Merge branch 'mvbms-test'

This commit is contained in:
2024-07-02 17:54:30 +03:00
27 changed files with 1243 additions and 333 deletions

View File

@ -1,37 +0,0 @@
/*
* AMS_CAN.h
*
* Created on: Mar 19, 2022
* Author: jasper
*/
#ifndef INC_AMS_CAN_H_
#define INC_AMS_CAN_H_
#include "main.h"
#include "stm32f3xx_hal.h"
#include "stm32f3xx_hal_can.h"
#include "stm32f3xx_hal_def.h"
#include <stdint.h>
typedef struct {
uint8_t pwrgndfans;
} rx_status_frame;
uint8_t txbuffer;
uint8_t rxbuffer;
void ams_can_init(CAN_HandleTypeDef* hcan);
void ams_can_handle_ams_msg(CAN_RxHeaderTypeDef* header, uint8_t* data);
void ams_can_send_status();
/**
* @brief Send an AMS Error via CAN.
*
* Data is taken from error_data
*/
void ams_can_send_error();
HAL_StatusTypeDef ams_can_wait_for_free_mailboxes(CAN_HandleTypeDef* handle,
int num_mailboxes,
uint32_t timeout);
void ams_can_send_log();
#endif /* INC_AMS_CAN_H_ */

View File

@ -11,7 +11,12 @@
#include "ADBMS_Abstraction.h"
#include "ADBMS_CMD_MAKROS.h"
#include "ADBMS_LL_Driver.h"
#include "AMS_CAN.h"
#include "can.h"
#include "TMP1075.h"
#include "can-halal.h"
#include "errors.h"
#include "stm32f3xx_hal.h"
#include <stdint.h>
typedef enum {
AMSDEACTIVE,

33
Core/Inc/PWM_control.h Normal file
View File

@ -0,0 +1,33 @@
#ifndef INC_PWM_CONTROL_H
#define INC_PWM_CONTROL_H
#include "stm32f3xx_hal.h"
#include "ADBMS_LL_Driver.h"
#include "state_machine.h"
#include <stdint.h>
#include "main.h"
/* The PWM period (1/FPWM) is defined by the following parameters:
ARR value, the Prescaler value, and the internal clock itself which drives the timer module FCLK.
F_PWM = (F_CLK)/((ARR + 1) * (PSC + 1))
F_CLK = 16 MHz
POWERGROUND ESC Signal: pulse every 20 ms, 1 ms = 0%, 2 ms = 100%
FREQ = 50 Hz -> 16 MHz/50 Hz = 320000 = ((39999 + 1) * (7 + 1))
DUTY CYCLE = 1/20 -> 0%, DUTY CYCLE = 2/20 -> 100%
CCR * DUTY_CYCLE
CCR: 1/20 -> 500, 2/20 -> 1000
*/
#define POWERGROUND_FREQ 50
#define POWERGROUND_MAX_DUTY_CYCLE 0.1
#define POWERGROUND_MIN_DUTY_CYCLE 0.05
//#define BATTERY_COOLING_FREQ 20000
void PWM_control_init(TIM_HandleTypeDef* powerground, TIM_HandleTypeDef* battery_cooling);
void PWM_powerground_control(uint8_t percent);
void PWM_battery_cooling_control(uint8_t percent);
#endif /* INC_CHANNEL_CONTROL_H */

View File

@ -1,15 +1,17 @@
#ifndef INC_TMP1075_H_
#define INC_TMP1075_H_
#include "AMS_CAN.h"
#include "can.h"
#include "common_defs.h"
#include "stm32f3xx_hal.h"
#include "stm32f3xx_hal_def.h"
#include "stm32f3xx_hal_i2c.h"
#include "TMP1075.h"
#include "can-halal.h"
#include "errors.h"
#include <stdint.h>
extern uint32_t tmp1075_failed_sensors;
extern int16_t tmp1075_temps[N_TEMP_SENSORS];
HAL_StatusTypeDef tmp1075_init(I2C_HandleTypeDef* hi2c);
HAL_StatusTypeDef tmp1075_measure();
HAL_StatusTypeDef tmp1075_sensor_init(int n);

23
Core/Inc/can.h Normal file
View File

@ -0,0 +1,23 @@
#ifndef INC_CAN_H
#define INC_CAN_H
#include "stm32f3xx_hal.h"
#include "ADBMS_Abstraction.h"
#include "main.h"
#include "can-halal.h"
#include "AMS_HighLevel.h"
#include "state_machine.h"
#include <stdint.h>
#define CAN_ID_IN 0x501
#define CAN_ID_OUT 0x502
#define CAN_STATUS_FREQ 1000
void can_init(CAN_HandleTypeDef* hcan);
void can_handle_send_status();
void can_handle_recieve_command(const uint8_t *data);
void ftcan_msg_received_cb(uint16_t id, size_t datalen, const uint8_t *data);
#endif /* "INC_CAN_H" */

View File

@ -8,7 +8,7 @@
#ifndef INC_COMMON_DEFS_H_
#define INC_COMMON_DEFS_H_
#define N_CELLS 14
#define N_TEMP_SENSORS 14
#define N_CELLS 12
#define N_TEMP_SENSORS 12
#endif /* INC_COMMON_DEFS_H_ */

View File

@ -1,17 +0,0 @@
#ifndef INC_EEPROM_H_
#define INC_EEPROM_H_
#include "stm32f3xx_hal.h"
#include <stdint.h>
__attribute__((packed)) typedef struct {
uint8_t id;
} EEPROMConfig;
extern EEPROMConfig eeprom_config;
void eeprom_init(I2C_HandleTypeDef* hi2c);
void eeprom_config_save();
#endif // INC_EEPROM_H_

View File

@ -73,10 +73,8 @@ void Error_Handler(void);
#define STATUS_LED_G_GPIO_Port GPIOB
#define PRECHARGE_EN_Pin GPIO_PIN_11
#define PRECHARGE_EN_GPIO_Port GPIOB
#define AUX_IN_Pin GPIO_PIN_13
#define AUX_IN_GPIO_Port GPIOB
#define AUX_OUT_Pin GPIO_PIN_14
#define AUX_OUT_GPIO_Port GPIOB
#define PWM_Battery_Cooling_Pin GPIO_PIN_15
#define PWM_Battery_Cooling_GPIO_Port GPIOB
#define RELAY_BATT_SIDE_ON_Pin GPIO_PIN_8
#define RELAY_BATT_SIDE_ON_GPIO_Port GPIOA
#define RELAY_ESC_SIDE_ON_Pin GPIO_PIN_9

96
Core/Inc/state_machine.h Normal file
View File

@ -0,0 +1,96 @@
#ifndef INC_STATE_MACHINE_H
#define INC_STATE_MACHINE_H
#include <stdint.h>
#include <stdbool.h>
#include "ADBMS_LL_Driver.h"
#include "AMS_HighLevel.h"
#include "errors.h"
#include "PWM_control.h"
#include "TMP1075.h"
#include <math.h>
// Minimum vehicle side voltage to exit precharge
#define MIN_VEHICLE_SIDE_VOLTAGE 150000 // mV
// Time to wait after reaching 95% of battery voltage before exiting precharge
// Set this to 1000 in scruti to demonstrate the voltage on the multimeter
#define PRECHARGE_95_DURATION 0 // ms
// Time to wait for discharge
#define DISCHARGE_DURATION 5000 // ms
// Time to wait after there is no more error condition before exiting TS_ERROR
#define NO_ERROR_TIME 1000 // ms
// Time to wait for charger voltage before going to TS_ERROR
#define MAX_CHARGING_CHECK_DURATION 2000 // ms
// Time to wait between closing relays
#define RELAY_CLOSE_WAIT 10 // ms
#warning
typedef enum { // states -> 3 bit. valid transitions: (all could transition to error)
STATE_INACTIVE, // INACTIVE -> PRECHARGE, CHARGING, ERROR
STATE_PRECHARGE, // PRECHARGE -> INACTIVE, READY, DISCHARGE, ERROR
STATE_READY, // READY -> ACTIVE, DISCHARGE, ERROR
STATE_ACTIVE, // ACTIVE -> READY, DISCHARGE, ERROR
STATE_DISCHARGE, // DISCHARGE -> INACTIVE, PRECHARGE, ERROR
STATE_CHARGING_PRECHARGE,
STATE_CHARGING, // CHARGING -> INACTIVE, DISCHARGE, ERROR
STATE_ERROR, // ERROR -> INACTIVE, DISCHARGE, ERROR
} State;
typedef struct {
uint16_t bms_timeout : 1;
uint16_t bms_fault : 1;
uint16_t temperature_error : 1;
uint16_t current_error : 1;
uint16_t current_sensor_missing : 1;
uint16_t voltage_error : 1;
uint16_t voltage_missing : 1;
uint16_t state_transition_fail : 1;
} ErrorKind;
//typedef enum {} WarningKind;
typedef struct {
State current_state;
State target_state;
uint16_t error_source; // TSErrorSource (bitmask)
ErrorKind error_type; // TSErrorKind
} StateHandle;
extern StateHandle state;
static bool relay_closed = 0;
static bool precharge_closed = 0;
extern int16_t RELAY_BAT_SIDE_VOLTAGE;
extern int16_t RELAY_ESC_SIDE_VOLTAGE;
extern int16_t CURRENT_MEASUREMENT;
extern uint8_t powerground_status;
void sm_init();
void sm_update();
State sm_update_inactive();
State sm_update_precharge();
State sm_update_ready();
State sm_update_active();
State sm_update_discharge();
State sm_update_charging_precharge();
State sm_update_charging();
State sm_update_error();
typedef enum { RELAY_MAIN, RELAY_PRECHARGE } Relay;
void sm_set_relay_positions(State state);
void sm_set_relay(Relay relay, bool closed);
void sm_check_charging();
void sm_check_battery_temperature(int8_t* id, int16_t* temp);
int16_t sm_return_cell_temperature(int id);
int16_t sm_return_cell_voltage(int id);
void sm_handle_ams_in(const uint8 *data);
void sm_check_errors();
void sm_set_error(ErrorKind error_kind, bool is_errored);
void sm_test_cycle_states();
#endif /* "INC_STATE_MACHINE_H" */

View File

@ -81,7 +81,7 @@
* (when HSE is used as system clock source, directly or through the PLL).
*/
#if !defined (HSE_VALUE)
#define HSE_VALUE ((uint32_t)8000000) /*!< Value of the External oscillator in Hz */
#define HSE_VALUE ((uint32_t)16000000) /*!< Value of the External oscillator in Hz */
#endif /* HSE_VALUE */
/**

View File

@ -55,6 +55,8 @@ void SVC_Handler(void);
void DebugMon_Handler(void);
void PendSV_Handler(void);
void SysTick_Handler(void);
void USB_LP_CAN_RX0_IRQHandler(void);
void CAN_RX1_IRQHandler(void);
/* USER CODE BEGIN EFP */
/* USER CODE END EFP */

View File

@ -1,115 +0,0 @@
/*
* AMS_CAN.c
*
* Created on: Mar 19, 2022
* Author: jasper
*/
#include "AMS_CAN.h"
#include "ADBMS_Abstraction.h"
#include "AMS_HighLevel.h"
#include "TMP1075.h"
#include "common_defs.h"
#include "eeprom.h"
#include "errors.h"
#include "main.h"
#include "stm32f3xx.h"
#include "stm32f3xx_hal.h"
#include "stm32f3xx_hal_can.h"
#include "can-halal.h"
#include "stm32f3xx_hal_gpio.h"
#include <stdint.h>
#include <string.h>
#include <stdbool.h>
#define CAN_ID_SLAVE_PANIC 0x009
#define CAN_ID_SLAVE_STATUS_BASE 0x080
#define CAN_ID_SLAVE_LOG_BASE 0x600
rx_status_frame rxstate = {};
volatile uint8_t canmsg_received = 0;
void ams_can_init(CAN_HandleTypeDef* hcan) { ftcan_init(hcan); }
#define ITER_COUNT 10
static uint8_t count = 0;
static bool isOn = false;
void ams_can_send_status() {
if (count == ITER_COUNT) {
HAL_GPIO_WritePin(STATUS_LED_G_GPIO_Port, STATUS_LED_G_Pin, isOn ? GPIO_PIN_SET : GPIO_PIN_RESET);
count = 0;
isOn = !isOn;
} else {
count++;
}
static uint8_t data[8];
int error = error_data.error_sources != 0;
data[0] = eeprom_config.id | (error << 7);
data[1] = stateofcharge;
uint8_t* ptr = &data[2];
uint16_t min_volt = 0xFFFF;
uint16_t max_volt = 0;
for (size_t i = 0; i < numberofCells; i++) {
if (module.cellVoltages[i] < min_volt) {
min_volt = module.cellVoltages[i];
}
if (module.cellVoltages[i] > max_volt) {
max_volt = module.cellVoltages[i];
}
}
ptr = ftcan_marshal_unsigned(ptr, min_volt, 2);
ptr = ftcan_marshal_unsigned(ptr, max_volt, 2);
int16_t max_temp = -0x8000;
for (size_t i = 0; i < N_TEMP_SENSORS; i++) {
if (tmp1075_temps[i] > max_temp &&
(tmp1075_failed_sensors & (1 << i)) == 0) {
max_temp = tmp1075_temps[i];
}
}
ftcan_marshal_unsigned(ptr, max_temp, 2);
uint16_t id = CAN_ID_SLAVE_STATUS_BASE | eeprom_config.id;
ftcan_transmit(id, data, sizeof(data));
}
void ams_can_send_error() {
static uint8_t data[6];
data[0] = eeprom_config.id;
data[1] = error_data.data_kind;
memcpy(&data[2], error_data.data, 4);
ftcan_transmit(CAN_ID_SLAVE_PANIC, data, sizeof(data));
}
void ams_can_send_log() {
static uint8_t call_count = 0;
static uint8_t data[8];
uint16_t can_addr =
CAN_ID_SLAVE_LOG_BASE | (eeprom_config.id << 4) | call_count;
uint8_t* ptr = &data[0];
if (call_count < N_CELLS / 4) {
for (size_t i = 0; i < 4; i++) {
size_t offset = call_count * 4;
ptr = ftcan_marshal_unsigned(ptr, module.cellVoltages[offset + i], 2);
}
ftcan_transmit(can_addr, data, sizeof(data));
} else if (call_count == N_CELLS / 4) {
// Send last cell & failed temperature sensors
ptr = ftcan_marshal_unsigned(ptr, module.cellVoltages[N_CELLS - 1], 2);
ptr = ftcan_marshal_unsigned(ptr, tmp1075_failed_sensors, 4);
ftcan_transmit(can_addr, data, 6);
} else {
size_t offset = (call_count - N_CELLS / 4 - 1) * 8;
for (size_t i = 0; i < 8; i++) {
data[i] = tmp1075_temps[offset + i] >> 4;
}
ftcan_transmit(can_addr, data, sizeof(data));
}
call_count = (call_count + 1) % (N_CELLS / 4 + 1 + N_TEMP_SENSORS / 8);
}

View File

@ -6,14 +6,7 @@
*/
#include "AMS_HighLevel.h"
#include "ADBMS_Abstraction.h"
#include "ADBMS_LL_Driver.h"
#include "AMS_CAN.h"
#include "TMP1075.h"
#include "can-halal.h"
#include "errors.h"
#include "stm32f3xx_hal.h"
#include <stdint.h>
Cell_Module module = {};
uint32_t balancedCells = 0;

41
Core/Src/PWM_control.c Normal file
View File

@ -0,0 +1,41 @@
#include "PWM_control.h"
uint8_t battery_cooling_status;
//uint32_t powerground1_CCR, powerground2_CCR, battery_cooling_CCR;
TIM_HandleTypeDef* powerground, *battery_cooling;
/*
Pulse width modulation mode allows for generating a signal with a frequency determined by
the value of the TIMx_ARR register and a duty cycle determined by the value of the TIMx_CCRx register.
*/
void PWM_control_init(TIM_HandleTypeDef* pg, TIM_HandleTypeDef* bat_cool){
powerground_status = 0;
battery_cooling_status = 0;
HAL_TIM_PWM_Start(pg, TIM_CHANNEL_1); //TIM15CH1
HAL_TIM_PWM_Start(pg, TIM_CHANNEL_2); //TIM15CH2
HAL_TIM_PWM_Start(bat_cool, TIM_CHANNEL_3); //TIM1CH3
powerground = pg;
battery_cooling = bat_cool;
__HAL_TIM_SET_COMPARE(powerground, TIM_CHANNEL_1, 2000);
__HAL_TIM_SET_COMPARE(powerground, TIM_CHANNEL_2, 2000);
//__HAL_TIM_SET_COMPARE(battery_cooling, TIM_CHANNEL_3, 2000);
}
/*
controls the duty cycle of the fans by setting the CCR of the channel percent/100 = x/ARR
*/
void PWM_powerground_control(uint8_t percent){
if (percent > 100) //something went wrong
return;
powerground_status = percent;
int ccr = 2000 + ((2000) * (percent/100.0));
__HAL_TIM_SET_COMPARE(powerground, TIM_CHANNEL_1, ccr);
__HAL_TIM_SET_COMPARE(powerground, TIM_CHANNEL_2, 2000 + ((2000) * (percent/100.0)));
//TIM15->CCR1 = (TIM15->ARR*POWERGROUND_MAX_DUTY_CYCLE-TIM15->ARR*POWERGROUND_MIN_DUTY_CYCLE) * (percent/100.0) + TIM15->ARR*POWERGROUND_MIN_DUTY_CYCLE;
}
void PWM_battery_cooling_control(uint8_t percent){}

View File

@ -1,11 +1,5 @@
#include "TMP1075.h"
#include "can-halal.h"
#include "errors.h"
#include "stm32f3xx_hal_def.h"
#include "stm32f3xx_hal_i2c.h"
#define MAX_TEMP ((int16_t)(59 / 0.0625f))
#define MAX_FAILED_TEMP 12 //TODO: change value for compliance with the actual number of sensors
#warning "change value for compliance with the actual number of sensors"

150
Core/Src/can.c Normal file
View File

@ -0,0 +1,150 @@
/*
* can.c
* Created on: Mai 23, 2024
* Author: Hamza
*/
#include "can.h"
//#define CAN_ID_IN 0x501
//#define CAN_ID_OUT 0x502
int can_delay_manager = 0;
void can_init(CAN_HandleTypeDef* hcan) {
ftcan_init(hcan);
ftcan_add_filter(CAN_ID_IN, 0xFFF);
}
/*
This function sends the status of the mvbms, the battery and of powerground.
once every 1s in states: INACTIVE, PRECHARGE, DISCHARGE, CHARGING, ERROR.
once every 0.5s in states: READY, ACTIVE.
with format of:
CAN Messages:
Error bit
MVBMS state
Powerground Status 0-100%
Errors
Battery state of charge
Pack Voltage
Current
Battery temperature (12 bit)
Min/Max. Cell Temp (ID, Min Temp, ID, Max Temp)(3B),
Min/Max Cell Voltage (ID, Min Voltage, ID, Max Voltage)(3B)
bit 0 (1b): empty
bit 1-3 (3b): state
bit 4-11 (8b): powerground status
bit 12-19 (8b): error
bit 20-27 (8b): state of charge from 0-100%
bit 28-39 (12b): battery voltage
bit 40-51 (12b): current measurement
bit 52-63 (12b): temperature of the cell with highest temperature
bit 0-3 (4b): ID of the sensor with highest temperature
bit 4-7 (4b): ID of the sensor with lowest temperataure
bit 8-19 (12b): temperature of the coldest cell
bit 20-23 (4b): ID of the cell with the lowest voltage
bit 24-35 (12b): lowest cell voltage
bit 36-39 (4b): ID of the cell the the highest voltage
bit 40-51 (12b): highest cell voltage
bit 52-63 (12b): empty
*/
void can_handle_send_status() {
if (can_delay_manager > HAL_GetTick())
return;
else
can_delay_manager = HAL_GetTick() + CAN_STATUS_FREQ;
uint8_t data[8] = {};
int8_t id_highest_temp = -1;
int16_t highest_temp = INT16_MIN;
sm_check_battery_temperature(&id_highest_temp, &highest_temp);
data[0] = ((state.current_state << 4) | (powerground_status >> 4)); // 1 bit emptyy | 3 bit state | 4 bit powerground
data[1] = ((powerground_status << 4) | (state.error_source >> 4)); // 4 bit powerground | 4 bit error
data[2] = ((state.error_source << 4) | (0)); // 4 bit error | 4 bit state of charge
data[3] = ((0) + (RELAY_BAT_SIDE_VOLTAGE >> 12)); // 4 bit state of charge | 4 bit battery voltage
data[4] = ((RELAY_BAT_SIDE_VOLTAGE >> 4));
data[5] = ((CURRENT_MEASUREMENT >> 8));
data[6] = ((CURRENT_MEASUREMENT & 0x00F0) | (highest_temp >> 12));
data[7] = ((highest_temp) >> 4);
ftcan_transmit(CAN_ID_OUT, data, sizeof(data));
int8_t id_lowest_temp = -1;
int16_t lowest_temp = INT16_MIN;
for (int i = 0; i < N_TEMP_SENSORS; i++) {
if (tmp1075_temps[i] < lowest_temp){
id_lowest_temp = i;
lowest_temp = tmp1075_temps[i];
}
}
int8_t id_lowest_volt = -1;
int16_t lowest_volt = INT16_MIN;
int8_t id_highest_volt = -1;
int16_t highest_volt = INT16_MIN;
for (int i = 0; i < module.sumOfCellMeasurements; i++) {
if (sm_return_cell_voltage(i) < lowest_temp){
id_lowest_volt = i;
lowest_volt = sm_return_cell_voltage(i);
}
if (sm_return_cell_voltage(i) > highest_temp){
id_highest_volt = i;
highest_volt = sm_return_cell_voltage(i);
}
}
data[0] = ((id_highest_temp & 0x0F) << 4 | (id_lowest_temp & 0x0F));
data[1] = ((lowest_temp) >> 8);
data[2] = ((lowest_temp & 0x00F0) | (id_lowest_volt & 0x0F));
data[3] = (lowest_volt >> 8);
data[4] = ((lowest_volt & 0x00F0) | (id_highest_volt & 0x0F));
data[5] = ((highest_volt >> 8));
data[6] = ((highest_volt & 0x00F0));
data[7] = 0;
ftcan_transmit(CAN_ID_OUT, data, sizeof(data));
}
/*
can_handle_recieve_command() should only check if the message is valid and then hand it
to the sm_handle_ams_in() which handles the state machine transition.
This function recieves a command from the Autobox with the CAN ID of 0x501.
with format of:
data[0] = target state
0x0 STATE_INACTIVE | disconnect power to the ESC of powerground. Send it to return the mvbms to idle/monitoring mode. If data[1] != 0 -> assume bad CAN message.
0x1 STATE_READY | conneect power to the ESC of powerground and but with no PWM signal. If data[1] != 0 -> assume bad CAN message.
0x2 STATE_ACTIVE | activate powerground at (data[1]) percent. If data[1] > 100 -> assume bad CAN message.
allowed transitions:
STATE_INACTIVE -> STATE_READY
STATE_READY -> STATE_INACTIVE, STATE_ACTIVE
STATE_ACTIVE -> STATE_INACTIVE, STATE_READY
*/
void can_handle_recieve_command(const uint8_t *data){
if (data[0] == 0x00 && data[1] == 0x00){
sm_handle_ams_in(data);
} else if (data[0] == 0x01 && data[1] == 0x00){
sm_handle_ams_in(data);
} else if (data[0] == 0x02 && data[1] <= 100) {
sm_handle_ams_in(data);
}
}
/*
implements the _weak method ftcan_msg_recieved_cb() which throws an interrupt when a CAN message is recieved.
it only checks if the id is and datalen is correct thans hands data over to can_handle_recieve_command().
in MXCUBE under CAN NVIC settings "USB low priority or CAN_RX0 interrupts" has to be on
*/
void ftcan_msg_received_cb(uint16_t id, size_t datalen, const uint8_t *data){
if (id == 0x501 && datalen == 2){
can_handle_recieve_command(data);
}
}

View File

@ -1,55 +0,0 @@
#include "eeprom.h"
#include "errors.h"
#include "stm32f3xx_hal.h"
#include "stm32f3xx_hal_exti.h"
#include "stm32f3xx_hal_i2c.h"
#include <string.h>
#define EEPROM_I2C_ADDR 0xA0
// Don't use the beginning of the EEPROM, since the testbench writes there
#define EEPROM_CONFIG_BASE 0x0100
#define EEPROM_CONFIG_ECC_OFFSET 0x20
EEPROMConfig eeprom_config;
static I2C_HandleTypeDef* hi2c;
void eeprom_init(I2C_HandleTypeDef* handle) {
hi2c = handle;
uint8_t buf[sizeof(EEPROMConfig) * 3];
// Read 3 EEPROM config buffers at 32 byte offsets
for (size_t ecc_i = 0; ecc_i < 3; ecc_i++) {
HAL_I2C_Mem_Read(hi2c, EEPROM_I2C_ADDR,
EEPROM_CONFIG_BASE + EEPROM_CONFIG_ECC_OFFSET * ecc_i, 2,
buf + sizeof(EEPROMConfig) * ecc_i, sizeof(EEPROMConfig),
100);
}
// ECC
for (size_t i = 0; i < sizeof(EEPROMConfig); i++) {
uint8_t a = buf[i + sizeof(EEPROMConfig) * 0];
uint8_t b = buf[i + sizeof(EEPROMConfig) * 1];
uint8_t c = buf[i + sizeof(EEPROMConfig) * 2];
if (a == b || a == c) {
buf[i] = a;
} else if (b == c) {
buf[i] = b;
} else {
set_error_source(ERROR_SOURCE_EEPROM);
}
}
memcpy(&eeprom_config, buf, sizeof(EEPROMConfig));
// Write back config
eeprom_config.id = 10;
eeprom_config_save();
}
void eeprom_config_save() {
for (size_t ecc_i = 0; ecc_i < 3; ecc_i++) {
HAL_I2C_Mem_Write(hi2c, EEPROM_I2C_ADDR,
EEPROM_CONFIG_BASE + EEPROM_CONFIG_ECC_OFFSET * ecc_i, 2,
(uint8_t*)&eeprom_config, sizeof(eeprom_config), 100);
HAL_Delay(100);
}
}

View File

@ -23,15 +23,15 @@
/* USER CODE BEGIN Includes */
#include "ADBMS_Abstraction.h"
#include "ADBMS_CMD_MAKROS.h"
#include "AMS_CAN.h"
#include "PWM_control.h"
#include "can.h"
#include "AMS_HighLevel.h"
#include "state_machine.h"
#include "TMP1075.h"
#include "eeprom.h"
#include "errors.h"
#include "stm32f302xc.h"
#include "stm32f3xx_hal.h"
#include "stm32f3xx_hal_gpio.h"
#include <stdbool.h>
#include "stm32f3xx_hal_tim.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
@ -119,14 +119,12 @@ int main(void)
MX_TIM1_Init();
MX_TIM2_Init();
/* USER CODE BEGIN 2 */
sm_init();
tmp1075_init(&hi2c1);
AMS_Init(&hspi1);
ams_can_init(&hcan);
bool relay_actual = false;
bool relay_target = true;
uint32_t target_time = HAL_GetTick() + 10000;
can_init(&hcan);
PWM_control_init(&htim15, &htim1);
HAL_Delay(10);
/* USER CODE END 2 */
/* Infinite loop */
@ -137,23 +135,9 @@ int main(void)
/* USER CODE BEGIN 3 */
AMS_Loop();
ams_can_send_status();
if (error_data.error_sources &&
HAL_GetTick() - error_data.errors_since >= ERROR_TIME_THRESH) {
ams_can_send_error();
}
ams_can_send_log();
if (HAL_GetTick() >= target_time) {
HAL_GPIO_WritePin(RELAY_EN_GPIO_Port, RELAY_EN_Pin, relay_target ? GPIO_PIN_SET : GPIO_PIN_RESET);
HAL_GPIO_WritePin(STATUS_LED_R_GPIO_Port, STATUS_LED_R_Pin, relay_target ? GPIO_PIN_RESET : GPIO_PIN_SET);
target_time = HAL_GetTick() + 10000;
relay_target = !relay_target;
ChannelControl_UpdatePWMs( x.pwrgndfans )
);
}
sm_update();
//sm_test_cycle_states();
can_handle_send_status();
}
/* USER CODE END 3 */
}
@ -171,12 +155,11 @@ void SystemClock_Config(void)
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL4;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
@ -186,7 +169,7 @@ void SystemClock_Config(void)
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
@ -222,15 +205,15 @@ static void MX_CAN_Init(void)
/* USER CODE END CAN_Init 1 */
hcan.Instance = CAN;
hcan.Init.Prescaler = 16;
hcan.Init.Prescaler = 2;
hcan.Init.Mode = CAN_MODE_NORMAL;
hcan.Init.SyncJumpWidth = CAN_SJW_1TQ;
hcan.Init.TimeSeg1 = CAN_BS1_1TQ;
hcan.Init.TimeSeg2 = CAN_BS2_1TQ;
hcan.Init.TimeSeg1 = CAN_BS1_13TQ;
hcan.Init.TimeSeg2 = CAN_BS2_2TQ;
hcan.Init.TimeTriggeredMode = DISABLE;
hcan.Init.AutoBusOff = DISABLE;
hcan.Init.AutoBusOff = ENABLE;
hcan.Init.AutoWakeUp = DISABLE;
hcan.Init.AutoRetransmission = DISABLE;
hcan.Init.AutoRetransmission = ENABLE;
hcan.Init.ReceiveFifoLocked = DISABLE;
hcan.Init.TransmitFifoPriority = DISABLE;
if (HAL_CAN_Init(&hcan) != HAL_OK)
@ -418,14 +401,15 @@ static void MX_TIM2_Init(void)
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 65535;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
/* USER CODE END TIM15_Init 1 */
htim15.Instance = TIM15;
htim15.Init.Prescaler = 7;
htim15.Init.CounterMode = TIM_COUNTERMODE_UP;
htim15.Init.Period = 39999;
htim15.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim15.Init.RepetitionCounter = 0;
htim15.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&htim15) != HAL_OK)
{
Error_Handler();
}
@ -509,7 +493,7 @@ static void MX_GPIO_Init(void)
HAL_GPIO_WritePin(GPIOB, STATUS_LED_R_Pin|STATUS_LED_B_Pin|STATUS_LED_G_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, PRECHARGE_EN_Pin|AUX_IN_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(PRECHARGE_EN_GPIO_Port, PRECHARGE_EN_Pin, GPIO_PIN_RESET);
/*Configure GPIO pins : PC13 PC14 PC15 */
GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15;
@ -524,35 +508,21 @@ static void MX_GPIO_Init(void)
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : PA3 */
GPIO_InitStruct.Pin = GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : STATUS_LED_R_Pin STATUS_LED_B_Pin STATUS_LED_G_Pin PRECHARGE_EN_Pin
AUX_IN_Pin */
GPIO_InitStruct.Pin = STATUS_LED_R_Pin|STATUS_LED_B_Pin|STATUS_LED_G_Pin|PRECHARGE_EN_Pin
|AUX_IN_Pin;
/*Configure GPIO pins : STATUS_LED_R_Pin STATUS_LED_B_Pin STATUS_LED_G_Pin PRECHARGE_EN_Pin */
GPIO_InitStruct.Pin = STATUS_LED_R_Pin|STATUS_LED_B_Pin|STATUS_LED_G_Pin|PRECHARGE_EN_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : PB10 PB12 PB4 PB5
PB8 */
GPIO_InitStruct.Pin = GPIO_PIN_10|GPIO_PIN_12|GPIO_PIN_4|GPIO_PIN_5
|GPIO_PIN_8;
/*Configure GPIO pins : PB10 PB12 PB13 PB14
PB4 PB5 PB8 */
GPIO_InitStruct.Pin = GPIO_PIN_10|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14
|GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_8;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : AUX_OUT_Pin */
GPIO_InitStruct.Pin = AUX_OUT_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(AUX_OUT_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : RELAY_BATT_SIDE_ON_Pin RELAY_ESC_SIDE_ON_Pin CURRENT_SENSOR_ON_Pin */
GPIO_InitStruct.Pin = RELAY_BATT_SIDE_ON_Pin|RELAY_ESC_SIDE_ON_Pin|CURRENT_SENSOR_ON_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;

326
Core/Src/state_machine.c Normal file
View File

@ -0,0 +1,326 @@
#include "state_machine.h"
#include "AMS_HighLevel.h"
#include "TMP1075.h"
#include "errors.h"
#include "stm32f3xx_hal.h"
#include <stdint.h>
#include <stdio.h>
StateHandle state;
int16_t RELAY_BAT_SIDE_VOLTAGE;
int16_t RELAY_ESC_SIDE_VOLTAGE;
int16_t CURRENT_MEASUREMENT;
uint8_t powerground_status;
uint32_t timestamp;
void sm_init(){
state.current_state = STATE_INACTIVE;
state.target_state = STATE_INACTIVE;
state.error_source = 0;
}
void sm_update(){
sm_check_errors();
RELAY_BAT_SIDE_VOLTAGE = module.auxVoltages[0] * 12.42; // the calculation says the factor is 11.989. 12.42 yields the better result
RELAY_ESC_SIDE_VOLTAGE = module.auxVoltages[1] * 12.42;
CURRENT_MEASUREMENT = (module.auxVoltages[2] - 2496) * 300;
switch (state.current_state) {
case STATE_INACTIVE:
state.current_state = sm_update_inactive(); // monitor only
break;
case STATE_PRECHARGE:
state.current_state = sm_update_precharge(); // set PRECHARGE and turn on cooling at 50% or such
break;
case STATE_READY:
state.current_state = sm_update_ready(); // keep cooling at 50%, get ready to turn on powerground
break;
case STATE_ACTIVE:
state.current_state = sm_update_active(); // set PRECHARGE and turn on cooling at 50% or such
break;
case STATE_DISCHARGE:
state.current_state = sm_update_discharge(); // open the main relay, keep PRECHARGE closed
break;
case STATE_CHARGING_PRECHARGE:
state.current_state = sm_update_charging_precharge();
break;
case STATE_CHARGING:
state.current_state = sm_update_charging(); // monitor and turn on cooling if needed.
break;
case STATE_ERROR:
state.current_state = sm_update_error(); // enter the correct ERROR state
break;
}
sm_set_relay_positions(state.current_state);
state.target_state = state.current_state;
}
State sm_update_inactive(){
switch (state.target_state) {
case STATE_PRECHARGE:
return STATE_PRECHARGE;
case STATE_CHARGING_PRECHARGE:
return STATE_CHARGING_PRECHARGE;
default:
return STATE_INACTIVE;
}
}
State sm_update_precharge(){
switch (state.target_state) {
case STATE_INACTIVE: // if CAN Signal 0000 0000 then immidiete shutdown
return STATE_DISCHARGE;
case STATE_PRECHARGE:
if (RELAY_BAT_SIDE_VOLTAGE-RELAY_ESC_SIDE_VOLTAGE < 100)
return STATE_READY;
break;
case STATE_DISCHARGE:
return STATE_DISCHARGE;
default:
return STATE_PRECHARGE;
}
}
State sm_update_ready(){
switch (state.target_state) {
case STATE_ACTIVE: // if CAN Signal 1100 0000 then turn on powerground
return STATE_ACTIVE;
case STATE_DISCHARGE: // if CAN Signal 0000 0000 then shutdown
return STATE_DISCHARGE;
default:
return STATE_READY;
}
}
State sm_update_active(){
switch (state.target_state) {
case STATE_READY: // if CAN Signal 1000 0000 then turn oof powerground but stay ready
return STATE_READY;
case STATE_DISCHARGE: // if CAN Signal 0000 0000 then shutdown
return STATE_DISCHARGE;
default:
return STATE_ACTIVE;
}
}
State sm_update_discharge(){
switch (state.target_state) {
case STATE_DISCHARGE:
if (RELAY_ESC_SIDE_VOLTAGE < 5000)
return STATE_INACTIVE;
case STATE_PRECHARGE: // if CAN Signal 1000 0000 then get ready
return STATE_PRECHARGE;
default:
return STATE_DISCHARGE;
}
}
State sm_update_charging_precharge(){
switch (state.target_state) {
case STATE_CHARGING:
return STATE_CHARGING;
case STATE_DISCHARGE:
return STATE_DISCHARGE;
default:
return STATE_CHARGING_PRECHARGE;
}
}
State sm_update_charging(){
switch (state.target_state) {
case STATE_DISCHARGE:
return STATE_DISCHARGE;
default:
return STATE_CHARGING;
}
}
State sm_update_error(){
switch (state.target_state) {
case STATE_DISCHARGE:
return STATE_DISCHARGE;
default:
return STATE_ERROR;
}
}
void sm_set_relay_positions(State current_state){
switch (state.current_state) {
case STATE_INACTIVE:
sm_set_relay(RELAY_MAIN, 0);
sm_set_relay(RELAY_PRECHARGE, 0);
break;
case STATE_PRECHARGE:
sm_set_relay(RELAY_MAIN, 0);
sm_set_relay(RELAY_PRECHARGE, 1);
break;
case STATE_READY:
sm_set_relay(RELAY_MAIN, 1);
sm_set_relay(RELAY_PRECHARGE, 0);
break;
case STATE_ACTIVE:
sm_set_relay(RELAY_MAIN, 1);
sm_set_relay(RELAY_PRECHARGE, 0);
break;
case STATE_DISCHARGE:
sm_set_relay(RELAY_MAIN, 0);
sm_set_relay(RELAY_PRECHARGE, 0);
break;
case STATE_CHARGING_PRECHARGE:
sm_set_relay(RELAY_MAIN, 0);
sm_set_relay(RELAY_PRECHARGE, 1);
break;
case STATE_CHARGING:
sm_set_relay(RELAY_MAIN, 1);
sm_set_relay(RELAY_PRECHARGE, 0);
break;
case STATE_ERROR:
sm_set_relay(RELAY_MAIN, 0);
sm_set_relay(RELAY_PRECHARGE, 0);
break;
}
}
void sm_set_relay(Relay relay, bool closed){
GPIO_PinState state = closed ? GPIO_PIN_SET : GPIO_PIN_RESET;
switch (relay) {
case RELAY_MAIN:
HAL_GPIO_WritePin(RELAY_EN_GPIO_Port, RELAY_EN_Pin, state);
relay_closed = closed;
break;
case RELAY_PRECHARGE:
HAL_GPIO_WritePin(PRECHARGE_EN_GPIO_Port, PRECHARGE_EN_Pin, state);
precharge_closed = closed;
break;
}
}
void sm_check_charging(){
if (RELAY_BAT_SIDE_VOLTAGE < RELAY_ESC_SIDE_VOLTAGE && timestamp == 0)
timestamp = HAL_GetTick() + 5000;
if (timestamp < HAL_GetTick())
state.target_state = STATE_CHARGING_PRECHARGE;
}
/* returns the ID and temperature of the hottest cell */
void sm_check_battery_temperature(int8_t *id, int16_t *temp){
for (int i = 0; i < N_TEMP_SENSORS; i++) {
if (tmp1075_temps[i] > *temp){
*id = i;
*temp = tmp1075_temps[i];
}
}
}
int16_t sm_return_cell_temperature(int id){
return tmp1075_temps[id];
}
int16_t sm_return_cell_voltage(int id){
return module.cellVoltages[id];
}
void sm_handle_ams_in(const uint8_t *data){
switch (data[0]) {
case 0x00:
if (state.current_state != STATE_INACTIVE){
PWM_powerground_control(0);
state.target_state = STATE_DISCHARGE;
}
break;
case 0x01:
if (state.target_state == STATE_INACTIVE || state.target_state == STATE_DISCHARGE){
PWM_powerground_control(0);
state.target_state = STATE_PRECHARGE;
} else if (state.target_state == STATE_ACTIVE){
PWM_powerground_control(0);
state.target_state = STATE_READY;
}
break;
case 0x02:
if (state.current_state == STATE_READY){
PWM_powerground_control(data[1]);
state.target_state = STATE_ACTIVE; // READY -> ACTIVE
}
break;
}
}
void sm_set_error(ErrorKind error_kind, bool is_errored){}
#warning TODO: add error checking for everything here
void sm_check_errors(){
switch (error_data.data_kind) {
case SEK_OVERTEMP:
case SEK_UNDERTEMP:
case SEK_TOO_FEW_TEMPS:
state.error_type.temperature_error = 1;
case SEK_OVERVOLT:
case SEK_UNDERVOLT:
case SEK_OPENWIRE:
case SEK_EEPROM_ERR:
case SEK_INTERNAL_BMS_TIMEOUT:
state.error_type.bms_timeout = 1;
case SEK_INTERNAL_BMS_CHECKSUM_FAIL:
case SEK_INTERNAL_BMS_OVERTEMP:
case SEK_INTERNAL_BMS_FAULT:
state.error_type.bms_fault = 1;
break;
}
if (1){
state.error_type.current_error = 1;
}
if (1){
state.error_type.current_sensor_missing = 1;
}
if (RELAY_BAT_SIDE_VOLTAGE < 30000){
state.error_type.voltage_error = 1;
}
if (1){
state.error_type.voltage_missing = 1;
}
}
void sm_test_cycle_states(){
RELAY_BAT_SIDE_VOLTAGE = module.auxVoltages[0];
RELAY_ESC_SIDE_VOLTAGE = module.auxVoltages[1];
CURRENT_MEASUREMENT = module.auxVoltages[2];
sm_set_relay_positions(state.current_state);
if (timestamp > HAL_GetTick())
return;
switch (state.current_state) {
case STATE_INACTIVE:
state.current_state = STATE_PRECHARGE;
timestamp = HAL_GetTick() + 30000;
PWM_powerground_control(0);
break;
case STATE_PRECHARGE:
state.current_state = STATE_READY;
timestamp = HAL_GetTick() + 10000;
break;
case STATE_READY:
state.current_state = STATE_ACTIVE;
timestamp = HAL_GetTick() + 10000;
break;
case STATE_ACTIVE:
state.current_state = STATE_DISCHARGE;
timestamp = HAL_GetTick() + 10000;
PWM_powerground_control(1);
break;
case STATE_DISCHARGE:
state.current_state = STATE_INACTIVE;
timestamp = HAL_GetTick() + 10000;
break;
}
state.target_state = state.current_state;
}

View File

@ -108,6 +108,11 @@ void HAL_CAN_MspInit(CAN_HandleTypeDef* hcan)
GPIO_InitStruct.Alternate = GPIO_AF9_CAN;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* CAN interrupt Init */
HAL_NVIC_SetPriority(USB_LP_CAN_RX0_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(USB_LP_CAN_RX0_IRQn);
HAL_NVIC_SetPriority(CAN_RX1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(CAN_RX1_IRQn);
/* USER CODE BEGIN CAN_MspInit 1 */
/* USER CODE END CAN_MspInit 1 */
@ -137,6 +142,9 @@ void HAL_CAN_MspDeInit(CAN_HandleTypeDef* hcan)
*/
HAL_GPIO_DeInit(GPIOA, GPIO_PIN_11|GPIO_PIN_12);
/* CAN interrupt DeInit */
HAL_NVIC_DisableIRQ(USB_LP_CAN_RX0_IRQn);
HAL_NVIC_DisableIRQ(CAN_RX1_IRQn);
/* USER CODE BEGIN CAN_MspDeInit 1 */
/* USER CODE END CAN_MspDeInit 1 */
@ -331,12 +339,12 @@ void HAL_TIM_MspPostInit(TIM_HandleTypeDef* htim)
/**TIM1 GPIO Configuration
PB15 ------> TIM1_CH3N
*/
GPIO_InitStruct.Pin = GPIO_PIN_15;
GPIO_InitStruct.Pin = PWM_Battery_Cooling_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF4_TIM1;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
HAL_GPIO_Init(PWM_Battery_Cooling_GPIO_Port, &GPIO_InitStruct);
/* USER CODE BEGIN TIM1_MspPostInit 1 */

View File

@ -55,7 +55,7 @@
/* USER CODE END 0 */
/* External variables --------------------------------------------------------*/
extern CAN_HandleTypeDef hcan;
/* USER CODE BEGIN EV */
/* USER CODE END EV */
@ -198,6 +198,34 @@ void SysTick_Handler(void)
/* please refer to the startup file (startup_stm32f3xx.s). */
/******************************************************************************/
/**
* @brief This function handles USB low priority or CAN_RX0 interrupts.
*/
void USB_LP_CAN_RX0_IRQHandler(void)
{
/* USER CODE BEGIN USB_LP_CAN_RX0_IRQn 0 */
/* USER CODE END USB_LP_CAN_RX0_IRQn 0 */
HAL_CAN_IRQHandler(&hcan);
/* USER CODE BEGIN USB_LP_CAN_RX0_IRQn 1 */
/* USER CODE END USB_LP_CAN_RX0_IRQn 1 */
}
/**
* @brief This function handles CAN RX1 interrupt.
*/
void CAN_RX1_IRQHandler(void)
{
/* USER CODE BEGIN CAN_RX1_IRQn 0 */
/* USER CODE END CAN_RX1_IRQn 0 */
HAL_CAN_IRQHandler(&hcan);
/* USER CODE BEGIN CAN_RX1_IRQn 1 */
/* USER CODE END CAN_RX1_IRQn 1 */
}
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */