and counters */
 | 
			
		||||
        pB += dim_vec;
 | 
			
		||||
        rowCnt--;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* left-over part of the rows */
 | 
			
		||||
    rowCnt = num_of_rows & 0x1;
 | 
			
		||||
 | 
			
		||||
    while (rowCnt)
 | 
			
		||||
    {
 | 
			
		||||
        uint16_t  colCnt = dim_vec >> 2;
 | 
			
		||||
        q31_t     sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
 | 
			
		||||
        pA = vec_buffer;
 | 
			
		||||
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q31_t     inV1, inV2, inM11, inM12;
 | 
			
		||||
 | 
			
		||||
            pB = (q7_t *) read_and_pad_reordered((void *)pB, &inM11, &inM12);
 | 
			
		||||
 | 
			
		||||
            inV1 = *__SIMD32(pA)++;
 | 
			
		||||
            sum = __SMLAD(inV1, inM11, sum);
 | 
			
		||||
 | 
			
		||||
            inV2 = *__SIMD32(pA)++;
 | 
			
		||||
            sum = __SMLAD(inV2, inM12, sum);
 | 
			
		||||
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        /* left-over of the vector */
 | 
			
		||||
        colCnt = dim_vec & 0x3;
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q7_t      inV = *pA++;
 | 
			
		||||
            q15_t     inM = *pB++;
 | 
			
		||||
            sum += inV * inM;
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        *pO++ = (q7_t) (__SSAT((sum >> out_shift), 8));
 | 
			
		||||
 | 
			
		||||
        rowCnt--;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
    int       i, j;
 | 
			
		||||
 | 
			
		||||
    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
 | 
			
		||||
    for (i = 0; i < num_of_rows; i++)
 | 
			
		||||
    {
 | 
			
		||||
        int       ip_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        for (j = 0; j < dim_vec; j++)
 | 
			
		||||
        {
 | 
			
		||||
            ip_out += pV[j] * pM[i * dim_vec + j];
 | 
			
		||||
        }
 | 
			
		||||
        pOut[i] = (q7_t) __SSAT((ip_out >> out_shift), 8);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#endif                          /* ARM_MATH_DSP */
 | 
			
		||||
 | 
			
		||||
    /* Return to ARM_MATH_SUCCESS */
 | 
			
		||||
    return (ARM_MATH_SUCCESS);
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @} end of FC group
 | 
			
		||||
 */
 | 
			
		||||
@ -0,0 +1,484 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_fully_connected_q7_opt.c
 | 
			
		||||
 * Description:  Q7 basic fully-connected layer function
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        17. January 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 *  @ingroup groupNN
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @addtogroup FC
 | 
			
		||||
 * @{
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * @brief Q7 opt fully-connected layer function
 | 
			
		||||
   * @param[in]       pV          pointer to input vector
 | 
			
		||||
   * @param[in]       pM          pointer to matrix weights
 | 
			
		||||
   * @param[in]       dim_vec     length of the vector
 | 
			
		||||
   * @param[in]       num_of_rows number of rows in weight matrix
 | 
			
		||||
   * @param[in]       bias_shift  amount of left-shift for bias
 | 
			
		||||
   * @param[in]       out_shift   amount of right-shift for output
 | 
			
		||||
   * @param[in]       bias        pointer to bias
 | 
			
		||||
   * @param[in,out]   pOut        pointer to output vector
 | 
			
		||||
   * @param[in,out]   vec_buffer  pointer to buffer space for input
 | 
			
		||||
   * @return     The function returns <code>ARM_MATH_SUCCESS</code>
 | 
			
		||||
   *
 | 
			
		||||
   * @details
 | 
			
		||||
   *
 | 
			
		||||
   * <b>Buffer size:</b>
 | 
			
		||||
   *
 | 
			
		||||
   * vec_buffer size: dim_vec
 | 
			
		||||
   *
 | 
			
		||||
   * This opt function is designed to work with interleaved weight
 | 
			
		||||
   * matrix. The vector input is assumed in q7_t format, we call
 | 
			
		||||
   *  arm_q7_to_q15_no_shift_shuffle function to expand into
 | 
			
		||||
   *  q15_t format with certain weight re-ordering, refer to the function
 | 
			
		||||
   *  comments for more details.
 | 
			
		||||
   *  Here we use only one pointer to read 4 rows in the weight
 | 
			
		||||
   *  matrix. So if the original q7_t matrix looks like this:
 | 
			
		||||
   *
 | 
			
		||||
   *  | a11 | a12 | a13 | a14 | a15 | a16 | a17 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a21 | a22 | a23 | a24 | a25 | a26 | a27 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a31 | a32 | a33 | a34 | a35 | a36 | a37 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a41 | a42 | a43 | a44 | a45 | a46 | a47 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a51 | a52 | a53 | a54 | a55 | a56 | a57 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a61 | a62 | a63 | a64 | a65 | a66 | a67 |
 | 
			
		||||
   *
 | 
			
		||||
   *
 | 
			
		||||
   *  We operates on multiple-of-4 rows, so the first four rows becomes
 | 
			
		||||
   *
 | 
			
		||||
   *  | a11 | a21 | a13 | a23 | a31 | a41 | a33 | a43 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a12 | a22 | a14 | a24 | a32 | a42 | a34 | a44 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a15 | a25 | a35 | a45 | a16 | a26 | a36 | a46 |
 | 
			
		||||
   *
 | 
			
		||||
   *  So within the kernel, we first read the re-ordered vector in as:
 | 
			
		||||
   *
 | 
			
		||||
   *  | b1  | b3  | and | b2  | b4  |
 | 
			
		||||
   *
 | 
			
		||||
   *  the four q31_t weights will look like
 | 
			
		||||
   *
 | 
			
		||||
   *  | a11 | a13 |, | a21 | a23 |, | a31 | a33 |, | a41 | a43 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a12 | a14 |, | a22 | a24 |, | a32 | a34 |, | a42 | a44 |
 | 
			
		||||
   *
 | 
			
		||||
   *  The column left over will be in-order.
 | 
			
		||||
   *  which is:
 | 
			
		||||
   *
 | 
			
		||||
   *  | a17 | a27 | a37 | a47 |
 | 
			
		||||
   *
 | 
			
		||||
   *  For the left-over rows, we do 1x1 computation, so the data remains
 | 
			
		||||
   *  as its original order. 
 | 
			
		||||
   *
 | 
			
		||||
   *  So the stored weight matrix looks like this:
 | 
			
		||||
   *
 | 
			
		||||
   *  | a11 | a21 | a13 | a23 | a31 | a41 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a33 | a43 | a12 | a22 | a14 | a24 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a32 | a42 | a34 | a44 | a15 | a25 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a35 | a45 | a16 | a26 | a36 | a46 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a17 | a27 | a37 | a47 | a51 | a52 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a53 | a54 | a55 | a56 | a57 | a61 |
 | 
			
		||||
   *
 | 
			
		||||
   *  | a62 | a63 | a64 | a65 | a66 | a67 |
 | 
			
		||||
   *
 | 
			
		||||
   *
 | 
			
		||||
   */
 | 
			
		||||
 | 
			
		||||
arm_status
 | 
			
		||||
arm_fully_connected_q7_opt(const q7_t * pV,
 | 
			
		||||
                           const q7_t * pM,
 | 
			
		||||
                           const uint16_t dim_vec,
 | 
			
		||||
                           const uint16_t num_of_rows,
 | 
			
		||||
                           const uint16_t bias_shift,
 | 
			
		||||
                           const uint16_t out_shift, 
 | 
			
		||||
                           const q7_t * bias, 
 | 
			
		||||
                           q7_t * pOut, 
 | 
			
		||||
                           q15_t * vec_buffer)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
#if defined (ARM_MATH_DSP)
 | 
			
		||||
    /* Run the following code for Cortex-M4 and Cortex-M7 */
 | 
			
		||||
 | 
			
		||||
    const q7_t *pB = pM;
 | 
			
		||||
    q7_t     *pO = pOut;
 | 
			
		||||
    const q7_t *pBias = bias;
 | 
			
		||||
    q15_t    *pA;
 | 
			
		||||
    uint16_t  rowCnt = num_of_rows >> 2;
 | 
			
		||||
 | 
			
		||||
    arm_q7_to_q15_reordered_no_shift(pV, vec_buffer, dim_vec);
 | 
			
		||||
 | 
			
		||||
    while (rowCnt)
 | 
			
		||||
    {
 | 
			
		||||
 | 
			
		||||
        q31_t     sum =  ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        q31_t     sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        q31_t     sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
 | 
			
		||||
        uint16_t  colCnt = dim_vec >> 2;
 | 
			
		||||
 | 
			
		||||
        pA = vec_buffer;
 | 
			
		||||
 | 
			
		||||
#ifdef USE_INTRINSIC
 | 
			
		||||
 | 
			
		||||
#ifndef ARM_MATH_BIG_ENDIAN
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q31_t     inM11, inM12, inM13, inM14;
 | 
			
		||||
            q31_t     inV;
 | 
			
		||||
 | 
			
		||||
            inV = *__SIMD32(pA)++;
 | 
			
		||||
            inM11 = *__SIMD32(pB)++;
 | 
			
		||||
            inM12 = __SXTB16(__ROR(inM11, 8));
 | 
			
		||||
            inM11 = __SXTB16(inM11);
 | 
			
		||||
            sum = __SMLAD(inM11, inV, sum);
 | 
			
		||||
            sum2 = __SMLAD(inM12, inV, sum2);
 | 
			
		||||
            inM13 = *__SIMD32(pB)++;
 | 
			
		||||
            inM14 = __SXTB16(__ROR(inM13, 8));
 | 
			
		||||
            inM13 = __SXTB16(inM13);
 | 
			
		||||
            sum3 = __SMLAD(inM13, inV, sum3);
 | 
			
		||||
            sum4 = __SMLAD(inM14, inV, sum4);
 | 
			
		||||
 | 
			
		||||
            inV = *__SIMD32(pA)++;
 | 
			
		||||
            inM11 = *__SIMD32(pB)++;
 | 
			
		||||
            inM12 = __SXTB16(__ROR(inM11, 8));
 | 
			
		||||
            inM11 = __SXTB16(inM11);
 | 
			
		||||
            sum = __SMLAD(inM11, inV, sum);
 | 
			
		||||
            sum2 = __SMLAD(inM12, inV, sum2);
 | 
			
		||||
            inM13 = *__SIMD32(pB)++;
 | 
			
		||||
            inM14 = __SXTB16(__ROR(inM13, 8));
 | 
			
		||||
            inM13 = __SXTB16(inM13);
 | 
			
		||||
            sum3 = __SMLAD(inM13, inV, sum3);
 | 
			
		||||
            sum4 = __SMLAD(inM14, inV, sum4);
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
#else
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q31_t     inM11, inM12, inM13, inM14;
 | 
			
		||||
            q31_t     inV;
 | 
			
		||||
 | 
			
		||||
            inV = *__SIMD32(pA)++;
 | 
			
		||||
            inM11 = *__SIMD32(pB)++;
 | 
			
		||||
            inM12 = __SXTB16(__ROR(inM11, 8));
 | 
			
		||||
            inM11 = __SXTB16(inM11);
 | 
			
		||||
            sum = __SMLAD(inM12, inV, sum);
 | 
			
		||||
            sum2 = __SMLAD(inM11, inV, sum2);
 | 
			
		||||
            inM13 = *__SIMD32(pB)++;
 | 
			
		||||
            inM14 = __SXTB16(__ROR(inM13, 8));
 | 
			
		||||
            inM13 = __SXTB16(inM13);
 | 
			
		||||
            sum3 = __SMLAD(inM14, inV, sum3);
 | 
			
		||||
            sum4 = __SMLAD(inM13, inV, sum4);
 | 
			
		||||
 | 
			
		||||
            inV = *__SIMD32(pA)++;
 | 
			
		||||
            inM11 = *__SIMD32(pB)++;
 | 
			
		||||
            inM12 = __SXTB16(__ROR(inM11, 8));
 | 
			
		||||
            inM11 = __SXTB16(inM11);
 | 
			
		||||
            sum = __SMLAD(inM12, inV, sum);
 | 
			
		||||
            sum2 = __SMLAD(inM11, inV, sum2);
 | 
			
		||||
            inM13 = *__SIMD32(pB)++;
 | 
			
		||||
            inM14 = __SXTB16(__ROR(inM13, 8));
 | 
			
		||||
            inM13 = __SXTB16(inM13);
 | 
			
		||||
            sum3 = __SMLAD(inM14, inV, sum3);
 | 
			
		||||
            sum4 = __SMLAD(inM13, inV, sum4);
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
#endif                          /* ARM_MATH_BIG_ENDIAN */
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
 | 
			
		||||
        /*
 | 
			
		||||
         * register needed:
 | 
			
		||||
         * loop counter: colCnt
 | 
			
		||||
         * accumulators: sum, sum2, sum3, sum4
 | 
			
		||||
         * pointers: pB, pA
 | 
			
		||||
         * weight data: inM11, inM12, inM13, inM14
 | 
			
		||||
         * activation data: inV
 | 
			
		||||
         */
 | 
			
		||||
 | 
			
		||||
#ifndef ARM_MATH_BIG_ENDIAN
 | 
			
		||||
        asm volatile ("COL_LOOP_%=:\n"
 | 
			
		||||
                      "ldr.w r4, [%[pA]], #8\n"
 | 
			
		||||
                      "ldr.w r1, [%[pB]], #16\n"
 | 
			
		||||
                      "mov.w r0, r1, ror #8\n"
 | 
			
		||||
                      "sxtb16 r0, r0\n"
 | 
			
		||||
                      "sxtb16 r1, r1\n"
 | 
			
		||||
                      "smlad %[sum], r4, r1, %[sum]\n"
 | 
			
		||||
                      "smlad %[sum2], r4, r0, %[sum2]\n"
 | 
			
		||||
                      "ldr.w r3, [%[pB], #-12]\n"
 | 
			
		||||
                      "mov.w r2, r3, ror #8\n"
 | 
			
		||||
                      "sxtb16 r2, r2\n"
 | 
			
		||||
                      "sxtb16 r3, r3\n"
 | 
			
		||||
                      "smlad %[sum3], r4, r3, %[sum3]\n"
 | 
			
		||||
                      "smlad %[sum4], r4, r2, %[sum4]\n"
 | 
			
		||||
                      "ldr.w r4, [%[pA], #-4]\n"
 | 
			
		||||
                      "ldr.w r1, [%[pB], #-8]\n"
 | 
			
		||||
                      "mov.w r0, r1, ror #8\n"
 | 
			
		||||
                      "sxtb16 r0, r0\n"
 | 
			
		||||
                      "sxtb16 r1, r1\n"
 | 
			
		||||
                      "smlad %[sum], r4, r1, %[sum]\n"
 | 
			
		||||
                      "smlad %[sum2], r4, r0, %[sum2]\n"
 | 
			
		||||
                      "ldr.w r3, [%[pB], #-4]\n"
 | 
			
		||||
                      "mov.w r2, r3, ror #8\n"
 | 
			
		||||
                      "sxtb16 r2, r2\n"
 | 
			
		||||
                      "sxtb16 r3, r3\n"
 | 
			
		||||
                      "smlad %[sum3], r4, r3, %[sum3]\n"
 | 
			
		||||
                      "smlad %[sum4], r4, r2, %[sum4]\n"
 | 
			
		||||
                      "subs %[colCnt], #1\n"
 | 
			
		||||
                      "bne COL_LOOP_%=\n":[sum] "+r"(sum),
 | 
			
		||||
                      [sum2] "+r"(sum2),[sum3] "+r"(sum3),
 | 
			
		||||
                      [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4");
 | 
			
		||||
#else
 | 
			
		||||
        asm volatile ("COL_LOOP_%=:\n"
 | 
			
		||||
                      "ldr.w r4, [%[pA]], #8\n"
 | 
			
		||||
                      "ldr.w r1, [%[pB]], #16\n"
 | 
			
		||||
                      "mov.w r0, r1, ror #8\n"
 | 
			
		||||
                      "sxtb16 r0, r0\n"
 | 
			
		||||
                      "sxtb16 r1, r1\n"
 | 
			
		||||
                      "smlad %[sum], r4, r0, %[sum]\n"
 | 
			
		||||
                      "smlad %[sum2], r4, r1, %[sum2]\n"
 | 
			
		||||
                      "ldr.w r3, [%[pB], #-12]\n"
 | 
			
		||||
                      "mov.w r2, r3, ror #8\n"
 | 
			
		||||
                      "sxtb16 r2, r2\n"
 | 
			
		||||
                      "sxtb16 r3, r3\n"
 | 
			
		||||
                      "smlad %[sum3], r4, r2, %[sum3]\n"
 | 
			
		||||
                      "smlad %[sum4], r4, r3, %[sum4]\n"
 | 
			
		||||
                      "ldr.w r4, [%[pA], #-4]\n"
 | 
			
		||||
                      "ldr.w r1, [%[pB], #-8]\n"
 | 
			
		||||
                      "mov.w r0, r1, ror #8\n"
 | 
			
		||||
                      "sxtb16 r0, r0\n"
 | 
			
		||||
                      "sxtb16 r1, r1\n"
 | 
			
		||||
                      "smlad %[sum], r4, r0, %[sum]\n"
 | 
			
		||||
                      "smlad %[sum2], r4, r1, %[sum2]\n"
 | 
			
		||||
                      "ldr.w r3, [%[pB], #-4]\n"
 | 
			
		||||
                      "mov.w r2, r3, ror #8\n"
 | 
			
		||||
                      "sxtb16 r2, r2\n"
 | 
			
		||||
                      "sxtb16 r3, r3\n"
 | 
			
		||||
                      "smlad %[sum3], r4, r2, %[sum3]\n"
 | 
			
		||||
                      "smlad %[sum4], r4, r3, %[sum4]\n"
 | 
			
		||||
                      "subs %[colCnt], #1\n"
 | 
			
		||||
                      "bne COL_LOOP_%=\n":[sum] "+r"(sum),
 | 
			
		||||
                      [sum2] "+r"(sum2),[sum3] "+r"(sum3),
 | 
			
		||||
                      [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4");
 | 
			
		||||
#endif                          /* ARM_MATH_BIG_ENDIAN */
 | 
			
		||||
 | 
			
		||||
#endif                          /* USE_INTRINSIC */
 | 
			
		||||
 | 
			
		||||
        colCnt = dim_vec & 0x3;
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q15_t     inV = *pA++;
 | 
			
		||||
            q7_t      inM = *pB++;
 | 
			
		||||
            q7_t      inM2 = *pB++;
 | 
			
		||||
            q7_t      inM3 = *pB++;
 | 
			
		||||
            q7_t      inM4 = *pB++;
 | 
			
		||||
 | 
			
		||||
            sum += inV * inM;
 | 
			
		||||
            sum2 += inV * inM2;
 | 
			
		||||
            sum3 += inV * inM3;
 | 
			
		||||
            sum4 += inV * inM4;
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }                       /* while over colCnt */
 | 
			
		||||
        *pO++ = (q7_t) (__SSAT((sum >> out_shift), 8));
 | 
			
		||||
        *pO++ = (q7_t) (__SSAT((sum2 >> out_shift), 8));
 | 
			
		||||
        *pO++ = (q7_t) (__SSAT((sum3 >> out_shift), 8));
 | 
			
		||||
        *pO++ = (q7_t) (__SSAT((sum4 >> out_shift), 8));
 | 
			
		||||
 | 
			
		||||
        /* adjust the pointers and counters */
 | 
			
		||||
        rowCnt--;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* left-over part of the rows */
 | 
			
		||||
    rowCnt = num_of_rows & 0x3;
 | 
			
		||||
 | 
			
		||||
    while (rowCnt)
 | 
			
		||||
    {
 | 
			
		||||
        q31_t     sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        uint16_t  colCnt = dim_vec >> 2;
 | 
			
		||||
 | 
			
		||||
        pA = vec_buffer;
 | 
			
		||||
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q31_t     inV1, inV2, inM11, inM12;
 | 
			
		||||
 | 
			
		||||
            pB = (q7_t *) read_and_pad_reordered((void *)pB, &inM11, &inM12);
 | 
			
		||||
 | 
			
		||||
            inV1 = *__SIMD32(pA)++;
 | 
			
		||||
            sum = __SMLAD(inV1, inM11, sum);
 | 
			
		||||
 | 
			
		||||
            inV2 = *__SIMD32(pA)++;
 | 
			
		||||
            sum = __SMLAD(inV2, inM12, sum);
 | 
			
		||||
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        /* left-over of the vector */
 | 
			
		||||
        colCnt = dim_vec & 0x3;
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q15_t     inV = *pA++;
 | 
			
		||||
            q7_t      inM = *pB++;
 | 
			
		||||
            sum += inV * inM;
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        *pO++ = (q7_t) (__SSAT((sum >> out_shift), 8));
 | 
			
		||||
 | 
			
		||||
        rowCnt--;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
 | 
			
		||||
    uint16_t  rowCnt = num_of_rows >> 2;
 | 
			
		||||
    const q7_t *pB = pM;
 | 
			
		||||
    const q7_t *pA;
 | 
			
		||||
    q7_t     *pO = pOut;
 | 
			
		||||
    const q7_t *pBias = bias;
 | 
			
		||||
 | 
			
		||||
    while (rowCnt)
 | 
			
		||||
    {
 | 
			
		||||
        q31_t     sum =  ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        q31_t     sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
        q31_t     sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
 | 
			
		||||
        uint16_t  colCnt = dim_vec >> 2;
 | 
			
		||||
 | 
			
		||||
        pA = pV;
 | 
			
		||||
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q7_t      inA1 = *pA++;
 | 
			
		||||
            q7_t      inA3 = *pA++;
 | 
			
		||||
            q7_t      inA2 = *pA++;
 | 
			
		||||
            q7_t      inA4 = *pA++;
 | 
			
		||||
 | 
			
		||||
            q7_t      inB1 = *pB++;
 | 
			
		||||
            q7_t      inB3 = *pB++;
 | 
			
		||||
            q7_t      inB2 = *pB++;
 | 
			
		||||
            q7_t      inB4 = *pB++;
 | 
			
		||||
 | 
			
		||||
            sum += inA1 * inB1 + inA2 * inB2;
 | 
			
		||||
            sum2 += inA1 * inB3 + inA2 * inB4;
 | 
			
		||||
 | 
			
		||||
            inB1 = *pB++;
 | 
			
		||||
            inB3 = *pB++;
 | 
			
		||||
            inB2 = *pB++;
 | 
			
		||||
            inB4 = *pB++;
 | 
			
		||||
 | 
			
		||||
            sum3 += inA1 * inB1 + inA2 * inB2;
 | 
			
		||||
            sum4 += inA1 * inB3 + inA2 * inB4;
 | 
			
		||||
 | 
			
		||||
            inB1 = *pB++;
 | 
			
		||||
            inB3 = *pB++;
 | 
			
		||||
            inB2 = *pB++;
 | 
			
		||||
            inB4 = *pB++;
 | 
			
		||||
 | 
			
		||||
            sum += inA3 * inB1 + inA4 * inB2;
 | 
			
		||||
            sum2 += inA3 * inB3 + inA4 * inB4;
 | 
			
		||||
 | 
			
		||||
            inB1 = *pB++;
 | 
			
		||||
            inB3 = *pB++;
 | 
			
		||||
            inB2 = *pB++;
 | 
			
		||||
            inB4 = *pB++;
 | 
			
		||||
 | 
			
		||||
            sum3 += inA3 * inB1 + inA4 * inB2;
 | 
			
		||||
            sum4 += inA3 * inB3 + inA4 * inB4;
 | 
			
		||||
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
        colCnt = dim_vec & 0x3;
 | 
			
		||||
        while (colCnt)
 | 
			
		||||
        {
 | 
			
		||||
            q7_t      inA = *pA++;
 | 
			
		||||
            q7_t      inB = *pB++;
 | 
			
		||||
            sum += inA * inB;
 | 
			
		||||
            inB = *pB++;
 | 
			
		||||
            sum2 += inA * inB;
 | 
			
		||||
            inB = *pB++;
 | 
			
		||||
            sum3 += inA * inB;
 | 
			
		||||
            inB = *pB++;
 | 
			
		||||
            sum4 += inA * inB;
 | 
			
		||||
 | 
			
		||||
            colCnt--;
 | 
			
		||||
        }
 | 
			
		||||
        *pO++ = (q7_t) __SSAT((sum >> out_shift), 8);
 | 
			
		||||
        *pO++ = (q7_t) __SSAT((sum2 >> out_shift), 8);
 | 
			
		||||
        *pO++ = (q7_t) __SSAT((sum3 >> out_shift), 8);
 | 
			
		||||
        *pO++ = (q7_t) __SSAT((sum4 >> out_shift), 8);
 | 
			
		||||
 | 
			
		||||
        rowCnt--;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    rowCnt = num_of_rows & 0x3;
 | 
			
		||||
 | 
			
		||||
    while (rowCnt)
 | 
			
		||||
    {
 | 
			
		||||
        int       ip_out = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
 | 
			
		||||
 | 
			
		||||
        int       j;
 | 
			
		||||
 | 
			
		||||
        pA = pV;
 | 
			
		||||
        for (j = 0; j < dim_vec; j++)
 | 
			
		||||
        {
 | 
			
		||||
            q7_t      inA = *pA++;
 | 
			
		||||
            q7_t      inB = *pB++;
 | 
			
		||||
            ip_out += inA * inB;
 | 
			
		||||
        }
 | 
			
		||||
        *pO++ = (q7_t) __SSAT((ip_out >> out_shift), 8);
 | 
			
		||||
 | 
			
		||||
        rowCnt--;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#endif                          /* ARM_MATH_DSP */
 | 
			
		||||
 | 
			
		||||
    /* Return to ARM_MATH_SUCCESS */
 | 
			
		||||
    return (ARM_MATH_SUCCESS);
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @} end of FC group
 | 
			
		||||
 */
 | 
			
		||||
							
								
								
									
										147
									
								
								Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mult_q15.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										147
									
								
								Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mult_q15.c
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,147 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_nn_mult_q15.c
 | 
			
		||||
 * Description:  Q15 vector multiplication with variable output shifts
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        13. July 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
/**    
 | 
			
		||||
 * @ingroup groupSupport    
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @addtogroup NNBasicMath
 | 
			
		||||
 * @{
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief           Q7 vector multiplication with variable output shifts
 | 
			
		||||
 * @param[in]       *pSrcA        pointer to the first input vector
 | 
			
		||||
 * @param[in]       *pSrcB        pointer to the second input vector
 | 
			
		||||
 * @param[out]      *pDst         pointer to the output vector
 | 
			
		||||
 * @param[in]       out_shift     amount of right-shift for output
 | 
			
		||||
 * @param[in]       blockSize     number of samples in each vector
 | 
			
		||||
 * @return none.
 | 
			
		||||
 *
 | 
			
		||||
 * <b>Scaling and Overflow Behavior:</b>
 | 
			
		||||
 * \par
 | 
			
		||||
 * The function uses saturating arithmetic.
 | 
			
		||||
 * Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
void arm_nn_mult_q15(
 | 
			
		||||
  q15_t * pSrcA,
 | 
			
		||||
  q15_t * pSrcB,
 | 
			
		||||
  q15_t * pDst,
 | 
			
		||||
  const uint16_t out_shift,
 | 
			
		||||
  uint32_t blockSize)
 | 
			
		||||
{
 | 
			
		||||
  uint32_t blkCnt;                               /* loop counters */
 | 
			
		||||
 | 
			
		||||
#if defined (ARM_MATH_DSP)
 | 
			
		||||
 | 
			
		||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
 | 
			
		||||
  q31_t inA1, inA2, inB1, inB2;                  /* temporary input variables */
 | 
			
		||||
  q15_t out1, out2, out3, out4;                  /* temporary output variables */
 | 
			
		||||
  q31_t mul1, mul2, mul3, mul4;                  /* temporary variables */
 | 
			
		||||
 | 
			
		||||
  /* loop Unrolling */
 | 
			
		||||
  blkCnt = blockSize >> 2U;
 | 
			
		||||
 | 
			
		||||
  /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.
 | 
			
		||||
   ** a second loop below computes the remaining 1 to 3 samples. */
 | 
			
		||||
  while (blkCnt > 0U)
 | 
			
		||||
  {
 | 
			
		||||
    /* read two samples at a time from sourceA */
 | 
			
		||||
    inA1 = *__SIMD32(pSrcA)++;
 | 
			
		||||
    /* read two samples at a time from sourceB */
 | 
			
		||||
    inB1 = *__SIMD32(pSrcB)++;
 | 
			
		||||
    /* read two samples at a time from sourceA */
 | 
			
		||||
    inA2 = *__SIMD32(pSrcA)++;
 | 
			
		||||
    /* read two samples at a time from sourceB */
 | 
			
		||||
    inB2 = *__SIMD32(pSrcB)++;
 | 
			
		||||
 | 
			
		||||
    /* multiply mul = sourceA * sourceB */
 | 
			
		||||
    mul1 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1 >> 16));
 | 
			
		||||
    mul2 = (q31_t) ((q15_t) inA1 * (q15_t) inB1);
 | 
			
		||||
    mul3 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) (inB2 >> 16));
 | 
			
		||||
    mul4 = (q31_t) ((q15_t) inA2 * (q15_t) inB2);
 | 
			
		||||
 | 
			
		||||
    /* saturate result to 16 bit */
 | 
			
		||||
    out1 = (q15_t) __SSAT((mul1 + NN_ROUND(out_shift)) >> out_shift, 16);
 | 
			
		||||
    out2 = (q15_t) __SSAT((mul2 + NN_ROUND(out_shift)) >> out_shift, 16);
 | 
			
		||||
    out3 = (q15_t) __SSAT((mul3 + NN_ROUND(out_shift)) >> out_shift, 16);
 | 
			
		||||
    out4 = (q15_t) __SSAT((mul4 + NN_ROUND(out_shift)) >> out_shift, 16);
 | 
			
		||||
 | 
			
		||||
    /* store the result */
 | 
			
		||||
#ifndef ARM_MATH_BIG_ENDIAN
 | 
			
		||||
 | 
			
		||||
    *__SIMD32(pDst)++ = __PKHBT(out2, out1, 16);
 | 
			
		||||
    *__SIMD32(pDst)++ = __PKHBT(out4, out3, 16);
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
 | 
			
		||||
    *__SIMD32(pDst)++ = __PKHBT(out2, out1, 16);
 | 
			
		||||
    *__SIMD32(pDst)++ = __PKHBT(out4, out3, 16);
 | 
			
		||||
 | 
			
		||||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
 | 
			
		||||
 | 
			
		||||
    /* Decrement the blockSize loop counter */
 | 
			
		||||
    blkCnt--;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
 | 
			
		||||
   ** No loop unrolling is used. */
 | 
			
		||||
  blkCnt = blockSize % 0x4U;
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
 | 
			
		||||
  /* Run the below code for Cortex-M0 */
 | 
			
		||||
 | 
			
		||||
  /* Initialize blkCnt with number of samples */
 | 
			
		||||
  blkCnt = blockSize;
 | 
			
		||||
 | 
			
		||||
#endif /* #if defined (ARM_MATH_DSP) */
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  while (blkCnt > 0U)
 | 
			
		||||
  {
 | 
			
		||||
    /* C = A * B */
 | 
			
		||||
    /* Multiply the inputs and store the result in the destination buffer */
 | 
			
		||||
    *pDst++ = (q15_t) __SSAT((((q31_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 16);
 | 
			
		||||
 | 
			
		||||
    /* Decrement the blockSize loop counter */
 | 
			
		||||
    blkCnt--;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @} end of NNBasicMath group
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										119
									
								
								Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mult_q7.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										119
									
								
								Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mult_q7.c
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,119 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_nn_mult_q7.c
 | 
			
		||||
 * Description:  Q7 vector multiplication with variable output shifts
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        13. July 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
/**    
 | 
			
		||||
 * @ingroup groupSupport    
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @addtogroup NNBasicMath
 | 
			
		||||
 * @{
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief           Q7 vector multiplication with variable output shifts
 | 
			
		||||
 * @param[in]       *pSrcA        pointer to the first input vector
 | 
			
		||||
 * @param[in]       *pSrcB        pointer to the second input vector
 | 
			
		||||
 * @param[out]      *pDst         pointer to the output vector
 | 
			
		||||
 * @param[in]       out_shift     amount of right-shift for output
 | 
			
		||||
 * @param[in]       blockSize     number of samples in each vector
 | 
			
		||||
 * @return none.
 | 
			
		||||
 *
 | 
			
		||||
 * <b>Scaling and Overflow Behavior:</b>
 | 
			
		||||
 * \par
 | 
			
		||||
 * The function uses saturating arithmetic.
 | 
			
		||||
 * Results outside of the allowable Q7 range [0x80 0x7F] will be saturated.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
void arm_nn_mult_q7(
 | 
			
		||||
  q7_t * pSrcA,
 | 
			
		||||
  q7_t * pSrcB,
 | 
			
		||||
  q7_t * pDst,
 | 
			
		||||
  const uint16_t out_shift,
 | 
			
		||||
  uint32_t blockSize)
 | 
			
		||||
{
 | 
			
		||||
  uint32_t blkCnt;                               /* loop counters */
 | 
			
		||||
 | 
			
		||||
#if defined (ARM_MATH_DSP)
 | 
			
		||||
 | 
			
		||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
 | 
			
		||||
  q7_t out1, out2, out3, out4;                   /* Temporary variables to store the product */
 | 
			
		||||
 | 
			
		||||
  /* loop Unrolling */
 | 
			
		||||
  blkCnt = blockSize >> 2U;
 | 
			
		||||
 | 
			
		||||
  /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.
 | 
			
		||||
   ** a second loop below computes the remaining 1 to 3 samples. */
 | 
			
		||||
  while (blkCnt > 0U)
 | 
			
		||||
  {
 | 
			
		||||
    /* C = A * B */
 | 
			
		||||
    /* Multiply the inputs and store the results in temporary variables */
 | 
			
		||||
    out1 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 8);
 | 
			
		||||
    out2 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 8);
 | 
			
		||||
    out3 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 8);
 | 
			
		||||
    out4 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 8);
 | 
			
		||||
 | 
			
		||||
    /* Store the results of 4 inputs in the destination buffer in single cycle by packing */
 | 
			
		||||
    *__SIMD32(pDst)++ = __PACKq7(out1, out2, out3, out4);
 | 
			
		||||
 | 
			
		||||
    /* Decrement the blockSize loop counter */
 | 
			
		||||
    blkCnt--;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
 | 
			
		||||
   ** No loop unrolling is used. */
 | 
			
		||||
  blkCnt = blockSize % 0x4U;
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
 | 
			
		||||
  /* Run the below code for Cortex-M0 */
 | 
			
		||||
 | 
			
		||||
  /* Initialize blkCnt with number of samples */
 | 
			
		||||
  blkCnt = blockSize;
 | 
			
		||||
 | 
			
		||||
#endif /* #if defined (ARM_MATH_DSP) */
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  while (blkCnt > 0U)
 | 
			
		||||
  {
 | 
			
		||||
    /* C = A * B */
 | 
			
		||||
    /* Multiply the inputs and store the result in the destination buffer */
 | 
			
		||||
    *pDst++ = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 8);
 | 
			
		||||
 | 
			
		||||
    /* Decrement the blockSize loop counter */
 | 
			
		||||
    blkCnt--;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @} end of NNBasicMath group
 | 
			
		||||
 */
 | 
			
		||||
							
								
								
									
										297
									
								
								Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_nntables.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										297
									
								
								Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_nntables.c
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,297 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_nntables.c
 | 
			
		||||
 * Description:  Converts the elements of the Q7 vector to Q15 vector without left-shift
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        17. January 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#include "arm_nnsupportfunctions.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief tables for various activation functions
 | 
			
		||||
 *
 | 
			
		||||
 * This file include the declaration of common tables.
 | 
			
		||||
 * Most of them are used for activation functions 
 | 
			
		||||
 *
 | 
			
		||||
 * Assumption:
 | 
			
		||||
 * Unified table: input is 3.x format, i.e, range of [-8, 8)
 | 
			
		||||
 * sigmoid(8) = 0.9996646498695336
 | 
			
		||||
 * tanh(8) = 0.9999997749296758
 | 
			
		||||
 * The accuracy here should be good enough
 | 
			
		||||
 *
 | 
			
		||||
 * 2-stage HL table: 
 | 
			
		||||
 *
 | 
			
		||||
 * The entire input range is divided into two parts:
 | 
			
		||||
 *
 | 
			
		||||
 * Low range table: 0x000x xxxx or 0x111x xxxx 
 | 
			
		||||
 * table entry will be the binary number excluding the first
 | 
			
		||||
 * two digits, i.e., 0x0x xxxx or 0x1x xxxx
 | 
			
		||||
 * 
 | 
			
		||||
 *
 | 
			
		||||
 *
 | 
			
		||||
 * High range table 0x0010 0000 -- 0x0111 1111
 | 
			
		||||
 *                  0x1000 0000 -- 0x1101 1111
 | 
			
		||||
 * 
 | 
			
		||||
 * For positive numbers, table entry will be
 | 
			
		||||
 * 0x0010 0000 -- 0x0111 1111 minus 0x0010 0000
 | 
			
		||||
 * i.e., 0x0000 0000 - 0x0101 11111
 | 
			
		||||
 *
 | 
			
		||||
 * same thing for the negative numbers, table entry will be
 | 
			
		||||
 * 0x1000 0000 -- 0x1101 1111 minux 0x0010 0000
 | 
			
		||||
 * i.e., 0x0110 0000 - 0x1011 1111
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
const q7_t sigmoidTable_q7[256] = {
 | 
			
		||||
    0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e,
 | 
			
		||||
    0x50, 0x52, 0x53, 0x55, 0x57, 0x59, 0x5a, 0x5c,
 | 
			
		||||
    0x5e, 0x5f, 0x61, 0x62, 0x63, 0x65, 0x66, 0x67,
 | 
			
		||||
    0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70,
 | 
			
		||||
    0x71, 0x72, 0x72, 0x73, 0x74, 0x74, 0x75, 0x76,
 | 
			
		||||
    0x76, 0x77, 0x77, 0x78, 0x78, 0x79, 0x79, 0x7a,
 | 
			
		||||
    0x7a, 0x7a, 0x7b, 0x7b, 0x7b, 0x7c, 0x7c, 0x7c,
 | 
			
		||||
    0x7c, 0x7c, 0x7d, 0x7d, 0x7d, 0x7d, 0x7d, 0x7e,
 | 
			
		||||
    0x7e, 0x7e, 0x7e, 0x7e, 0x7e, 0x7e, 0x7e, 0x7f,
 | 
			
		||||
    0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
 | 
			
		||||
    0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
 | 
			
		||||
    0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
 | 
			
		||||
    0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
 | 
			
		||||
    0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
 | 
			
		||||
    0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
 | 
			
		||||
    0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
 | 
			
		||||
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
			
		||||
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
			
		||||
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
			
		||||
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
			
		||||
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
			
		||||
    0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
 | 
			
		||||
    0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
 | 
			
		||||
    0x01, 0x01, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
 | 
			
		||||
    0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x04,
 | 
			
		||||
    0x04, 0x04, 0x04, 0x04, 0x05, 0x05, 0x05, 0x06,
 | 
			
		||||
    0x06, 0x06, 0x07, 0x07, 0x08, 0x08, 0x09, 0x09,
 | 
			
		||||
    0x0a, 0x0a, 0x0b, 0x0c, 0x0c, 0x0d, 0x0e, 0x0e,
 | 
			
		||||
    0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16,
 | 
			
		||||
    0x17, 0x19, 0x1a, 0x1b, 0x1d, 0x1e, 0x1f, 0x21,
 | 
			
		||||
    0x22, 0x24, 0x26, 0x27, 0x29, 0x2b, 0x2d, 0x2e,
 | 
			
		||||
    0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
const q15_t sigmoidTable_q15[256] = {
 | 
			
		||||
    0x4000, 0x4200, 0x43ff, 0x45fc, 0x47f5, 0x49eb, 0x4bdc, 0x4dc8,
 | 
			
		||||
    0x4fad, 0x518a, 0x5360, 0x552c, 0x56ef, 0x58a8, 0x5a57, 0x5bfb,
 | 
			
		||||
    0x5d93, 0x5f20, 0x60a1, 0x6216, 0x637f, 0x64db, 0x662b, 0x676f,
 | 
			
		||||
    0x68a6, 0x69d2, 0x6af1, 0x6c05, 0x6d0d, 0x6e09, 0x6efb, 0x6fe2,
 | 
			
		||||
    0x70be, 0x7190, 0x7258, 0x7316, 0x73cc, 0x7478, 0x751b, 0x75b7,
 | 
			
		||||
    0x764a, 0x76d6, 0x775b, 0x77d8, 0x784f, 0x78c0, 0x792a, 0x798f,
 | 
			
		||||
    0x79ee, 0x7a48, 0x7a9d, 0x7aed, 0x7b39, 0x7b80, 0x7bc4, 0x7c03,
 | 
			
		||||
    0x7c3f, 0x7c78, 0x7cad, 0x7ce0, 0x7d0f, 0x7d3c, 0x7d66, 0x7d8d,
 | 
			
		||||
    0x7db3, 0x7dd6, 0x7df7, 0x7e16, 0x7e33, 0x7e4f, 0x7e69, 0x7e81,
 | 
			
		||||
    0x7e98, 0x7eae, 0x7ec2, 0x7ed5, 0x7ee7, 0x7ef8, 0x7f08, 0x7f17,
 | 
			
		||||
    0x7f25, 0x7f32, 0x7f3e, 0x7f4a, 0x7f55, 0x7f5f, 0x7f69, 0x7f72,
 | 
			
		||||
    0x7f7b, 0x7f83, 0x7f8a, 0x7f91, 0x7f98, 0x7f9e, 0x7fa4, 0x7faa,
 | 
			
		||||
    0x7faf, 0x7fb4, 0x7fb8, 0x7fbd, 0x7fc1, 0x7fc5, 0x7fc8, 0x7fcc,
 | 
			
		||||
    0x7fcf, 0x7fd2, 0x7fd5, 0x7fd7, 0x7fda, 0x7fdc, 0x7fde, 0x7fe0,
 | 
			
		||||
    0x7fe2, 0x7fe4, 0x7fe6, 0x7fe7, 0x7fe9, 0x7fea, 0x7feb, 0x7fed,
 | 
			
		||||
    0x7fee, 0x7fef, 0x7ff0, 0x7ff1, 0x7ff2, 0x7ff3, 0x7ff4, 0x7ff4,
 | 
			
		||||
    0x000b, 0x000c, 0x000c, 0x000d, 0x000e, 0x000f, 0x0010, 0x0011,
 | 
			
		||||
    0x0012, 0x0013, 0x0015, 0x0016, 0x0017, 0x0019, 0x001a, 0x001c,
 | 
			
		||||
    0x001e, 0x0020, 0x0022, 0x0024, 0x0026, 0x0029, 0x002b, 0x002e,
 | 
			
		||||
    0x0031, 0x0034, 0x0038, 0x003b, 0x003f, 0x0043, 0x0048, 0x004c,
 | 
			
		||||
    0x0051, 0x0056, 0x005c, 0x0062, 0x0068, 0x006f, 0x0076, 0x007d,
 | 
			
		||||
    0x0085, 0x008e, 0x0097, 0x00a1, 0x00ab, 0x00b6, 0x00c2, 0x00ce,
 | 
			
		||||
    0x00db, 0x00e9, 0x00f8, 0x0108, 0x0119, 0x012b, 0x013e, 0x0152,
 | 
			
		||||
    0x0168, 0x017f, 0x0197, 0x01b1, 0x01cd, 0x01ea, 0x0209, 0x022a,
 | 
			
		||||
    0x024d, 0x0273, 0x029a, 0x02c4, 0x02f1, 0x0320, 0x0353, 0x0388,
 | 
			
		||||
    0x03c1, 0x03fd, 0x043c, 0x0480, 0x04c7, 0x0513, 0x0563, 0x05b8,
 | 
			
		||||
    0x0612, 0x0671, 0x06d6, 0x0740, 0x07b1, 0x0828, 0x08a5, 0x092a,
 | 
			
		||||
    0x09b6, 0x0a49, 0x0ae5, 0x0b88, 0x0c34, 0x0cea, 0x0da8, 0x0e70,
 | 
			
		||||
    0x0f42, 0x101e, 0x1105, 0x11f7, 0x12f3, 0x13fb, 0x150f, 0x162e,
 | 
			
		||||
    0x175a, 0x1891, 0x19d5, 0x1b25, 0x1c81, 0x1dea, 0x1f5f, 0x20e0,
 | 
			
		||||
    0x226d, 0x2405, 0x25a9, 0x2758, 0x2911, 0x2ad4, 0x2ca0, 0x2e76,
 | 
			
		||||
    0x3053, 0x3238, 0x3424, 0x3615, 0x380b, 0x3a04, 0x3c01, 0x3e00,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
const q15_t sigmoidLTable_q15[128] = {
 | 
			
		||||
    0x4000, 0x4100, 0x4200, 0x42ff, 0x43ff, 0x44fd, 0x45fc, 0x46f9,
 | 
			
		||||
    0x47f5, 0x48f1, 0x49eb, 0x4ae5, 0x4bdc, 0x4cd3, 0x4dc8, 0x4ebb,
 | 
			
		||||
    0x4fad, 0x509c, 0x518a, 0x5276, 0x5360, 0x5447, 0x552c, 0x560f,
 | 
			
		||||
    0x56ef, 0x57cd, 0x58a8, 0x5981, 0x5a57, 0x5b2a, 0x5bfb, 0x5cc9,
 | 
			
		||||
    0x5d93, 0x5e5b, 0x5f20, 0x5fe2, 0x60a1, 0x615d, 0x6216, 0x62cc,
 | 
			
		||||
    0x637f, 0x642e, 0x64db, 0x6584, 0x662b, 0x66ce, 0x676f, 0x680c,
 | 
			
		||||
    0x68a6, 0x693d, 0x69d2, 0x6a63, 0x6af1, 0x6b7c, 0x6c05, 0x6c8a,
 | 
			
		||||
    0x6d0d, 0x6d8d, 0x6e09, 0x6e84, 0x6efb, 0x6f70, 0x6fe2, 0x7051,
 | 
			
		||||
    0x0f42, 0x0faf, 0x101e, 0x1090, 0x1105, 0x117c, 0x11f7, 0x1273,
 | 
			
		||||
    0x12f3, 0x1376, 0x13fb, 0x1484, 0x150f, 0x159d, 0x162e, 0x16c3,
 | 
			
		||||
    0x175a, 0x17f4, 0x1891, 0x1932, 0x19d5, 0x1a7c, 0x1b25, 0x1bd2,
 | 
			
		||||
    0x1c81, 0x1d34, 0x1dea, 0x1ea3, 0x1f5f, 0x201e, 0x20e0, 0x21a5,
 | 
			
		||||
    0x226d, 0x2337, 0x2405, 0x24d6, 0x25a9, 0x267f, 0x2758, 0x2833,
 | 
			
		||||
    0x2911, 0x29f1, 0x2ad4, 0x2bb9, 0x2ca0, 0x2d8a, 0x2e76, 0x2f64,
 | 
			
		||||
    0x3053, 0x3145, 0x3238, 0x332d, 0x3424, 0x351b, 0x3615, 0x370f,
 | 
			
		||||
    0x380b, 0x3907, 0x3a04, 0x3b03, 0x3c01, 0x3d01, 0x3e00, 0x3f00,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
const q15_t sigmoidHTable_q15[192] = {
 | 
			
		||||
    0x70be, 0x7190, 0x7258, 0x7316, 0x73cc, 0x7478, 0x751b, 0x75b7,
 | 
			
		||||
    0x764a, 0x76d6, 0x775b, 0x77d8, 0x784f, 0x78c0, 0x792a, 0x798f,
 | 
			
		||||
    0x79ee, 0x7a48, 0x7a9d, 0x7aed, 0x7b39, 0x7b80, 0x7bc4, 0x7c03,
 | 
			
		||||
    0x7c3f, 0x7c78, 0x7cad, 0x7ce0, 0x7d0f, 0x7d3c, 0x7d66, 0x7d8d,
 | 
			
		||||
    0x7db3, 0x7dd6, 0x7df7, 0x7e16, 0x7e33, 0x7e4f, 0x7e69, 0x7e81,
 | 
			
		||||
    0x7e98, 0x7eae, 0x7ec2, 0x7ed5, 0x7ee7, 0x7ef8, 0x7f08, 0x7f17,
 | 
			
		||||
    0x7f25, 0x7f32, 0x7f3e, 0x7f4a, 0x7f55, 0x7f5f, 0x7f69, 0x7f72,
 | 
			
		||||
    0x7f7b, 0x7f83, 0x7f8a, 0x7f91, 0x7f98, 0x7f9e, 0x7fa4, 0x7faa,
 | 
			
		||||
    0x7faf, 0x7fb4, 0x7fb8, 0x7fbd, 0x7fc1, 0x7fc5, 0x7fc8, 0x7fcc,
 | 
			
		||||
    0x7fcf, 0x7fd2, 0x7fd5, 0x7fd7, 0x7fda, 0x7fdc, 0x7fde, 0x7fe0,
 | 
			
		||||
    0x7fe2, 0x7fe4, 0x7fe6, 0x7fe7, 0x7fe9, 0x7fea, 0x7feb, 0x7fed,
 | 
			
		||||
    0x7fee, 0x7fef, 0x7ff0, 0x7ff1, 0x7ff2, 0x7ff3, 0x7ff4, 0x7ff4,
 | 
			
		||||
    0x000b, 0x000c, 0x000c, 0x000d, 0x000e, 0x000f, 0x0010, 0x0011,
 | 
			
		||||
    0x0012, 0x0013, 0x0015, 0x0016, 0x0017, 0x0019, 0x001a, 0x001c,
 | 
			
		||||
    0x001e, 0x0020, 0x0022, 0x0024, 0x0026, 0x0029, 0x002b, 0x002e,
 | 
			
		||||
    0x0031, 0x0034, 0x0038, 0x003b, 0x003f, 0x0043, 0x0048, 0x004c,
 | 
			
		||||
    0x0051, 0x0056, 0x005c, 0x0062, 0x0068, 0x006f, 0x0076, 0x007d,
 | 
			
		||||
    0x0085, 0x008e, 0x0097, 0x00a1, 0x00ab, 0x00b6, 0x00c2, 0x00ce,
 | 
			
		||||
    0x00db, 0x00e9, 0x00f8, 0x0108, 0x0119, 0x012b, 0x013e, 0x0152,
 | 
			
		||||
    0x0168, 0x017f, 0x0197, 0x01b1, 0x01cd, 0x01ea, 0x0209, 0x022a,
 | 
			
		||||
    0x024d, 0x0273, 0x029a, 0x02c4, 0x02f1, 0x0320, 0x0353, 0x0388,
 | 
			
		||||
    0x03c1, 0x03fd, 0x043c, 0x0480, 0x04c7, 0x0513, 0x0563, 0x05b8,
 | 
			
		||||
    0x0612, 0x0671, 0x06d6, 0x0740, 0x07b1, 0x0828, 0x08a5, 0x092a,
 | 
			
		||||
    0x09b6, 0x0a49, 0x0ae5, 0x0b88, 0x0c34, 0x0cea, 0x0da8, 0x0e70,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
const q7_t tanhTable_q7[256] = {
 | 
			
