This commit is contained in:
Hamza Tamim 2024-07-14 16:42:54 +03:00
parent ebd149bbe5
commit a8d8b6d696
9 changed files with 70 additions and 56 deletions

View File

@ -76,3 +76,9 @@ V1.12
- added current_soc to logging data
- removed void sm_balancing() (the AMS should do it automatically if we set it to charging state)
- changed the colors for the states in status_LED
V1.13
- moved macros and libraries from eeprom.c to h
- added can.h to state_machine.h
- added balancing to AMS_HighLevel.c (hopefully)
- fixed can_handle_dump()

View File

@ -9,10 +9,22 @@
#define INC_EEPROM_H_
#include <stm32f3xx_hal.h>
#include "ADBMS_LL_Driver.h"
#include "soc_estimation.h"
#include <state_machine.h>
#include "stm32f3xx_hal_def.h"
#include "stm32f3xx_hal_i2c.h"
#include "TMP1075.h"
// see Datasheet for these values
#define EEPROM_I2C_ADDR 0xA4 // 0xA4 for the the first 2⁸ addresses and 0xA6 for the the last 2⁸ addresses
#define EERROM_MEMORY_ADDR_SIZE 2 // it is controlled by A17 in the address Byte, see datasheet
#define EEPROM_MEMORY_SIZE 131072 // in bytes
#define EEPROM_PAGE_SIZE 32 // in bytes
extern uint32_t write_address, read_address;
void eeprom_init(I2C_HandleTypeDef* hi2c);
void eeprom_dump_status();
void eeprom_write_status();
HAL_StatusTypeDef eeprom_read(uint8_t* data, uint16_t data_length);

View File

@ -12,6 +12,7 @@
#include <stdbool.h>
#include "ADBMS_LL_Driver.h"
#include <AMS_HighLevel.h>
#include <can.h>
#include <eeprom.h>
#include <errors.h>
#include <PWM_control.h>

View File

@ -81,9 +81,10 @@ void AMS_Loop() {
case AMSDEACTIVE:
break;
case AMSCHARGING:
AMS_Balancing_Loop();
break;
case AMSIDLEBALANCING:
AMS_Idle_Loop();
AMS_Balancing_Loop();
break;
case AMSDISCHARGING:
break;
@ -184,7 +185,7 @@ uint8_t AMS_Charging_Loop() { return 0; }
uint8_t AMS_Discharging_Loop() { return 0; }
uint8_t AMS_Balancing_Loop() {
uint8_t id_cell_lowest_voltage = -1;
uint8_t id_cell_lowest_voltage = 0;
uint8_t num_of_cells_to_balance = 0;
for (int i = 0; i < 13; i++) {
if (module.cellVoltages[i] < module.cellVoltages[id_cell_lowest_voltage])
@ -195,6 +196,8 @@ uint8_t AMS_Balancing_Loop() {
if (module.cellVoltages[i] - CELL_VOLTAGE_DIFF_BALANCING < module.cellVoltages[id_cell_lowest_voltage]){
amsConfigBalancing((1 << i), 0xF);
num_of_cells_to_balance++;
} else {
amsConfigBalancing((1 << i), 0x0);
}
}
if (num_of_cells_to_balance == 0)

View File

@ -2,7 +2,7 @@
#define MAX_TEMP ((int16_t)(59 / 0.0625f))
#define MAX_FAILED_TEMP 2 //TODO: change value for compliance with the actual number of sensors
#warning "change value for compliance with the actual number of sensors", change temps to float
// TODO: "change value for compliance with the actual number of sensors", change temps to float
int16_t tmp1075_temps[N_TEMP_SENSORS] = {0};
uint32_t tmp1075_failed_sensors = 0;
@ -46,7 +46,6 @@ HAL_StatusTypeDef tmp1075_measure() {
temp_error = 1;
handle_over_maxtemp(i, tmp1075_temps[i]);
}
#warning "check for under temp"
}
}
if (nfailed_temp_sensors > MAX_FAILED_TEMP) {

View File

@ -10,6 +10,8 @@
#include "can-halal.h"
#include "eeprom.h"
#include "soc_estimation.h"
#include "state_machine.h"
#include "stm32f3xx_hal_def.h"
#include <stdint.h>
#define CAN_ID_IN 0x501
@ -125,26 +127,28 @@ void can_handle_recieve_command(const uint8_t *data){
sm_handle_ams_in(data);
} else if (data[0] == 0xF0 && data[1] == 0x00) {
sm_handle_ams_in(data);
} else if (data[0] == 0xF1 && data[1] == 0) {
} else if (data[0] == 0xF1 && data[1] == 0x00) {
sm_handle_ams_in(data);
} else if (data[0] == 0xFF && data[1] == 0) {
} else if (data[0] == 0xFF && data[1] == 0x00) {
sm_handle_ams_in(data);
}
}
void can_handle_dump() {
while (1){
uint8_t* data;
uint8_t* data = {};
HAL_StatusTypeDef status = HAL_OK;
while (status == HAL_OK){
if (can_delay_manager > HAL_GetTick())
continue;
else
can_delay_manager = HAL_GetTick() + CAN_DUMP_FREQ;
eeprom_read(data, 64);
for (int i = 0; i < 63; i += 8) {
eeprom_read(data, 62);
for (int i = 0; i < (EEPROM_MEMORY_SIZE-8)/8; i += 8) {
ftcan_transmit(CAN_ID_OUT, &data[i], 8);
}
ftcan_transmit(CAN_ID_OUT, 0, 1);
ftcan_transmit(CAN_ID_OUT, &data[56], 6);
}
read_address = 0;
}
/*

View File

@ -5,23 +5,12 @@
* Author: Hamza
*/
#include "ADBMS_LL_Driver.h"
#include "TMP1075.h"
#include "soc_estimation.h"
#include "stm32f3xx_hal_def.h"
#include <eeprom.h>
// see Datasheet for these values
#define EEPROM_I2C_ADDR 0xA4 // 0xA4 for the the first 2⁸ addresses and 0xA6 for the the last 2⁸ addresses
#define EERROM_MEMORY_ADDR_SIZE 2 // it is controlled by A17 in the address Byte, see datasheet
#define EEPROM_MEMORY_SIZE 131072 // in bytes
#define EEPROM_PAGE_SIZE 32 // in bytes
// TODO: test this
static I2C_HandleTypeDef* hi2c;
uint32_t write_address, read_address;
#warning TEST THIS
void eeprom_init(I2C_HandleTypeDef* handle) {
hi2c = handle;
write_address = 0;
@ -29,9 +18,10 @@ void eeprom_init(I2C_HandleTypeDef* handle) {
}
void eeprom_write_status(){
uint8_t data_length = EEPROM_PAGE_SIZE/8; //32
uint8_t data_length = 62;
uint8_t data[data_length] = {};
// data 0-9
data[0] = ((state.current_state << 4) | (current_powerground_status >> 4));
data[1] = ((current_powerground_status << 4) | (state.error_source >> 4)); // 4 bit powerground | 4 bit error
data[2] = ((state.error_source << 4) | (0)); // 4 bit error | 4 bit state of charge
@ -44,37 +34,39 @@ void eeprom_write_status(){
data[9] = (CURRENT_MEASUREMENT);
// data 10-35
for (int i = 10; i < 36; i += 2) {
data[i] = ((int) module.auxVoltages[i]) >> 8;
data[i+1] = ((int) module.auxVoltages[i+1]);
for (int i = 0; i < 13; i++) {
data[(i*2)] = ((int) module.auxVoltages[i]) >> 8;
data[(i*2)+1] = ((int) module.auxVoltages[i]);
}
for (int i = 37; i < 63; i += 2) {
data[i] = (tmp1075_temps[i]) >> 8;
data[i+1] = (tmp1075_temps[i+1]);
// data 36-61
for (int i = 0; i < 13; i++) {
data[(i*2)] = (tmp1075_temps[i]) >> 8;
data[(i*2)+1] = (tmp1075_temps[i]);
}
eeprom_write(data, 64);
eeprom_write(data, 62);
write_address++;
}
HAL_StatusTypeDef eeprom_read(uint8_t* data, uint16_t data_length){
HAL_StatusTypeDef status = HAL_OK;
HAL_GPIO_WritePin(EEPROM___WC__GPIO_Port, EEPROM___WC__Pin, GPIO_PIN_RESET);
for (size_t i = 0; i < data_length; i++) {
if (read_address <= 65535){
status = HAL_I2C_Mem_Write(
if (read_address > EEPROM_MEMORY_SIZE){
read_address = 0;
return HAL_BUSY;
} else if (read_address <= 65535){
status = HAL_I2C_Mem_Read(
hi2c, EEPROM_I2C_ADDR,
read_address, EERROM_MEMORY_ADDR_SIZE,
&data[i], 1, 10);
} else if (read_address > 65535) {
status = HAL_I2C_Mem_Write(
status = HAL_I2C_Mem_Read(
hi2c, EEPROM_I2C_ADDR + 2,
read_address, EERROM_MEMORY_ADDR_SIZE,
read_address - 65535, EERROM_MEMORY_ADDR_SIZE,
&data[i], 1, 10);
}
read_address++;
}
HAL_GPIO_WritePin(EEPROM___WC__GPIO_Port, EEPROM___WC__Pin, GPIO_PIN_SET);
return status;
}
@ -82,7 +74,10 @@ HAL_StatusTypeDef eeprom_write(uint8_t* data, uint16_t data_length){
HAL_StatusTypeDef status = HAL_OK;
HAL_GPIO_WritePin(EEPROM___WC__GPIO_Port, EEPROM___WC__Pin, GPIO_PIN_RESET);
for (size_t i = 0; i < data_length; i++) {
if (write_address < 65535){
if (write_address > EEPROM_MEMORY_SIZE){
write_address = 0;
return HAL_BUSY;
} else if (write_address <= 65535){
status = HAL_I2C_Mem_Write(
hi2c, EEPROM_I2C_ADDR,
write_address, EERROM_MEMORY_ADDR_SIZE,
@ -91,7 +86,7 @@ HAL_StatusTypeDef eeprom_write(uint8_t* data, uint16_t data_length){
} else if (write_address > 65535) {
status = HAL_I2C_Mem_Write(
hi2c, EEPROM_I2C_ADDR + 2,
write_address, EERROM_MEMORY_ADDR_SIZE,
write_address - 65535, EERROM_MEMORY_ADDR_SIZE,
&data[i], 1, 10);
}
write_address++;

View File

@ -5,12 +5,8 @@
* Author: Hamza
*/
#include "state_machine.h"
#include "PWM_control.h"
#include "eeprom.h"
#include "main.h"
#include "soc_estimation.h"
#include <stdint.h>
#include <state_machine.h>
#include "AMS_HighLevel.h"
// Time to wait after reaching 95% of battery voltage before exiting precharge
// Set this to 1000 in scruti to demonstrate the voltage on the multimeter
@ -24,7 +20,7 @@
// Max time to wait for CAN messages. If we reach it then we emergency shutdown.
#define CAN_TIMEOUT 1000
// waiting time between to eeprom writes
#define EEPROM_WRITE_FREQ_INACTIVE 1000
#define EEPROM_WRITE_FREQ 1000
StateHandle state;
int32_t RELAY_BAT_SIDE_VOLTAGE;
@ -136,10 +132,9 @@ void sm_handle_ams_in(const uint8_t *data){
state.target_state = STATE_CHARGING_PRECHARGE;
}
break;
#warning implement this
case 0xF1: // EEPROM
if (state.current_state == STATE_INACTIVE)
sm_eeprom_write_status();
can_handle_dump();
break;
case 0xFF: // EMERGENCY SHUTDOWN
state.current_state = STATE_DISCHARGE;
@ -243,12 +238,10 @@ void sm_program_powerground(){
void sm_eeprom_write_status(){
if (EEPROM_timer < HAL_GetTick()){
eeprom_write_status();
EEPROM_timer = HAL_GetTick() + EEPROM_WRITE_FREQ_INACTIVE;
EEPROM_timer = HAL_GetTick() + EEPROM_WRITE_FREQ;
}
}
#warning TODO: add error checking for everything here
void sm_check_errors(){
state.error_type.temperature_error = (error_data.error_sources & (1 << 0) || error_data.error_sources & (1 << 1) || error_data.error_sources & (1 << 4)) ? 1 : 0;
state.error_type.voltage_error = (error_data.error_sources & (1 << 2)|| error_data.error_sources & (1 << 3)|| error_data.error_sources & (1 << 5) || RELAY_BAT_SIDE_VOLTAGE < 30000) ? 1 : 0;
@ -357,9 +350,10 @@ State sm_update_charging_precharge(){
State sm_update_charging(){
switch (state.target_state) {
case STATE_DISCHARGE:
currentAMSState = AMSIDLE;
return STATE_DISCHARGE;
default:
currentAMSState = AMSCHARGING;
return STATE_CHARGING;
}
}

View File

@ -11,7 +11,7 @@
#include <status_LED.h>
#include <stdint.h>
#warning test out pulldown and pushpull settings
// TODO test out pulldown and pushpull settings
/* The PWM period (1/FPWM) is defined by the following parameters:
ARR value, the Prescaler value, and the internal clock itself which drives the timer module FCLK.