/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "ADBMS_Driver.h" #include "config_ADBMS6830.h" #include "swo_log.h" #include /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ SPI_HandleTypeDef hspi1; /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MPU_Config(void); static void MX_GPIO_Init(void); static void MX_SPI1_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ uint32_t volatile logging_mask = 0b11111; // no LOG_LEVEL_NOISY /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MPU Configuration--------------------------------------------------------*/ MPU_Config(); /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_SPI1_Init(); /* USER CODE BEGIN 2 */ debug_clear_console(); debug_log(LOG_LEVEL_INFO, "AMS_Master on %s (%s), compiled at %s", COMMIT_BRANCH, COMMIT_HASH, COMPILE_DATE); debug_log(LOG_LEVEL_INFO, "Starting BMS..."); ADBMS_DetailedStatus status = {}; while (status.status != ADBMS_NO_ERROR) { status = AMS_Init(&hspi1); if (status.status != ADBMS_NO_ERROR) { debug_log(LOG_LEVEL_ERROR, "Failed to initialize BMS, AMS_Init returned %u (%s) on BMS %d", status.status, ADBMS_Status_ToString(status.status), status.bms_id); HAL_Delay(2000); } } /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ int count = 0; while (1) { status = AMS_Idle_Loop(); if (status.status != ADBMS_NO_ERROR) { debug_log(LOG_LEVEL_ERROR, "AMS_Idle_Loop returned %u (%s) on BMS %d", status.status, ADBMS_Status_ToString(status.status), status.bms_id); HAL_Delay(2000); AMS_Init(&hspi1); continue; } if (count % 4 == 0) { for (size_t i = 0; i < N_BMS; i++) { debug_log(LOG_LEVEL_INFO, "Module %d status:", i); // Print cell voltages in 4x4 format debug_log(LOG_LEVEL_INFO, " Cell voltages (mV):"); debug_log(LOG_LEVEL_INFO, " C0: %4d C1: %4d C2: %4d C3: %4d", modules[i].cellVoltages[0], modules[i].cellVoltages[1], modules[i].cellVoltages[2], modules[i].cellVoltages[3]); debug_log(LOG_LEVEL_INFO, " C4: %4d C5: %4d C6: %4d C7: %4d", modules[i].cellVoltages[4], modules[i].cellVoltages[5], modules[i].cellVoltages[6], modules[i].cellVoltages[7]); debug_log(LOG_LEVEL_INFO, " C8: %4d C9: %4d C10: %4d C11: %4d", modules[i].cellVoltages[8], modules[i].cellVoltages[9], modules[i].cellVoltages[10], modules[i].cellVoltages[11]); debug_log(LOG_LEVEL_INFO, " C12: %4d C13: %4d C14: %4d C15: %4d", modules[i].cellVoltages[12], modules[i].cellVoltages[13], modules[i].cellVoltages[14], modules[i].cellVoltages[15]); // Print GPIO values debug_log(LOG_LEVEL_INFO, " GPIO values:"); debug_log(LOG_LEVEL_INFO, " G0: %4d G1: %4d G2: %4d G3: %4d G4: %4d", modules[i].GPIO_Values[0], modules[i].GPIO_Values[1], modules[i].GPIO_Values[2], modules[i].GPIO_Values[3], modules[i].GPIO_Values[4]); debug_log(LOG_LEVEL_INFO, " G5: %4d G6: %4d G7: %4d G8: %4d G9: %4d", modules[i].GPIO_Values[5], modules[i].GPIO_Values[6], modules[i].GPIO_Values[7], modules[i].GPIO_Values[8], modules[i].GPIO_Values[9]); debug_log(LOG_LEVEL_INFO, " Internal temp: %d, VAnalog: %d, VDigital: %d, VRef: %d", modules[i].internalDieTemp, modules[i].analogSupplyVoltage, modules[i].digitalSupplyVoltage, modules[i].refVoltage); // Print error flags if any are set bool hasFlags = false; char flagBuffer[128] = ""; char *bufPos = flagBuffer; if (modules[i].status.CS_FLT) { bufPos = stpcpy(bufPos, "CS_FLT "); hasFlags = true; } if (modules[i].status.SMED) { bufPos = stpcpy(bufPos, "SMED "); hasFlags = true; } if (modules[i].status.SED) { bufPos = stpcpy(bufPos, "SED "); hasFlags = true; } if (modules[i].status.CMED) { bufPos = stpcpy(bufPos, "CMED "); hasFlags = true; } if (modules[i].status.CED) { bufPos = stpcpy(bufPos, "CED "); hasFlags = true; } if (modules[i].status.VD_UV) { bufPos = stpcpy(bufPos, "VD_UV "); hasFlags = true; } if (modules[i].status.VD_OV) { bufPos = stpcpy(bufPos, "VD_OV "); hasFlags = true; } if (modules[i].status.VA_UV) { bufPos = stpcpy(bufPos, "VA_UV "); hasFlags = true; } if (modules[i].status.VA_OV) { bufPos = stpcpy(bufPos, "VA_OV "); hasFlags = true; } if (modules[i].status.THSD) { bufPos = stpcpy(bufPos, "THSD "); hasFlags = true; } if (modules[i].status.SLEEP) { bufPos = stpcpy(bufPos, "SLEEP "); hasFlags = true; } if (modules[i].status.SPIFLT) { bufPos = stpcpy(bufPos, "SPIFLT "); hasFlags = true; } if (modules[i].status.COMPARE) { bufPos = stpcpy(bufPos, "COMPARE "); hasFlags = true; } if (modules[i].status.VDE) { bufPos = stpcpy(bufPos, "VDE "); hasFlags = true; } if (modules[i].status.VDEL) { bufPos = stpcpy(bufPos, "VDEL "); hasFlags = true; } debug_log(LOG_LEVEL_INFO, " Status flags: %s", hasFlags ? flagBuffer : "[none]"); debug_log(LOG_LEVEL_INFO, " Conversion counter: %d", modules[i].status.CCTS); // Check for over/under voltage if (modules[i].overVoltage || modules[i].underVoltage) { debug_log(LOG_LEVEL_WARNING, " Module %d voltage issues - OV: 0x%08lX, UV: 0x%08lX", i, modules[i].overVoltage, modules[i].underVoltage); } debug_log(LOG_LEVEL_INFO, " ---------------"); } } HAL_Delay(100); /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ count++; count &= 0b1111; // wrap around at 16 } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /*AXI clock gating */ RCC->CKGAENR = 0xFFFFFFFF; /** Supply configuration update enable */ HAL_PWREx_ConfigSupply(PWR_DIRECT_SMPS_SUPPLY); /** Configure the main internal regulator output voltage */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE0); while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {} /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_DIV1; RCC_OscInitStruct.HSICalibrationValue = 64; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = 4; RCC_OscInitStruct.PLL.PLLN = 8; RCC_OscInitStruct.PLL.PLLP = 2; RCC_OscInitStruct.PLL.PLLQ = 4; RCC_OscInitStruct.PLL.PLLR = 2; RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_3; RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE; RCC_OscInitStruct.PLL.PLLFRACN = 0; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2 |RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV1; RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) { Error_Handler(); } } /** * @brief SPI1 Initialization Function * @param None * @retval None */ static void MX_SPI1_Init(void) { /* USER CODE BEGIN SPI1_Init 0 */ /* USER CODE END SPI1_Init 0 */ /* USER CODE BEGIN SPI1_Init 1 */ /* USER CODE END SPI1_Init 1 */ /* SPI1 parameter configuration*/ hspi1.Instance = SPI1; hspi1.Init.Mode = SPI_MODE_MASTER; hspi1.Init.Direction = SPI_DIRECTION_2LINES; hspi1.Init.DataSize = SPI_DATASIZE_8BIT; hspi1.Init.CLKPolarity = SPI_POLARITY_LOW; hspi1.Init.CLKPhase = SPI_PHASE_1EDGE; hspi1.Init.NSS = SPI_NSS_SOFT; hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64; hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB; hspi1.Init.TIMode = SPI_TIMODE_DISABLE; hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; hspi1.Init.CRCPolynomial = 0x0; hspi1.Init.NSSPMode = SPI_NSS_PULSE_ENABLE; hspi1.Init.NSSPolarity = SPI_NSS_POLARITY_LOW; hspi1.Init.FifoThreshold = SPI_FIFO_THRESHOLD_01DATA; hspi1.Init.TxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN; hspi1.Init.RxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN; hspi1.Init.MasterSSIdleness = SPI_MASTER_SS_IDLENESS_00CYCLE; hspi1.Init.MasterInterDataIdleness = SPI_MASTER_INTERDATA_IDLENESS_00CYCLE; hspi1.Init.MasterReceiverAutoSusp = SPI_MASTER_RX_AUTOSUSP_DISABLE; hspi1.Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_DISABLE; hspi1.Init.IOSwap = SPI_IO_SWAP_DISABLE; if (HAL_SPI_Init(&hspi1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN SPI1_Init 2 */ /* USER CODE END SPI1_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* USER CODE BEGIN MX_GPIO_Init_1 */ /* USER CODE END MX_GPIO_Init_1 */ /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOH_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE(); __HAL_RCC_GPIOE_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(AMS_CS_GPIO_Port, AMS_CS_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOB, LD1_Pin|LD3_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET); /*Configure GPIO pin : B1_Pin */ GPIO_InitStruct.Pin = B1_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pin : AMS_CS_Pin */ GPIO_InitStruct.Pin = AMS_CS_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(AMS_CS_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pins : LD1_Pin LD3_Pin */ GPIO_InitStruct.Pin = LD1_Pin|LD3_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pins : STLINK_RX_Pin STLINK_TX_Pin */ GPIO_InitStruct.Pin = STLINK_RX_Pin|STLINK_TX_Pin; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Alternate = GPIO_AF7_USART3; HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); /*Configure GPIO pin : LD2_Pin */ GPIO_InitStruct.Pin = LD2_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(LD2_GPIO_Port, &GPIO_InitStruct); /* USER CODE BEGIN MX_GPIO_Init_2 */ /* USER CODE END MX_GPIO_Init_2 */ } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /* MPU Configuration */ void MPU_Config(void) { MPU_Region_InitTypeDef MPU_InitStruct = {0}; /* Disables the MPU */ HAL_MPU_Disable(); /** Initializes and configures the Region and the memory to be protected */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER0; MPU_InitStruct.BaseAddress = 0x0; MPU_InitStruct.Size = MPU_REGION_SIZE_4GB; MPU_InitStruct.SubRegionDisable = 0x87; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.AccessPermission = MPU_REGION_NO_ACCESS; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_DISABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_SHAREABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE; MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* Enables the MPU */ HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT); } /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */