Compare commits
2 Commits
3f8e1290fa
...
468ba1d7e7
Author | SHA1 | Date | |
---|---|---|---|
468ba1d7e7 | |||
f910f899a4 |
@ -14,7 +14,7 @@
|
||||
#define VREF 3000.0f // 3V
|
||||
#define TEMP_CONV 100.0f // 655.35°C max
|
||||
#define CELSIUS_TO_KELVIN 273.15f
|
||||
#define CELSIUS_TO_KELVIN_SCALED CELSIUS_TO_KELVIN * TEMP_CONV
|
||||
#define CELSIUS_TO_KELVIN_SCALED (CELSIUS_TO_KELVIN * TEMP_CONV)
|
||||
|
||||
// More efficient (?) calc using:
|
||||
// R_T = R_Pullup / (V_REF / ADC - 1)
|
||||
@ -24,7 +24,8 @@
|
||||
[[gnu::optimize("fast-math")]]
|
||||
static inline uint16_t ntc_mv_to_celsius(int16_t adc) {
|
||||
const float log_ohms = logf(1 / ((VREF / adc) - 1));
|
||||
return (uint16_t) (TEMP_CONV / (NTC_A1 + NTC_B1 * log_ohms + NTC_C1 * log_ohms * log_ohms + NTC_D1 * log_ohms * log_ohms * log_ohms) - CELSIUS_TO_KELVIN_SCALED);
|
||||
return (uint16_t)(TEMP_CONV / (NTC_A1 + NTC_B1 * log_ohms + NTC_C1 * log_ohms * log_ohms +
|
||||
NTC_D1 * log_ohms * log_ohms * log_ohms) - CELSIUS_TO_KELVIN_SCALED);
|
||||
}
|
||||
#else
|
||||
// Lookup Table coming soon; not really needed but fun?
|
||||
|
@ -12,7 +12,7 @@
|
||||
#define CAN_ID_SLAVE_STATUS_BASE 0x080
|
||||
#define CAN_ID_AMS_SIGNALS 0x090
|
||||
|
||||
//TEMPORARY!!
|
||||
// TEMPORARY!!
|
||||
#define CAN_ID_AMS_DETAILS 0x091
|
||||
#define CAN_ID_AMS_DETAILS_FC 0x092
|
||||
|
||||
|
@ -22,7 +22,7 @@
|
||||
#define __STM32H7xx_IT_H
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* Private includes ----------------------------------------------------------*/
|
||||
|
@ -3,8 +3,8 @@
|
||||
|
||||
#include "stm32h7xx_hal.h"
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
|
||||
// Minimum vehicle side voltage to exit precharge
|
||||
#define MIN_VEHICLE_SIDE_VOLTAGE 150000 // mV
|
||||
@ -22,15 +22,7 @@
|
||||
// Time to wait between closing relays
|
||||
#define RELAY_CLOSE_WAIT 10 // ms
|
||||
|
||||
typedef enum {
|
||||
TS_INACTIVE,
|
||||
TS_ACTIVE,
|
||||
TS_PRECHARGE,
|
||||
TS_DISCHARGE,
|
||||
TS_ERROR,
|
||||
TS_CHARGING_CHECK,
|
||||
TS_CHARGING
|
||||
} TSState;
|
||||
typedef enum { TS_INACTIVE, TS_ACTIVE, TS_PRECHARGE, TS_DISCHARGE, TS_ERROR, TS_CHARGING_CHECK, TS_CHARGING } TSState;
|
||||
|
||||
static inline const char *TSStateToString(TSState state) {
|
||||
switch (state) {
|
||||
@ -62,10 +54,7 @@ typedef enum {
|
||||
TS_ERRORKIND_SHUNT_OVERTEMP = 0x05
|
||||
} TSErrorKind;
|
||||
|
||||
typedef enum {
|
||||
TS_ERROR_SOURCE_SHUNT = (1 << 0),
|
||||
TS_ERROR_SOURCE_SLAVES = (1 << 1)
|
||||
} TSErrorSource;
|
||||
typedef enum { TS_ERROR_SOURCE_SHUNT = (1 << 0), TS_ERROR_SOURCE_SLAVES = (1 << 1) } TSErrorSource;
|
||||
|
||||
typedef struct {
|
||||
TSState current_state;
|
||||
|
@ -27,7 +27,7 @@ ADBMS_Internal_Status amsStopBalancing();
|
||||
|
||||
ADBMS_Internal_Status amsSelfTest();
|
||||
|
||||
ADBMS_Internal_Status amsConfigOverUnderVoltage(uint16_t overVoltage, uint16_t underVoltage); //arguments in mV
|
||||
ADBMS_Internal_Status amsConfigOverUnderVoltage(uint16_t overVoltage, uint16_t underVoltage); // arguments in mV
|
||||
|
||||
ADBMS_Internal_Status amsCheckUnderOverVoltage(BMS_Chip (*module)[N_BMS]);
|
||||
|
||||
|
@ -66,11 +66,10 @@
|
||||
#define PLADC 0x0718 // Poll ADC Conversion Status
|
||||
#define PLAUX 0x071E // Poll AUX Conversion Status
|
||||
|
||||
#define SRST 0x0027 //Soft reset
|
||||
#define SRST 0x0027 // Soft reset
|
||||
|
||||
#define DIAGN 0x0715 // Diagnos MUX and Poll Status
|
||||
|
||||
|
||||
#define WRCOMM 0x0721 // Write COMM Register Group
|
||||
#define RDCOMM 0x0722 // Read COMM Register Group
|
||||
#define STCOMM 0x0723 // Start I2C/SPI Communication
|
||||
@ -91,8 +90,6 @@
|
||||
|
||||
#define RDSID 0x002C // Read Serial ID
|
||||
|
||||
|
||||
|
||||
/* GPIO Selection for ADC Converion
|
||||
* 000: GPIO1 to 5, 2nd Reference, GPIO 6 to 9
|
||||
* 001: GPIO1 and GPIO6
|
||||
|
@ -19,8 +19,7 @@ typedef enum : uint16_t {
|
||||
NUM_ERROR_KINDS
|
||||
} ADBMS_Status;
|
||||
|
||||
static const char* ADBMS_Status_Names[NUM_ERROR_KINDS] = {
|
||||
"ADBMS_NO_ERROR",
|
||||
static const char *ADBMS_Status_Names[NUM_ERROR_KINDS] = {"ADBMS_NO_ERROR",
|
||||
"ADBMS_OVERTEMP",
|
||||
"ADBMS_UNDERTEMP",
|
||||
"ADBMS_OVERVOLT",
|
||||
@ -29,8 +28,7 @@ static const char* ADBMS_Status_Names[NUM_ERROR_KINDS] = {
|
||||
"ADBMS_INTERNAL_BMS_TIMEOUT",
|
||||
"ADBMS_INTERNAL_BMS_CHECKSUM_FAIL",
|
||||
"ADBMS_INTERNAL_BMS_OVERTEMP",
|
||||
"ADBMS_INTERNAL_BMS_FAULT"
|
||||
};
|
||||
"ADBMS_INTERNAL_BMS_FAULT"};
|
||||
|
||||
static inline const char* ADBMS_Status_ToString(ADBMS_Status status) {
|
||||
return (status < NUM_ERROR_KINDS) ? ADBMS_Status_Names[status] : "UNKNOWN";
|
||||
|
@ -13,6 +13,16 @@ typedef enum {
|
||||
ADBMS_TIMEOUT,
|
||||
} ADBMS_Internal_Status;
|
||||
|
||||
#define CRITICAL_SECTION_VAR(counter) bool primask_##counter = (__get_PRIMASK() == 0)
|
||||
#define CRITICAL_SECTION_ENTER(counter) do { __disable_irq(); } while(0)
|
||||
#define CRITICAL_SECTION_EXIT(counter) ({do { if (primask_##counter) __enable_irq(); } while(0);})
|
||||
|
||||
#define CRITICAL_SECTION() \
|
||||
CRITICAL_SECTION_VAR(__COUNTER__); \
|
||||
asm volatile ("dmb"); \
|
||||
CRITICAL_SECTION_ENTER(__COUNTER__); \
|
||||
for(int _cs_flag_##__COUNTER__ = 1; _cs_flag_##__COUNTER__; _cs_flag_##__COUNTER__ = 0, CRITICAL_SECTION_EXIT(__COUNTER__))
|
||||
|
||||
[[maybe_unused, gnu::always_inline]]
|
||||
static inline void mcuAdbmsCSLow() {
|
||||
HAL_GPIO_WritePin(AMS_CS_GPIO_Port, AMS_CS_Pin, GPIO_PIN_RESET);
|
||||
@ -29,20 +39,32 @@ static inline void mcuAdbmsCSHigh() {
|
||||
|
||||
[[maybe_unused, gnu::always_inline, gnu::access(read_only, 2, 3), gnu::nonnull(1)]]
|
||||
static inline ADBMS_Internal_Status mcuSPITransmit(USER_PTR_TYPE user_ptr, const uint8_t* buffer, uint8_t buffersize, uint32_t timeout) {
|
||||
ADBMS_Internal_Status adbms_status;
|
||||
CRITICAL_SECTION() {
|
||||
const HAL_StatusTypeDef status = HAL_SPI_Transmit(user_ptr, buffer, buffersize, timeout);
|
||||
return (status == HAL_OK) ? ADBMS_OK : ADBMS_ERROR;
|
||||
adbms_status = (status == HAL_OK) ? ADBMS_OK : ADBMS_ERROR;
|
||||
}
|
||||
return adbms_status;
|
||||
}
|
||||
|
||||
[[maybe_unused, gnu::always_inline, gnu::access(read_write, 2, 3), gnu::nonnull(1)]]
|
||||
static inline ADBMS_Internal_Status mcuSPIReceive(USER_PTR_TYPE user_ptr, uint8_t* buffer, uint8_t buffersize, uint32_t timeout) {
|
||||
ADBMS_Internal_Status adbms_status;
|
||||
CRITICAL_SECTION() {
|
||||
const HAL_StatusTypeDef status = HAL_SPI_Receive(user_ptr, buffer, buffersize, timeout);
|
||||
return (status == HAL_OK) ? ADBMS_OK : ADBMS_ERROR;
|
||||
adbms_status = (status == HAL_OK) ? ADBMS_OK : ADBMS_ERROR;
|
||||
}
|
||||
return adbms_status;
|
||||
}
|
||||
|
||||
[[maybe_unused, gnu::always_inline, gnu::access(read_write, 2, 4), gnu::access(read_only, 3, 4), gnu::nonnull(1, 2)]]
|
||||
static inline ADBMS_Internal_Status mcuSPITransmitReceive(USER_PTR_TYPE user_ptr, uint8_t* rxbuffer, const uint8_t* txbuffer, uint8_t buffersize, uint32_t timeout) {
|
||||
ADBMS_Internal_Status adbms_status;
|
||||
CRITICAL_SECTION() {
|
||||
const HAL_StatusTypeDef status = HAL_SPI_TransmitReceive(user_ptr, txbuffer, rxbuffer, buffersize, timeout);
|
||||
return (status == HAL_OK) ? ADBMS_OK : ADBMS_ERROR;
|
||||
adbms_status = (status == HAL_OK) ? ADBMS_OK : ADBMS_ERROR;
|
||||
}
|
||||
return adbms_status;
|
||||
}
|
||||
|
||||
// Delay by `delay` milliseconds
|
||||
|
@ -1,12 +1,12 @@
|
||||
#ifndef ADBMS_LL_DRIVER_H_
|
||||
#define ADBMS_LL_DRIVER_H_
|
||||
|
||||
#include "config_ADBMS6830.h"
|
||||
#include "ADBMS_Intern.h"
|
||||
#include "config_ADBMS6830.h"
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
//2 command + 2 PEC + (data + 2 DPEC) per BMS
|
||||
// 2 command + 2 PEC + (data + 2 DPEC) per BMS
|
||||
#define CMD_BUFFER_SIZE(datalen) (4 + (N_BMS * ((datalen) + 2)))
|
||||
|
||||
#define BUFFER_BMS_OFFSET(bms, datalen) (4 + ((bms) * ((datalen) + 2)))
|
||||
@ -14,30 +14,28 @@
|
||||
#define CMD_EMPTY_BUFFER ((uint8_t[CMD_BUFFER_SIZE(0)]){0})
|
||||
#define CMD_EMPTY_BUFFER_SIZE CMD_BUFFER_SIZE(0)
|
||||
|
||||
ADBMS_Internal_Status ___writeCMD(uint16_t command, uint8_t * args, size_t arglen);
|
||||
ADBMS_Internal_Status ___writeCMD(uint16_t command, uint8_t *args, size_t arglen);
|
||||
|
||||
[[gnu::access(read_write, 2, 4), gnu::nonnull(2), gnu::always_inline]] //add dummy size variable for bounds checking, should be optimized out
|
||||
static inline ADBMS_Internal_Status __writeCMD(uint16_t command, uint8_t * args, size_t arglen, size_t) {
|
||||
[[gnu::access(read_write, 2, 4), gnu::nonnull(2), gnu::always_inline]] // add dummy size variable for bounds checking, should be optimized out
|
||||
static inline ADBMS_Internal_Status __writeCMD(uint16_t command, uint8_t *args, size_t arglen, size_t) {
|
||||
return ___writeCMD(command, args, arglen);
|
||||
}
|
||||
|
||||
#define writeCMD(command, args, arglen) \
|
||||
__writeCMD(command, args, arglen, CMD_BUFFER_SIZE(arglen))
|
||||
#define writeCMD(command, args, arglen) __writeCMD(command, args, arglen, CMD_BUFFER_SIZE(arglen))
|
||||
|
||||
ADBMS_Internal_Status ___readCMD(uint16_t command, uint8_t * buffer, size_t arglen);
|
||||
ADBMS_Internal_Status ___readCMD(uint16_t command, uint8_t *buffer, size_t arglen);
|
||||
|
||||
[[gnu::access(read_write, 2, 4), gnu::nonnull(2), gnu::always_inline]] //add dummy size variable for bounds checking, should be optimized out
|
||||
static inline ADBMS_Internal_Status __readCMD(uint16_t command, uint8_t * buffer, size_t arglen, size_t) {
|
||||
[[gnu::access(read_write, 2, 4), gnu::nonnull(2), gnu::always_inline]] // add dummy size variable for bounds checking, should be optimized out
|
||||
static inline ADBMS_Internal_Status __readCMD(uint16_t command, uint8_t *buffer, size_t arglen, size_t) {
|
||||
return ___readCMD(command, buffer, arglen);
|
||||
}
|
||||
|
||||
#define readCMD(command, buffer, buflen) \
|
||||
__readCMD(command, buffer, buflen, CMD_BUFFER_SIZE(buflen))
|
||||
#define readCMD(command, buffer, buflen) __readCMD(command, buffer, buflen, CMD_BUFFER_SIZE(buflen))
|
||||
|
||||
ADBMS_Internal_Status __pollCMD(uint16_t command, uint8_t waitTime);
|
||||
|
||||
#define pollCMD(command) \
|
||||
__pollCMD(command, (N_BMS * 2) + 1) //poll is only valid after 2 * N_BMS clock cycles, +1 for safety, see datasheet page 55
|
||||
// poll is only valid after 2 * N_BMS clock cycles, +1 for safety, see datasheet page 55
|
||||
#define pollCMD(command) __pollCMD(command, (N_BMS * 2) + 1)
|
||||
|
||||
void initSPI(USER_PTR_TYPE ptr);
|
||||
|
||||
|
@ -1,8 +1,8 @@
|
||||
#include "ADBMS_Abstraction.h"
|
||||
#include "ADBMS_CMD_Defines.h"
|
||||
#include "ADBMS_Intern.h"
|
||||
#include "ADBMS_LL_Driver.h"
|
||||
#include "config_ADBMS6830.h"
|
||||
#include "ADBMS_Intern.h"
|
||||
#include <stddef.h>
|
||||
|
||||
|
||||
@ -12,9 +12,10 @@ static const char* const ADBMS_Statuses[] = {"ADBMS_OK", "ADBMS_ERROR", "ADBMS_B
|
||||
do { \
|
||||
ADBMS_Internal_Status status = x; \
|
||||
if (status != 0) { \
|
||||
debug_log(ADBMS_LOG_LEVEL_ERROR, "in %s:%d@%s: %s failed with status %d (%s)", __FILE_NAME__, __LINE__, __func__,\
|
||||
#x, status, \
|
||||
(status < (sizeof(ADBMS_Statuses) / sizeof(ADBMS_Statuses[0]))) ? ADBMS_Statuses[status] : "Unknown"); \
|
||||
debug_log(ADBMS_LOG_LEVEL_ERROR, "in %s:%d@%s: %s failed with status %d (%s)", __FILE_NAME__, __LINE__, \
|
||||
__func__, #x, status, \
|
||||
(status < (sizeof(ADBMS_Statuses) / sizeof(ADBMS_Statuses[0]))) ? ADBMS_Statuses[status] \
|
||||
: "Unknown"); \
|
||||
return status; \
|
||||
} \
|
||||
} while (0)
|
||||
@ -328,7 +329,7 @@ ADBMS_Internal_Status amsReadCellVoltages(BMS_Chip (*module)[N_BMS]) {
|
||||
|
||||
// Each selected BMS must have a corresponding address, and the data array for that BMS must be at least datalens[i]
|
||||
// bytes long
|
||||
ADBMS_Internal_Status amsSendI2C(const uint8_t addresses[static N_BMS], uint8_t* data[static N_BMS],
|
||||
ADBMS_Internal_Status amsSendI2C(const uint8_t addresses[static N_BMS], uint8_t *data[static N_BMS],
|
||||
const uint8_t datalens[static N_BMS], uint32_t bms_mask) {
|
||||
uint8_t buffer[CMD_BUFFER_SIZE(COMM_GROUP_SIZE)] = {};
|
||||
|
||||
@ -404,7 +405,7 @@ ADBMS_Internal_Status amsSendI2C(const uint8_t addresses[static N_BMS], uint8_t*
|
||||
|
||||
// Each selected BMS must have a corresponding address, and the data array for that BMS must be at least datalens[i]
|
||||
// bytes long
|
||||
ADBMS_Internal_Status amsReadI2C(const uint8_t addresses[static N_BMS], uint8_t* data[static N_BMS],
|
||||
ADBMS_Internal_Status amsReadI2C(const uint8_t addresses[static N_BMS], uint8_t *data[static N_BMS],
|
||||
const uint8_t datalens[static N_BMS], uint32_t bms_mask) {
|
||||
uint8_t buffer[CMD_BUFFER_SIZE(COMM_GROUP_SIZE)] = {};
|
||||
|
||||
|
@ -1,11 +1,10 @@
|
||||
#include "ADBMS_Abstraction.h"
|
||||
#include "ADBMS_Driver.h"
|
||||
#include "config_ADBMS6830.h"
|
||||
#include "ADBMS_Intern.h"
|
||||
#include "config_ADBMS6830.h"
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
|
||||
BMS_Chip bms_data[N_BMS] = {};
|
||||
|
||||
uint8_t packetChecksumFails = 0;
|
||||
@ -24,8 +23,8 @@ struct pollingTimes pollingTimes = {0, 0};
|
||||
static constexpr ADBMS_DetailedStatus NO_ERROR = {ADBMS_NO_ERROR};
|
||||
|
||||
ADBMS_DetailedStatus AMS_Init(USER_PTR_TYPE ptr) {
|
||||
debug_log(ADBMS_LOG_LEVEL_INFO, "ADBMS6830B HAL - configured for %d controllers and %d cells per controller...", N_BMS,
|
||||
N_CELLS);
|
||||
debug_log(ADBMS_LOG_LEVEL_INFO, "ADBMS6830B HAL - configured for %d controllers and %d cells per controller...",
|
||||
N_BMS, N_CELLS);
|
||||
if (initAMS(ptr) != ADBMS_OK) {
|
||||
debug_log(ADBMS_LOG_LEVEL_ERROR, "ADBMS6830B HAL - initialization failed");
|
||||
return (ADBMS_DetailedStatus){ADBMS_INTERNAL_BMS_FAULT, -1};
|
||||
|
@ -1,6 +1,6 @@
|
||||
#include "ADBMS_LL_Driver.h"
|
||||
#include "config_ADBMS6830.h"
|
||||
#include "ADBMS_Intern.h"
|
||||
#include "config_ADBMS6830.h"
|
||||
#include <stdint.h>
|
||||
#include <strings.h>
|
||||
|
||||
@ -25,9 +25,9 @@ void initSPI(USER_PTR_TYPE ptr) {
|
||||
#define CRC10_REMAINDER_MASK 0x200
|
||||
#define CRC10_RESULT_MASK 0x3FF
|
||||
|
||||
//command PEC calculation
|
||||
//CRC-15
|
||||
//x^15 + x^14 + x^10 + x^8 + x^7 + x^4 + x^3 + 1
|
||||
// command PEC calculation
|
||||
// CRC-15
|
||||
// x^15 + x^14 + x^10 + x^8 + x^7 + x^4 + x^3 + 1
|
||||
|
||||
static uint16_t computeCRC15(const uint8_t* data, size_t length) {
|
||||
uint16_t remainder = INITIAL_COMMAND_PEC;
|
||||
@ -61,11 +61,11 @@ static uint8_t checkCommandPEC(const uint8_t* data, uint8_t datalen) {
|
||||
return ((pech == data[datalen - 2]) && (pecl == data[datalen - 1])) ? 0 : 1;
|
||||
}
|
||||
|
||||
//data PEC calculation
|
||||
//CRC-10
|
||||
//x^10 + x^7 + x^3 + x^2 + x + 1
|
||||
// data PEC calculation
|
||||
// CRC-10
|
||||
// x^10 + x^7 + x^3 + x^2 + x + 1
|
||||
|
||||
static uint16_t computeCRC10(const uint8_t* data, size_t length, bool rx_cmd) {
|
||||
static uint16_t computeCRC10(const uint8_t *data, size_t length, bool rx_cmd) {
|
||||
uint16_t remainder = INITIAL_DATA_PEC;
|
||||
|
||||
for (size_t i = 0; i < length; i++) {
|
||||
@ -147,7 +147,6 @@ static void print_spi_details() {
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
ADBMS_Internal_Status ___writeCMD(uint16_t command, uint8_t * args, size_t arglen) {
|
||||
ADBMS_Internal_Status ret;
|
||||
if (arglen > 0) {
|
||||
@ -199,7 +198,7 @@ ADBMS_Internal_Status ___writeCMD(uint16_t command, uint8_t * args, size_t argle
|
||||
|
||||
ADBMS_Internal_Status ___readCMD(uint16_t command, uint8_t * buffer, size_t arglen) {
|
||||
buffer[0] = (command >> 8) & 0xFF;
|
||||
buffer[1] = (command)&0xFF;
|
||||
buffer[1] = (command) & 0xFF;
|
||||
calculateCommandPEC(buffer, 4);
|
||||
|
||||
mcuAdbmsCSLow();
|
||||
|
@ -1,6 +1,6 @@
|
||||
#include "isotp_log_backend.h"
|
||||
#include "log.h"
|
||||
#include "isotp.h"
|
||||
#include "log.h"
|
||||
|
||||
#include <string.h>
|
||||
|
||||
|
@ -9,7 +9,7 @@
|
||||
|
||||
|
||||
/* ISO-TP CAN ID configuration */
|
||||
#ifndef ISOTP_LOG_CAN_ID //TEMPORARY!!!!!
|
||||
#ifndef ISOTP_LOG_CAN_ID // TEMPORARY!!!!!
|
||||
#define ISOTP_LOG_CAN_ID 0x123 // CAN ID to use for ISO-TP log messages
|
||||
#endif
|
||||
#ifndef ISOTP_LOG_FC_CAN_ID
|
||||
|
@ -10,10 +10,10 @@
|
||||
#ifndef __LOG_H
|
||||
#define __LOG_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdarg.h>
|
||||
#include <stdio.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
|
||||
/* Configuration */
|
||||
#define MAX_MESSAGE_LENGTH 384
|
||||
@ -43,10 +43,10 @@ typedef struct {
|
||||
|
||||
/* Log backend interface */
|
||||
typedef struct {
|
||||
const char* name;
|
||||
const char *name;
|
||||
void (*init)(void);
|
||||
bool (*is_enabled)(log_level_t level);
|
||||
void (*write)(const log_message_t* message);
|
||||
void (*write)(const log_message_t *message);
|
||||
void (*flush)(void);
|
||||
void (*clear)(void);
|
||||
} log_backend_t;
|
||||
|
@ -85,7 +85,8 @@ static void swo_backend_write(const log_message_t* message) {
|
||||
return;
|
||||
}
|
||||
// Assuming message->message is ensured to be non-NULL by the logger core if message itself is not NULL.
|
||||
// Or, if message->message can be NULL, the caller of swo_util_puts should handle it or swo_util_puts should be robust to it.
|
||||
// Or, if message->message can be NULL, the caller of swo_util_puts should handle it or swo_util_puts should be
|
||||
// robust to it.
|
||||
|
||||
#if USE_MULTIPLE_CHANNELS
|
||||
swo_util_puts(message->message, message->level);
|
||||
|
@ -1,7 +1,7 @@
|
||||
#include "swo_util.h"
|
||||
#include "stm32h7xx.h" // For ITM registers, __NOP() and ITM_TCR_ITMENA_Msk, ITM_TER_TER_Msk
|
||||
#include <stdint.h> // For uint32_t
|
||||
#include <stddef.h> // For NULL
|
||||
#include <stdint.h> // For uint32_t
|
||||
|
||||
// Core function to send a character to a specific SWO ITM port
|
||||
// Adapted from ITM_SendChar() in the CMSIS-Core
|
||||
|
@ -4,10 +4,10 @@
|
||||
#include "NTC.h"
|
||||
#include "can.h"
|
||||
#include "config_ADBMS6830.h"
|
||||
#include "ts_state_machine.h"
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
#include "main.h"
|
||||
#include "ts_state_machine.h"
|
||||
#include <math.h>
|
||||
#include <string.h>
|
||||
|
||||
#define SWO_LOG_PREFIX "[BATTERY] "
|
||||
#include "swo_log.h"
|
||||
@ -73,21 +73,18 @@ HAL_StatusTypeDef battery_init(SPI_HandleTypeDef *hspi) {
|
||||
HAL_StatusTypeDef battery_update() {
|
||||
auto const ret = AMS_Idle_Loop();
|
||||
if (ret.status != ADBMS_NO_ERROR) {
|
||||
debug_log(LOG_LEVEL_ERROR, "Error while updating battery data: %s",
|
||||
ADBMS_Status_ToString(ret.status));
|
||||
debug_log(LOG_LEVEL_ERROR, "Error while updating battery data: %s", ADBMS_Status_ToString(ret.status));
|
||||
if (ret.bms_id != -1) {
|
||||
debug_log_cont(LOG_LEVEL_ERROR, " (on BMS ID: %hd)", ret.bms_id);
|
||||
}
|
||||
|
||||
if (ret.status == ADBMS_OVERVOLT || ret.status == ADBMS_UNDERVOLT) {
|
||||
if (ret.bms_id != -1 && ret.bms_id < N_BMS) {
|
||||
const char* error_type = (ret.status == ADBMS_OVERVOLT) ? "overvoltage" : "undervoltage";
|
||||
const uint32_t voltage_flags = (ret.status == ADBMS_OVERVOLT) ?
|
||||
bms_data[ret.bms_id].overVoltage :
|
||||
bms_data[ret.bms_id].underVoltage;
|
||||
const char *error_type = (ret.status == ADBMS_OVERVOLT) ? "overvoltage" : "undervoltage";
|
||||
const uint32_t voltage_flags = (ret.status == ADBMS_OVERVOLT) ? bms_data[ret.bms_id].overVoltage
|
||||
: bms_data[ret.bms_id].underVoltage;
|
||||
|
||||
debug_log(LOG_LEVEL_ERROR, "Cell %s detected on module %d, affected cells: ",
|
||||
error_type, ret.bms_id);
|
||||
debug_log(LOG_LEVEL_ERROR, "Cell %s detected on module %d, affected cells: ", error_type, ret.bms_id);
|
||||
|
||||
for (size_t cell = 0; cell < N_CELLS; cell++) {
|
||||
if (voltage_flags & (1UL << cell)) {
|
||||
@ -138,10 +135,9 @@ HAL_StatusTypeDef battery_update() {
|
||||
}
|
||||
|
||||
// Process temperature values
|
||||
for (size_t j = 0; j < 10; j++) { //10 GPIOs
|
||||
for (size_t j = 0; j < 10; j++) { // 10 GPIOs
|
||||
battery.module[i].cellTemps[j] = ntc_mv_to_celsius(bms_data[i].auxVoltages[j]);
|
||||
|
||||
|
||||
// For new battery struct
|
||||
if (battery.module[i].cellTemps[j] > battery.pack.max_temp) {
|
||||
battery.pack.max_temp = battery.module[i].cellTemps[j];
|
||||
|
@ -1,14 +1,14 @@
|
||||
#include "can.h"
|
||||
|
||||
#include "ADBMS_Driver.h"
|
||||
#include "battery.h"
|
||||
#include "imd_monitoring.h"
|
||||
#include "isotp.h"
|
||||
#include "isotp_user_defs.h"
|
||||
#include "isotp_log_backend.h"
|
||||
#include "isotp_user_defs.h"
|
||||
#include "log.h"
|
||||
#include "main.h"
|
||||
#include "shunt_monitoring.h"
|
||||
#include "battery.h"
|
||||
#include "soc_estimation.h"
|
||||
#include "ts_state_machine.h"
|
||||
|
||||
@ -24,9 +24,7 @@ bool isotp_transmit(uint16_t id, const uint8_t *data, size_t datalen) {
|
||||
return ftcan_transmit(id, data, datalen) == HAL_OK;
|
||||
}
|
||||
|
||||
uint32_t isotp_get_time() {
|
||||
return HAL_GetTick();
|
||||
}
|
||||
uint32_t isotp_get_time() { return HAL_GetTick(); }
|
||||
|
||||
void can_init(FDCAN_HandleTypeDef *handle) {
|
||||
ftcan_init(handle);
|
||||
@ -62,15 +60,14 @@ HAL_StatusTypeDef can_send_status() {
|
||||
if (ret != HAL_OK) {
|
||||
return ret;
|
||||
}
|
||||
data[0] = (sdc_closed_nodelay << 0) | (ts_error << 1) | (hv_active << 2) |
|
||||
(neg_air_closed << 3) | (pos_air_closed << 4) |
|
||||
(precharge_closed << 5) | (pre_and_air_open << 6);
|
||||
data[0] = (sdc_closed_nodelay << 0) | (ts_error << 1) | (hv_active << 2) | (neg_air_closed << 3) |
|
||||
(pos_air_closed << 4) | (precharge_closed << 5) | (pre_and_air_open << 6);
|
||||
return ftcan_transmit(CAN_ID_AMS_SIGNALS, data, 1);
|
||||
}
|
||||
|
||||
HAL_StatusTypeDef can_send_details() {
|
||||
static uint8_t module_index = 0;
|
||||
static uint8_t data[103] = {}; //sizeof(BMS_Chip) + 10 + 1
|
||||
static uint8_t data[103] = {}; // sizeof(BMS_Chip) + 10 + 1
|
||||
auto const module = &bms_data[module_index];
|
||||
auto data_ptr = &data[1];
|
||||
|
||||
|
@ -44,28 +44,23 @@ void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *handle) {
|
||||
imd_data.duty_cycle = (100 * high_time) / period;
|
||||
|
||||
// Check PWM frequency for state determination
|
||||
if (imd_data.freq > FREQ_NORMAL - FREQ_TOLERANCE &&
|
||||
imd_data.freq < FREQ_NORMAL + FREQ_TOLERANCE) {
|
||||
if (imd_data.freq > FREQ_NORMAL - FREQ_TOLERANCE && imd_data.freq < FREQ_NORMAL + FREQ_TOLERANCE) {
|
||||
imd_data.state = IMD_STATE_NORMAL;
|
||||
} else if (imd_data.freq > FREQ_UNDERVOLTAGE - FREQ_TOLERANCE &&
|
||||
imd_data.freq < FREQ_UNDERVOLTAGE + FREQ_TOLERANCE) {
|
||||
imd_data.state = IMD_STATE_UNDERVOLTAGE;
|
||||
} else if (imd_data.freq > FREQ_SST - FREQ_TOLERANCE &&
|
||||
imd_data.freq < FREQ_SST + FREQ_TOLERANCE) {
|
||||
} else if (imd_data.freq > FREQ_SST - FREQ_TOLERANCE && imd_data.freq < FREQ_SST + FREQ_TOLERANCE) {
|
||||
imd_data.state = IMD_STATE_SST;
|
||||
} else if (imd_data.freq > FREQ_DEV_ERROR - FREQ_TOLERANCE &&
|
||||
imd_data.freq < FREQ_DEV_ERROR + FREQ_TOLERANCE) {
|
||||
} else if (imd_data.freq > FREQ_DEV_ERROR - FREQ_TOLERANCE && imd_data.freq < FREQ_DEV_ERROR + FREQ_TOLERANCE) {
|
||||
imd_data.state = IMD_STATE_DEV_ERROR;
|
||||
} else if (imd_data.freq > FREQ_GND_FAULT - FREQ_TOLERANCE &&
|
||||
imd_data.freq < FREQ_GND_FAULT + FREQ_TOLERANCE) {
|
||||
} else if (imd_data.freq > FREQ_GND_FAULT - FREQ_TOLERANCE && imd_data.freq < FREQ_GND_FAULT + FREQ_TOLERANCE) {
|
||||
imd_data.state = IMD_STATE_GND_FAULT;
|
||||
} else {
|
||||
imd_data.state = IMD_STATE_UNKNOWN;
|
||||
}
|
||||
|
||||
// Calculate R_iso
|
||||
if (imd_data.state == IMD_STATE_NORMAL ||
|
||||
imd_data.state == IMD_STATE_UNDERVOLTAGE) {
|
||||
if (imd_data.state == IMD_STATE_NORMAL || imd_data.state == IMD_STATE_UNDERVOLTAGE) {
|
||||
if (imd_data.duty_cycle < RISO_MIN_DUTY_CYCLE) {
|
||||
imd_data.r_iso = RISO_MAX;
|
||||
} else {
|
||||
|
@ -79,8 +79,7 @@ void soc_update() {
|
||||
current_was_flowing = 0;
|
||||
}
|
||||
|
||||
if (now - last_current_time >= SOC_ESTIMATION_NO_CURRENT_TIME ||
|
||||
last_current_time == 0) {
|
||||
if (now - last_current_time >= SOC_ESTIMATION_NO_CURRENT_TIME || last_current_time == 0) {
|
||||
// Assume we're measuring OCV if there's been no current for a while (or
|
||||
// we've just turned on the battery).
|
||||
battery.pack.soc = soc_for_ocv(battery.pack.min_voltage);
|
||||
|
Loading…
x
Reference in New Issue
Block a user