refactor swo output

This commit is contained in:
Kilian Bracher 2025-05-20 16:00:40 +02:00
parent dd4d17c133
commit 18f6d62c7b
Signed by: k.bracher
SSH Key Fingerprint: SHA256:mXpyZkK7RDiJ7qeHCKJX108woM0cl5TrCvNBJASu6lM
5 changed files with 239 additions and 240 deletions

View File

@ -9,6 +9,7 @@
#include "swo_log_backend.h"
#include "log.h"
#include "swo_util.h" // Added include for the new utility functions
/* Global variables */
#if USE_CHANNEL_MASK_VARIABLE
@ -17,52 +18,6 @@ volatile uint32_t MASK_VARIABLE = 0b11111; // LOG_NOISY off by default
static bool swo_backend_registered = false;
/* SWO utility functions */
static inline bool __ITM_channel_enabled(uint32_t channel) {
#if !USE_MULTIPLE_CHANNELS
#if USE_CHANNEL_MASK_VARIABLE
return ((ITM->TER & (1UL << DEBUG_CHANNEL)) != 0UL) &&
((MASK_VARIABLE & (1UL << channel)) != 0UL);
#else
channel = DEBUG_CHANNEL;
#endif
#endif
return ((ITM->TER & (1UL << channel)) != 0UL);
}
// adapted from ITM_SendChar() in the CMSIS-Core
// channel should be between 0 and 31
static inline uint32_t __swo_putc(uint32_t c, unsigned int channel) {
#if !USE_MULTIPLE_CHANNELS
channel = DEBUG_CHANNEL;
#endif
if (((ITM->TCR & ITM_TCR_ITMENA_Msk) != 0UL) && /* ITM enabled */
((ITM->TER & (1UL << channel)) != 0UL)) /* ITM Port enabled */
{
while (ITM->PORT[channel].u32 == 0UL) {
__NOP();
}
ITM->PORT[channel].u8 = (uint8_t)c;
}
return (c);
}
#define DEBUG_CHANNEL_ENABLED(channel) \
({ \
unsigned int ch = (channel); \
(ch < 32) ? __ITM_channel_enabled(ch) : false; \
})
[[gnu::nonnull(2), gnu::null_terminated_string_arg(2)]]
static inline void __swo_print(unsigned int channel, const char *str) {
if (!__ITM_channel_enabled(channel)) {
return;
}
while (*str) {
__swo_putc(*str++, channel);
}
}
/* SWO backend functions */
static void swo_backend_init(void);
static bool swo_backend_is_enabled(log_level_t level);
@ -103,23 +58,39 @@ static void swo_backend_init(void) {
/* Check if the SWO backend is enabled for the given log level */
static bool swo_backend_is_enabled(log_level_t level) {
unsigned int channel_to_check;
#if USE_MULTIPLE_CHANNELS
return DEBUG_CHANNEL_ENABLED(level);
channel_to_check = level;
#else
return (level <= LOG_LEVEL_NOISY) && DEBUG_CHANNEL_ENABLED(level);
channel_to_check = DEBUG_CHANNEL;
#endif
// swo_util_is_channel_active already checks if channel_to_check < 32
bool channel_active = swo_util_is_channel_active(channel_to_check);
#if USE_CHANNEL_MASK_VARIABLE
return channel_active && ((MASK_VARIABLE & (1UL << level)) != 0UL);
#else
#if !USE_MULTIPLE_CHANNELS && !USE_CHANNEL_MASK_VARIABLE
return (level <= LOG_LEVEL_NOISY) && channel_active;
#else
return channel_active;
#endif
#endif
}
/* Write a message to the SWO backend */
static void swo_backend_write(const log_message_t* message) {
if (message == NULL) {
if (message == NULL) { // Corrected null check
return;
}
// Assuming message->message is ensured to be non-NULL by the logger core if message itself is not NULL.
// Or, if message->message can be NULL, the caller of swo_util_puts should handle it or swo_util_puts should be robust to it.
#if USE_MULTIPLE_CHANNELS
__swo_print(message->level, message->message);
swo_util_puts(message->message, message->level);
#else
__swo_print(DEBUG_CHANNEL, message->message);
swo_util_puts(message->message, DEBUG_CHANNEL);
#endif
}
@ -131,6 +102,6 @@ static void swo_backend_flush(void) {
/* Clear the console for SWO */
static void swo_backend_clear(void) {
#if USE_ANSI_ESCAPE_CODES
__swo_print(DEBUG_CHANNEL, "\033[2J\033[H"); // ANSI escape code to clear screen and move cursor to top-left
swo_util_puts("\033[2J\033[H", DEBUG_CHANNEL); // ANSI escape code to clear screen and move cursor to top-left
#endif
}

View File

@ -0,0 +1,45 @@
#include "swo_util.h"
#include "stm32h7xx.h" // For ITM registers, __NOP() and ITM_TCR_ITMENA_Msk, ITM_TER_TER_Msk
#include <stdint.h> // For uint32_t
#include <stddef.h> // For NULL
// Core function to send a character to a specific SWO ITM port
// Adapted from ITM_SendChar() in the CMSIS-Core
void swo_util_putc(char c, unsigned int channel) {
if (channel >= 32) return; // Invalid channel
// Check if ITM is enabled and the specific channel is enabled
if (((ITM->TCR & ITM_TCR_ITMENA_Msk) != 0UL) && /* ITM enabled */
((ITM->TER & (1UL << channel)) != 0UL)) /* ITM Port enabled */
{
while (ITM->PORT[channel].u32 == 0UL) {
__NOP(); // Wait until STIM Port is ready for new data
}
ITM->PORT[channel].u8 = (uint8_t)c;
}
}
// Core function to send a null-terminated string to a specific SWO ITM port
void swo_util_puts(const char *s, unsigned int channel) {
if (channel >= 32 || s == NULL) return; // Invalid channel or null string
// Check if ITM is enabled and the specific channel is enabled
if (((ITM->TCR & ITM_TCR_ITMENA_Msk) != 0UL) && /* ITM enabled */
((ITM->TER & (1UL << channel)) != 0UL)) /* ITM Port enabled */
{
while (*s) {
while (ITM->PORT[channel].u32 == 0UL) {
__NOP(); // Wait until STIM Port is ready for new data
}
ITM->PORT[channel].u8 = (uint8_t)(*s++);
}
}
}
// Checks if a specific ITM channel is active and ready for output
bool swo_util_is_channel_active(unsigned int channel) {
if (channel >= 32) return false;
bool itm_enabled = ((ITM->TCR & ITM_TCR_ITMENA_Msk) != 0UL);
bool channel_enabled_raw = ((ITM->TER & (1UL << channel)) != 0UL);
return itm_enabled && channel_enabled_raw;
}

View File

@ -0,0 +1,15 @@
#ifndef SWO_UTIL_H
#define SWO_UTIL_H
#include <stdbool.h>
// Core function to send a character to a specific SWO ITM port
void swo_util_putc(char c, unsigned int channel);
// Core function to send a null-terminated string to a specific SWO ITM port
void swo_util_puts(const char *s, unsigned int channel);
// Checks if a specific ITM channel is active and ready for output (ITM enabled and channel enabled)
bool swo_util_is_channel_active(unsigned int channel);
#endif // SWO_UTIL_H

View File

@ -8,81 +8,86 @@
#include "ts_state_machine.h"
#include "battery.h"
#define DEBUG_CHANNEL 1 // channel to output messages on
#include "swo_log_backend.h"
#include "swo_util.h" // Use the new SWO utility functions
#define PRINT_MASTER_STATUS_SWO_CHANNEL 1 // Define the channel for this specific file
// Macro to simplify snprintf and swo_util_puts call pattern
// The print_buffer is now local to the macro
#define SWO_PRINT_MASTER(fmt, ...) \
do { \
snprintf(print_buffer, sizeof(print_buffer), "\n" fmt, ##__VA_ARGS__); \
swo_util_puts(print_buffer, PRINT_MASTER_STATUS_SWO_CHANNEL); \
} while (0)
void print_master_status() {
auto const backend = swo_log_get_backend();
if (!backend->is_enabled(LOG_LEVEL_INFO)) {
return; // No need to print if the backend is not enabled for this log level
if (!swo_util_is_channel_active(PRINT_MASTER_STATUS_SWO_CHANNEL)) {
return; // No need to print if the channel is not active
}
log_message_t log_msg = {};
char print_buffer[256];
#define swo_write(...) \
snprintf(log_msg.message, sizeof(log_msg.message), __VA_ARGS__); \
backend->write(&log_msg); \
// Clear the console - using the specific channel
#if USE_ANSI_ESCAPE_CODES // This preprocessor directive should be defined in a config or Makefile
swo_util_puts("\033[2J\033[H", PRINT_MASTER_STATUS_SWO_CHANNEL);
#endif
// clear the console
backend->clear();
swo_write("------ AMS_Master on %s (%s), compiled at %s ------", COMMIT_BRANCH,
SWO_PRINT_MASTER("------ AMS_Master on %s (%s), compiled at %s ------", COMMIT_BRANCH,
COMMIT_HASH, COMPILE_DATE);
swo_write( "\nGeneral:");
swo_write( " State: %s", TSStateToString(ts_state.current_state));
swo_write( " Target: %s", TSStateToString(ts_state.target_state));
swo_write( " Err Source: %s", ts_state.error_source == 0 ? "NONE" : (ts_state.error_source == 0b11 ? "SHUNT, SLAVE" : (ts_state.error_source == 0b01 ? "SHUNT" : "SLAVE")));
swo_write(" Err type: %s", ts_state.error_type == 0 ? "NONE" : (ts_state.error_type == 0x01 ? "SLAVE_TIMEOUT" : (ts_state.error_type == 0x02 ? "SLAVE_PANIC" : (ts_state.error_type == 0x03 ? "SHUNT_TIMEOUT" : (ts_state.error_type == 0x04 ? "SHUNT_OVERCURRENT" : (ts_state.error_type == 0x05 ? "SHUNT_OVERTEMP" : "UNKNOWN"))))));
swo_write(" HV active: %s", hv_active ? "YES" : "NO");
SWO_PRINT_MASTER("\nGeneral:");
SWO_PRINT_MASTER(" State: %s", TSStateToString(ts_state.current_state));
SWO_PRINT_MASTER(" Target: %s", TSStateToString(ts_state.target_state));
SWO_PRINT_MASTER(" Err Source: %s", ts_state.error_source == 0 ? "NONE" : (ts_state.error_source == 0b11 ? "SHUNT, SLAVE" : (ts_state.error_source == 0b01 ? "SHUNT" : "SLAVE")));
SWO_PRINT_MASTER(" Err type: %s", ts_state.error_type == 0 ? "NONE" : (ts_state.error_type == 0x01 ? "SLAVE_TIMEOUT" : (ts_state.error_type == 0x02 ? "SLAVE_PANIC" : (ts_state.error_type == 0x03 ? "SHUNT_TIMEOUT" : (ts_state.error_type == 0x04 ? "SHUNT_OVERCURRENT" : (ts_state.error_type == 0x05 ? "SHUNT_OVERTEMP" : "UNKNOWN"))))));
SWO_PRINT_MASTER(" HV active: %s", hv_active ? "YES" : "NO");
swo_write("\nRelay positions:");
swo_write(" SDC: %s", sdc_closed ? "CLOSED" : "OPEN");
swo_write(" Air-: %s", neg_air_closed ? "CLOSED" : "OPEN");