		||||
    0x00, 0x08, 0x10, 0x18, 0x1f, 0x27, 0x2e, 0x35,
 | 
			
		||||
    0x3b, 0x41, 0x47, 0x4c, 0x51, 0x56, 0x5a, 0x5e,
 | 
			
		||||
    0x61, 0x65, 0x68, 0x6a, 0x6d, 0x6f, 0x71, 0x72,
 | 
			
		||||
    0x74, 0x75, 0x76, 0x78, 0x78, 0x79, 0x7a, 0x7b,
 | 
			
		||||
    0x7b, 0x7c, 0x7c, 0x7d, 0x7d, 0x7e, 0x7e, 0x7e,
 | 
			
		||||
    0x7e, 0x7e, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
 | 
			
		||||
    0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
 | 
			
		||||
    0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
 | 
			
		||||
    0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
 | 
			
		||||
    0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
 | 
			
		||||
    0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
 | 
			
		||||
    0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
 | 
			
		||||
    0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
 | 
			
		||||
    0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
 | 
			
		||||
    0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
 | 
			
		||||
    0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
 | 
			
		||||
    0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
 | 
			
		||||
    0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
 | 
			
		||||
    0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
 | 
			
		||||
    0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
 | 
			
		||||
    0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
 | 
			
		||||
    0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
 | 
			
		||||
    0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
 | 
			
		||||
    0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
 | 
			
		||||
    0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
 | 
			
		||||
    0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x81,
 | 
			
		||||
    0x81, 0x81, 0x81, 0x81, 0x81, 0x81, 0x81, 0x82,
 | 
			
		||||
    0x82, 0x82, 0x82, 0x82, 0x83, 0x83, 0x84, 0x84,
 | 
			
		||||
    0x85, 0x85, 0x86, 0x87, 0x88, 0x88, 0x8a, 0x8b,
 | 
			
		||||
    0x8c, 0x8e, 0x8f, 0x91, 0x93, 0x96, 0x98, 0x9b,
 | 
			
		||||
    0x9f, 0xa2, 0xa6, 0xaa, 0xaf, 0xb4, 0xb9, 0xbf,
 | 
			
		||||
    0xc5, 0xcb, 0xd2, 0xd9, 0xe1, 0xe8, 0xf0, 0xf8,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
const q15_t tanhTable_q15[256] = {
 | 
			
		||||
    0x0000, 0x07fd, 0x0feb, 0x17b9, 0x1f59, 0x26bf, 0x2ddf, 0x34ae,
 | 
			
		||||
    0x3b27, 0x4142, 0x46fd, 0x4c56, 0x514d, 0x55e2, 0x5a1a, 0x5df6,
 | 
			
		||||
    0x617c, 0x64b0, 0x6797, 0x6a37, 0x6c95, 0x6eb5, 0x709e, 0x7254,
 | 
			
		||||
    0x73dc, 0x753a, 0x7672, 0x7788, 0x787f, 0x795b, 0x7a1e, 0x7acb,
 | 
			
		||||
    0x7b65, 0x7bee, 0x7c66, 0x7cd1, 0x7d30, 0x7d84, 0x7dce, 0x7e0f,
 | 
			
		||||
    0x7e49, 0x7e7d, 0x7eaa, 0x7ed2, 0x7ef5, 0x7f14, 0x7f30, 0x7f48,
 | 
			
		||||
    0x7f5e, 0x7f71, 0x7f82, 0x7f91, 0x7f9e, 0x7fa9, 0x7fb3, 0x7fbc,
 | 
			
		||||
    0x7fc4, 0x7fcb, 0x7fd1, 0x7fd7, 0x7fdc, 0x7fe0, 0x7fe4, 0x7fe7,
 | 
			
		||||
    0x7fea, 0x7fed, 0x7fef, 0x7ff1, 0x7ff3, 0x7ff4, 0x7ff6, 0x7ff7,
 | 
			
		||||
    0x7ff8, 0x7ff9, 0x7ffa, 0x7ffa, 0x7ffb, 0x7ffc, 0x7ffc, 0x7ffd,
 | 
			
		||||
    0x7ffd, 0x7ffd, 0x7ffe, 0x7ffe, 0x7ffe, 0x7ffe, 0x7fff, 0x7fff,
 | 
			
		||||
    0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
 | 
			
		||||
    0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
 | 
			
		||||
    0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
 | 
			
		||||
    0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
 | 
			
		||||
    0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
 | 
			
		||||
    0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
 | 
			
		||||
    0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
 | 
			
		||||
    0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
 | 
			
		||||
    0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
 | 
			
		||||
    0x8000, 0x8000, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001,
 | 
			
		||||
    0x8001, 0x8001, 0x8001, 0x8002, 0x8002, 0x8002, 0x8002, 0x8003,
 | 
			
		||||
    0x8003, 0x8003, 0x8004, 0x8004, 0x8005, 0x8006, 0x8006, 0x8007,
 | 
			
		||||
    0x8008, 0x8009, 0x800a, 0x800c, 0x800d, 0x800f, 0x8011, 0x8013,
 | 
			
		||||
    0x8016, 0x8019, 0x801c, 0x8020, 0x8024, 0x8029, 0x802f, 0x8035,
 | 
			
		||||
    0x803c, 0x8044, 0x804d, 0x8057, 0x8062, 0x806f, 0x807e, 0x808f,
 | 
			
		||||
    0x80a2, 0x80b8, 0x80d0, 0x80ec, 0x810b, 0x812e, 0x8156, 0x8183,
 | 
			
		||||
    0x81b7, 0x81f1, 0x8232, 0x827c, 0x82d0, 0x832f, 0x839a, 0x8412,
 | 
			
		||||
    0x849b, 0x8535, 0x85e2, 0x86a5, 0x8781, 0x8878, 0x898e, 0x8ac6,
 | 
			
		||||
    0x8c24, 0x8dac, 0x8f62, 0x914b, 0x936b, 0x95c9, 0x9869, 0x9b50,
 | 
			
		||||
    0x9e84, 0xa20a, 0xa5e6, 0xaa1e, 0xaeb3, 0xb3aa, 0xb903, 0xbebe,
 | 
			
		||||
    0xc4d9, 0xcb52, 0xd221, 0xd941, 0xe0a7, 0xe847, 0xf015, 0xf803,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
const q15_t tanhLTable_q15[128] = {
 | 
			
		||||
    0x0000, 0x0400, 0x07fd, 0x0bf7, 0x0feb, 0x13d7, 0x17b9, 0x1b90,
 | 
			
		||||
    0x1f59, 0x2314, 0x26bf, 0x2a58, 0x2ddf, 0x3151, 0x34ae, 0x37f6,
 | 
			
		||||
    0x3b27, 0x3e40, 0x4142, 0x442c, 0x46fd, 0x49b6, 0x4c56, 0x4edd,
 | 
			
		||||
    0x514d, 0x53a3, 0x55e2, 0x580a, 0x5a1a, 0x5c13, 0x5df6, 0x5fc4,
 | 
			
		||||
    0x617c, 0x6320, 0x64b0, 0x662d, 0x6797, 0x68f0, 0x6a37, 0x6b6e,
 | 
			
		||||
    0x6c95, 0x6dac, 0x6eb5, 0x6fb0, 0x709e, 0x717f, 0x7254, 0x731e,
 | 
			
		||||
    0x73dc, 0x7490, 0x753a, 0x75da, 0x7672, 0x7701, 0x7788, 0x7807,
 | 
			
		||||
    0x787f, 0x78f0, 0x795b, 0x79bf, 0x7a1e, 0x7a77, 0x7acb, 0x7b1b,
 | 
			
		||||
    0x849b, 0x84e5, 0x8535, 0x8589, 0x85e2, 0x8641, 0x86a5, 0x8710,
 | 
			
		||||
    0x8781, 0x87f9, 0x8878, 0x88ff, 0x898e, 0x8a26, 0x8ac6, 0x8b70,
 | 
			
		||||
    0x8c24, 0x8ce2, 0x8dac, 0x8e81, 0x8f62, 0x9050, 0x914b, 0x9254,
 | 
			
		||||
    0x936b, 0x9492, 0x95c9, 0x9710, 0x9869, 0x99d3, 0x9b50, 0x9ce0,
 | 
			
		||||
    0x9e84, 0xa03c, 0xa20a, 0xa3ed, 0xa5e6, 0xa7f6, 0xaa1e, 0xac5d,
 | 
			
		||||
    0xaeb3, 0xb123, 0xb3aa, 0xb64a, 0xb903, 0xbbd4, 0xbebe, 0xc1c0,
 | 
			
		||||
    0xc4d9, 0xc80a, 0xcb52, 0xceaf, 0xd221, 0xd5a8, 0xd941, 0xdcec,
 | 
			
		||||
    0xe0a7, 0xe470, 0xe847, 0xec29, 0xf015, 0xf409, 0xf803, 0xfc00,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
const q15_t tanhHTable_q15[192] = {
 | 
			
		||||
    0x7b65, 0x7bee, 0x7c66, 0x7cd1, 0x7d30, 0x7d84, 0x7dce, 0x7e0f,
 | 
			
		||||
    0x7e49, 0x7e7d, 0x7eaa, 0x7ed2, 0x7ef5, 0x7f14, 0x7f30, 0x7f48,
 | 
			
		||||
    0x7f5e, 0x7f71, 0x7f82, 0x7f91, 0x7f9e, 0x7fa9, 0x7fb3, 0x7fbc,
 | 
			
		||||
    0x7fc4, 0x7fcb, 0x7fd1, 0x7fd7, 0x7fdc, 0x7fe0, 0x7fe4, 0x7fe7,
 | 
			
		||||
    0x7fea, 0x7fed, 0x7fef, 0x7ff1, 0x7ff3, 0x7ff4, 0x7ff6, 0x7ff7,
 | 
			
		||||
    0x7ff8, 0x7ff9, 0x7ffa, 0x7ffa, 0x7ffb, 0x7ffc, 0x7ffc, 0x7ffd,
 | 
			
		||||
    0x7ffd, 0x7ffd, 0x7ffe, 0x7ffe, 0x7ffe, 0x7ffe, 0x7fff, 0x7fff,
 | 
			
		||||
    0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
 | 
			
		||||
    0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
 | 
			
		||||
    0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
 | 
			
		||||
    0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
 | 
			
		||||
    0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
 | 
			
		||||
    0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
 | 
			
		||||
    0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
 | 
			
		||||
    0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
 | 
			
		||||
    0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
 | 
			
		||||
    0x8000, 0x8000, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001,
 | 
			
		||||
    0x8001, 0x8001, 0x8001, 0x8002, 0x8002, 0x8002, 0x8002, 0x8003,
 | 
			
		||||
    0x8003, 0x8003, 0x8004, 0x8004, 0x8005, 0x8006, 0x8006, 0x8007,
 | 
			
		||||
    0x8008, 0x8009, 0x800a, 0x800c, 0x800d, 0x800f, 0x8011, 0x8013,
 | 
			
		||||
    0x8016, 0x8019, 0x801c, 0x8020, 0x8024, 0x8029, 0x802f, 0x8035,
 | 
			
		||||
    0x803c, 0x8044, 0x804d, 0x8057, 0x8062, 0x806f, 0x807e, 0x808f,
 | 
			
		||||
    0x80a2, 0x80b8, 0x80d0, 0x80ec, 0x810b, 0x812e, 0x8156, 0x8183,
 | 
			
		||||
    0x81b7, 0x81f1, 0x8232, 0x827c, 0x82d0, 0x832f, 0x839a, 0x8412,
 | 
			
		||||
};
 | 
			
		||||
@ -0,0 +1,134 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_q7_to_q15_no_shift.c
 | 
			
		||||
 * Description:  Converts the elements of the Q7 vector to Q15 vector without left-shift
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        17. January 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#include "arm_nnsupportfunctions.h"
 | 
			
		||||
 | 
			
		||||
/**    
 | 
			
		||||
 * @ingroup groupSupport    
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**    
 | 
			
		||||
 * @addtogroup nndata_convert    
 | 
			
		||||
 * @{    
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**    
 | 
			
		||||
 * @brief Converts the elements of the Q7 vector to Q15 vector without left-shift 
 | 
			
		||||
 * @param[in]       *pSrc points to the Q7 input vector    
 | 
			
		||||
 * @param[out]      *pDst points to the Q15 output vector   
 | 
			
		||||
 * @param[in]       blockSize length of the input vector    
 | 
			
		||||
 * @return none.    
 | 
			
		||||
 *    
 | 
			
		||||
 * \par Description:    
 | 
			
		||||
 *    
 | 
			
		||||
 * The equation used for the conversion process is:    
 | 
			
		||||
 *   
 | 
			
		||||
 * <pre>    
 | 
			
		||||
 * 	pDst[n] = (q15_t) pSrc[n];   0 <= n < blockSize.    
 | 
			
		||||
 * </pre>    
 | 
			
		||||
 *   
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
void arm_q7_to_q15_no_shift(const q7_t * pSrc, q15_t * pDst, uint32_t blockSize)
 | 
			
		||||
{
 | 
			
		||||
    const q7_t *pIn = pSrc;     /* Src pointer */
 | 
			
		||||
    uint32_t  blkCnt;           /* loop counter */
 | 
			
		||||
 | 
			
		||||
#ifndef ARM_MATH_CM0_FAMILY
 | 
			
		||||
    q31_t     in;
 | 
			
		||||
    q31_t     in1, in2;
 | 
			
		||||
    q31_t     out1, out2;
 | 
			
		||||
 | 
			
		||||
    /* Run the below code for Cortex-M4 and Cortex-M3 */
 | 
			
		||||
 | 
			
		||||
    /*loop Unrolling */
 | 
			
		||||
    blkCnt = blockSize >> 2u;
 | 
			
		||||
 | 
			
		||||
    /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.    
 | 
			
		||||
     ** a second loop below computes the remaining 1 to 3 samples. */
 | 
			
		||||
    while (blkCnt > 0u)
 | 
			
		||||
    {
 | 
			
		||||
        /* C = (q15_t) A << 8 */
 | 
			
		||||
        /* convert from q7 to q15 and then store the results in the destination buffer */
 | 
			
		||||
        in = *__SIMD32(pIn)++;
 | 
			
		||||
 | 
			
		||||
        /* rotatate in by 8 and extend two q7_t values to q15_t values */
 | 
			
		||||
        in1 = __SXTB16(__ROR(in, 8));
 | 
			
		||||
 | 
			
		||||
        /* extend remainig two q7_t values to q15_t values */
 | 
			
		||||
        in2 = __SXTB16(in);
 | 
			
		||||
 | 
			
		||||
#ifndef ARM_MATH_BIG_ENDIAN
 | 
			
		||||
 | 
			
		||||
        out2 = __PKHTB(in1, in2, 16);
 | 
			
		||||
        out1 = __PKHBT(in2, in1, 16);
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
 | 
			
		||||
        out1 = __PKHTB(in1, in2, 16);
 | 
			
		||||
        out2 = __PKHBT(in2, in1, 16);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
        *__SIMD32(pDst)++ = out1;
 | 
			
		||||
        *__SIMD32(pDst)++ = out2;
 | 
			
		||||
 | 
			
		||||
        /* Decrement the loop counter */
 | 
			
		||||
        blkCnt--;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* If the blockSize is not a multiple of 4, compute any remaining output samples here.    
 | 
			
		||||
     ** No loop unrolling is used. */
 | 
			
		||||
    blkCnt = blockSize % 0x4u;
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
 | 
			
		||||
    /* Run the below code for Cortex-M0 */
 | 
			
		||||
 | 
			
		||||
    /* Loop over blockSize number of values */
 | 
			
		||||
    blkCnt = blockSize;
 | 
			
		||||
 | 
			
		||||
#endif                          /* #ifndef ARM_MATH_CM0_FAMILY */
 | 
			
		||||
 | 
			
		||||
    while (blkCnt > 0u)
 | 
			
		||||
    {
 | 
			
		||||
        /* C = (q15_t) A << 8 */
 | 
			
		||||
        /* convert from q7 to q15 and then store the results in the destination buffer */
 | 
			
		||||
        *pDst++ = (q15_t) * pIn++;
 | 
			
		||||
 | 
			
		||||
        /* Decrement the loop counter */
 | 
			
		||||
        blkCnt--;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**    
 | 
			
		||||
 * @} end of nndata_convert group   
 | 
			
		||||
 */
 | 
			
		||||
@ -0,0 +1,145 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_q7_to_q15_reordered_no_shift.c
 | 
			
		||||
 * Description:  Converts the elements of the Q7 vector to reordered Q15 vector without left-shift
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        17. January 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#include "arm_nnsupportfunctions.h"
 | 
			
		||||
 | 
			
		||||
/**    
 | 
			
		||||
 * @ingroup groupSupport    
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**    
 | 
			
		||||
 * @addtogroup nndata_convert    
 | 
			
		||||
 * @{    
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**    
 | 
			
		||||
 * @brief Converts the elements of the Q7 vector to reordered Q15 vector without left-shift
 | 
			
		||||
 * @param[in]       *pSrc points to the Q7 input vector    
 | 
			
		||||
 * @param[out]      *pDst points to the Q15 output vector   
 | 
			
		||||
 * @param[in]       blockSize length of the input vector    
 | 
			
		||||
 * @return none.    
 | 
			
		||||
 *    
 | 
			
		||||
 * @details
 | 
			
		||||
 *
 | 
			
		||||
 * This function does the q7 to q15 expansion with re-ordering 
 | 
			
		||||
 *
 | 
			
		||||
 * <pre>
 | 
			
		||||
 *                          |   A1   |   A2   |   A3   |   A4   |
 | 
			
		||||
 *
 | 
			
		||||
 *                           0      7 8     15 16    23 24    31
 | 
			
		||||
 * </pre>
 | 
			
		||||
 *
 | 
			
		||||
 * is converted into:
 | 
			
		||||
 *
 | 
			
		||||
 * <pre>
 | 
			
		||||
 *  |       A1       |       A3       |   and  |       A2       |       A4       |
 | 
			
		||||
 *
 | 
			
		||||
 *   0             15 16            31          0             15 16            31
 | 
			
		||||
 * </pre>
 | 
			
		||||
 *
 | 
			
		||||
 *
 | 
			
		||||
 * This looks strange but is natural considering how sign-extension is done at
 | 
			
		||||
 * assembly level. 
 | 
			
		||||
 *
 | 
			
		||||
 * The expansion of other other oprand will follow the same rule so that the end 
 | 
			
		||||
 * results are the same.
 | 
			
		||||
 *
 | 
			
		||||
 * The tail (i.e., last (N % 4) elements) will still be in original order.
 | 
			
		||||
 *   
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
void arm_q7_to_q15_reordered_no_shift(const q7_t * pSrc, q15_t * pDst, uint32_t blockSize)
 | 
			
		||||
{
 | 
			
		||||
    const q7_t *pIn = pSrc;     /* Src pointer */
 | 
			
		||||
    uint32_t  blkCnt;           /* loop counter */
 | 
			
		||||
 | 
			
		||||
#ifndef ARM_MATH_CM0_FAMILY
 | 
			
		||||
    q31_t     in;
 | 
			
		||||
    q31_t     in1, in2;
 | 
			
		||||
 | 
			
		||||
    /* Run the below code for Cortex-M4 and Cortex-M3 */
 | 
			
		||||
 | 
			
		||||
    /*loop Unrolling */
 | 
			
		||||
    blkCnt = blockSize >> 2u;
 | 
			
		||||
 | 
			
		||||
    /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.    
 | 
			
		||||
     ** a second loop below computes the remaining 1 to 3 samples. */
 | 
			
		||||
    while (blkCnt > 0u)
 | 
			
		||||
    {
 | 
			
		||||
        /* C = (q15_t) A << 8 */
 | 
			
		||||
        /* convert from q7 to q15 and then store the results in the destination buffer */
 | 
			
		||||
        in = *__SIMD32(pIn)++;
 | 
			
		||||
 | 
			
		||||
        /* rotatate in by 8 and extend two q7_t values to q15_t values */
 | 
			
		||||
        in1 = __SXTB16(__ROR(in, 8));
 | 
			
		||||
 | 
			
		||||
        /* extend remainig two q7_t values to q15_t values */
 | 
			
		||||
        in2 = __SXTB16(in);
 | 
			
		||||
 | 
			
		||||
#ifndef ARM_MATH_BIG_ENDIAN
 | 
			
		||||
        *__SIMD32(pDst)++ = in2;
 | 
			
		||||
        *__SIMD32(pDst)++ = in1;
 | 
			
		||||
#else
 | 
			
		||||
        *__SIMD32(pDst)++ = in1;
 | 
			
		||||
        *__SIMD32(pDst)++ = in2;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
        /* Decrement the loop counter */
 | 
			
		||||
        blkCnt--;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* If the blockSize is not a multiple of 4, compute any remaining output samples here.    
 | 
			
		||||
     ** No loop unrolling is used. */
 | 
			
		||||
    blkCnt = blockSize % 0x4u;
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
 | 
			
		||||
    /* Run the below code for Cortex-M0 */
 | 
			
		||||
 | 
			
		||||
    /* Loop over blockSize number of values */
 | 
			
		||||
    blkCnt = blockSize;
 | 
			
		||||
 | 
			
		||||
#endif                          /* #ifndef ARM_MATH_CM0_FAMILY */
 | 
			
		||||
 | 
			
		||||
    while (blkCnt > 0u)
 | 
			
		||||
    {
 | 
			
		||||
        /* C = (q15_t) A << 8 */
 | 
			
		||||
        /* convert from q7 to q15 and then store the results in the destination buffer */
 | 
			
		||||
        *pDst++ = (q15_t) * pIn++;
 | 
			
		||||
 | 
			
		||||
        /* Decrement the loop counter */
 | 
			
		||||
        blkCnt--;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**    
 | 
			
		||||
 * @} end of q7_to_x group    
 | 
			
		||||
 */
 | 
			
		||||
							
								
								
									
										448
									
								
								Drivers/CMSIS/NN/Source/PoolingFunctions/arm_pool_q7_HWC.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										448
									
								
								Drivers/CMSIS/NN/Source/PoolingFunctions/arm_pool_q7_HWC.c
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,448 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_pool_q7_HWC.c
 | 
			
		||||
 * Description:  Pooling function implementations
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        17. January 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
#if defined (ARM_MATH_DSP)
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief A few utility functions used by pooling functions
 | 
			
		||||
 *
 | 
			
		||||
 * 
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
static void buffer_scale_back_q15_to_q7(q15_t * buffer, q7_t * target, uint16_t length, uint16_t scale)
 | 
			
		||||
{
 | 
			
		||||
    int       i;
 | 
			
		||||
 | 
			
		||||
    for (i = 0; i < length; i++)
 | 
			
		||||
    {
 | 
			
		||||
        target[i] = (q7_t) (buffer[i] / scale);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void compare_and_replace_if_larger_q7(q7_t * base,   // base data
 | 
			
		||||
                                             q7_t * target, // compare target
 | 
			
		||||
                                             const uint16_t length  // data length
 | 
			
		||||
    )
 | 
			
		||||
{
 | 
			
		||||
    q7_t     *pIn = base;
 | 
			
		||||
    q7_t     *pCom = target;
 | 
			
		||||
    union arm_nnword in;
 | 
			
		||||
    union arm_nnword com;
 | 
			
		||||
    uint16_t  cnt = length >> 2;
 | 
			
		||||
 | 
			
		||||
    while (cnt > 0u)
 | 
			
		||||
    {
 | 
			
		||||
        in.word = *__SIMD32(pIn);
 | 
			
		||||
        com.word = *__SIMD32(pCom)++;
 | 
			
		||||
 | 
			
		||||
        // if version
 | 
			
		||||
        if (com.bytes[0] > in.bytes[0])
 | 
			
		||||
            in.bytes[0] = com.bytes[0];
 | 
			
		||||
        if (com.bytes[1] > in.bytes[1])
 | 
			
		||||
            in.bytes[1] = com.bytes[1];
 | 
			
		||||
        if (com.bytes[2] > in.bytes[2])
 | 
			
		||||
            in.bytes[2] = com.bytes[2];
 | 
			
		||||
        if (com.bytes[3] > in.bytes[3])
 | 
			
		||||
            in.bytes[3] = com.bytes[3];
 | 
			
		||||
 | 
			
		||||
        *__SIMD32(pIn)++ = in.word;
 | 
			
		||||
 | 
			
		||||
        cnt--;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void accumulate_q7_to_q15(q15_t * base, q7_t * target, const uint16_t length)
 | 
			
		||||
{
 | 
			
		||||
    q15_t    *pCnt = base;
 | 
			
		||||
    q7_t     *pV = target;
 | 
			
		||||
    q31_t     v1, v2, vo1, vo2;
 | 
			
		||||
    uint16_t  cnt = length >> 2;
 | 
			
		||||
    q31_t     in;
 | 
			
		||||
 | 
			
		||||
    while (cnt > 0u)
 | 
			
		||||
    {
 | 
			
		||||
        q31_t     value = *__SIMD32(pV)++;
 | 
			
		||||
        v1 = __SXTB16(__ROR(value, 8));
 | 
			
		||||
        v2 = __SXTB16(value);
 | 
			
		||||
#ifndef ARM_MATH_BIG_ENDIAN
 | 
			
		||||
 | 
			
		||||
        vo2 = __PKHTB(v1, v2, 16);
 | 
			
		||||
        vo1 = __PKHBT(v2, v1, 16);
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
 | 
			
		||||
        vo1 = __PKHTB(v1, v2, 16);
 | 
			
		||||
        vo2 = __PKHBT(v2, v1, 16);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
        in = *__SIMD32(pCnt);
 | 
			
		||||
        *__SIMD32(pCnt)++ = __QADD16(vo1, in);
 | 
			
		||||
 | 
			
		||||
        in = *__SIMD32(pCnt);
 | 
			
		||||
        *__SIMD32(pCnt)++ = __QADD16(vo2, in);
 | 
			
		||||
 | 
			
		||||
        cnt--;
 | 
			
		||||
    }
 | 
			
		||||
    cnt = length & 0x3;
 | 
			
		||||
    while (cnt > 0u)
 | 
			
		||||
    {
 | 
			
		||||
        *pCnt++ += *pV++;
 | 
			
		||||
        cnt--;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif                          // ARM_MATH_DSP
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 *  @ingroup groupNN
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @addtogroup Pooling
 | 
			
		||||
 * @{
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * @brief Q7 max pooling function
 | 
			
		||||
   * @param[in, out]  Im_in       pointer to input tensor
 | 
			
		||||
   * @param[in]       dim_im_in   input tensor dimention
 | 
			
		||||
   * @param[in]       ch_im_in    number of input tensor channels
 | 
			
		||||
   * @param[in]       dim_kernel  filter kernel size
 | 
			
		||||
   * @param[in]       padding     padding sizes
 | 
			
		||||
   * @param[in]       stride      convolution stride
 | 
			
		||||
   * @param[in]       dim_im_out  output tensor dimension
 | 
			
		||||
   * @param[in,out]   bufferA     pointer to buffer space for input
 | 
			
		||||
   * @param[in,out]   Im_out      pointer to output tensor
 | 
			
		||||
   * @return none.
 | 
			
		||||
   *
 | 
			
		||||
   * @details
 | 
			
		||||
   *
 | 
			
		||||
   * <b>Buffer size:</b>
 | 
			
		||||
   *
 | 
			
		||||
   * bufferA size:  0
 | 
			
		||||
   *
 | 
			
		||||
   * The pooling function is implemented as split x-pooling then
 | 
			
		||||
   * y-pooling.
 | 
			
		||||
   *
 | 
			
		||||
   * This pooling function is input-destructive. Input data is undefined
 | 
			
		||||
   * after calling this function.
 | 
			
		||||
   *
 | 
			
		||||
   */
 | 
			
		||||
 | 
			
		||||
void
 | 
			
		||||
arm_maxpool_q7_HWC(q7_t * Im_in,
 | 
			
		||||
                   const uint16_t dim_im_in,
 | 
			
		||||
                   const uint16_t ch_im_in,
 | 
			
		||||
                   const uint16_t dim_kernel,
 | 
			
		||||
                   const uint16_t padding,
 | 
			
		||||
                   const uint16_t stride, const uint16_t dim_im_out, q7_t * bufferA, q7_t * Im_out)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
#if defined (ARM_MATH_DSP)
 | 
			
		||||
    /* Run the following code for Cortex-M4 and Cortex-M7 */
 | 
			
		||||
 | 
			
		||||
    int16_t   i_x, i_y;
 | 
			
		||||
 | 
			
		||||
    /* first does the pooling along x axis */
 | 
			
		||||
    for (i_y = 0; i_y < dim_im_in; i_y++)
 | 
			
		||||
    {
 | 
			
		||||
 | 
			
		||||
        for (i_x = 0; i_x < dim_im_out; i_x++)
 | 
			
		||||
        {
 | 
			
		||||
            /* for each output pixel */
 | 
			
		||||
            q7_t     *target = Im_in + (i_y * dim_im_in + i_x) * ch_im_in;
 | 
			
		||||
            q7_t     *win_start;
 | 
			
		||||
            q7_t     *win_stop;
 | 
			
		||||
            if (i_x * stride - padding < 0)
 | 
			
		||||
            {
 | 
			
		||||
                win_start = target;
 | 
			
		||||
            } else
 | 
			
		||||
            {
 | 
			
		||||
                win_start = Im_in + (i_y * dim_im_in + i_x * stride - padding) * ch_im_in;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            if (i_x * stride - padding + dim_kernel >= dim_im_in)
 | 
			
		||||
            {
 | 
			
		||||
                win_stop = Im_in + (i_y * dim_im_in + dim_im_in) * ch_im_in;
 | 
			
		||||
            } else
 | 
			
		||||
            {
 | 
			
		||||
                win_stop = Im_in + (i_y * dim_im_in + i_x * stride - padding + dim_kernel) * ch_im_in;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            /* first step is to copy over initial data */
 | 
			
		||||
            /* arm_copy_q7(win_start, target, ch_im_in); */
 | 
			
		||||
            memmove(target, win_start, ch_im_in);
 | 
			
		||||
 | 
			
		||||
            /* start the max operation from the second part */
 | 
			
		||||
            win_start += ch_im_in;
 | 
			
		||||
            for (; win_start < win_stop; win_start += ch_im_in)
 | 
			
		||||
            {
 | 
			
		||||
                compare_and_replace_if_larger_q7(target, win_start, ch_im_in);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* then does the pooling along y axis */
 | 
			
		||||
    for (i_y = 0; i_y < dim_im_out; i_y++)
 | 
			
		||||
    {
 | 
			
		||||
 | 
			
		||||
        /* for each output row */
 | 
			
		||||
        q7_t     *target = Im_out + i_y * dim_im_out * ch_im_in;
 | 
			
		||||
        q7_t     *row_start;
 | 
			
		||||
        q7_t     *row_end;
 | 
			
		||||
        /* setting the starting row */
 | 
			
		||||
        if (i_y * stride - padding < 0)
 | 
			
		||||
        {
 | 
			
		||||
            row_start = Im_in;
 | 
			
		||||
        } else
 | 
			
		||||
        {
 | 
			
		||||
            row_start = Im_in + (i_y * stride - padding) * dim_im_in * ch_im_in;
 | 
			
		||||
        }
 | 
			
		||||
        /* setting the stopping row */
 | 
			
		||||
        if (i_y * stride - padding + dim_kernel >= dim_im_in)
 | 
			
		||||
        {
 | 
			
		||||
            row_end = Im_in + dim_im_in * dim_im_in * ch_im_in;
 | 
			
		||||
        } else
 | 
			
		||||
        {
 | 
			
		||||
            row_end = Im_in + (i_y * stride - padding + dim_kernel) * dim_im_in * ch_im_in;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        /* copy over the first row */
 | 
			
		||||
        /* arm_copy_q7(row_start, target, dim_im_out * ch_im_in); */
 | 
			
		||||
        memmove(target, row_start, dim_im_out * ch_im_in);
 | 
			
		||||
 | 
			
		||||
        /* move over to next row */
 | 
			
		||||
        row_start += ch_im_in * dim_im_in;
 | 
			
		||||
 | 
			
		||||
        for (; row_start < row_end; row_start += dim_im_in * ch_im_in)
 | 
			
		||||
        {
 | 
			
		||||
            compare_and_replace_if_larger_q7(target, row_start, dim_im_out * ch_im_in);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
 | 
			
		||||
 | 
			
		||||
    int16_t   i_ch_in, i_x, i_y;
 | 
			
		||||
    int16_t   k_x, k_y;
 | 
			
		||||
 | 
			
		||||
    for (i_ch_in = 0; i_ch_in < ch_im_in; i_ch_in++)
 | 
			
		||||
    {
 | 
			
		||||
        for (i_y = 0; i_y < dim_im_out; i_y++)
 | 
			
		||||
        {
 | 
			
		||||
            for (i_x = 0; i_x < dim_im_out; i_x++)
 | 
			
		||||
            {
 | 
			
		||||
                int       max = -129;
 | 
			
		||||
                for (k_y = i_y * stride - padding; k_y < i_y * stride - padding + dim_kernel; k_y++)
 | 
			
		||||
                {
 | 
			
		||||
                    for (k_x = i_x * stride - padding; k_x < i_x * stride - padding + dim_kernel; k_x++)
 | 
			
		||||
                    {
 | 
			
		||||
                        if (k_y >= 0 && k_x >= 0 && k_y < dim_im_in && k_x < dim_im_in)
 | 
			
		||||
                        {
 | 
			
		||||
                            if (Im_in[i_ch_in + ch_im_in * (k_x + k_y * dim_im_in)] > max)
 | 
			
		||||
                            {
 | 
			
		||||
                                max = Im_in[i_ch_in + ch_im_in * (k_x + k_y * dim_im_in)];
 | 
			
		||||
                            }
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
                Im_out[i_ch_in + ch_im_in * (i_x + i_y * dim_im_out)] = max;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#endif                          /* ARM_MATH_DSP */
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * @brief Q7 average pooling function
 | 
			
		||||
   * @param[in,out]   Im_in       pointer to input tensor
 | 
			
		||||
   * @param[in]       dim_im_in   input tensor dimention
 | 
			
		||||
   * @param[in]       ch_im_in    number of input tensor channels
 | 
			
		||||
   * @param[in]       dim_kernel  filter kernel size
 | 
			
		||||
   * @param[in]       padding     padding sizes
 | 
			
		||||
   * @param[in]       stride      convolution stride
 | 
			
		||||
   * @param[in]       dim_im_out  output tensor dimension
 | 
			
		||||
   * @param[in,out]   bufferA     pointer to buffer space for input
 | 
			
		||||
   * @param[in,out]   Im_out      pointer to output tensor
 | 
			
		||||
   * @return none.
 | 
			
		||||
   *
 | 
			
		||||
   * @details
 | 
			
		||||
   *
 | 
			
		||||
   * <b>Buffer size:</b>
 | 
			
		||||
   *
 | 
			
		||||
   * bufferA size:  2*dim_im_out*ch_im_in
 | 
			
		||||
   *
 | 
			
		||||
   * The pooling function is implemented as split x-pooling then
 | 
			
		||||
   * y-pooling.
 | 
			
		||||
   *
 | 
			
		||||
   * This pooling function is input-destructive. Input data is undefined
 | 
			
		||||
   * after calling this function.
 | 
			
		||||
   *
 | 
			
		||||
   */
 | 
			
		||||
 | 
			
		||||
void
 | 
			
		||||
arm_avepool_q7_HWC(q7_t * Im_in,
 | 
			
		||||
                   const uint16_t dim_im_in,
 | 
			
		||||
                   const uint16_t ch_im_in,
 | 
			
		||||
                   const uint16_t dim_kernel,
 | 
			
		||||
                   const uint16_t padding,
 | 
			
		||||
                   const uint16_t stride, const uint16_t dim_im_out, q7_t * bufferA, q7_t * Im_out)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
#if defined (ARM_MATH_DSP)
 | 
			
		||||
    /* Run the following code for Cortex-M4 and Cortex-M7 */
 | 
			
		||||
 | 
			
		||||
    q15_t    *buffer = (q15_t *) bufferA;
 | 
			
		||||
    int16_t   i_x, i_y;
 | 
			
		||||
    int16_t   count = 0;
 | 
			
		||||
 | 
			
		||||
    /* first does the pooling along x axis */
 | 
			
		||||
    for (i_y = 0; i_y < dim_im_in; i_y++)
 | 
			
		||||
    {
 | 
			
		||||
 | 
			
		||||
        for (i_x = 0; i_x < dim_im_out; i_x++)
 | 
			
		||||
        {
 | 
			
		||||
            /* for each output pixel */
 | 
			
		||||
            q7_t     *target = Im_in + (i_y * dim_im_in + i_x) * ch_im_in;
 | 
			
		||||
            q7_t     *win_start;
 | 
			
		||||
            q7_t     *win_stop;
 | 
			
		||||
            if (i_x * stride - padding < 0)
 | 
			
		||||
            {
 | 
			
		||||
                win_start = target;
 | 
			
		||||
            } else
 | 
			
		||||
            {
 | 
			
		||||
                win_start = Im_in + (i_y * dim_im_in + i_x * stride - padding) * ch_im_in;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            if (i_x * stride - padding + dim_kernel >= dim_im_in)
 | 
			
		||||
            {
 | 
			
		||||
                win_stop = Im_in + (i_y * dim_im_in + dim_im_in) * ch_im_in;
 | 
			
		||||
            } else
 | 
			
		||||
            {
 | 
			
		||||
                win_stop = Im_in + (i_y * dim_im_in + i_x * stride - padding + dim_kernel) * ch_im_in;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            /* first step is to copy over initial data */
 | 
			
		||||
            arm_q7_to_q15_no_shift(win_start, buffer, ch_im_in);
 | 
			
		||||
            count = 1;
 | 
			
		||||
 | 
			
		||||
            /* start the max operation from the second part */
 | 
			
		||||
            win_start += ch_im_in;
 | 
			
		||||
            for (; win_start < win_stop; win_start += ch_im_in)
 | 
			
		||||
            {
 | 
			
		||||
                accumulate_q7_to_q15(buffer, win_start, ch_im_in);
 | 
			
		||||
                count++;
 | 
			
		||||
            }
 | 
			
		||||
            buffer_scale_back_q15_to_q7(buffer, target, ch_im_in, count);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* then does the pooling along y axis */
 | 
			
		||||
    for (i_y = 0; i_y < dim_im_out; i_y++)
 | 
			
		||||
    {
 | 
			
		||||
        /* for each output row */
 | 
			
		||||
        q7_t     *target = Im_out + i_y * dim_im_out * ch_im_in;
 | 
			
		||||
        q7_t     *row_start;
 | 
			
		||||
        q7_t     *row_end;
 | 
			
		||||
        /* setting the starting row */
 | 
			
		||||
        if (i_y * stride - padding < 0)
 | 
			
		||||
        {
 | 
			
		||||
            row_start = Im_in;
 | 
			
		||||
        } else
 | 
			
		||||
        {
 | 
			
		||||
            row_start = Im_in + (i_y * stride - padding) * dim_im_in * ch_im_in;
 | 
			
		||||
        }
 | 
			
		||||
        /* setting the stopping row */
 | 
			
		||||
        if (i_y * stride - padding + dim_kernel >= dim_im_in)
 | 
			
		||||
        {
 | 
			
		||||
            row_end = Im_in + dim_im_in * dim_im_in * ch_im_in;
 | 
			
		||||
        } else
 | 
			
		||||
        {
 | 
			
		||||
            row_end = Im_in + (i_y * stride - padding + dim_kernel) * dim_im_in * ch_im_in;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        /* copy over the first row */
 | 
			
		||||
        arm_q7_to_q15_no_shift(row_start, buffer, dim_im_out * ch_im_in);
 | 
			
		||||
        count = 1;
 | 
			
		||||
 | 
			
		||||
        /* move over to next row */
 | 
			
		||||
        row_start += ch_im_in * dim_im_in;
 | 
			
		||||
 | 
			
		||||
        for (; row_start < row_end; row_start += dim_im_in * ch_im_in)
 | 
			
		||||
        {
 | 
			
		||||
            accumulate_q7_to_q15(buffer, row_start, dim_im_out * ch_im_in);
 | 
			
		||||
            count++;
 | 
			
		||||
        }
 | 
			
		||||
        buffer_scale_back_q15_to_q7(buffer, target, dim_im_out * ch_im_in, count);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
 | 
			
		||||
 | 
			
		||||
    int16_t   i_ch_in, i_x, i_y;
 | 
			
		||||
    int16_t   k_x, k_y;
 | 
			
		||||
 | 
			
		||||
    for (i_ch_in = 0; i_ch_in < ch_im_in; i_ch_in++)
 | 
			
		||||
    {
 | 
			
		||||
        for (i_y = 0; i_y < dim_im_out; i_y++)
 | 
			
		||||
        {
 | 
			
		||||
            for (i_x = 0; i_x < dim_im_out; i_x++)
 | 
			
		||||
            {
 | 
			
		||||
                int       sum = 0;
 | 
			
		||||
                int       count = 0;
 | 
			
		||||
                for (k_y = i_y * stride - padding; k_y < i_y * stride - padding + dim_kernel; k_y++)
 | 
			
		||||
                {
 | 
			
		||||
                    for (k_x = i_x * stride - padding; k_x < i_x * stride - padding + dim_kernel; k_x++)
 | 
			
		||||
                    {
 | 
			
		||||
                        if (k_y >= 0 && k_x >= 0 && k_y < dim_im_in && k_x < dim_im_in)
 | 
			
		||||
                        {
 | 
			
		||||
                            sum += Im_in[i_ch_in + ch_im_in * (k_x + k_y * dim_im_in)];
 | 
			
		||||
                            count++;
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
                Im_out[i_ch_in + ch_im_in * (i_x + i_y * dim_im_out)] = sum / count;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#endif                          /* ARM_MATH_DSP */
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @} end of Pooling group
 | 
			
		||||
 */
 | 
			
		||||
							
								
								
									
										120
									
								
								Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q15.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										120
									
								
								Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q15.c
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,120 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_softmax_q15.c
 | 
			
		||||
 * Description:  Q15 softmax function
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        20. February 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 *  @ingroup groupNN
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @addtogroup Softmax
 | 
			
		||||
 * @{
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * @brief Q15 softmax function
 | 
			
		||||
   * @param[in]       vec_in      pointer to input vector
 | 
			
		||||
   * @param[in]       dim_vec     input vector dimention
 | 
			
		||||
   * @param[out]      p_out       pointer to output vector
 | 
			
		||||
   * @return none.
 | 
			
		||||
   *
 | 
			
		||||
   * @details
 | 
			
		||||
   *
 | 
			
		||||
   *  Here, instead of typical e based softmax, we use
 | 
			
		||||
   *  2-based softmax, i.e.,:
 | 
			
		||||
   *
 | 
			
		||||
   *  y_i = 2^(x_i) / sum(2^x_j)
 | 
			
		||||
   *
 | 
			
		||||
   *  The relative output will be different here.
 | 
			
		||||
   *  But mathematically, the gradient will be the same
 | 
			
		||||
   *  with a log(2) scaling factor.
 | 
			
		||||
   *
 | 
			
		||||
   */
 | 
			
		||||
 | 
			
		||||
void arm_softmax_q15(const q15_t * vec_in, const uint16_t dim_vec, q15_t * p_out)
 | 
			
		||||
{
 | 
			
		||||
    q31_t     sum;
 | 
			
		||||
    int16_t   i;
 | 
			
		||||
    uint8_t   shift;
 | 
			
		||||
    q31_t     base;
 | 
			
		||||
    base = -1 * 0x100000;
 | 
			
		||||
    for (i = 0; i < dim_vec; i++)
 | 
			
		||||
    {
 | 
			
		||||
        if (vec_in[i] > base)
 | 
			
		||||
        {
 | 
			
		||||
            base = vec_in[i];
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* we ignore really small values  
 | 
			
		||||
     * anyway, they will be 0 after shrinking
 | 
			
		||||
     * to q15_t
 | 
			
		||||
     */
 | 
			
		||||
    base = base - 16;
 | 
			
		||||
 | 
			
		||||
    sum = 0;
 | 
			
		||||
 | 
			
		||||
    for (i = 0; i < dim_vec; i++)
 | 
			
		||||
    {
 | 
			
		||||
        if (vec_in[i] > base)
 | 
			
		||||
        {
 | 
			
		||||
            shift = (uint8_t)__USAT(vec_in[i] - base, 5);
 | 
			
		||||
            sum += 0x1 << shift;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* This is effectively (0x1 << 32) / sum */
 | 
			
		||||
    int64_t div_base = 0x100000000LL;
 | 
			
		||||
    int output_base = (int32_t)(div_base / sum);
 | 
			
		||||
 | 
			
		||||
    /* Final confidence will be output_base >> ( 17 - (vec_in[i] - base) )
 | 
			
		||||
     * so 32768 (0x1<<15) -> 100% confidence when sum = 0x1 << 16, output_base = 0x1 << 16
 | 
			
		||||
     * and vec_in[i]-base = 16
 | 
			
		||||
     */
 | 
			
		||||
    for (i = 0; i < dim_vec; i++)
 | 
			
		||||
    {
 | 
			
		||||
        if (vec_in[i] > base) 
 | 
			
		||||
        {
 | 
			
		||||
            /* Here minimum value of 17+base-vec[i] will be 1 */
 | 
			
		||||
            shift = (uint8_t)__USAT(17+base-vec_in[i], 5);
 | 
			
		||||
            p_out[i] = (q15_t) __SSAT((output_base >> shift), 16);
 | 
			
		||||
        } else
 | 
			
		||||
        {
 | 
			
		||||
            p_out[i] = 0;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @} end of Softmax group
 | 
			
		||||
 */
 | 
			
		||||
							
								
								
									
										121
									
								
								Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q7.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										121
									
								
								Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q7.c
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,121 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
 * Project:      CMSIS NN Library
 | 
			
		||||
 * Title:        arm_softmax_q7.c
 | 
			
		||||
 * Description:  Q7 softmax function
 | 
			
		||||
 *
 | 
			
		||||
 * $Date:        20. February 2018
 | 
			
		||||
 * $Revision:    V.1.0.0
 | 
			
		||||
 *
 | 
			
		||||
 * Target Processor:  Cortex-M cores
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "arm_nnfunctions.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 *  @ingroup groupNN
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @addtogroup Softmax
 | 
			
		||||
 * @{
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * @brief Q7 softmax function
 | 
			
		||||
   * @param[in]       vec_in      pointer to input vector
 | 
			
		||||
   * @param[in]       dim_vec     input vector dimention
 | 
			
		||||
   * @param[out]      p_out       pointer to output vector
 | 
			
		||||
   * @return none.
 | 
			
		||||
   *
 | 
			
		||||
   * @details
 | 
			
		||||
   *
 | 
			
		||||
   *  Here, instead of typical natural logarithm e based softmax, we use
 | 
			
		||||
   *  2-based softmax here, i.e.,:
 | 
			
		||||
   * 
 | 
			
		||||
   *  y_i = 2^(x_i) / sum(2^x_j)
 | 
			
		||||
   *
 | 
			
		||||
   *  The relative output will be different here.
 | 
			
		||||
   *  But mathematically, the gradient will be the same
 | 
			
		||||
   *  with a log(2) scaling factor.
 | 
			
		||||
   *
 | 
			
		||||
   */
 | 
			
		||||
 | 
			
		||||
void arm_softmax_q7(const q7_t * vec_in, const uint16_t dim_vec, q7_t * p_out)
 | 
			
		||||
{
 | 
			
		||||
    q31_t     sum;
 | 
			
		||||
    int16_t   i;
 | 
			
		||||
    uint8_t   shift;
 | 
			
		||||
    q15_t     base;
 | 
			
		||||
    base = -257;
 | 
			
		||||
 | 
			
		||||
    /* We first search for the maximum */
 | 
			
		||||
    for (i = 0; i < dim_vec; i++)
 | 
			
		||||
    {
 | 
			
		||||
        if (vec_in[i] > base)
 | 
			
		||||
        {
 | 
			
		||||
            base = vec_in[i];
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* 
 | 
			
		||||
     * So the base is set to max-8, meaning 
 | 
			
		||||
     * that we ignore really small values. 
 | 
			
		||||
     * anyway, they will be 0 after shrinking to q7_t.
 | 
			
		||||
     */
 | 
			
		||||
    base = base - 8;
 | 
			
		||||
 | 
			
		||||
    sum = 0;
 | 
			
		||||
 | 
			
		||||
    for (i = 0; i < dim_vec; i++)
 | 
			
		||||
    {
 | 
			
		||||
        if (vec_in[i] > base) 
 | 
			
		||||
        {
 | 
			
		||||
            shift = (uint8_t)__USAT(vec_in[i] - base, 5);
 | 
			
		||||
            sum += 0x1 << shift;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* This is effectively (0x1 << 20) / sum */
 | 
			
		||||
    int output_base = 0x100000 / sum;
 | 
			
		||||
 | 
			
		||||
    /* 
 | 
			
		||||
     * Final confidence will be output_base >> ( 13 - (vec_in[i] - base) )
 | 
			
		||||
     * so 128 (0x1<<7) -> 100% confidence when sum = 0x1 << 8, output_base = 0x1 << 12 
 | 
			
		||||
     * and vec_in[i]-base = 8
 | 
			
		||||
     */
 | 
			
		||||
    for (i = 0; i < dim_vec; i++) 
 | 
			
		||||
    {
 | 
			
		||||
        if (vec_in[i] > base) 
 | 
			
		||||
        {
 | 
			
		||||
            /* Here minimum value of 13+base-vec_in[i] will be 5 */
 | 
			
		||||
            shift = (uint8_t)__USAT(13+base-vec_in[i], 5);
 | 
			
		||||
            p_out[i] = (q7_t) __SSAT((output_base >> shift), 8);
 | 
			
		||||
        } else {
 | 
			
		||||
            p_out[i] = 0;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @} end of Softmax group
 | 
			
		||||
 */
 | 
			
		||||
		Reference in New Issue
	
	Block a user