/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2025 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "ADBMS_Driver.h"
#include "config_ADBMS6830.h"
#include "swo_log.h"
#include <string.h>
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

SPI_HandleTypeDef hspi1;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MPU_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint32_t volatile logging_mask = 0b11111; // no LOG_LEVEL_NOISY
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{

  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MPU Configuration--------------------------------------------------------*/
  MPU_Config();

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_SPI1_Init();
  /* USER CODE BEGIN 2 */
  debug_clear_console();
  debug_log(LOG_LEVEL_INFO, "AMS_Master on %s (%s), compiled at %s", COMMIT_BRANCH, COMMIT_HASH, COMPILE_DATE);
  debug_log(LOG_LEVEL_INFO, "Starting BMS...");
  int status = -1;
  while (status != ADBMS_NO_ERROR) {
    status = AMS_Init(&hspi1).status;
    if (status != ADBMS_NO_ERROR) {
      debug_log(LOG_LEVEL_ERROR, "Failed to initialize BMS, AMS_Init returned %d", status);
      HAL_Delay(2000);
    }
  }
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  int count = 0;
  while (1)
  {
    status = AMS_Idle_Loop().status;
    if (status != ADBMS_NO_ERROR) {
      debug_log(LOG_LEVEL_ERROR, "AMS_Idle_Loop returned %d", status);
      HAL_Delay(2000);
      AMS_Init(&hspi1);
      continue;
    }
    if (count % 4 == 0) {
      for (size_t i = 0; i < N_BMS; i++) {
        debug_log(LOG_LEVEL_INFO, "Module %d status:", i);
        
        // Print cell voltages in 4x4 format
        debug_log(LOG_LEVEL_INFO, "  Cell voltages (mV):");
        debug_log(LOG_LEVEL_INFO, "    C0: %4d  C1: %4d  C2: %4d  C3: %4d",
                  modules[i].cellVoltages[0], modules[i].cellVoltages[1], 
                  modules[i].cellVoltages[2], modules[i].cellVoltages[3]);
        debug_log(LOG_LEVEL_INFO, "    C4: %4d  C5: %4d  C6: %4d  C7: %4d",
                  modules[i].cellVoltages[4], modules[i].cellVoltages[5],
                  modules[i].cellVoltages[6], modules[i].cellVoltages[7]);
        debug_log(LOG_LEVEL_INFO, "    C8: %4d  C9: %4d  C10: %4d  C11: %4d",
                  modules[i].cellVoltages[8], modules[i].cellVoltages[9],
                  modules[i].cellVoltages[10], modules[i].cellVoltages[11]);
        debug_log(LOG_LEVEL_INFO, "    C12: %4d  C13: %4d  C14: %4d  C15: %4d",
                  modules[i].cellVoltages[12], modules[i].cellVoltages[13],
                  modules[i].cellVoltages[14], modules[i].cellVoltages[15]);
        
        // Print GPIO values
        debug_log(LOG_LEVEL_INFO, "  GPIO values:");
        debug_log(LOG_LEVEL_INFO, "    G0: %4d  G1: %4d  G2: %4d  G3: %4d  G4: %4d",
                  modules[i].GPIO_Values[0], modules[i].GPIO_Values[1], 
                  modules[i].GPIO_Values[2], modules[i].GPIO_Values[3],
                  modules[i].GPIO_Values[4]);
        debug_log(LOG_LEVEL_INFO, "    G5: %4d  G6: %4d  G7: %4d  G8: %4d  G9: %4d",
                  modules[i].GPIO_Values[5], modules[i].GPIO_Values[6],
                  modules[i].GPIO_Values[7], modules[i].GPIO_Values[8],
                  modules[i].GPIO_Values[9]);
        
        debug_log(LOG_LEVEL_INFO, "  Internal temp: %d, VAnalog: %d, VDigital: %d, VRef: %d", 
                  modules[i].internalDieTemp, modules[i].analogSupplyVoltage,
                  modules[i].digitalSupplyVoltage, modules[i].refVoltage);
        
        // Print error flags if any are set
        bool hasFlags = false;
        char flagBuffer[128] = "";
        char *bufPos = flagBuffer;
        
        if (modules[i].status.CS_FLT) {
            bufPos = stpcpy(bufPos, "CS_FLT ");
            hasFlags = true;
        }
        if (modules[i].status.SMED) {
            bufPos = stpcpy(bufPos, "SMED ");
            hasFlags = true;
        }
        if (modules[i].status.SED) {
            bufPos = stpcpy(bufPos, "SED ");
            hasFlags = true;
        }
        if (modules[i].status.CMED) {
            bufPos = stpcpy(bufPos, "CMED ");
            hasFlags = true;
        }
        if (modules[i].status.CED) {
            bufPos = stpcpy(bufPos, "CED ");
            hasFlags = true;
        }
        if (modules[i].status.VD_UV) {
            bufPos = stpcpy(bufPos, "VD_UV ");
            hasFlags = true;
        }
        if (modules[i].status.VD_OV) {
            bufPos = stpcpy(bufPos, "VD_OV ");
            hasFlags = true;
        }
        if (modules[i].status.VA_UV) {
            bufPos = stpcpy(bufPos, "VA_UV ");
            hasFlags = true;
        }
        if (modules[i].status.VA_OV) {
            bufPos = stpcpy(bufPos, "VA_OV ");
            hasFlags = true;
        }
        if (modules[i].status.THSD) {
            bufPos = stpcpy(bufPos, "THSD ");
            hasFlags = true;
        }
        if (modules[i].status.SLEEP) {
            bufPos = stpcpy(bufPos, "SLEEP ");
            hasFlags = true;
        }
        if (modules[i].status.SPIFLT) {
            bufPos = stpcpy(bufPos, "SPIFLT ");
            hasFlags = true;
        }
        if (modules[i].status.COMPARE) {
            bufPos = stpcpy(bufPos, "COMPARE ");
            hasFlags = true;
        }
        if (modules[i].status.VDE) {
            bufPos = stpcpy(bufPos, "VDE ");
            hasFlags = true;
        }
        if (modules[i].status.VDEL) {
            bufPos = stpcpy(bufPos, "VDEL ");
            hasFlags = true;
        }
        
        debug_log(LOG_LEVEL_INFO, "  Status flags: %s", hasFlags ? flagBuffer : "[none]");
        
        debug_log(LOG_LEVEL_INFO, "  Conversion counter: %d", modules[i].status.CCTS);

        // Check for over/under voltage
        if (modules[i].overVoltage || modules[i].underVoltage) {
          debug_log(LOG_LEVEL_WARNING, "  Module %d voltage issues - OV: 0x%08lX, UV: 0x%08lX", 
                    i, modules[i].overVoltage, modules[i].underVoltage);
        }
        
        debug_log(LOG_LEVEL_INFO, "  ---------------");
      }
    }
    HAL_Delay(100);
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
    count++;
    count &= 0b1111; // wrap around at 16
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /*AXI clock gating */
  RCC->CKGAENR = 0xFFFFFFFF;

  /** Supply configuration update enable
  */
  HAL_PWREx_ConfigSupply(PWR_DIRECT_SMPS_SUPPLY);

  /** Configure the main internal regulator output voltage
  */
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE0);

  while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {}

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_DIV1;
  RCC_OscInitStruct.HSICalibrationValue = 64;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLM = 4;
  RCC_OscInitStruct.PLL.PLLN = 8;
  RCC_OscInitStruct.PLL.PLLP = 2;
  RCC_OscInitStruct.PLL.PLLQ = 4;
  RCC_OscInitStruct.PLL.PLLR = 2;
  RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_3;
  RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE;
  RCC_OscInitStruct.PLL.PLLFRACN = 0;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
                              |RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV1;
  RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief SPI1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_SPI1_Init(void)
{

  /* USER CODE BEGIN SPI1_Init 0 */

  /* USER CODE END SPI1_Init 0 */

  /* USER CODE BEGIN SPI1_Init 1 */

  /* USER CODE END SPI1_Init 1 */
  /* SPI1 parameter configuration*/
  hspi1.Instance = SPI1;
  hspi1.Init.Mode = SPI_MODE_MASTER;
  hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
  hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
  hspi1.Init.NSS = SPI_NSS_SOFT;
  hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
  hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  hspi1.Init.CRCPolynomial = 0x0;
  hspi1.Init.NSSPMode = SPI_NSS_PULSE_ENABLE;
  hspi1.Init.NSSPolarity = SPI_NSS_POLARITY_LOW;
  hspi1.Init.FifoThreshold = SPI_FIFO_THRESHOLD_01DATA;
  hspi1.Init.TxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
  hspi1.Init.RxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
  hspi1.Init.MasterSSIdleness = SPI_MASTER_SS_IDLENESS_00CYCLE;
  hspi1.Init.MasterInterDataIdleness = SPI_MASTER_INTERDATA_IDLENESS_00CYCLE;
  hspi1.Init.MasterReceiverAutoSusp = SPI_MASTER_RX_AUTOSUSP_DISABLE;
  hspi1.Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_DISABLE;
  hspi1.Init.IOSwap = SPI_IO_SWAP_DISABLE;
  if (HAL_SPI_Init(&hspi1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN SPI1_Init 2 */

  /* USER CODE END SPI1_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();
  __HAL_RCC_GPIOD_CLK_ENABLE();
  __HAL_RCC_GPIOE_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(AMS_CS_GPIO_Port, AMS_CS_Pin, GPIO_PIN_RESET);

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOB, LD1_Pin|LD3_Pin, GPIO_PIN_RESET);

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET);

  /*Configure GPIO pin : B1_Pin */
  GPIO_InitStruct.Pin = B1_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);

  /*Configure GPIO pin : AMS_CS_Pin */
  GPIO_InitStruct.Pin = AMS_CS_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(AMS_CS_GPIO_Port, &GPIO_InitStruct);

  /*Configure GPIO pins : LD1_Pin LD3_Pin */
  GPIO_InitStruct.Pin = LD1_Pin|LD3_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

  /*Configure GPIO pins : STLINK_RX_Pin STLINK_TX_Pin */
  GPIO_InitStruct.Pin = STLINK_RX_Pin|STLINK_TX_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  GPIO_InitStruct.Alternate = GPIO_AF7_USART3;
  HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);

  /*Configure GPIO pin : LD2_Pin */
  GPIO_InitStruct.Pin = LD2_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(LD2_GPIO_Port, &GPIO_InitStruct);

/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

 /* MPU Configuration */

void MPU_Config(void)
{
  MPU_Region_InitTypeDef MPU_InitStruct = {0};

  /* Disables the MPU */
  HAL_MPU_Disable();

  /** Initializes and configures the Region and the memory to be protected
  */
  MPU_InitStruct.Enable = MPU_REGION_ENABLE;
  MPU_InitStruct.Number = MPU_REGION_NUMBER0;
  MPU_InitStruct.BaseAddress = 0x0;
  MPU_InitStruct.Size = MPU_REGION_SIZE_4GB;
  MPU_InitStruct.SubRegionDisable = 0x87;
  MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
  MPU_InitStruct.AccessPermission = MPU_REGION_NO_ACCESS;
  MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_DISABLE;
  MPU_InitStruct.IsShareable = MPU_ACCESS_SHAREABLE;
  MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE;
  MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE;

  HAL_MPU_ConfigRegion(&MPU_InitStruct);
  /* Enables the MPU */
  HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT);

}

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */