#include "BQ_Communication.h" #include UART_HandleTypeDef* bq_uart; DMA_HandleTypeDef* bq_dma; uint8_t numofcells = DEFAULTNUMOFCELLS; uint8_t numofdietemps = DEFAULTNUMOFDIETEMPS; const uint16_t crc16_table[256] = { 0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241, 0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440, 0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40, 0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841, 0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40, 0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41, 0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641, 0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040, 0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240, 0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441, 0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41, 0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840, 0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41, 0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40, 0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640, 0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041, 0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240, 0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441, 0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41, 0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840, 0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41, 0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40, 0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640, 0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041, 0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241, 0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440, 0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40, 0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841, 0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40, 0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41, 0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641, 0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040}; void init_BQCom(UART_HandleTypeDef* uarthandle) { bq_uart = uarthandle; } uint16_t Calculate_CRC(uint8_t* message_buffer, uint16_t bufferlength) { uint16_t wCRC = 0; if (bufferlength < 3) { return 0; } for (uint32_t i = 0; i < (bufferlength - 2); i++) { wCRC ^= (message_buffer[i]) & 0x00FF; wCRC = crc16_table[wCRC & 0x00FF] ^ (wCRC >> 8); } message_buffer[bufferlength - 1] = (wCRC >> 8) & 0xFF; // Upper CRC Byte is LSB of CRC message_buffer[bufferlength - 2] = (wCRC)&0xFF; // Lower CRC Byte is MSB of // CRC return 1; } uint16_t Check_CRC(uint8_t* message_buffer, uint16_t bufferlength) { uint16_t wCRC = 0; if (bufferlength < 3) { return 0; } for (uint32_t i = 0; i < bufferlength; i++) { wCRC ^= (message_buffer[i]) & 0x00FF; wCRC = crc16_table[wCRC & 0x00FF] ^ (wCRC >> 8); } message_buffer[bufferlength - 1] = (wCRC >> 8) & 0xFF; // Upper CRC Byte is LSB of CRC message_buffer[bufferlength - 2] = (wCRC)&0xFF; // Lower CRC Byte is MSB of // CRC if ((message_buffer[bufferlength - 1] == 0) && (message_buffer[bufferlength - 2] == 0)) { return 1; } else { return 0; } } uint32_t BQ_Write_Register(uint8_t registeraddress, uint8_t registersize, uint32_t data) { uint8_t message[registersize + 5]; message[0] = FRM_WRT_NR | (registersize & 0x07); message[1] = 0x00; message[2] = registeraddress; for (int i = 0; i < registersize; i++) { int shift_amount = 8 * (registersize - i - 1); message[3 + i] = (data >> shift_amount) & 0xFF; } Calculate_CRC(message, registersize + 5); BQ_UART_Transmit(message, registersize + 5); return 1; } uint8_t BQ_Read_Register(uint8_t registeraddress, uint8_t registersize, uint32_t* data) { uint8_t message[6] = {0}; message[0] = FRM_WRT_R; message[1] = 0; message[2] = registeraddress; // See BQ datasheet 7.5.3.1.2 message[3] = registersize - 1; Calculate_CRC(message, 6); BQ_UART_Transmit(message, 6); uint8_t recv_message[registersize + 3]; BQ_UART_Receive(recv_message, registersize + 3); uint16_t crccheck = Check_CRC(recv_message, registersize + 3); if (crccheck == 0) { return 0; } // See Response Frame Init in BQ datasheet 7.5.1.1 uint8_t response_size = (recv_message[0] & 0x7F) + 1; if (response_size != registersize) { return 0; } data[0] = 0; if (registersize > 4) registersize = 4; // Data is returned big-endian as per 7.5.3.1.2.1 for (int n = 0; n < registersize; n++) { int shift_amount = 8 * (registersize - n - 1); data[0] |= recv_message[1 + n] << shift_amount; } return 1; } BQ_Comm_Status BQ_ReadMeasurements(uint8_t* buffer, uint8_t bufferlength) { uint8_t message[6] = {}; message[0] = FRM_WRT_R; message[1] = 0x00; message[2] = 0x02; message[3] = 0x00; Calculate_CRC(message, 6); BQ_UART_Transmit(message, 6); uint16_t recv_len = 2 * (numofcells + numofdietemps) + 3; uint8_t recv_buf[recv_len]; uint8_t uartstat = BQ_UART_Receive(recv_buf, recv_len); if (uartstat != HAL_OK) { return BQ_COMM_ERR_HAL; } else if (Check_CRC(recv_buf, recv_len) == 0) { return BQ_COMM_ERR_CRC; } if (bufferlength <= 2 * (numofcells + numofdietemps)) { memcpy(buffer, &recv_buf[1], bufferlength); } return BQ_COMM_OK; } uint8_t BQ_UART_Transmit(uint8_t* message_buffer, uint16_t bufferlength) { HAL_StatusTypeDef uartstate = HAL_UART_Transmit(bq_uart, message_buffer, bufferlength, BQUARTTIMEOUT); return (uint8_t)uartstate; } uint8_t BQ_UART_Receive(uint8_t* message_buffer, uint16_t bufferlength) { HAL_StatusTypeDef uartstate = HAL_UART_Receive(bq_uart, message_buffer, bufferlength, BQUARTTIMEOUT); return (uint8_t)uartstate; }