swo_write(" Air+: %s", pos_air_closed ? "CLOSED" : "OPEN");
swo_write(" Precharge: %s", precharge_closed ? "CLOSED" : "OPEN");
swo_write(" Precharge/Air+ sense: %s", pre_and_air_open ? "HIGH" : "LOW");
SWO_PRINT_MASTER("\nRelay positions:");
SWO_PRINT_MASTER(" SDC: %s", sdc_closed ? "CLOSED" : "OPEN");
SWO_PRINT_MASTER(" Air-: %s", neg_air_closed ? "CLOSED" : "OPEN");
SWO_PRINT_MASTER(" Air+: %s", pos_air_closed ? "CLOSED" : "OPEN");
SWO_PRINT_MASTER(" Precharge: %s", precharge_closed ? "CLOSED" : "OPEN");
SWO_PRINT_MASTER(" Precharge/Air+ sense: %s", pre_and_air_open ? "HIGH" : "LOW");
swo_write("\nIMD data:");
swo_write(" State: %s", IMDStateToString(imd_data.state));
swo_write(" R_iso: %lu kOhm", imd_data.r_iso);
swo_write(" Frequency: %lu Hz", imd_data.freq);
swo_write(" Duty cycle: %lu %%", imd_data.duty_cycle);
swo_write(" Last high: %lu ms", imd_data.last_high);
swo_write(" OK: %s", imd_data.ok ? "YES" : "NO");
SWO_PRINT_MASTER("\nIMD data:");
SWO_PRINT_MASTER(" State: %s", IMDStateToString(imd_data.state));
SWO_PRINT_MASTER(" R_iso: %lu kOhm", imd_data.r_iso);
SWO_PRINT_MASTER(" Frequency: %lu Hz", imd_data.freq);
SWO_PRINT_MASTER(" Duty cycle: %lu %%", imd_data.duty_cycle);
SWO_PRINT_MASTER(" Last high: %lu ms", imd_data.last_high);
SWO_PRINT_MASTER(" OK: %s", imd_data.ok ? "YES" : "NO");
swo_write("\nShunt data:");
swo_write(" Voltage: %ld mV", shunt_data.voltage_bat);
swo_write(" Current: %ld mA", shunt_data.current);
swo_write(" Power: %ld W", shunt_data.power);
swo_write(" Energy: %ld Ws", shunt_data.energy);
swo_write(" Temp: %ld °C", shunt_data.busbartemp / 10);
swo_write(" Time delta: %lu ms", HAL_GetTick() - shunt_data.last_message);
SWO_PRINT_MASTER("\nShunt data:");
SWO_PRINT_MASTER(" Voltage: %ld mV", shunt_data.voltage_bat);
SWO_PRINT_MASTER(" Current: %ld mA", shunt_data.current);
SWO_PRINT_MASTER(" Power: %ld W", shunt_data.power);
SWO_PRINT_MASTER(" Energy: %ld Ws", shunt_data.energy);
SWO_PRINT_MASTER(" Temp: %ld °C", shunt_data.busbartemp / 10);
SWO_PRINT_MASTER(" Time delta: %lu ms", HAL_GetTick() - shunt_data.last_message);
swo_write("\nBattery data:");
swo_write(" Min/Max voltage: %d mV / %d mV", battery.pack.min_voltage, battery.pack.max_voltage);
swo_write(" Min/Max temp: %d °C / %d °C", battery.pack.min_temp, battery.pack.max_temp);
swo_write(" SoC: %.2f %%", battery.pack.soc);
swo_write(" Module data: Min V | Max V | Min T | Max T");
for (size_t i = 0; i < N_BMS; i++) {
SWO_PRINT_MASTER("\nBattery data:");
SWO_PRINT_MASTER(" Min/Max voltage: %d mV / %d mV", battery.pack.min_voltage, battery.pack.max_voltage);
SWO_PRINT_MASTER(" Min/Max temp: %d °C / %d °C", battery.pack.min_temp, battery.pack.max_temp);
SWO_PRINT_MASTER(" SoC: %.2f %%", battery.pack.soc);
SWO_PRINT_MASTER(" Module data: Min V | Max V | Min T | Max T");
/* for (size_t i = 0; i < N_BMS; i++) {
auto module_data = getModuleMinMax(i);
/* #if USE_ANSI_ESCAPE_CODES
#if USE_ANSI_ESCAPE_CODES
#define COLOR_MIN "\033[38;5;75m" //blue for min
#define COLOR_MAX "\033[38;5;203m" //red for max
#define COLOR_RESET "\033[0m"
swo_write(" %2zu: %s%5d mV%s | %s%5d mV%s | %s%3d °C%s | %s%3d °C%s", i,
SWO_PRINT_MASTER(" %2zu: %s%5d mV%s | %s%5d mV%s | %s%3d °C%s | %s%3d °C%s", i,
(module_data.min_v == battery.pack.min_voltage) ? COLOR_MIN : "", (module_data.min_v), COLOR_RESET,
(module_data.max_v == battery.pack.max_voltage) ? COLOR_MAX : "", (module_data.max_v), COLOR_RESET,
(module_data.min_t == battery.pack.min_temp) ? COLOR_MIN : "", (module_data.min_t), COLOR_RESET,
(module_data.max_t == battery.pack.max_temp) ? COLOR_MAX : "", (module_data.max_t), COLOR_RESET);
#else
swo_write(" %2zu: %5d mV | %5d mV | %3d °C | %3d °C", i,
SWO_PRINT_MASTER(" %2zu: %5d mV | %5d mV | %3d °C | %3d °C", i,
module_data.min_v, module_data.max_v,
module_data.min_t, module_data.max_t);
#endif */
}
#endif
} */
swo_write("\n------ Updated at %lu ------", HAL_GetTick());
SWO_PRINT_MASTER("\n------ Updated at %lu ------", HAL_GetTick());
}

View File

@ -3,73 +3,77 @@
#include "NTC.h"
#include "config_ADBMS6830.h"
#include <string.h>
#include <stdio.h> // For snprintf
#define DEBUG_CHANNEL 2 // channel to output messages on
#include "swo_log_backend.h"
#include "swo_util.h" // Use the new SWO utility functions
#define PRINT_MODULE_STATUS_SWO_CHANNEL 2 // Define the channel for this specific file
// Macro to simplify snprintf and swo_util_puts call pattern
#define SWO_PRINT_MODULE(fmt, ...) \
do { \
char print_buffer[256]; \
snprintf(print_buffer, sizeof(print_buffer), "\n" fmt, ##__VA_ARGS__); \
swo_util_puts(print_buffer, PRINT_MODULE_STATUS_SWO_CHANNEL); \
} while (0)
void print_battery_info() {
auto const backend = swo_log_get_backend();
if (!backend->is_enabled(LOG_LEVEL_INFO)) {
return; // No need to print if the backend is not enabled for this log level
if (!swo_util_is_channel_active(PRINT_MODULE_STATUS_SWO_CHANNEL)) {
return; // No need to print if the channel is not active
}
log_message_t log_msg = {};
// Clear the console - using the specific channel
#if USE_ANSI_ESCAPE_CODES // This preprocessor directive should be defined in a config or Makefile
swo_util_puts("\033[2J\033[H", PRINT_MODULE_STATUS_SWO_CHANNEL);
#endif
#define swo_write(...) \
snprintf(log_msg.message, sizeof(log_msg.message), __VA_ARGS__); \
backend->write(&log_msg); \
// clear the console
backend->clear();
swo_write("------ AMS_Master on %s (%s), compiled at %s ------\n", COMMIT_BRANCH,
SWO_PRINT_MODULE("------ AMS_Master on %s (%s), compiled at %s ------\n", COMMIT_BRANCH,
COMMIT_HASH, COMPILE_DATE);
for (size_t i = 0; i < N_BMS; i++) {
swo_write("Module %d status:", i);
swo_write(" BMS ID: 0x%08lx%08lx", (uint32_t)(bms_data[i].bmsID >> 32), (uint32_t)(bms_data[i].bmsID & 0xFFFFFFFF));
SWO_PRINT_MODULE("Module %zu status:", i);
SWO_PRINT_MODULE(" BMS ID: 0x%08lx%08lx", (uint32_t)(bms_data[i].bmsID >> 32), (uint32_t)(bms_data[i].bmsID & 0xFFFFFFFF));
// Print cell voltages in 4x4 format
swo_write(" Cell voltages (mV):");
swo_write(" C0: %4d C1: %4d C2: %4d C3: %4d",
SWO_PRINT_MODULE(" Cell voltages (mV):");
SWO_PRINT_MODULE(" C0: %4d C1: %4d C2: %4d C3: %4d",
bms_data[i].cellVoltages[0], bms_data[i].cellVoltages[1],
bms_data[i].cellVoltages[2], bms_data[i].cellVoltages[3]);
swo_write(" C4: %4d C5: %4d C6: %4d C7: %4d",
SWO_PRINT_MODULE(" C4: %4d C5: %4d C6: %4d C7: %4d",
bms_data[i].cellVoltages[4], bms_data[i].cellVoltages[5],
bms_data[i].cellVoltages[6], bms_data[i].cellVoltages[7]);
swo_write(" C8: %4d C9: %4d C10: %4d C11: %4d",
SWO_PRINT_MODULE(" C8: %4d C9: %4d C10: %4d C11: %4d",
bms_data[i].cellVoltages[8], bms_data[i].cellVoltages[9],
bms_data[i].cellVoltages[10], bms_data[i].cellVoltages[11]);
swo_write(" C12: %4d C13: %4d C14: %4d C15: %4d",
SWO_PRINT_MODULE(" C12: %4d C13: %4d C14: %4d C15: %4d",
bms_data[i].cellVoltages[12], bms_data[i].cellVoltages[13],
bms_data[i].cellVoltages[14], bms_data[i].cellVoltages[15]);
// Print GPIO values
swo_write(" GPIO voltages (mV):");
swo_write(
SWO_PRINT_MODULE(" GPIO voltages (mV):");
SWO_PRINT_MODULE(
" G0: %4d G1: %4d G2: %4d G3: %4d G4: %4d",
bms_data[i].auxVoltages[0], bms_data[i].auxVoltages[1],
bms_data[i].auxVoltages[2], bms_data[i].auxVoltages[3],
bms_data[i].auxVoltages[4]);
swo_write(
SWO_PRINT_MODULE(
" G5: %4d G6: %4d G7: %4d G8: %4d G9: %4d",
bms_data[i].auxVoltages[5], bms_data[i].auxVoltages[6],
bms_data[i].auxVoltages[7], bms_data[i].auxVoltages[8],
bms_data[i].auxVoltages[9]);
// Print temperatures
swo_write(" GPIO as temperatures (°C):");
swo_write(
SWO_PRINT_MODULE(" GPIO as temperatures (°C):");
SWO_PRINT_MODULE(
" G0: %4d G1: %4d G2: %4d G3: %4d G4: %4d",
battery.module[i].cellTemps[0], battery.module[i].cellTemps[1], battery.module[i].cellTemps[2],
battery.module[i].cellTemps[3], battery.module[i].cellTemps[4]);
swo_write(
SWO_PRINT_MODULE(
" G5: %4d G6: %4d G7: %4d G8: %4d G9: %4d",
battery.module[i].cellTemps[5], battery.module[i].cellTemps[6], battery.module[i].cellTemps[7],
battery.module[i].cellTemps[8], battery.module[i].cellTemps[9]);
swo_write(
SWO_PRINT_MODULE(
" Internal temp: %d, VAnalog: %d, VDigital: %d, VRef: %d",
bms_data[i].internalDieTemp, bms_data[i].analogSupplyVoltage,
bms_data[i].digitalSupplyVoltage, bms_data[i].refVoltage);
@ -79,80 +83,39 @@ void print_battery_info() {
char flagBuffer[128] = "";
char *bufPos = flagBuffer;
if (bms_data[i].status.CS_FLT) { bufPos = stpcpy(bufPos, "CS_FLT "); hasFlags = true; }
if (bms_data[i].status.SMED) { bufPos = stpcpy(bufPos, "SMED "); hasFlags = true; }
if (bms_data[i].status.SED) { bufPos = stpcpy(bufPos, "SED "); hasFlags = true; }
if (bms_data[i].status.CMED) { bufPos = stpcpy(bufPos, "CMED "); hasFlags = true; }
if (bms_data[i].status.CED) { bufPos = stpcpy(bufPos, "CED "); hasFlags = true; }
if (bms_data[i].status.VD_UV) { bufPos = stpcpy(bufPos, "VD_UV "); hasFlags = true; }
if (bms_data[i].status.VD_OV) { bufPos = stpcpy(bufPos, "VD_OV "); hasFlags = true; }
if (bms_data[i].status.VA_UV) { bufPos = stpcpy(bufPos, "VA_UV "); hasFlags = true; }
if (bms_data[i].status.VA_OV) { bufPos = stpcpy(bufPos, "VA_OV "); hasFlags = true; }
if (bms_data[i].status.THSD) { bufPos = stpcpy(bufPos, "THSD "); hasFlags = true; }
if (bms_data[i].status.SLEEP) { bufPos = stpcpy(bufPos, "SLEEP "); hasFlags = true; }
if (bms_data[i].status.SPIFLT) { bufPos = stpcpy(bufPos, "SPIFLT "); hasFlags = true; }
if (bms_data[i].status.COMPARE) { bufPos = stpcpy(bufPos, "COMPARE "); hasFlags = true; }
if (bms_data[i].status.VDE) { bufPos = stpcpy(bufPos, "VDE "); hasFlags = true; }
if (bms_data[i].status.VDEL) { bufPos = stpcpy(bufPos, "VDEL "); hasFlags = true; }
SWO_PRINT_MODULE(" Status flags: %s", hasFlags ? flagBuffer : "[none]");
if (bms_data[i].status.CS_FLT) {
bufPos = stpcpy(bufPos, "CS_FLT ");
hasFlags = true;
}
if (bms_data[i].status.SMED) {
bufPos = stpcpy(bufPos, "SMED ");
hasFlags = true;
}
if (bms_data[i].status.SED) {
bufPos = stpcpy(bufPos, "SED ");
hasFlags = true;
}
if (bms_data[i].status.CMED) {
bufPos = stpcpy(bufPos, "CMED ");
hasFlags = true;
}
if (bms_data[i].status.CED) {
bufPos = stpcpy(bufPos, "CED ");
hasFlags = true;
}
if (bms_data[i].status.VD_UV) {
bufPos = stpcpy(bufPos, "VD_UV ");
hasFlags = true;
}
if (bms_data[i].status.VD_OV) {
bufPos = stpcpy(bufPos, "VD_OV ");
hasFlags = true;
}
if (bms_data[i].status.VA_UV) {
bufPos = stpcpy(bufPos, "VA_UV ");
hasFlags = true;
}
if (bms_data[i].status.VA_OV) {
bufPos = stpcpy(bufPos, "VA_OV ");
hasFlags = true;
}
if (bms_data[i].status.THSD) {
bufPos = stpcpy(bufPos, "THSD ");
hasFlags = true;
}
if (bms_data[i].status.SLEEP) {
bufPos = stpcpy(bufPos, "SLEEP ");
hasFlags = true;
}
if (bms_data[i].status.SPIFLT) {
bufPos = stpcpy(bufPos, "SPIFLT ");
hasFlags = true;
}
if (bms_data[i].status.COMPARE) {
bufPos = stpcpy(bufPos, "COMPARE ");
hasFlags = true;
}
if (bms_data[i].status.VDE) {
bufPos = stpcpy(bufPos, "VDE ");
hasFlags = true;
}
if (bms_data[i].status.VDEL) {
bufPos = stpcpy(bufPos, "VDEL ");
hasFlags = true;
}
swo_write(" Status flags: %s", hasFlags ? flagBuffer : "[none]");
if (bms_data[i].status.CS_FLT) { // Print out which ADCs are faulting
swo_write("Comparison fault on ADC/Cell(s): ");
for (ssize_t j = 0; j < 16; j++) {
// For this specific case, building the string piece by piece is clearer than a complex SWO_PRINT_MODULE
char temp_print_buf[128];
int offset = snprintf(temp_print_buf, sizeof(temp_print_buf), "Comparison fault on ADC/Cell(s): ");
for (int j = 0; j < 16; j++) {
if (bms_data[i].status.CS_FLT & (1u << j)) {
swo_write("%d ", j);
offset += snprintf(temp_print_buf + offset, sizeof(temp_print_buf) - (size_t)offset, "%d ", j);
if (offset >= (int)sizeof(temp_print_buf) - 4) break;
}
}
swo_util_puts(temp_print_buf, PRINT_MODULE_STATUS_SWO_CHANNEL);
}
swo_write(" Conversion counter: %d",
SWO_PRINT_MODULE(" Conversion counter: %d",
bms_data[i].status.CCTS);
}
swo_write("\n------ Updated at %lu ------", HAL_GetTick());
}
SWO_PRINT_MODULE("\n------ Updated at %lu ------", HAL_GetTick());
}