ams-slave-22/Core/Src/TMP144.c

224 lines
6.1 KiB
C

/*
* TMP144.c
*
* Created on: 23 Mar 2022
* Author: Jasper
*/
#include "TMP144.h"
#include "stm32f4xx_hal.h"
#include "stm32f4xx_hal_def.h"
#include "stm32f4xx_hal_uart.h"
#include <stdint.h>
#include <string.h>
static const uint8_t TMP144_SEQ_RESET[] = {0x55, 0xB4};
static const uint8_t TMP144_SEQ_ADDR[] = {0x55, 0x8C, 0x90};
static const uint8_t TMP144_SEQ_READ_TEMPS[] = {0x55, 0xF1};
volatile uint16_t temperatures[N_TEMP_SENSORS];
volatile uint16_t min_temperature;
volatile uint16_t max_temperature;
volatile TMP144Bus tmp144_bus_busbar;
volatile TMP144Bus tmp144_bus_other;
#define CHECK_STATUS(s) \
{ \
HAL_StatusTypeDef _s = s; \
if (_s != HAL_OK) \
return _s; \
}
HAL_StatusTypeDef tmp144_init(UART_HandleTypeDef* busbar_side,
UART_HandleTypeDef* other_side) {
tmp144_bus_busbar.handle = busbar_side;
tmp144_bus_other.handle = other_side;
tmp144_bus_busbar.state = TMP144_IDLE;
tmp144_bus_other.state = TMP144_IDLE;
// TODO: Configure this in EEPROM
tmp144_bus_busbar.n_sensors = N_TEMP_SENSORS / 2;
tmp144_bus_other.n_sensors = N_TEMP_SENSORS / 2;
CHECK_STATUS(tmp144_init_reset(&tmp144_bus_busbar));
// CHECK_STATUS(tmp144_init_reset(&tmp144_bus_other));
return HAL_OK;
}
HAL_StatusTypeDef tmp144_check_timeouts() {
uint32_t now = HAL_GetTick();
uint32_t t1 = tmp144_bus_busbar.expected_response_time;
uint32_t t2 = tmp144_bus_other.expected_response_time;
if (t1 != 0 && t1 < now) {
tmp144_bus_busbar.state = TMP144_ERROR;
}
// FIXME
// if (t2 != 0 && t2 < now) {
// tmp144_bus_other.state = TMP144_ERROR;
// }
return HAL_OK;
}
HAL_StatusTypeDef tmp144_init_reset(TMP144Bus* bus) {
if (bus->state != TMP144_IDLE) {
return HAL_ERROR;
}
bus->state = TMP144_RESETTING;
CHECK_STATUS(HAL_UART_Receive_DMA(bus->handle, bus->rxbuf, 2));
// Keep sending Global Software Reset until it echoes back (as per 7.5.2)
int tries = 0;
do {
if (tries > bus->n_sensors) {
bus->state = TMP144_ERROR;
return HAL_TIMEOUT;
}
if (bus->handle->RxState == HAL_UART_STATE_READY &&
bus->state == TMP144_RESETTING) {
HAL_UART_DMAStop(bus->handle);
CHECK_STATUS(HAL_UART_Receive_DMA(bus->handle, bus->rxbuf, 2));
}
CHECK_STATUS(HAL_UART_Transmit_IT(bus->handle, TMP144_SEQ_RESET,
sizeof(TMP144_SEQ_RESET)));
HAL_Delay(100);
tries++;
} while (bus->state == TMP144_RESETTING);
bus->state = TMP144_INITIALIZING;
CHECK_STATUS(HAL_UART_Receive_DMA(bus->handle, bus->rxbuf, 3));
bus->expected_response_time = HAL_GetTick() + 100;
CHECK_STATUS(HAL_UART_Transmit(bus->handle, TMP144_SEQ_ADDR,
sizeof(TMP144_SEQ_ADDR), 100));
return HAL_OK;
}
HAL_StatusTypeDef tmp144_init_post_reset(TMP144Bus* bus) {
if (bus->state != TMP144_RESETTING ||
memcmp(bus->rxbuf, TMP144_SEQ_RESET, sizeof(TMP144_SEQ_RESET)) != 0) {
return HAL_ERROR;
}
bus->state = TMP144_IDLE;
return HAL_OK;
}
HAL_StatusTypeDef tmp144_init_post_addr(TMP144Bus* bus) {
size_t idx_response = sizeof(TMP144_SEQ_ADDR) - 1;
if (bus->state != TMP144_INITIALIZING ||
memcmp(bus->rxbuf, TMP144_SEQ_ADDR, idx_response) != 0) {
return HAL_ERROR;
}
uint8_t n_sensors = bus->rxbuf[idx_response] - TMP144_SEQ_ADDR[idx_response];
if (n_sensors != bus->n_sensors) {
bus->state = TMP144_ERROR;
return HAL_ERROR;
}
bus->state = TMP144_IDLE;
return HAL_OK;
}
HAL_StatusTypeDef tmp144_read_temps() {
CHECK_STATUS(tmp144_send_read_temps(&tmp144_bus_busbar));
CHECK_STATUS(tmp144_send_read_temps(&tmp144_bus_other));
return HAL_OK;
}
HAL_StatusTypeDef tmp144_send_read_temps(TMP144Bus* bus) {
if (bus->state != TMP144_IDLE) {
return HAL_ERROR;
}
bus->state = TMP144_READING_TEMP;
CHECK_STATUS(
HAL_UART_Receive_DMA(bus->handle, bus->rxbuf,
sizeof(TMP144_SEQ_READ_TEMPS) + 2 * bus->n_sensors));
bus->expected_response_time = HAL_GetTick() + TMP144_RESPONSE_TIMEOUT;
CHECK_STATUS(HAL_UART_Transmit(bus->handle, TMP144_SEQ_READ_TEMPS,
sizeof(TMP144_SEQ_READ_TEMPS), 100));
return HAL_OK;
}
HAL_StatusTypeDef tmp144_recv_temps(TMP144Bus* bus) {
if (bus->state != TMP144_READING_TEMP) {
return HAL_ERROR;
}
bus->state = TMP144_IDLE;
size_t headerlen = sizeof(TMP144_SEQ_READ_TEMPS);
if (memcmp(bus->rxbuf, TMP144_SEQ_READ_TEMPS, headerlen) != 0) {
return HAL_ERROR;
}
size_t temperatures_offset =
(bus == &tmp144_bus_busbar) ? 0 : N_TEMP_SENSORS / 2;
for (size_t i = 0; i < bus->n_sensors; i++) {
size_t buf_offset = headerlen + 2 * i;
uint16_t temp =
(bus->rxbuf[buf_offset] >> 4) | (bus->rxbuf[buf_offset + 1] << 4);
if (temp == 0x7FF) {
// Extremely unlikely, probably the sensor is just broken
temp = 0;
}
temperatures[temperatures_offset + i] = temp;
}
uint16_t max = temperatures[0];
uint16_t min = temperatures[0];
// FIXME
for (size_t i = 1; i < 16; i++) {
if (temperatures[i] > max) {
max = temperatures[i];
}
if (temperatures[i] < min) {
min = temperatures[i];
}
}
max_temperature = max;
min_temperature = min;
return HAL_OK;
}
void tmp144_handle_rx_cplt(UART_HandleTypeDef* handle) {
TMP144Bus* bus;
if (handle == tmp144_bus_busbar.handle) {
bus = &tmp144_bus_busbar;
} else if (handle == tmp144_bus_other.handle) {
bus = &tmp144_bus_other;
} else {
// TODO
Error_Handler();
}
bus->expected_response_time = 0;
switch (bus->state) {
case TMP144_IDLE:
// TODO
Error_Handler();
case TMP144_RESETTING:
tmp144_init_post_reset(bus);
break;
case TMP144_INITIALIZING:
tmp144_init_post_addr(bus);
break;
case TMP144_READING_TEMP:
tmp144_recv_temps(bus);
break;
default:
// TODO
Error_Handler();
}
}