/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2022 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "AMS_CAN.h" #include "BQ_Abstraction_Layer.h" #include "ClockSync.h" #include "EEPROM.h" #include "FanControl.h" #include "TMP144.h" #include "common_defs.h" #include "stm32f4xx_hal.h" #include "stm32f4xx_hal_gpio.h" #include "stm32f4xx_hal_tim.h" #include "stm32f4xx_hal_uart.h" #include /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ CAN_HandleTypeDef hcan1; CAN_HandleTypeDef hcan2; I2C_HandleTypeDef hi2c1; TIM_HandleTypeDef htim3; UART_HandleTypeDef huart1; UART_HandleTypeDef huart2; UART_HandleTypeDef huart3; UART_HandleTypeDef huart6; DMA_HandleTypeDef hdma_usart1_rx; DMA_HandleTypeDef hdma_usart3_rx; /* USER CODE BEGIN PV */ uint8_t slave_id; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); static void MX_CAN1_Init(void); static void MX_CAN2_Init(void); static void MX_I2C1_Init(void); static void MX_TIM3_Init(void); static void MX_USART1_UART_Init(void); static void MX_USART2_UART_Init(void); static void MX_USART3_UART_Init(void); static void MX_USART6_UART_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ void update_status_leds() { if ((HAL_GetTick() / 1000) % 2 == 0) { HAL_GPIO_WritePin(STAT_LED1_GPIO_Port, STAT_LED1_Pin, GPIO_PIN_RESET); } else { HAL_GPIO_WritePin(STAT_LED1_GPIO_Port, STAT_LED1_Pin, GPIO_PIN_SET); } if (bq_status == BQ_OFF || bq_status == BQ_ERROR) { HAL_GPIO_WritePin(STAT_LED2_GPIO_Port, STAT_LED2_Pin, GPIO_PIN_RESET); } else { HAL_GPIO_WritePin(STAT_LED2_GPIO_Port, STAT_LED2_Pin, GPIO_PIN_SET); } } void check_error_conditions() { int error = 0; if (bq_status != BQ_RDY) { ams_can_send_error(AMS_ERROR_BQ, AMS_ERROR_TX_TIMEOUT); error = 1; } tmp144_check_timeouts(); if (tmp144_bus_busbar.state == TMP144_ERROR && tmp144_bus_other.state == TMP144_ERROR) { ams_can_send_error(AMS_ERROR_TMP144, AMS_ERROR_TX_TIMEOUT); error = 1; } if (min_voltage < THRESH_UV) { ams_can_send_error(AMS_ERROR_UV, AMS_ERROR_TX_TIMEOUT); error = 1; } if (max_voltage > THRESH_OV) { ams_can_send_error(AMS_ERROR_OV, AMS_ERROR_TX_TIMEOUT); error = 1; } if (min_temperature < THRESH_UT) { ams_can_send_error(AMS_ERROR_UT, AMS_ERROR_TX_TIMEOUT); error = 1; } if (max_temperature > THRESH_OT) { ams_can_send_error(AMS_ERROR_OT, AMS_ERROR_TX_TIMEOUT); error = 1; } if (error) { HAL_GPIO_WritePin(STAT_LED4_GPIO_Port, STAT_LED4_Pin, GPIO_PIN_SET); } else { HAL_GPIO_WritePin(STAT_LED4_GPIO_Port, STAT_LED4_Pin, GPIO_PIN_RESET); } } void delay_period() { static uint32_t last_it = 0; uint32_t now = HAL_GetTick(); int32_t diff = now - last_it; if (diff > MAIN_LOOP_PERIOD) { HAL_GPIO_WritePin(STAT_LED3_GPIO_Port, STAT_LED3_Pin, GPIO_PIN_SET); } else { HAL_GPIO_WritePin(STAT_LED3_GPIO_Port, STAT_LED3_Pin, GPIO_PIN_RESET); HAL_Delay(MAIN_LOOP_PERIOD - diff); now = HAL_GetTick(); } last_it = now; } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_CAN1_Init(); MX_CAN2_Init(); MX_I2C1_Init(); MX_TIM3_Init(); MX_USART1_UART_Init(); MX_USART2_UART_Init(); MX_USART3_UART_Init(); MX_USART6_UART_Init(); /* USER CODE BEGIN 2 */ fan_ctrl_init(&htim3, TIM_CHANNEL_4); eeprom_init(&hi2c1); eeprom_read_random(EEPROM_ADDR_SLAVE_ID, &slave_id); ams_can_init(&hcan1, &hcan2); HAL_GPIO_WritePin(DCDC_CTRL_GPIO_Port, DCDC_CTRL_Pin, GPIO_PIN_SET); HAL_Delay(100); tmp144_init(&huart1, &huart3); afe_init(&huart2); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ uint32_t main_loop_start = HAL_GetTick(); while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ update_status_leds(); fan_ctrl_update(); clock_sync_update(); // Only use communication interfaces (BQ UART, TMP144 UARTs, CAN) once the // clock is synchronized if (clock_sync_state == CLOCK_SYNC_NORMAL_OPERATION) { afe_measure(); tmp144_read_temps(); if (HAL_GetTick() - main_loop_start > ERROR_CHECK_START) { check_error_conditions(); } ams_can_send_heartbeat(); } delay_period(); } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } } /** * @brief CAN1 Initialization Function * @param None * @retval None */ static void MX_CAN1_Init(void) { /* USER CODE BEGIN CAN1_Init 0 */ /* USER CODE END CAN1_Init 0 */ /* USER CODE BEGIN CAN1_Init 1 */ /* USER CODE END CAN1_Init 1 */ hcan1.Instance = CAN1; hcan1.Init.Prescaler = 2; hcan1.Init.Mode = CAN_MODE_NORMAL; hcan1.Init.SyncJumpWidth = CAN_SJW_1TQ; hcan1.Init.TimeSeg1 = CAN_BS1_13TQ; hcan1.Init.TimeSeg2 = CAN_BS2_2TQ; hcan1.Init.TimeTriggeredMode = DISABLE; hcan1.Init.AutoBusOff = ENABLE; hcan1.Init.AutoWakeUp = DISABLE; hcan1.Init.AutoRetransmission = ENABLE; hcan1.Init.ReceiveFifoLocked = DISABLE; hcan1.Init.TransmitFifoPriority = DISABLE; if (HAL_CAN_Init(&hcan1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN CAN1_Init 2 */ /* USER CODE END CAN1_Init 2 */ } /** * @brief CAN2 Initialization Function * @param None * @retval None */ static void MX_CAN2_Init(void) { /* USER CODE BEGIN CAN2_Init 0 */ /* USER CODE END CAN2_Init 0 */ /* USER CODE BEGIN CAN2_Init 1 */ /* USER CODE END CAN2_Init 1 */ hcan2.Instance = CAN2; hcan2.Init.Prescaler = 2; hcan2.Init.Mode = CAN_MODE_NORMAL; hcan2.Init.SyncJumpWidth = CAN_SJW_1TQ; hcan2.Init.TimeSeg1 = CAN_BS1_13TQ; hcan2.Init.TimeSeg2 = CAN_BS2_2TQ; hcan2.Init.TimeTriggeredMode = DISABLE; hcan2.Init.AutoBusOff = ENABLE; hcan2.Init.AutoWakeUp = DISABLE; hcan2.Init.AutoRetransmission = ENABLE; hcan2.Init.ReceiveFifoLocked = DISABLE; hcan2.Init.TransmitFifoPriority = DISABLE; if (HAL_CAN_Init(&hcan2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN CAN2_Init 2 */ /* USER CODE END CAN2_Init 2 */ } /** * @brief I2C1 Initialization Function * @param None * @retval None */ static void MX_I2C1_Init(void) { /* USER CODE BEGIN I2C1_Init 0 */ /* USER CODE END I2C1_Init 0 */ /* USER CODE BEGIN I2C1_Init 1 */ /* USER CODE END I2C1_Init 1 */ hi2c1.Instance = I2C1; hi2c1.Init.ClockSpeed = 100000; hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2; hi2c1.Init.OwnAddress1 = 0; hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; hi2c1.Init.OwnAddress2 = 0; hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; if (HAL_I2C_Init(&hi2c1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN I2C1_Init 2 */ /* USER CODE END I2C1_Init 2 */ } /** * @brief TIM3 Initialization Function * @param None * @retval None */ static void MX_TIM3_Init(void) { /* USER CODE BEGIN TIM3_Init 0 */ /* USER CODE END TIM3_Init 0 */ TIM_MasterConfigTypeDef sMasterConfig = {0}; TIM_OC_InitTypeDef sConfigOC = {0}; /* USER CODE BEGIN TIM3_Init 1 */ /* USER CODE END TIM3_Init 1 */ htim3.Instance = TIM3; htim3.Init.Prescaler = 0; htim3.Init.CounterMode = TIM_COUNTERMODE_UP; htim3.Init.Period = 500; htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_PWM_Init(&htim3) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK) { Error_Handler(); } sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 0; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_4) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM3_Init 2 */ /* USER CODE END TIM3_Init 2 */ HAL_TIM_MspPostInit(&htim3); } /** * @brief USART1 Initialization Function * @param None * @retval None */ static void MX_USART1_UART_Init(void) { /* USER CODE BEGIN USART1_Init 0 */ /* USER CODE END USART1_Init 0 */ /* USER CODE BEGIN USART1_Init 1 */ /* USER CODE END USART1_Init 1 */ huart1.Instance = USART1; huart1.Init.BaudRate = 57600; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_8; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART1_Init 2 */ /* USER CODE END USART1_Init 2 */ } /** * @brief USART2 Initialization Function * @param None * @retval None */ static void MX_USART2_UART_Init(void) { /* USER CODE BEGIN USART2_Init 0 */ /* USER CODE END USART2_Init 0 */ /* USER CODE BEGIN USART2_Init 1 */ /* USER CODE END USART2_Init 1 */ huart2.Instance = USART2; huart2.Init.BaudRate = 250000; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART2_Init 2 */ /* USER CODE END USART2_Init 2 */ } /** * @brief USART3 Initialization Function * @param None * @retval None */ static void MX_USART3_UART_Init(void) { /* USER CODE BEGIN USART3_Init 0 */ /* USER CODE END USART3_Init 0 */ /* USER CODE BEGIN USART3_Init 1 */ /* USER CODE END USART3_Init 1 */ huart3.Instance = USART3; huart3.Init.BaudRate = 115200; huart3.Init.WordLength = UART_WORDLENGTH_8B; huart3.Init.StopBits = UART_STOPBITS_1; huart3.Init.Parity = UART_PARITY_NONE; huart3.Init.Mode = UART_MODE_TX_RX; huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart3.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart3) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART3_Init 2 */ /* USER CODE END USART3_Init 2 */ } /** * @brief USART6 Initialization Function * @param None * @retval None */ static void MX_USART6_UART_Init(void) { /* USER CODE BEGIN USART6_Init 0 */ /* USER CODE END USART6_Init 0 */ /* USER CODE BEGIN USART6_Init 1 */ /* USER CODE END USART6_Init 1 */ huart6.Instance = USART6; huart6.Init.BaudRate = 115200; huart6.Init.WordLength = UART_WORDLENGTH_8B; huart6.Init.StopBits = UART_STOPBITS_1; huart6.Init.Parity = UART_PARITY_NONE; huart6.Init.Mode = UART_MODE_TX_RX; huart6.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart6.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart6) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART6_Init 2 */ /* USER CODE END USART6_Init 2 */ } /** * Enable DMA controller clock */ static void MX_DMA_Init(void) { /* DMA controller clock enable */ __HAL_RCC_DMA2_CLK_ENABLE(); __HAL_RCC_DMA1_CLK_ENABLE(); /* DMA interrupt init */ /* DMA1_Stream1_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Stream1_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Stream1_IRQn); /* DMA2_Stream2_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA2_Stream2_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA2_Stream2_IRQn); } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin( GPIOC, STAT_LED1_Pin | STAT_LED2_Pin | STAT_LED3_Pin | STAT_LED4_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOB, DCDC_CTRL_Pin | BQ_Wakeup_Pin, GPIO_PIN_RESET); /*Configure GPIO pins : STAT_LED1_Pin STAT_LED2_Pin STAT_LED3_Pin * STAT_LED4_Pin */ GPIO_InitStruct.Pin = STAT_LED1_Pin | STAT_LED2_Pin | STAT_LED3_Pin | STAT_LED4_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); /*Configure GPIO pins : DCDC_CTRL_Pin BQ_Wakeup_Pin */ GPIO_InitStruct.Pin = DCDC_CTRL_Pin | BQ_Wakeup_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pin : BQ_FAULT_N_Pin */ GPIO_InitStruct.Pin = BQ_FAULT_N_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(BQ_FAULT_N_GPIO_Port, &GPIO_InitStruct); } /* USER CODE BEGIN 4 */ void HAL_UART_RxCpltCallback(UART_HandleTypeDef* handle) { if (handle == &huart1 || handle == &huart3) { tmp144_handle_rx_cplt(handle); } } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t* file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */