1815 lines
66 KiB
C
1815 lines
66 KiB
C
/**
|
|
******************************************************************************
|
|
* @file stm32h7xx_hal_rcc.c
|
|
* @author MCD Application Team
|
|
* @brief RCC HAL module driver.
|
|
* This file provides firmware functions to manage the following
|
|
* functionalities of the Reset and Clock Control (RCC) peripheral:
|
|
* + Initialization and de-initialization functions
|
|
* + Peripheral Control functions
|
|
*
|
|
@verbatim
|
|
==============================================================================
|
|
##### RCC specific features #####
|
|
==============================================================================
|
|
[..]
|
|
After reset the device is running from Internal High Speed oscillator
|
|
(HSI 64MHz) with Flash 0 wait state,and all peripherals are off except
|
|
internal SRAM, Flash, JTAG and PWR
|
|
(+) There is no pre-scaler on High speed (AHB) and Low speed (APB) buses;
|
|
all peripherals mapped on these buses are running at HSI speed.
|
|
(+) The clock for all peripherals is switched off, except the SRAM and FLASH.
|
|
(+) All GPIOs are in analogue mode , except the JTAG pins which
|
|
are assigned to be used for debug purpose.
|
|
|
|
[..]
|
|
Once the device started from reset, the user application has to:
|
|
(+) Configure the clock source to be used to drive the System clock
|
|
(if the application needs higher frequency/performance)
|
|
(+) Configure the System clock frequency and Flash settings
|
|
(+) Configure the AHB and APB buses pre-scalers
|
|
(+) Enable the clock for the peripheral(s) to be used
|
|
(+) Configure the clock kernel source(s) for peripherals which clocks are not
|
|
derived from the System clock through :RCC_D1CCIPR,RCC_D2CCIP1R,RCC_D2CCIP2R
|
|
and RCC_D3CCIPR registers
|
|
|
|
##### RCC Limitations #####
|
|
==============================================================================
|
|
[..]
|
|
A delay between an RCC peripheral clock enable and the effective peripheral
|
|
enabling should be taken into account in order to manage the peripheral read/write
|
|
from/to registers.
|
|
(+) This delay depends on the peripheral mapping.
|
|
(+) If peripheral is mapped on AHB: the delay is 2 AHB clock cycle
|
|
after the clock enable bit is set on the hardware register
|
|
(+) If peripheral is mapped on APB: the delay is 2 APB clock cycle
|
|
after the clock enable bit is set on the hardware register
|
|
|
|
[..]
|
|
Implemented Workaround:
|
|
(+) For AHB & APB peripherals, a dummy read to the peripheral register has been
|
|
inserted in each __HAL_RCC_PPP_CLK_ENABLE() macro.
|
|
|
|
@endverbatim
|
|
******************************************************************************
|
|
* @attention
|
|
*
|
|
* Copyright (c) 2017 STMicroelectronics.
|
|
* All rights reserved.
|
|
*
|
|
* This software is licensed under terms that can be found in the LICENSE file in
|
|
* the root directory of this software component.
|
|
* If no LICENSE file comes with this software, it is provided AS-IS.
|
|
******************************************************************************
|
|
*/
|
|
|
|
/* Includes ------------------------------------------------------------------*/
|
|
#include "stm32h7xx_hal.h"
|
|
|
|
/** @addtogroup STM32H7xx_HAL_Driver
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup RCC RCC
|
|
* @brief RCC HAL module driver
|
|
* @{
|
|
*/
|
|
|
|
#ifdef HAL_RCC_MODULE_ENABLED
|
|
|
|
/* Private typedef -----------------------------------------------------------*/
|
|
/* Private define ------------------------------------------------------------*/
|
|
/* Private macro -------------------------------------------------------------*/
|
|
/** @defgroup RCC_Private_Macros RCC Private Macros
|
|
* @{
|
|
*/
|
|
#define MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()
|
|
#define MCO1_GPIO_PORT GPIOA
|
|
#define MCO1_PIN GPIO_PIN_8
|
|
|
|
#define MCO2_CLK_ENABLE() __HAL_RCC_GPIOC_CLK_ENABLE()
|
|
#define MCO2_GPIO_PORT GPIOC
|
|
#define MCO2_PIN GPIO_PIN_9
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
/* Private variables ---------------------------------------------------------*/
|
|
/** @defgroup RCC_Private_Variables RCC Private Variables
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
/* Private function prototypes -----------------------------------------------*/
|
|
/* Exported functions --------------------------------------------------------*/
|
|
|
|
/** @defgroup RCC_Exported_Functions RCC Exported Functions
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions
|
|
* @brief Initialization and Configuration functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Initialization and de-initialization functions #####
|
|
===============================================================================
|
|
[..]
|
|
This section provides functions allowing to configure the internal/external oscillators
|
|
(HSE, HSI, LSE,CSI, LSI,HSI48, PLL, CSS and MCO) and the System buses clocks (SYSCLK, AHB3, AHB1
|
|
AHB2,AHB4,APB3, APB1L, APB1H, APB2, and APB4).
|
|
|
|
[..] Internal/external clock and PLL configuration
|
|
(#) HSI (high-speed internal), 64 MHz factory-trimmed RC used directly or through
|
|
the PLL as System clock source.
|
|
(#) CSI is a low-power RC oscillator which can be used directly as system clock, peripheral
|
|
clock, or PLL input.But even with frequency calibration, is less accurate than an
|
|
external crystal oscillator or ceramic resonator.
|
|
(#) LSI (low-speed internal), 32 KHz low consumption RC used as IWDG and/or RTC
|
|
clock source.
|
|
|
|
(#) HSE (high-speed external), 4 to 48 MHz crystal oscillator used directly or
|
|
through the PLL as System clock source. Can be used also as RTC clock source.
|
|
|
|
(#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source.
|
|
|
|
(#) PLL , The RCC features three independent PLLs (clocked by HSI , HSE or CSI),
|
|
featuring three different output clocks and able to work either in integer or Fractional mode.
|
|
(++) A main PLL, PLL1, which is generally used to provide clocks to the CPU
|
|
and to some peripherals.
|
|
(++) Two dedicated PLLs, PLL2 and PLL3, which are used to generate the kernel clock for peripherals.
|
|
|
|
|
|
(#) CSS (Clock security system), once enabled and if a HSE clock failure occurs
|
|
(HSE used directly or through PLL as System clock source), the System clock
|
|
is automatically switched to HSI and an interrupt is generated if enabled.
|
|
The interrupt is linked to the Cortex-M NMI (Non-Mask-able Interrupt)
|
|
exception vector.
|
|
|
|
(#) MCO1 (micro controller clock output), used to output HSI, LSE, HSE, PLL1(PLL1_Q)
|
|
or HSI48 clock (through a configurable pre-scaler) on PA8 pin.
|
|
|
|
(#) MCO2 (micro controller clock output), used to output HSE, PLL2(PLL2_P), SYSCLK,
|
|
LSI, CSI, or PLL1(PLL1_P) clock (through a configurable pre-scaler) on PC9 pin.
|
|
|
|
[..] System, AHB and APB buses clocks configuration
|
|
(#) Several clock sources can be used to drive the System clock (SYSCLK): CSI,HSI,
|
|
HSE and PLL.
|
|
The AHB clock (HCLK) is derived from System core clock through configurable
|
|
pre-scaler and used to clock the CPU, memory and peripherals mapped
|
|
on AHB and APB bus of the 3 Domains (D1, D2, D3)* through configurable pre-scalers
|
|
and used to clock the peripherals mapped on these buses. You can use
|
|
"HAL_RCC_GetSysClockFreq()" function to retrieve system clock frequency.
|
|
|
|
-@- All the peripheral clocks are derived from the System clock (SYSCLK) except those
|
|
with dual clock domain where kernel source clock could be selected through
|
|
RCC_D1CCIPR,RCC_D2CCIP1R,RCC_D2CCIP2R and RCC_D3CCIPR registers.
|
|
|
|
(*) : 2 Domains (CD and SRD) for stm32h7a3xx and stm32h7b3xx family lines.
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Resets the RCC clock configuration to the default reset state.
|
|
* @note The default reset state of the clock configuration is given below:
|
|
* - HSI ON and used as system clock source
|
|
* - HSE, PLL1, PLL2 and PLL3 OFF
|
|
* - AHB, APB Bus pre-scaler set to 1.
|
|
* - CSS, MCO1 and MCO2 OFF
|
|
* - All interrupts disabled
|
|
* @note This function doesn't modify the configuration of the
|
|
* - Peripheral clocks
|
|
* - LSI, LSE and RTC clocks
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_RCC_DeInit(void)
|
|
{
|
|
uint32_t tickstart;
|
|
|
|
/* Increasing the CPU frequency */
|
|
if (FLASH_LATENCY_DEFAULT > __HAL_FLASH_GET_LATENCY())
|
|
{
|
|
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
|
|
__HAL_FLASH_SET_LATENCY(FLASH_LATENCY_DEFAULT);
|
|
|
|
/* Check that the new number of wait states is taken into account to access the Flash
|
|
memory by reading the FLASH_ACR register */
|
|
if (__HAL_FLASH_GET_LATENCY() != FLASH_LATENCY_DEFAULT)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/* Get Start Tick */
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Set HSION bit */
|
|
SET_BIT(RCC->CR, RCC_CR_HSION);
|
|
|
|
/* Wait till HSI is ready */
|
|
while (READ_BIT(RCC->CR, RCC_CR_HSIRDY) == 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Set HSITRIM[6:0] bits to the reset value */
|
|
SET_BIT(RCC->HSICFGR, RCC_HSICFGR_HSITRIM_6);
|
|
|
|
/* Reset CFGR register */
|
|
CLEAR_REG(RCC->CFGR);
|
|
|
|
/* Update the SystemCoreClock and SystemD2Clock global variables */
|
|
SystemCoreClock = HSI_VALUE;
|
|
SystemD2Clock = HSI_VALUE;
|
|
|
|
/* Adapt Systick interrupt period */
|
|
if (HAL_InitTick(uwTickPrio) != HAL_OK)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Get Start Tick */
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till clock switch is ready */
|
|
while (READ_BIT(RCC->CFGR, RCC_CFGR_SWS) != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Get Start Tick */
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Reset CSION, CSIKERON, HSEON, HSI48ON, HSECSSON, HSIDIV bits */
|
|
CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_HSIKERON | RCC_CR_HSIDIV | RCC_CR_HSIDIVF | RCC_CR_CSION | RCC_CR_CSIKERON \
|
|
| RCC_CR_HSI48ON | RCC_CR_CSSHSEON);
|
|
|
|
/* Wait till HSE is disabled */
|
|
while (READ_BIT(RCC->CR, RCC_CR_HSERDY) != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Get Start Tick */
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Clear PLLON bit */
|
|
CLEAR_BIT(RCC->CR, RCC_CR_PLL1ON);
|
|
|
|
/* Wait till PLL is disabled */
|
|
while (READ_BIT(RCC->CR, RCC_CR_PLL1RDY) != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Get Start Tick */
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Reset PLL2ON bit */
|
|
CLEAR_BIT(RCC->CR, RCC_CR_PLL2ON);
|
|
|
|
/* Wait till PLL2 is disabled */
|
|
while (READ_BIT(RCC->CR, RCC_CR_PLL2RDY) != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Get Start Tick */
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Reset PLL3 bit */
|
|
CLEAR_BIT(RCC->CR, RCC_CR_PLL3ON);
|
|
|
|
/* Wait till PLL3 is disabled */
|
|
while (READ_BIT(RCC->CR, RCC_CR_PLL3RDY) != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
#if defined(RCC_D1CFGR_HPRE)
|
|
/* Reset D1CFGR register */
|
|
CLEAR_REG(RCC->D1CFGR);
|
|
|
|
/* Reset D2CFGR register */
|
|
CLEAR_REG(RCC->D2CFGR);
|
|
|
|
/* Reset D3CFGR register */
|
|
CLEAR_REG(RCC->D3CFGR);
|
|
#else
|
|
/* Reset CDCFGR1 register */
|
|
CLEAR_REG(RCC->CDCFGR1);
|
|
|
|
/* Reset CDCFGR2 register */
|
|
CLEAR_REG(RCC->CDCFGR2);
|
|
|
|
/* Reset SRDCFGR register */
|
|
CLEAR_REG(RCC->SRDCFGR);
|
|
#endif
|
|
|
|
/* Reset PLLCKSELR register to default value */
|
|
RCC->PLLCKSELR = RCC_PLLCKSELR_DIVM1_5 | RCC_PLLCKSELR_DIVM2_5 | RCC_PLLCKSELR_DIVM3_5;
|
|
|
|
/* Reset PLLCFGR register to default value */
|
|
WRITE_REG(RCC->PLLCFGR, 0x01FF0000U);
|
|
|
|
/* Reset PLL1DIVR register to default value */
|
|
WRITE_REG(RCC->PLL1DIVR, 0x01010280U);
|
|
|
|
/* Reset PLL1FRACR register */
|
|
CLEAR_REG(RCC->PLL1FRACR);
|
|
|
|
/* Reset PLL2DIVR register to default value */
|
|
WRITE_REG(RCC->PLL2DIVR, 0x01010280U);
|
|
|
|
/* Reset PLL2FRACR register */
|
|
CLEAR_REG(RCC->PLL2FRACR);
|
|
|
|
/* Reset PLL3DIVR register to default value */
|
|
WRITE_REG(RCC->PLL3DIVR, 0x01010280U);
|
|
|
|
/* Reset PLL3FRACR register */
|
|
CLEAR_REG(RCC->PLL3FRACR);
|
|
|
|
#if defined(RCC_CR_HSEEXT)
|
|
/* Reset HSEEXT */
|
|
CLEAR_BIT(RCC->CR, RCC_CR_HSEEXT);
|
|
#endif /* RCC_CR_HSEEXT */
|
|
|
|
/* Reset HSEBYP bit */
|
|
CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP);
|
|
|
|
/* Disable all interrupts */
|
|
CLEAR_REG(RCC->CIER);
|
|
|
|
/* Clear all interrupts flags */
|
|
WRITE_REG(RCC->CICR, 0xFFFFFFFFU);
|
|
|
|
/* Reset all RSR flags */
|
|
SET_BIT(RCC->RSR, RCC_RSR_RMVF);
|
|
|
|
/* Decreasing the number of wait states because of lower CPU frequency */
|
|
if (FLASH_LATENCY_DEFAULT < __HAL_FLASH_GET_LATENCY())
|
|
{
|
|
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
|
|
__HAL_FLASH_SET_LATENCY(FLASH_LATENCY_DEFAULT);
|
|
|
|
/* Check that the new number of wait states is taken into account to access the Flash
|
|
memory by reading the FLASH_ACR register */
|
|
if (__HAL_FLASH_GET_LATENCY() != FLASH_LATENCY_DEFAULT)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
}
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Initializes the RCC Oscillators according to the specified parameters in the
|
|
* RCC_OscInitTypeDef.
|
|
* @param RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that
|
|
* contains the configuration information for the RCC Oscillators.
|
|
* @note The PLL is not disabled when used as system clock.
|
|
* @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not
|
|
* supported by this function. User should request a transition to LSE Off
|
|
* first and then LSE On or LSE Bypass.
|
|
* @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not
|
|
* supported by this function. User should request a transition to HSE Off
|
|
* first and then HSE On or HSE Bypass.
|
|
* @retval HAL status
|
|
*/
|
|
__weak HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
|
|
{
|
|
uint32_t tickstart;
|
|
uint32_t temp1_pllckcfg, temp2_pllckcfg;
|
|
|
|
/* Check Null pointer */
|
|
if (RCC_OscInitStruct == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
|
|
/*------------------------------- HSE Configuration ------------------------*/
|
|
if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
|
|
|
|
const uint32_t temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE();
|
|
const uint32_t temp_pllckselr = RCC->PLLCKSELR;
|
|
/* When the HSE is used as system clock or clock source for PLL in these cases HSE will not disabled */
|
|
if ((temp_sysclksrc == RCC_CFGR_SWS_HSE) || ((temp_sysclksrc == RCC_CFGR_SWS_PLL1) && ((temp_pllckselr & RCC_PLLCKSELR_PLLSRC) == RCC_PLLCKSELR_PLLSRC_HSE)))
|
|
{
|
|
if ((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != 0U) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Set the new HSE configuration ---------------------------------------*/
|
|
__HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
|
|
|
|
/* Check the HSE State */
|
|
if (RCC_OscInitStruct->HSEState != RCC_HSE_OFF)
|
|
{
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till HSE is ready */
|
|
while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == 0U)
|
|
{
|
|
if ((uint32_t)(HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till HSE is disabled */
|
|
while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != 0U)
|
|
{
|
|
if ((uint32_t)(HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*----------------------------- HSI Configuration --------------------------*/
|
|
if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
|
|
assert_param(IS_RCC_HSICALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
|
|
|
|
/* When the HSI is used as system clock it will not be disabled */
|
|
const uint32_t temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE();
|
|
const uint32_t temp_pllckselr = RCC->PLLCKSELR;
|
|
if ((temp_sysclksrc == RCC_CFGR_SWS_HSI) || ((temp_sysclksrc == RCC_CFGR_SWS_PLL1) && ((temp_pllckselr & RCC_PLLCKSELR_PLLSRC) == RCC_PLLCKSELR_PLLSRC_HSI)))
|
|
{
|
|
/* When HSI is used as system clock it will not be disabled */
|
|
if ((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != 0U) && (RCC_OscInitStruct->HSIState == RCC_HSI_OFF))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
/* Otherwise, only HSI division and calibration are allowed */
|
|
else
|
|
{
|
|
/* Enable the Internal High Speed oscillator (HSI, HSIDIV2, HSIDIV4, or HSIDIV8) */
|
|
__HAL_RCC_HSI_CONFIG(RCC_OscInitStruct->HSIState);
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till HSI is ready */
|
|
while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == 0U)
|
|
{
|
|
if ((uint32_t)(HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
/* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
|
|
__HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
|
|
}
|
|
}
|
|
|
|
else
|
|
{
|
|
/* Check the HSI State */
|
|
if ((RCC_OscInitStruct->HSIState) != RCC_HSI_OFF)
|
|
{
|
|
/* Enable the Internal High Speed oscillator (HSI, HSIDIV2,HSIDIV4, or HSIDIV8) */
|
|
__HAL_RCC_HSI_CONFIG(RCC_OscInitStruct->HSIState);
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till HSI is ready */
|
|
while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
|
|
__HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
|
|
}
|
|
else
|
|
{
|
|
/* Disable the Internal High Speed oscillator (HSI). */
|
|
__HAL_RCC_HSI_DISABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till HSI is disabled */
|
|
while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*----------------------------- CSI Configuration --------------------------*/
|
|
if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_CSI) == RCC_OSCILLATORTYPE_CSI)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_CSI(RCC_OscInitStruct->CSIState));
|
|
assert_param(IS_RCC_CSICALIBRATION_VALUE(RCC_OscInitStruct->CSICalibrationValue));
|
|
|
|
/* When the CSI is used as system clock it will not disabled */
|
|
const uint32_t temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE();
|
|
const uint32_t temp_pllckselr = RCC->PLLCKSELR;
|
|
if ((temp_sysclksrc == RCC_CFGR_SWS_CSI) || ((temp_sysclksrc == RCC_CFGR_SWS_PLL1) && ((temp_pllckselr & RCC_PLLCKSELR_PLLSRC) == RCC_PLLCKSELR_PLLSRC_CSI)))
|
|
{
|
|
/* When CSI is used as system clock it will not disabled */
|
|
if ((__HAL_RCC_GET_FLAG(RCC_FLAG_CSIRDY) != 0U) && (RCC_OscInitStruct->CSIState != RCC_CSI_ON))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
/* Otherwise, just the calibration is allowed */
|
|
else
|
|
{
|
|
/* Adjusts the Internal High Speed oscillator (CSI) calibration value.*/
|
|
__HAL_RCC_CSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->CSICalibrationValue);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Check the CSI State */
|
|
if ((RCC_OscInitStruct->CSIState) != RCC_CSI_OFF)
|
|
{
|
|
/* Enable the Internal High Speed oscillator (CSI). */
|
|
__HAL_RCC_CSI_ENABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till CSI is ready */
|
|
while (__HAL_RCC_GET_FLAG(RCC_FLAG_CSIRDY) == 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > CSI_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Adjusts the Internal High Speed oscillator (CSI) calibration value.*/
|
|
__HAL_RCC_CSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->CSICalibrationValue);
|
|
}
|
|
else
|
|
{
|
|
/* Disable the Internal High Speed oscillator (CSI). */
|
|
__HAL_RCC_CSI_DISABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till CSI is disabled */
|
|
while (__HAL_RCC_GET_FLAG(RCC_FLAG_CSIRDY) != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > CSI_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*------------------------------ LSI Configuration -------------------------*/
|
|
if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
|
|
|
|
/* Check the LSI State */
|
|
if ((RCC_OscInitStruct->LSIState) != RCC_LSI_OFF)
|
|
{
|
|
/* Enable the Internal Low Speed oscillator (LSI). */
|
|
__HAL_RCC_LSI_ENABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till LSI is ready */
|
|
while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Disable the Internal Low Speed oscillator (LSI). */
|
|
__HAL_RCC_LSI_DISABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till LSI is ready */
|
|
while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*------------------------------ HSI48 Configuration -------------------------*/
|
|
if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_HSI48(RCC_OscInitStruct->HSI48State));
|
|
|
|
/* Check the HSI48 State */
|
|
if ((RCC_OscInitStruct->HSI48State) != RCC_HSI48_OFF)
|
|
{
|
|
/* Enable the Internal Low Speed oscillator (HSI48). */
|
|
__HAL_RCC_HSI48_ENABLE();
|
|
|
|
/* Get time-out */
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till HSI48 is ready */
|
|
while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) == 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Disable the Internal Low Speed oscillator (HSI48). */
|
|
__HAL_RCC_HSI48_DISABLE();
|
|
|
|
/* Get time-out */
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till HSI48 is ready */
|
|
while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*------------------------------ LSE Configuration -------------------------*/
|
|
if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));
|
|
|
|
/* Enable write access to Backup domain */
|
|
PWR->CR1 |= PWR_CR1_DBP;
|
|
|
|
/* Wait for Backup domain Write protection disable */
|
|
tickstart = HAL_GetTick();
|
|
|
|
while ((PWR->CR1 & PWR_CR1_DBP) == 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Set the new LSE configuration -----------------------------------------*/
|
|
__HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
|
|
/* Check the LSE State */
|
|
if ((RCC_OscInitStruct->LSEState) != RCC_LSE_OFF)
|
|
{
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till LSE is ready */
|
|
while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till LSE is disabled */
|
|
while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*-------------------------------- PLL Configuration -----------------------*/
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
|
|
if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE)
|
|
{
|
|
/* Check if the PLL is used as system clock or not */
|
|
if (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL1)
|
|
{
|
|
if ((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
|
|
assert_param(IS_RCC_PLLRGE_VALUE(RCC_OscInitStruct->PLL.PLLRGE));
|
|
assert_param(IS_RCC_PLLVCO_VALUE(RCC_OscInitStruct->PLL.PLLVCOSEL));
|
|
assert_param(IS_RCC_PLLM_VALUE(RCC_OscInitStruct->PLL.PLLM));
|
|
assert_param(IS_RCC_PLLN_VALUE(RCC_OscInitStruct->PLL.PLLN));
|
|
assert_param(IS_RCC_PLLP_VALUE(RCC_OscInitStruct->PLL.PLLP));
|
|
assert_param(IS_RCC_PLLQ_VALUE(RCC_OscInitStruct->PLL.PLLQ));
|
|
assert_param(IS_RCC_PLLR_VALUE(RCC_OscInitStruct->PLL.PLLR));
|
|
assert_param(IS_RCC_PLLFRACN_VALUE(RCC_OscInitStruct->PLL.PLLFRACN));
|
|
|
|
/* Disable the main PLL. */
|
|
__HAL_RCC_PLL_DISABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till PLL is disabled */
|
|
while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Configure the main PLL clock source, multiplication and division factors. */
|
|
__HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
|
|
RCC_OscInitStruct->PLL.PLLM,
|
|
RCC_OscInitStruct->PLL.PLLN,
|
|
RCC_OscInitStruct->PLL.PLLP,
|
|
RCC_OscInitStruct->PLL.PLLQ,
|
|
RCC_OscInitStruct->PLL.PLLR);
|
|
|
|
/* Disable PLLFRACN . */
|
|
__HAL_RCC_PLLFRACN_DISABLE();
|
|
|
|
/* Configure PLL PLL1FRACN */
|
|
__HAL_RCC_PLLFRACN_CONFIG(RCC_OscInitStruct->PLL.PLLFRACN);
|
|
|
|
/* Select PLL1 input reference frequency range: VCI */
|
|
__HAL_RCC_PLL_VCIRANGE(RCC_OscInitStruct->PLL.PLLRGE) ;
|
|
|
|
/* Select PLL1 output frequency range : VCO */
|
|
__HAL_RCC_PLL_VCORANGE(RCC_OscInitStruct->PLL.PLLVCOSEL) ;
|
|
|
|
/* Enable PLL System Clock output. */
|
|
__HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL1_DIVP);
|
|
|
|
/* Enable PLL1Q Clock output. */
|
|
__HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL1_DIVQ);
|
|
|
|
/* Enable PLL1R Clock output. */
|
|
__HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL1_DIVR);
|
|
|
|
/* Enable PLL1FRACN . */
|
|
__HAL_RCC_PLLFRACN_ENABLE();
|
|
|
|
/* Enable the main PLL. */
|
|
__HAL_RCC_PLL_ENABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till PLL is ready */
|
|
while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Disable the main PLL. */
|
|
__HAL_RCC_PLL_DISABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till PLL is disabled */
|
|
while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Do not return HAL_ERROR if request repeats the current configuration */
|
|
temp1_pllckcfg = RCC->PLLCKSELR;
|
|
temp2_pllckcfg = RCC->PLL1DIVR;
|
|
if (((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_OFF) ||
|
|
(READ_BIT(temp1_pllckcfg, RCC_PLLCKSELR_PLLSRC) != RCC_OscInitStruct->PLL.PLLSource) ||
|
|
((READ_BIT(temp1_pllckcfg, RCC_PLLCKSELR_DIVM1) >> RCC_PLLCKSELR_DIVM1_Pos) != RCC_OscInitStruct->PLL.PLLM) ||
|
|
(READ_BIT(temp2_pllckcfg, RCC_PLL1DIVR_N1) != (RCC_OscInitStruct->PLL.PLLN - 1U)) ||
|
|
((READ_BIT(temp2_pllckcfg, RCC_PLL1DIVR_P1) >> RCC_PLL1DIVR_P1_Pos) != (RCC_OscInitStruct->PLL.PLLP - 1U)) ||
|
|
((READ_BIT(temp2_pllckcfg, RCC_PLL1DIVR_Q1) >> RCC_PLL1DIVR_Q1_Pos) != (RCC_OscInitStruct->PLL.PLLQ - 1U)) ||
|
|
((READ_BIT(temp2_pllckcfg, RCC_PLL1DIVR_R1) >> RCC_PLL1DIVR_R1_Pos) != (RCC_OscInitStruct->PLL.PLLR - 1U)))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
else
|
|
{
|
|
/* Check if only fractional part needs to be updated */
|
|
temp1_pllckcfg = ((RCC->PLL1FRACR & RCC_PLL1FRACR_FRACN1) >> RCC_PLL1FRACR_FRACN1_Pos);
|
|
if (RCC_OscInitStruct->PLL.PLLFRACN != temp1_pllckcfg)
|
|
{
|
|
assert_param(IS_RCC_PLLFRACN_VALUE(RCC_OscInitStruct->PLL.PLLFRACN));
|
|
/* Disable PLL1FRACEN */
|
|
__HAL_RCC_PLLFRACN_DISABLE();
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
/* Wait at least 2 CK_REF (PLL input source divided by M) period to make sure next latched value will be taken into account. */
|
|
while ((HAL_GetTick() - tickstart) < PLL_FRAC_TIMEOUT_VALUE)
|
|
{
|
|
}
|
|
/* Configure PLL1 PLL1FRACN */
|
|
__HAL_RCC_PLLFRACN_CONFIG(RCC_OscInitStruct->PLL.PLLFRACN);
|
|
/* Enable PLL1FRACEN to latch new value. */
|
|
__HAL_RCC_PLLFRACN_ENABLE();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Initializes the CPU, AHB and APB buses clocks according to the specified
|
|
* parameters in the RCC_ClkInitStruct.
|
|
* @param RCC_ClkInitStruct: pointer to an RCC_OscInitTypeDef structure that
|
|
* contains the configuration information for the RCC peripheral.
|
|
* @param FLatency: FLASH Latency, this parameter depend on device selected
|
|
*
|
|
* @note The SystemCoreClock CMSIS variable is used to store System Core Clock Frequency
|
|
* and updated by HAL_InitTick() function called within this function
|
|
*
|
|
* @note The HSI is used (enabled by hardware) as system clock source after
|
|
* start-up from Reset, wake-up from STOP and STANDBY mode, or in case
|
|
* of failure of the HSE used directly or indirectly as system clock
|
|
* (if the Clock Security System CSS is enabled).
|
|
*
|
|
* @note A switch from one clock source to another occurs only if the target
|
|
* clock source is ready (clock stable after start-up delay or PLL locked).
|
|
* If a clock source which is not yet ready is selected, the switch will
|
|
* occur when the clock source will be ready.
|
|
* You can use HAL_RCC_GetClockConfig() function to know which clock is
|
|
* currently used as system clock source.
|
|
* @note Depending on the device voltage range, the software has to set correctly
|
|
* D1CPRE[3:0] bits to ensure that Domain1 core clock not exceed the maximum allowed frequency
|
|
* (for more details refer to section above "Initialization/de-initialization functions")
|
|
* @retval None
|
|
*/
|
|
HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency)
|
|
{
|
|
HAL_StatusTypeDef halstatus;
|
|
uint32_t tickstart;
|
|
uint32_t common_system_clock;
|
|
|
|
/* Check Null pointer */
|
|
if (RCC_ClkInitStruct == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType));
|
|
assert_param(IS_FLASH_LATENCY(FLatency));
|
|
|
|
/* To correctly read data from FLASH memory, the number of wait states (LATENCY)
|
|
must be correctly programmed according to the frequency of the CPU clock
|
|
(HCLK) and the supply voltage of the device. */
|
|
|
|
/* Increasing the CPU frequency */
|
|
if (FLatency > __HAL_FLASH_GET_LATENCY())
|
|
{
|
|
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
|
|
__HAL_FLASH_SET_LATENCY(FLatency);
|
|
|
|
/* Check that the new number of wait states is taken into account to access the Flash
|
|
memory by reading the FLASH_ACR register */
|
|
if (__HAL_FLASH_GET_LATENCY() != FLatency)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
}
|
|
|
|
/* Increasing the BUS frequency divider */
|
|
/*-------------------------- D1PCLK1/CDPCLK1 Configuration ---------------------------*/
|
|
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_D1PCLK1) == RCC_CLOCKTYPE_D1PCLK1)
|
|
{
|
|
#if defined (RCC_D1CFGR_D1PPRE)
|
|
if ((RCC_ClkInitStruct->APB3CLKDivider) > (RCC->D1CFGR & RCC_D1CFGR_D1PPRE))
|
|
{
|
|
assert_param(IS_RCC_D1PCLK1(RCC_ClkInitStruct->APB3CLKDivider));
|
|
MODIFY_REG(RCC->D1CFGR, RCC_D1CFGR_D1PPRE, RCC_ClkInitStruct->APB3CLKDivider);
|
|
}
|
|
#else
|
|
if ((RCC_ClkInitStruct->APB3CLKDivider) > (RCC->CDCFGR1 & RCC_CDCFGR1_CDPPRE))
|
|
{
|
|
assert_param(IS_RCC_CDPCLK1(RCC_ClkInitStruct->APB3CLKDivider));
|
|
MODIFY_REG(RCC->CDCFGR1, RCC_CDCFGR1_CDPPRE, RCC_ClkInitStruct->APB3CLKDivider);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*-------------------------- PCLK1 Configuration ---------------------------*/
|
|
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
|
|
{
|
|
#if defined (RCC_D2CFGR_D2PPRE1)
|
|
if ((RCC_ClkInitStruct->APB1CLKDivider) > (RCC->D2CFGR & RCC_D2CFGR_D2PPRE1))
|
|
{
|
|
assert_param(IS_RCC_PCLK1(RCC_ClkInitStruct->APB1CLKDivider));
|
|
MODIFY_REG(RCC->D2CFGR, RCC_D2CFGR_D2PPRE1, (RCC_ClkInitStruct->APB1CLKDivider));
|
|
}
|
|
#else
|
|
if ((RCC_ClkInitStruct->APB1CLKDivider) > (RCC->CDCFGR2 & RCC_CDCFGR2_CDPPRE1))
|
|
{
|
|
assert_param(IS_RCC_PCLK1(RCC_ClkInitStruct->APB1CLKDivider));
|
|
MODIFY_REG(RCC->CDCFGR2, RCC_CDCFGR2_CDPPRE1, (RCC_ClkInitStruct->APB1CLKDivider));
|
|
}
|
|
#endif
|
|
}
|
|
/*-------------------------- PCLK2 Configuration ---------------------------*/
|
|
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2)
|
|
{
|
|
#if defined(RCC_D2CFGR_D2PPRE2)
|
|
if ((RCC_ClkInitStruct->APB2CLKDivider) > (RCC->D2CFGR & RCC_D2CFGR_D2PPRE2))
|
|
{
|
|
assert_param(IS_RCC_PCLK2(RCC_ClkInitStruct->APB2CLKDivider));
|
|
MODIFY_REG(RCC->D2CFGR, RCC_D2CFGR_D2PPRE2, (RCC_ClkInitStruct->APB2CLKDivider));
|
|
}
|
|
#else
|
|
if ((RCC_ClkInitStruct->APB2CLKDivider) > (RCC->CDCFGR2 & RCC_CDCFGR2_CDPPRE2))
|
|
{
|
|
assert_param(IS_RCC_PCLK2(RCC_ClkInitStruct->APB2CLKDivider));
|
|
MODIFY_REG(RCC->CDCFGR2, RCC_CDCFGR2_CDPPRE2, (RCC_ClkInitStruct->APB2CLKDivider));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*-------------------------- D3PCLK1 Configuration ---------------------------*/
|
|
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_D3PCLK1) == RCC_CLOCKTYPE_D3PCLK1)
|
|
{
|
|
#if defined(RCC_D3CFGR_D3PPRE)
|
|
if ((RCC_ClkInitStruct->APB4CLKDivider) > (RCC->D3CFGR & RCC_D3CFGR_D3PPRE))
|
|
{
|
|
assert_param(IS_RCC_D3PCLK1(RCC_ClkInitStruct->APB4CLKDivider));
|
|
MODIFY_REG(RCC->D3CFGR, RCC_D3CFGR_D3PPRE, (RCC_ClkInitStruct->APB4CLKDivider));
|
|
}
|
|
#else
|
|
if ((RCC_ClkInitStruct->APB4CLKDivider) > (RCC->SRDCFGR & RCC_SRDCFGR_SRDPPRE))
|
|
{
|
|
assert_param(IS_RCC_D3PCLK1(RCC_ClkInitStruct->APB4CLKDivider));
|
|
MODIFY_REG(RCC->SRDCFGR, RCC_SRDCFGR_SRDPPRE, (RCC_ClkInitStruct->APB4CLKDivider));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*-------------------------- HCLK Configuration --------------------------*/
|
|
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
|
|
{
|
|
#if defined (RCC_D1CFGR_HPRE)
|
|
if ((RCC_ClkInitStruct->AHBCLKDivider) > (RCC->D1CFGR & RCC_D1CFGR_HPRE))
|
|
{
|
|
/* Set the new HCLK clock divider */
|
|
assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
|
|
MODIFY_REG(RCC->D1CFGR, RCC_D1CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
|
|
}
|
|
#else
|
|
if ((RCC_ClkInitStruct->AHBCLKDivider) > (RCC->CDCFGR1 & RCC_CDCFGR1_HPRE))
|
|
{
|
|
/* Set the new HCLK clock divider */
|
|
assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
|
|
MODIFY_REG(RCC->CDCFGR1, RCC_CDCFGR1_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*------------------------- SYSCLK Configuration -------------------------*/
|
|
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
|
|
{
|
|
assert_param(IS_RCC_SYSCLK(RCC_ClkInitStruct->SYSCLKDivider));
|
|
assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
|
|
#if defined(RCC_D1CFGR_D1CPRE)
|
|
MODIFY_REG(RCC->D1CFGR, RCC_D1CFGR_D1CPRE, RCC_ClkInitStruct->SYSCLKDivider);
|
|
#else
|
|
MODIFY_REG(RCC->CDCFGR1, RCC_CDCFGR1_CDCPRE, RCC_ClkInitStruct->SYSCLKDivider);
|
|
#endif
|
|
/* HSE is selected as System Clock Source */
|
|
if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
|
|
{
|
|
/* Check the HSE ready flag */
|
|
if (__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == 0U)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
/* PLL is selected as System Clock Source */
|
|
else if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
|
|
{
|
|
/* Check the PLL ready flag */
|
|
if (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == 0U)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
/* CSI is selected as System Clock Source */
|
|
else if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_CSI)
|
|
{
|
|
/* Check the PLL ready flag */
|
|
if (__HAL_RCC_GET_FLAG(RCC_FLAG_CSIRDY) == 0U)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
/* HSI is selected as System Clock Source */
|
|
else
|
|
{
|
|
/* Check the HSI ready flag */
|
|
if (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == 0U)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_ClkInitStruct->SYSCLKSource);
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
while (__HAL_RCC_GET_SYSCLK_SOURCE() != (RCC_ClkInitStruct->SYSCLKSource << RCC_CFGR_SWS_Pos))
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/* Decreasing the BUS frequency divider */
|
|
/*-------------------------- HCLK Configuration --------------------------*/
|
|
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
|
|
{
|
|
#if defined(RCC_D1CFGR_HPRE)
|
|
if ((RCC_ClkInitStruct->AHBCLKDivider) < (RCC->D1CFGR & RCC_D1CFGR_HPRE))
|
|
{
|
|
/* Set the new HCLK clock divider */
|
|
assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
|
|
MODIFY_REG(RCC->D1CFGR, RCC_D1CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
|
|
}
|
|
#else
|
|
if ((RCC_ClkInitStruct->AHBCLKDivider) < (RCC->CDCFGR1 & RCC_CDCFGR1_HPRE))
|
|
{
|
|
/* Set the new HCLK clock divider */
|
|
assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
|
|
MODIFY_REG(RCC->CDCFGR1, RCC_CDCFGR1_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Decreasing the number of wait states because of lower CPU frequency */
|
|
if (FLatency < __HAL_FLASH_GET_LATENCY())
|
|
{
|
|
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
|
|
__HAL_FLASH_SET_LATENCY(FLatency);
|
|
|
|
/* Check that the new number of wait states is taken into account to access the Flash
|
|
memory by reading the FLASH_ACR register */
|
|
if (__HAL_FLASH_GET_LATENCY() != FLatency)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
|
|
/*-------------------------- D1PCLK1/CDPCLK Configuration ---------------------------*/
|
|
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_D1PCLK1) == RCC_CLOCKTYPE_D1PCLK1)
|
|
{
|
|
#if defined(RCC_D1CFGR_D1PPRE)
|
|
if ((RCC_ClkInitStruct->APB3CLKDivider) < (RCC->D1CFGR & RCC_D1CFGR_D1PPRE))
|
|
{
|
|
assert_param(IS_RCC_D1PCLK1(RCC_ClkInitStruct->APB3CLKDivider));
|
|
MODIFY_REG(RCC->D1CFGR, RCC_D1CFGR_D1PPRE, RCC_ClkInitStruct->APB3CLKDivider);
|
|
}
|
|
#else
|
|
if ((RCC_ClkInitStruct->APB3CLKDivider) < (RCC->CDCFGR1 & RCC_CDCFGR1_CDPPRE))
|
|
{
|
|
assert_param(IS_RCC_CDPCLK1(RCC_ClkInitStruct->APB3CLKDivider));
|
|
MODIFY_REG(RCC->CDCFGR1, RCC_CDCFGR1_CDPPRE, RCC_ClkInitStruct->APB3CLKDivider);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*-------------------------- PCLK1 Configuration ---------------------------*/
|
|
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
|
|
{
|
|
#if defined(RCC_D2CFGR_D2PPRE1)
|
|
if ((RCC_ClkInitStruct->APB1CLKDivider) < (RCC->D2CFGR & RCC_D2CFGR_D2PPRE1))
|
|
{
|
|
assert_param(IS_RCC_PCLK1(RCC_ClkInitStruct->APB1CLKDivider));
|
|
MODIFY_REG(RCC->D2CFGR, RCC_D2CFGR_D2PPRE1, (RCC_ClkInitStruct->APB1CLKDivider));
|
|
}
|
|
#else
|
|
if ((RCC_ClkInitStruct->APB1CLKDivider) < (RCC->CDCFGR2 & RCC_CDCFGR2_CDPPRE1))
|
|
{
|
|
assert_param(IS_RCC_PCLK1(RCC_ClkInitStruct->APB1CLKDivider));
|
|
MODIFY_REG(RCC->CDCFGR2, RCC_CDCFGR2_CDPPRE1, (RCC_ClkInitStruct->APB1CLKDivider));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*-------------------------- PCLK2 Configuration ---------------------------*/
|
|
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2)
|
|
{
|
|
#if defined (RCC_D2CFGR_D2PPRE2)
|
|
if ((RCC_ClkInitStruct->APB2CLKDivider) < (RCC->D2CFGR & RCC_D2CFGR_D2PPRE2))
|
|
{
|
|
assert_param(IS_RCC_PCLK2(RCC_ClkInitStruct->APB2CLKDivider));
|
|
MODIFY_REG(RCC->D2CFGR, RCC_D2CFGR_D2PPRE2, (RCC_ClkInitStruct->APB2CLKDivider));
|
|
}
|
|
#else
|
|
if ((RCC_ClkInitStruct->APB2CLKDivider) < (RCC->CDCFGR2 & RCC_CDCFGR2_CDPPRE2))
|
|
{
|
|
assert_param(IS_RCC_PCLK2(RCC_ClkInitStruct->APB2CLKDivider));
|
|
MODIFY_REG(RCC->CDCFGR2, RCC_CDCFGR2_CDPPRE2, (RCC_ClkInitStruct->APB2CLKDivider));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*-------------------------- D3PCLK1/SRDPCLK1 Configuration ---------------------------*/
|
|
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_D3PCLK1) == RCC_CLOCKTYPE_D3PCLK1)
|
|
{
|
|
#if defined(RCC_D3CFGR_D3PPRE)
|
|
if ((RCC_ClkInitStruct->APB4CLKDivider) < (RCC->D3CFGR & RCC_D3CFGR_D3PPRE))
|
|
{
|
|
assert_param(IS_RCC_D3PCLK1(RCC_ClkInitStruct->APB4CLKDivider));
|
|
MODIFY_REG(RCC->D3CFGR, RCC_D3CFGR_D3PPRE, (RCC_ClkInitStruct->APB4CLKDivider));
|
|
}
|
|
#else
|
|
if ((RCC_ClkInitStruct->APB4CLKDivider) < (RCC->SRDCFGR & RCC_SRDCFGR_SRDPPRE))
|
|
{
|
|
assert_param(IS_RCC_SRDPCLK1(RCC_ClkInitStruct->APB4CLKDivider));
|
|
MODIFY_REG(RCC->SRDCFGR, RCC_SRDCFGR_SRDPPRE, (RCC_ClkInitStruct->APB4CLKDivider));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Update the SystemCoreClock global variable */
|
|
#if defined(RCC_D1CFGR_D1CPRE)
|
|
common_system_clock = HAL_RCC_GetSysClockFreq() >> ((D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_D1CPRE) >> RCC_D1CFGR_D1CPRE_Pos]) & 0x1FU);
|
|
#else
|
|
common_system_clock = HAL_RCC_GetSysClockFreq() >> ((D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_CDCPRE) >> RCC_CDCFGR1_CDCPRE_Pos]) & 0x1FU);
|
|
#endif
|
|
|
|
#if defined(RCC_D1CFGR_HPRE)
|
|
SystemD2Clock = (common_system_clock >> ((D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_HPRE) >> RCC_D1CFGR_HPRE_Pos]) & 0x1FU));
|
|
#else
|
|
SystemD2Clock = (common_system_clock >> ((D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_HPRE) >> RCC_CDCFGR1_HPRE_Pos]) & 0x1FU));
|
|
#endif
|
|
|
|
#if defined(DUAL_CORE) && defined(CORE_CM4)
|
|
SystemCoreClock = SystemD2Clock;
|
|
#else
|
|
SystemCoreClock = common_system_clock;
|
|
#endif /* DUAL_CORE && CORE_CM4 */
|
|
|
|
/* Configure the source of time base considering new system clocks settings*/
|
|
halstatus = HAL_InitTick(uwTickPrio);
|
|
|
|
return halstatus;
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions
|
|
* @brief RCC clocks control functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Peripheral Control functions #####
|
|
===============================================================================
|
|
[..]
|
|
This subsection provides a set of functions allowing to control the RCC Clocks
|
|
frequencies.
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Selects the clock source to output on MCO1 pin(PA8) or on MCO2 pin(PC9).
|
|
* @note PA8/PC9 should be configured in alternate function mode.
|
|
* @param RCC_MCOx: specifies the output direction for the clock source.
|
|
* This parameter can be one of the following values:
|
|
* @arg RCC_MCO1: Clock source to output on MCO1 pin(PA8).
|
|
* @arg RCC_MCO2: Clock source to output on MCO2 pin(PC9).
|
|
* @param RCC_MCOSource: specifies the clock source to output.
|
|
* This parameter can be one of the following values:
|
|
* @arg RCC_MCO1SOURCE_HSI: HSI clock selected as MCO1 source
|
|
* @arg RCC_MCO1SOURCE_LSE: LSE clock selected as MCO1 source
|
|
* @arg RCC_MCO1SOURCE_HSE: HSE clock selected as MCO1 source
|
|
* @arg RCC_MCO1SOURCE_PLL1QCLK: PLL1Q clock selected as MCO1 source
|
|
* @arg RCC_MCO1SOURCE_HSI48: HSI48 (48MHZ) selected as MCO1 source
|
|
* @arg RCC_MCO2SOURCE_SYSCLK: System clock (SYSCLK) selected as MCO2 source
|
|
* @arg RCC_MCO2SOURCE_PLL2PCLK: PLL2P clock selected as MCO2 source
|
|
* @arg RCC_MCO2SOURCE_HSE: HSE clock selected as MCO2 source
|
|
* @arg RCC_MCO2SOURCE_PLLCLK: PLL1P clock selected as MCO2 source
|
|
* @arg RCC_MCO2SOURCE_CSICLK: CSI clock selected as MCO2 source
|
|
* @arg RCC_MCO2SOURCE_LSICLK: LSI clock selected as MCO2 source
|
|
* @param RCC_MCODiv: specifies the MCOx pre-scaler.
|
|
* This parameter can be one of the following values:
|
|
* @arg RCC_MCODIV_1 up to RCC_MCODIV_15 : divider applied to MCOx clock
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv)
|
|
{
|
|
GPIO_InitTypeDef GPIO_InitStruct;
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_MCO(RCC_MCOx));
|
|
assert_param(IS_RCC_MCODIV(RCC_MCODiv));
|
|
/* RCC_MCO1 */
|
|
if (RCC_MCOx == RCC_MCO1)
|
|
{
|
|
assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource));
|
|
|
|
/* MCO1 Clock Enable */
|
|
MCO1_CLK_ENABLE();
|
|
|
|
/* Configure the MCO1 pin in alternate function mode */
|
|
GPIO_InitStruct.Pin = MCO1_PIN;
|
|
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
|
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
|
|
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
|
GPIO_InitStruct.Alternate = GPIO_AF0_MCO;
|
|
HAL_GPIO_Init(MCO1_GPIO_PORT, &GPIO_InitStruct);
|
|
|
|
/* Mask MCO1 and MCO1PRE[3:0] bits then Select MCO1 clock source and pre-scaler */
|
|
MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO1 | RCC_CFGR_MCO1PRE), (RCC_MCOSource | RCC_MCODiv));
|
|
}
|
|
else
|
|
{
|
|
assert_param(IS_RCC_MCO2SOURCE(RCC_MCOSource));
|
|
|
|
/* MCO2 Clock Enable */
|
|
MCO2_CLK_ENABLE();
|
|
|
|
/* Configure the MCO2 pin in alternate function mode */
|
|
GPIO_InitStruct.Pin = MCO2_PIN;
|
|
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
|
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
|
|
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
|
GPIO_InitStruct.Alternate = GPIO_AF0_MCO;
|
|
HAL_GPIO_Init(MCO2_GPIO_PORT, &GPIO_InitStruct);
|
|
|
|
/* Mask MCO2 and MCO2PRE[3:0] bits then Select MCO2 clock source and pre-scaler */
|
|
MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO2 | RCC_CFGR_MCO2PRE), (RCC_MCOSource | (RCC_MCODiv << 7U)));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Enables the Clock Security System.
|
|
* @note If a failure is detected on the HSE oscillator clock, this oscillator
|
|
* is automatically disabled and an interrupt is generated to inform the
|
|
* software about the failure (Clock Security System Interrupt, CSSI),
|
|
* allowing the MCU to perform rescue operations. The CSSI is linked to
|
|
* the Cortex-M NMI (Non-Mask-able Interrupt) exception vector.
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_EnableCSS(void)
|
|
{
|
|
SET_BIT(RCC->CR, RCC_CR_CSSHSEON) ;
|
|
}
|
|
|
|
/**
|
|
* @brief Disables the Clock Security System.
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_DisableCSS(void)
|
|
{
|
|
CLEAR_BIT(RCC->CR, RCC_CR_CSSHSEON);
|
|
}
|
|
|
|
/**
|
|
* @brief Returns the SYSCLK frequency
|
|
*
|
|
* @note The system frequency computed by this function is not the real
|
|
* frequency in the chip. It is calculated based on the predefined
|
|
* constant and the selected clock source:
|
|
* @note If SYSCLK source is CSI, function returns values based on CSI_VALUE(*)
|
|
* @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(**)
|
|
* @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(***)
|
|
* @note If SYSCLK source is PLL, function returns values based on CSI_VALUE(*),
|
|
* HSI_VALUE(**) or HSE_VALUE(***) multiplied/divided by the PLL factors.
|
|
* @note (*) CSI_VALUE is a constant defined in stm32h7xx_hal_conf.h file (default value
|
|
* 4 MHz) but the real value may vary depending on the variations
|
|
* in voltage and temperature.
|
|
* @note (**) HSI_VALUE is a constant defined in stm32h7xx_hal_conf.h file (default value
|
|
* 64 MHz) but the real value may vary depending on the variations
|
|
* in voltage and temperature.
|
|
* @note (***) HSE_VALUE is a constant defined in stm32h7xx_hal_conf.h file (default value
|
|
* 25 MHz), user has to ensure that HSE_VALUE is same as the real
|
|
* frequency of the crystal used. Otherwise, this function may
|
|
* have wrong result.
|
|
*
|
|
* @note The result of this function could be not correct when using fractional
|
|
* value for HSE crystal.
|
|
*
|
|
* @note This function can be used by the user application to compute the
|
|
* baud rate for the communication peripherals or configure other parameters.
|
|
*
|
|
* @note Each time SYSCLK changes, this function must be called to update the
|
|
* right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
|
|
*
|
|
*
|
|
* @retval SYSCLK frequency
|
|
*/
|
|
uint32_t HAL_RCC_GetSysClockFreq(void)
|
|
{
|
|
uint32_t pllp, pllsource, pllm, pllfracen, hsivalue;
|
|
float_t fracn1, pllvco;
|
|
uint32_t sysclockfreq;
|
|
|
|
/* Get SYSCLK source -------------------------------------------------------*/
|
|
|
|
switch (RCC->CFGR & RCC_CFGR_SWS)
|
|
{
|
|
case RCC_CFGR_SWS_HSI: /* HSI used as system clock source */
|
|
|
|
if (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIDIV) != 0U)
|
|
{
|
|
sysclockfreq = (uint32_t)(HSI_VALUE >> (__HAL_RCC_GET_HSI_DIVIDER() >> 3));
|
|
}
|
|
else
|
|
{
|
|
sysclockfreq = (uint32_t) HSI_VALUE;
|
|
}
|
|
|
|
break;
|
|
|
|
case RCC_CFGR_SWS_CSI: /* CSI used as system clock source */
|
|
sysclockfreq = CSI_VALUE;
|
|
break;
|
|
|
|
case RCC_CFGR_SWS_HSE: /* HSE used as system clock source */
|
|
sysclockfreq = HSE_VALUE;
|
|
break;
|
|
|
|
case RCC_CFGR_SWS_PLL1: /* PLL1 used as system clock source */
|
|
|
|
/* PLL_VCO = (HSE_VALUE or HSI_VALUE or CSI_VALUE/ PLLM) * PLLN
|
|
SYSCLK = PLL_VCO / PLLR
|
|
*/
|
|
pllsource = (RCC->PLLCKSELR & RCC_PLLCKSELR_PLLSRC);
|
|
pllm = ((RCC->PLLCKSELR & RCC_PLLCKSELR_DIVM1) >> 4) ;
|
|
pllfracen = ((RCC-> PLLCFGR & RCC_PLLCFGR_PLL1FRACEN) >> RCC_PLLCFGR_PLL1FRACEN_Pos);
|
|
fracn1 = (float_t)(uint32_t)(pllfracen * ((RCC->PLL1FRACR & RCC_PLL1FRACR_FRACN1) >> 3));
|
|
|
|
if (pllm != 0U)
|
|
{
|
|
switch (pllsource)
|
|
{
|
|
case RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
|
|
|
|
if (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIDIV) != 0U)
|
|
{
|
|
hsivalue = (HSI_VALUE >> (__HAL_RCC_GET_HSI_DIVIDER() >> 3));
|
|
pllvco = ((float_t)hsivalue / (float_t)pllm) * ((float_t)(uint32_t)(RCC->PLL1DIVR & RCC_PLL1DIVR_N1) + (fracn1 / (float_t)0x2000) + (float_t)1);
|
|
}
|
|
else
|
|
{
|
|
pllvco = ((float_t)HSI_VALUE / (float_t)pllm) * ((float_t)(uint32_t)(RCC->PLL1DIVR & RCC_PLL1DIVR_N1) + (fracn1 / (float_t)0x2000) + (float_t)1);
|
|
}
|
|
break;
|
|
|
|
case RCC_PLLSOURCE_CSI: /* CSI used as PLL clock source */
|
|
pllvco = ((float_t)CSI_VALUE / (float_t)pllm) * ((float_t)(uint32_t)(RCC->PLL1DIVR & RCC_PLL1DIVR_N1) + (fracn1 / (float_t)0x2000) + (float_t)1);
|
|
break;
|
|
|
|
case RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
|
|
pllvco = ((float_t)HSE_VALUE / (float_t)pllm) * ((float_t)(uint32_t)(RCC->PLL1DIVR & RCC_PLL1DIVR_N1) + (fracn1 / (float_t)0x2000) + (float_t)1);
|
|
break;
|
|
|
|
default:
|
|
pllvco = ((float_t)CSI_VALUE / (float_t)pllm) * ((float_t)(uint32_t)(RCC->PLL1DIVR & RCC_PLL1DIVR_N1) + (fracn1 / (float_t)0x2000) + (float_t)1);
|
|
break;
|
|
}
|
|
pllp = (((RCC->PLL1DIVR & RCC_PLL1DIVR_P1) >> 9) + 1U) ;
|
|
sysclockfreq = (uint32_t)(float_t)(pllvco / (float_t)pllp);
|
|
}
|
|
else
|
|
{
|
|
sysclockfreq = 0U;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
sysclockfreq = CSI_VALUE;
|
|
break;
|
|
}
|
|
|
|
return sysclockfreq;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Returns the HCLK frequency
|
|
* @note Each time HCLK changes, this function must be called to update the
|
|
* right HCLK value. Otherwise, any configuration based on this function will be incorrect.
|
|
*
|
|
* @note The SystemD2Clock CMSIS variable is used to store System domain2 Clock Frequency
|
|
* and updated within this function
|
|
* @retval HCLK frequency
|
|
*/
|
|
uint32_t HAL_RCC_GetHCLKFreq(void)
|
|
{
|
|
uint32_t common_system_clock;
|
|
|
|
#if defined(RCC_D1CFGR_D1CPRE)
|
|
common_system_clock = HAL_RCC_GetSysClockFreq() >> (D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_D1CPRE) >> RCC_D1CFGR_D1CPRE_Pos] & 0x1FU);
|
|
#else
|
|
common_system_clock = HAL_RCC_GetSysClockFreq() >> (D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_CDCPRE) >> RCC_CDCFGR1_CDCPRE_Pos] & 0x1FU);
|
|
#endif
|
|
|
|
#if defined(RCC_D1CFGR_HPRE)
|
|
SystemD2Clock = (common_system_clock >> ((D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_HPRE) >> RCC_D1CFGR_HPRE_Pos]) & 0x1FU));
|
|
#else
|
|
SystemD2Clock = (common_system_clock >> ((D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_HPRE) >> RCC_CDCFGR1_HPRE_Pos]) & 0x1FU));
|
|
#endif
|
|
|
|
#if defined(DUAL_CORE) && defined(CORE_CM4)
|
|
SystemCoreClock = SystemD2Clock;
|
|
#else
|
|
SystemCoreClock = common_system_clock;
|
|
#endif /* DUAL_CORE && CORE_CM4 */
|
|
|
|
return SystemD2Clock;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Returns the PCLK1 frequency
|
|
* @note Each time PCLK1 changes, this function must be called to update the
|
|
* right PCLK1 value. Otherwise, any configuration based on this function will be incorrect.
|
|
* @retval PCLK1 frequency
|
|
*/
|
|
uint32_t HAL_RCC_GetPCLK1Freq(void)
|
|
{
|
|
#if defined (RCC_D2CFGR_D2PPRE1)
|
|
/* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
|
|
return (HAL_RCC_GetHCLKFreq() >> ((D1CorePrescTable[(RCC->D2CFGR & RCC_D2CFGR_D2PPRE1) >> RCC_D2CFGR_D2PPRE1_Pos]) & 0x1FU));
|
|
#else
|
|
/* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
|
|
return (HAL_RCC_GetHCLKFreq() >> ((D1CorePrescTable[(RCC->CDCFGR2 & RCC_CDCFGR2_CDPPRE1) >> RCC_CDCFGR2_CDPPRE1_Pos]) & 0x1FU));
|
|
#endif
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Returns the D2 PCLK2 frequency
|
|
* @note Each time PCLK2 changes, this function must be called to update the
|
|
* right PCLK2 value. Otherwise, any configuration based on this function will be incorrect.
|
|
* @retval PCLK1 frequency
|
|
*/
|
|
uint32_t HAL_RCC_GetPCLK2Freq(void)
|
|
{
|
|
/* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
|
|
#if defined(RCC_D2CFGR_D2PPRE2)
|
|
return (HAL_RCC_GetHCLKFreq() >> ((D1CorePrescTable[(RCC->D2CFGR & RCC_D2CFGR_D2PPRE2) >> RCC_D2CFGR_D2PPRE2_Pos]) & 0x1FU));
|
|
#else
|
|
return (HAL_RCC_GetHCLKFreq() >> ((D1CorePrescTable[(RCC->CDCFGR2 & RCC_CDCFGR2_CDPPRE2) >> RCC_CDCFGR2_CDPPRE2_Pos]) & 0x1FU));
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Configures the RCC_OscInitStruct according to the internal
|
|
* RCC configuration registers.
|
|
* @param RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that
|
|
* will be configured.
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
|
|
{
|
|
/* Set all possible values for the Oscillator type parameter ---------------*/
|
|
RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_CSI | \
|
|
RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSI48;
|
|
|
|
/* Get the HSE configuration -----------------------------------------------*/
|
|
#if defined(RCC_CR_HSEEXT)
|
|
if ((RCC->CR & (RCC_CR_HSEBYP | RCC_CR_HSEEXT)) == RCC_CR_HSEBYP)
|
|
{
|
|
RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
|
|
}
|
|
else if ((RCC->CR & (RCC_CR_HSEBYP | RCC_CR_HSEEXT)) == (RCC_CR_HSEBYP | RCC_CR_HSEEXT))
|
|
{
|
|
RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS_DIGITAL;
|
|
}
|
|
else if ((RCC->CR & RCC_CR_HSEON) == RCC_CR_HSEON)
|
|
{
|
|
RCC_OscInitStruct->HSEState = RCC_HSE_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
|
|
}
|
|
#else
|
|
if ((RCC->CR & RCC_CR_HSEBYP) == RCC_CR_HSEBYP)
|
|
{
|
|
RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
|
|
}
|
|
else if ((RCC->CR & RCC_CR_HSEON) == RCC_CR_HSEON)
|
|
{
|
|
RCC_OscInitStruct->HSEState = RCC_HSE_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
|
|
}
|
|
#endif /* RCC_CR_HSEEXT */
|
|
|
|
/* Get the CSI configuration -----------------------------------------------*/
|
|
if ((RCC->CR & RCC_CR_CSION) == RCC_CR_CSION)
|
|
{
|
|
RCC_OscInitStruct->CSIState = RCC_CSI_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->CSIState = RCC_CSI_OFF;
|
|
}
|
|
|
|
#if defined(RCC_VER_X)
|
|
if (HAL_GetREVID() <= REV_ID_Y)
|
|
{
|
|
RCC_OscInitStruct->CSICalibrationValue = (uint32_t)(READ_BIT(RCC->HSICFGR, HAL_RCC_REV_Y_CSITRIM_Msk) >> HAL_RCC_REV_Y_CSITRIM_Pos);
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->CSICalibrationValue = (uint32_t)(READ_BIT(RCC->CSICFGR, RCC_CSICFGR_CSITRIM) >> RCC_CSICFGR_CSITRIM_Pos);
|
|
}
|
|
#else
|
|
RCC_OscInitStruct->CSICalibrationValue = (uint32_t)(READ_BIT(RCC->CSICFGR, RCC_CSICFGR_CSITRIM) >> RCC_CSICFGR_CSITRIM_Pos);
|
|
#endif /*RCC_VER_X*/
|
|
|
|
/* Get the HSI configuration -----------------------------------------------*/
|
|
if ((RCC->CR & RCC_CR_HSION) == RCC_CR_HSION)
|
|
{
|
|
RCC_OscInitStruct->HSIState = RCC_HSI_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
|
|
}
|
|
|
|
#if defined(RCC_VER_X)
|
|
if (HAL_GetREVID() <= REV_ID_Y)
|
|
{
|
|
RCC_OscInitStruct->HSICalibrationValue = (uint32_t)(READ_BIT(RCC->HSICFGR, HAL_RCC_REV_Y_HSITRIM_Msk) >> HAL_RCC_REV_Y_HSITRIM_Pos);
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->HSICalibrationValue = (uint32_t)(READ_BIT(RCC->HSICFGR, RCC_HSICFGR_HSITRIM) >> RCC_HSICFGR_HSITRIM_Pos);
|
|
}
|
|
#else
|
|
RCC_OscInitStruct->HSICalibrationValue = (uint32_t)(READ_BIT(RCC->HSICFGR, RCC_HSICFGR_HSITRIM) >> RCC_HSICFGR_HSITRIM_Pos);
|
|
#endif /*RCC_VER_X*/
|
|
|
|
/* Get the LSE configuration -----------------------------------------------*/
|
|
#if defined(RCC_BDCR_LSEEXT)
|
|
if ((RCC->BDCR & (RCC_BDCR_LSEBYP | RCC_BDCR_LSEEXT)) == RCC_BDCR_LSEBYP)
|
|
{
|
|
RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
|
|
}
|
|
else if ((RCC->BDCR & (RCC_BDCR_LSEBYP | RCC_BDCR_LSEEXT)) == (RCC_BDCR_LSEBYP | RCC_BDCR_LSEEXT))
|
|
{
|
|
RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS_DIGITAL;
|
|
}
|
|
else if ((RCC->BDCR & RCC_BDCR_LSEON) == RCC_BDCR_LSEON)
|
|
{
|
|
RCC_OscInitStruct->LSEState = RCC_LSE_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
|
|
}
|
|
#else
|
|
if ((RCC->BDCR & RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP)
|
|
{
|
|
RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
|
|
}
|
|
else if ((RCC->BDCR & RCC_BDCR_LSEON) == RCC_BDCR_LSEON)
|
|
{
|
|
RCC_OscInitStruct->LSEState = RCC_LSE_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
|
|
}
|
|
#endif /* RCC_BDCR_LSEEXT */
|
|
|
|
/* Get the LSI configuration -----------------------------------------------*/
|
|
if ((RCC->CSR & RCC_CSR_LSION) == RCC_CSR_LSION)
|
|
{
|
|
RCC_OscInitStruct->LSIState = RCC_LSI_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->LSIState = RCC_LSI_OFF;
|
|
}
|
|
|
|
/* Get the HSI48 configuration ---------------------------------------------*/
|
|
if ((RCC->CR & RCC_CR_HSI48ON) == RCC_CR_HSI48ON)
|
|
{
|
|
RCC_OscInitStruct->HSI48State = RCC_HSI48_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->HSI48State = RCC_HSI48_OFF;
|
|
}
|
|
|
|
/* Get the PLL configuration -----------------------------------------------*/
|
|
if ((RCC->CR & RCC_CR_PLLON) == RCC_CR_PLLON)
|
|
{
|
|
RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;
|
|
}
|
|
RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->PLLCKSELR & RCC_PLLCKSELR_PLLSRC);
|
|
RCC_OscInitStruct->PLL.PLLM = (uint32_t)((RCC->PLLCKSELR & RCC_PLLCKSELR_DIVM1) >> RCC_PLLCKSELR_DIVM1_Pos);
|
|
RCC_OscInitStruct->PLL.PLLN = (uint32_t)((RCC->PLL1DIVR & RCC_PLL1DIVR_N1) >> RCC_PLL1DIVR_N1_Pos) + 1U;
|
|
RCC_OscInitStruct->PLL.PLLR = (uint32_t)((RCC->PLL1DIVR & RCC_PLL1DIVR_R1) >> RCC_PLL1DIVR_R1_Pos) + 1U;
|
|
RCC_OscInitStruct->PLL.PLLP = (uint32_t)((RCC->PLL1DIVR & RCC_PLL1DIVR_P1) >> RCC_PLL1DIVR_P1_Pos) + 1U;
|
|
RCC_OscInitStruct->PLL.PLLQ = (uint32_t)((RCC->PLL1DIVR & RCC_PLL1DIVR_Q1) >> RCC_PLL1DIVR_Q1_Pos) + 1U;
|
|
RCC_OscInitStruct->PLL.PLLRGE = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLL1RGE));
|
|
RCC_OscInitStruct->PLL.PLLVCOSEL = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLL1VCOSEL) >> RCC_PLLCFGR_PLL1VCOSEL_Pos);
|
|
RCC_OscInitStruct->PLL.PLLFRACN = (uint32_t)(((RCC->PLL1FRACR & RCC_PLL1FRACR_FRACN1) >> RCC_PLL1FRACR_FRACN1_Pos));
|
|
}
|
|
|
|
/**
|
|
* @brief Configures the RCC_ClkInitStruct according to the internal
|
|
* RCC configuration registers.
|
|
* @param RCC_ClkInitStruct: pointer to an RCC_ClkInitTypeDef structure that
|
|
* will be configured.
|
|
* @param pFLatency: Pointer on the Flash Latency.
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency)
|
|
{
|
|
/* Set all possible values for the Clock type parameter --------------------*/
|
|
RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_D1PCLK1 | RCC_CLOCKTYPE_PCLK1 |
|
|
RCC_CLOCKTYPE_PCLK2 | RCC_CLOCKTYPE_D3PCLK1 ;
|
|
|
|
/* Get the SYSCLK configuration --------------------------------------------*/
|
|
RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW);
|
|
|
|
#if defined(RCC_D1CFGR_D1CPRE)
|
|
/* Get the SYSCLK configuration ----------------------------------------------*/
|
|
RCC_ClkInitStruct->SYSCLKDivider = (uint32_t)(RCC->D1CFGR & RCC_D1CFGR_D1CPRE);
|
|
|
|
/* Get the D1HCLK configuration ----------------------------------------------*/
|
|
RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->D1CFGR & RCC_D1CFGR_HPRE);
|
|
|
|
/* Get the APB3 configuration ----------------------------------------------*/
|
|
RCC_ClkInitStruct->APB3CLKDivider = (uint32_t)(RCC->D1CFGR & RCC_D1CFGR_D1PPRE);
|
|
|
|
/* Get the APB1 configuration ----------------------------------------------*/
|
|
RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->D2CFGR & RCC_D2CFGR_D2PPRE1);
|
|
|
|
/* Get the APB2 configuration ----------------------------------------------*/
|
|
RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)(RCC->D2CFGR & RCC_D2CFGR_D2PPRE2);
|
|
|
|
/* Get the APB4 configuration ----------------------------------------------*/
|
|
RCC_ClkInitStruct->APB4CLKDivider = (uint32_t)(RCC->D3CFGR & RCC_D3CFGR_D3PPRE);
|
|
#else
|
|
/* Get the SYSCLK configuration ----------------------------------------------*/
|
|
RCC_ClkInitStruct->SYSCLKDivider = (uint32_t)(RCC->CDCFGR1 & RCC_CDCFGR1_CDCPRE);
|
|
|
|
/* Get the D1HCLK configuration ----------------------------------------------*/
|
|
RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CDCFGR1 & RCC_CDCFGR1_HPRE);
|
|
|
|
/* Get the APB3 configuration ----------------------------------------------*/
|
|
RCC_ClkInitStruct->APB3CLKDivider = (uint32_t)(RCC->CDCFGR1 & RCC_CDCFGR1_CDPPRE);
|
|
|
|
/* Get the APB1 configuration ----------------------------------------------*/
|
|
RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CDCFGR2 & RCC_CDCFGR2_CDPPRE1);
|
|
|
|
/* Get the APB2 configuration ----------------------------------------------*/
|
|
RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)(RCC->CDCFGR2 & RCC_CDCFGR2_CDPPRE2);
|
|
|
|
/* Get the APB4 configuration ----------------------------------------------*/
|
|
RCC_ClkInitStruct->APB4CLKDivider = (uint32_t)(RCC->SRDCFGR & RCC_SRDCFGR_SRDPPRE);
|
|
#endif
|
|
|
|
/* Get the Flash Wait State (Latency) configuration ------------------------*/
|
|
*pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY);
|
|
}
|
|
|
|
/**
|
|
* @brief This function handles the RCC CSS interrupt request.
|
|
* @note This API should be called under the NMI_Handler().
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_NMI_IRQHandler(void)
|
|
{
|
|
/* Check RCC CSSF flag */
|
|
if (__HAL_RCC_GET_IT(RCC_IT_CSS))
|
|
{
|
|
/* RCC Clock Security System interrupt user callback */
|
|
HAL_RCC_CSSCallback();
|
|
|
|
/* Clear RCC CSS pending bit */
|
|
__HAL_RCC_CLEAR_IT(RCC_IT_CSS);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief RCC Clock Security System interrupt callback
|
|
* @retval none
|
|
*/
|
|
__weak void HAL_RCC_CSSCallback(void)
|
|
{
|
|
/* NOTE : This function Should not be modified, when the callback is needed,
|
|
the HAL_RCC_CSSCallback could be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
#endif /* HAL_RCC_MODULE_ENABLED */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|