ams-slave-22/Core/Src/ClockSync.c
2022-08-02 23:28:16 +02:00

218 lines
6.8 KiB
C

#include "ClockSync.h"
#include "AMS_CAN.h"
#include "stm32f412rx.h"
#include "stm32f4xx_hal.h"
#include "stm32f4xx_hal_can.h"
#include <stdint.h>
ClockSyncState clock_sync_state = CLOCK_SYNC_FREQ_HOPPING_STAGE1;
static uint32_t last_clock_sync_frame_time = 0;
static uint32_t last_master_heartbeat_time = 0;
static uint32_t master_heartbeat_counter = 0;
static uint32_t freq_hopping_start_trim = 0;
static uint32_t freq_hopping_iteration = 0;
static uint32_t freq_hopping_stage2_start_time = 0;
static uint32_t freq_hopping_stage2_start_counter = 0;
static uint32_t freq_hopping_stage2_attempts = 0;
void clock_sync_update() {
ClockSyncState next_state;
switch (clock_sync_state) {
case CLOCK_SYNC_NORMAL_OPERATION:
next_state = clock_sync_update_normal_operation();
break;
case CLOCK_SYNC_FREQ_HOPPING_STAGE1:
next_state = clock_sync_update_freq_hopping_stage1();
break;
case CLOCK_SYNC_FREQ_HOPPING_STAGE2:
next_state = clock_sync_update_freq_hopping_stage2();
break;
default:
// Shouldn't ever happen?
next_state = CLOCK_SYNC_FREQ_HOPPING_STAGE1;
}
if (next_state != clock_sync_state) {
switch (next_state) {
case CLOCK_SYNC_NORMAL_OPERATION:
clock_sync_start_normal_operation();
break;
case CLOCK_SYNC_FREQ_HOPPING_STAGE1:
clock_sync_start_freq_hopping_stage1();
break;
case CLOCK_SYNC_FREQ_HOPPING_STAGE2:
clock_sync_start_freq_hopping_stage2();
break;
}
}
clock_sync_state = next_state;
}
void clock_sync_start_normal_operation() {}
void clock_sync_start_freq_hopping_stage1() {
freq_hopping_start_trim = get_hsi_trim();
freq_hopping_iteration = 0;
}
void clock_sync_start_freq_hopping_stage2() {
freq_hopping_start_trim = get_hsi_trim();
freq_hopping_stage2_start_time = HAL_GetTick();
freq_hopping_stage2_start_counter = master_heartbeat_counter;
freq_hopping_stage2_attempts = 0;
}
ClockSyncState clock_sync_update_normal_operation() {
uint32_t now = HAL_GetTick();
uint8_t transmit_errors =
(ams_can_handle->Instance->ESR & CAN_ESR_TEC_Msk) >> CAN_ESR_TEC_Pos;
if (now - last_master_heartbeat_time > MASTER_HEARTBEAT_DESYNC_THRESH ||
transmit_errors > CLOCK_SYNC_MAX_TRANSMIT_ERRORS) {
return CLOCK_SYNC_FREQ_HOPPING_STAGE1;
}
return CLOCK_SYNC_NORMAL_OPERATION;
}
ClockSyncState clock_sync_update_freq_hopping_stage1() {
uint32_t now = HAL_GetTick();
if (now - last_clock_sync_frame_time < CLOCK_SYNC_SANITY_INTERVAL_MAX) {
// We are at least close to re-sync'ing, go to stage 2
return CLOCK_SYNC_FREQ_HOPPING_STAGE2;
}
if (now - last_master_heartbeat_time > MASTER_HEARTBEAT_SANITY_INTERVAL_MAX) {
uint8_t new_trim = calculate_freq_hopping_trim(freq_hopping_iteration);
set_hsi_trim(new_trim);
freq_hopping_iteration++;
if ((freq_hopping_iteration + 1) * FREQ_HOPPING_TRIM_STEPS >
RCC_CR_HSITRIM_MAX) {
// The next delta would be too large, start again
freq_hopping_iteration = 0;
}
}
return CLOCK_SYNC_FREQ_HOPPING_STAGE1;
}
ClockSyncState clock_sync_update_freq_hopping_stage2() {
if (master_heartbeat_counter - freq_hopping_stage2_start_counter >
FREQ_HOPPING_STAGE2_FRAMES) {
// We've re-sync'd!
return CLOCK_SYNC_NORMAL_OPERATION;
}
uint32_t now = HAL_GetTick();
if (now - freq_hopping_stage2_start_time >
FREQ_HOPPING_STAGE2_FRAMES * MASTER_HEARTBEAT_SANITY_INTERVAL_MAX) {
freq_hopping_stage2_attempts++;
if (freq_hopping_stage2_attempts > FREQ_HOPPING_STAGE2_MAX_ATTEMPTS) {
// Looks like we're not really close to sync'ing, go back to stage 1
return CLOCK_SYNC_FREQ_HOPPING_STAGE1;
}
// We haven't received all heartbeats, trim further
uint8_t new_trim =
calculate_freq_hopping_trim(freq_hopping_stage2_attempts);
set_hsi_trim(new_trim);
freq_hopping_stage2_start_counter = master_heartbeat_counter;
freq_hopping_stage2_start_time = now;
}
return CLOCK_SYNC_FREQ_HOPPING_STAGE2;
}
void clock_sync_handle_clock_sync_frame(uint8_t counter) {
static uint32_t f_pre_trim = CLOCK_TARGET_FREQ;
static int32_t trimmed_last_frame = 0;
static int32_t last_trim_delta = HSI_TRIM_FREQ;
static uint8_t last_clock_sync_frame_counter = 0;
uint32_t now = HAL_GetTick();
uint32_t n_measured = now - last_clock_sync_frame_time;
uint8_t expected_counter = last_clock_sync_frame_counter + 1;
/* Sanity checks:
* - Are we actually in normal operation mode?
* - Have we received a sync frame before?
* - Did the counter increment by one (mod 2^8)? I.e., did we miss a frame?
* - Is the measured time elapsed within feasible bounds?
*/
if (clock_sync_state == CLOCK_SYNC_NORMAL_OPERATION &&
last_clock_sync_frame_time != 0 && counter == expected_counter &&
n_measured >= CLOCK_SYNC_SANITY_INTERVAL_MIN &&
n_measured <= CLOCK_SYNC_SANITY_INTERVAL_MAX) {
uint32_t f_real = n_measured * (CLOCK_TARGET_FREQ / CLOCK_SYNC_INTERVAL);
if (trimmed_last_frame) {
// Update trim delta
last_trim_delta = f_pre_trim - f_real;
if (last_trim_delta == 0) {
last_trim_delta = HSI_TRIM_FREQ;
} else if (last_trim_delta < 0) {
last_trim_delta = -last_trim_delta;
}
trimmed_last_frame = 0;
}
int32_t delta_f = CLOCK_TARGET_FREQ - f_real;
int32_t delta_quants = delta_f / last_trim_delta;
if (delta_quants != 0) {
// We were able to receive the frame, so we should be reasonably close. It
// should thus be enough to trim by -1 or 1.
int32_t trim_delta = (delta_quants < 0) ? -1 : 1;
trim_hsi_by(trim_delta);
f_pre_trim = f_real;
trimmed_last_frame = 1;
}
}
last_clock_sync_frame_time = now;
last_clock_sync_frame_counter = counter;
}
void clock_sync_handle_master_heartbeat() {
last_master_heartbeat_time = HAL_GetTick();
master_heartbeat_counter++;
}
uint8_t get_hsi_trim() {
return (RCC->CR & RCC_CR_HSITRIM_Msk) >> RCC_CR_HSITRIM_Pos;
}
void set_hsi_trim(uint8_t trim) {
uint32_t rcc_cr = RCC->CR;
// Clear current trim and overwrite with new trim
rcc_cr = (rcc_cr & ~RCC_CR_HSITRIM_Msk) |
((trim << RCC_CR_HSITRIM_Pos) & RCC_CR_HSITRIM_Msk);
RCC->CR = rcc_cr;
}
void trim_hsi_by(int32_t delta) {
// Determine current trim
int32_t trim = get_hsi_trim();
trim += delta;
if (trim > RCC_CR_HSITRIM_MAX) {
trim = RCC_CR_HSITRIM_MAX;
} else if (trim < 0) {
trim = 0;
}
set_hsi_trim(trim);
}
uint8_t calculate_freq_hopping_trim(uint32_t freq_hopping_iteration) {
int32_t trim_delta = (freq_hopping_iteration + 1) * FREQ_HOPPING_TRIM_STEPS;
if (freq_hopping_iteration % 2 == 0) {
trim_delta = -trim_delta;
}
int32_t new_trim = freq_hopping_start_trim + trim_delta;
if (new_trim < 0) {
new_trim += RCC_CR_HSITRIM_MAX + 1;
} else if (new_trim > RCC_CR_HSITRIM_MAX) {
new_trim -= RCC_CR_HSITRIM_MAX + 1;
}
}